URL
https://opencores.org/ocsvn/neorv32/neorv32/trunk
Subversion Repositories neorv32
[/] [neorv32/] [trunk/] [sw/] [lib/] [source/] [neorv32_cpu.c] - Rev 56
Go to most recent revision | Compare with Previous | Blame | View Log
// ################################################################################################# // # << NEORV32: neorv32_cpu.c - CPU Core Functions HW Driver >> # // # ********************************************************************************************* # // # BSD 3-Clause License # // # # // # Copyright (c) 2021, Stephan Nolting. All rights reserved. # // # # // # Redistribution and use in source and binary forms, with or without modification, are # // # permitted provided that the following conditions are met: # // # # // # 1. Redistributions of source code must retain the above copyright notice, this list of # // # conditions and the following disclaimer. # // # # // # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # // # conditions and the following disclaimer in the documentation and/or other materials # // # provided with the distribution. # // # # // # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # // # endorse or promote products derived from this software without specific prior written # // # permission. # // # # // # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # // # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # // # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # // # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # // # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # // # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # // # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # // # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # // # OF THE POSSIBILITY OF SUCH DAMAGE. # // # ********************************************************************************************* # // # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # // ################################################################################################# /**********************************************************************//** * @file neorv32_cpu.c * @author Stephan Nolting * @brief CPU Core Functions HW driver source file. **************************************************************************/ #include "neorv32.h" #include "neorv32_cpu.h" /**********************************************************************//** * Unavailable extensions warning. **************************************************************************/ #if defined __riscv_f || (__riscv_flen == 32) #warning Single-precision floating-point extension <F/Zfinx> is WORK-IN-PROGRESS and NOT FULLY OPERATIONAL yet! #endif #if defined __riscv_d || (__riscv_flen == 64) #error Double-precision floating-point extension <D/Zdinx> is NOT supported! #endif #if (__riscv_xlen > 32) #error Only 32-bit <rv32> is supported! #endif #ifdef __riscv_b #warning Bit-manipulation extension <B> is still experimental (non-ratified) and does not support all <Zb*> subsets yet. #endif #ifdef __riscv_fdiv #warning Floating-point division instruction <FDIV> is NOT supported yet! #endif #ifdef __riscv_fsqrt #warning Floating-point square root instruction <FSQRT> is NOT supported yet! #endif /**********************************************************************//** * >Private< helper functions. **************************************************************************/ static int __neorv32_cpu_irq_id_check(uint8_t irq_sel); static uint32_t __neorv32_cpu_pmp_cfg_read(uint32_t index); static void __neorv32_cpu_pmp_cfg_write(uint32_t index, uint32_t data); /**********************************************************************//** * Private function: Check IRQ id. * * @param[in] irq_sel CPU interrupt select. See #NEORV32_CSR_MIE_enum. * @return 0 if success, 1 if error (invalid irq_sel). **************************************************************************/ static int __neorv32_cpu_irq_id_check(uint8_t irq_sel) { if ((irq_sel == CSR_MIE_MSIE) || (irq_sel == CSR_MIE_MTIE) || (irq_sel == CSR_MIE_MEIE) || ((irq_sel >= CSR_MIE_FIRQ0E) && (irq_sel <= CSR_MIE_FIRQ15E))) { return 0; } else { return 1; } } /**********************************************************************//** * Enable specific CPU interrupt. * * @note Interrupts have to be globally enabled via neorv32_cpu_eint(void), too. * * @param[in] irq_sel CPU interrupt select. See #NEORV32_CSR_MIE_enum. * @return 0 if success, 1 if error (invalid irq_sel). **************************************************************************/ int neorv32_cpu_irq_enable(uint8_t irq_sel) { // check IRQ id if (__neorv32_cpu_irq_id_check(irq_sel)) { return 1; } register uint32_t mask = (uint32_t)(1 << irq_sel); asm volatile ("csrrs zero, mie, %0" : : "r" (mask)); return 0; } /**********************************************************************//** * Disable specific CPU interrupt. * * @param[in] irq_sel CPU interrupt select. See #NEORV32_CSR_MIE_enum. * @return 0 if success, 1 if error (invalid irq_sel). **************************************************************************/ int neorv32_cpu_irq_disable(uint8_t irq_sel) { // check IRQ id if (__neorv32_cpu_irq_id_check(irq_sel)) { return 1; } register uint32_t mask = (uint32_t)(1 << irq_sel); asm volatile ("csrrc zero, mie, %0" : : "r" (mask)); return 0; } /**********************************************************************//** * Get cycle count from cycle[h]. * * @note The cycle[h] CSR is shadowed copy of the mcycle[h] CSR. * * @return Current cycle counter (64 bit). **************************************************************************/ uint64_t neorv32_cpu_get_cycle(void) { union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/2]; } cycles; uint32_t tmp1, tmp2, tmp3; while(1) { tmp1 = neorv32_cpu_csr_read(CSR_CYCLEH); tmp2 = neorv32_cpu_csr_read(CSR_CYCLE); tmp3 = neorv32_cpu_csr_read(CSR_CYCLEH); if (tmp1 == tmp3) { break; } } cycles.uint32[0] = tmp2; cycles.uint32[1] = tmp3; return cycles.uint64; } /**********************************************************************//** * Set mcycle[h] counter. * * @param[in] value New value for mcycle[h] CSR (64-bit). **************************************************************************/ void neorv32_cpu_set_mcycle(uint64_t value) { union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/2]; } cycles; cycles.uint64 = value; neorv32_cpu_csr_write(CSR_MCYCLE, 0); neorv32_cpu_csr_write(CSR_MCYCLEH, cycles.uint32[1]); neorv32_cpu_csr_write(CSR_MCYCLE, cycles.uint32[0]); } /**********************************************************************//** * Get retired instructions counter from instret[h]. * * @note The instret[h] CSR is shadowed copy of the instret[h] CSR. * * @return Current instructions counter (64 bit). **************************************************************************/ uint64_t neorv32_cpu_get_instret(void) { union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/2]; } cycles; uint32_t tmp1, tmp2, tmp3; while(1) { tmp1 = neorv32_cpu_csr_read(CSR_INSTRETH); tmp2 = neorv32_cpu_csr_read(CSR_INSTRET); tmp3 = neorv32_cpu_csr_read(CSR_INSTRETH); if (tmp1 == tmp3) { break; } } cycles.uint32[0] = tmp2; cycles.uint32[1] = tmp3; return cycles.uint64; } /**********************************************************************//** * Set retired instructions counter minstret[h]. * * @param[in] value New value for mcycle[h] CSR (64-bit). **************************************************************************/ void neorv32_cpu_set_minstret(uint64_t value) { union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/2]; } cycles; cycles.uint64 = value; neorv32_cpu_csr_write(CSR_MINSTRET, 0); neorv32_cpu_csr_write(CSR_MINSTRETH, cycles.uint32[1]); neorv32_cpu_csr_write(CSR_MINSTRET, cycles.uint32[0]); } /**********************************************************************//** * Get current system time from time[h] CSR. * * @note This function requires the MTIME system timer to be implemented. * * @return Current system time (64 bit). **************************************************************************/ uint64_t neorv32_cpu_get_systime(void) { union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/2]; } cycles; uint32_t tmp1, tmp2, tmp3; while(1) { tmp1 = neorv32_cpu_csr_read(CSR_TIMEH); tmp2 = neorv32_cpu_csr_read(CSR_TIME); tmp3 = neorv32_cpu_csr_read(CSR_TIMEH); if (tmp1 == tmp3) { break; } } cycles.uint32[0] = tmp2; cycles.uint32[1] = tmp3; return cycles.uint64; } /**********************************************************************//** * Simple delay function using busy wait (simple loop). * * @warning This function is not really precise (especially if there is no M extension available)! Use a timer-based approach (using cycle or time CSRs) for precise timings. * * @param[in] time_ms Time in ms to wait (max 32767ms). **************************************************************************/ void neorv32_cpu_delay_ms(int16_t time_ms) { const uint32_t loop_cycles_c = 16; // clock cycles per iteration of the ASM loop // check input if (time_ms < 0) { time_ms = -time_ms; } uint32_t clock = SYSINFO_CLK; // clock ticks per second clock = clock / 1000; // clock ticks per ms uint64_t wait_cycles = ((uint64_t)clock) * ((uint64_t)time_ms); uint32_t ticks = (uint32_t)(wait_cycles / loop_cycles_c); asm volatile (" .balign 4 \n" // make sure this is 32-bit aligned " __neorv32_cpu_delay_ms_start: \n" " beq %[cnt_r], zero, __neorv32_cpu_delay_ms_end \n" // 3 cycles (not taken) " beq %[cnt_r], zero, __neorv32_cpu_delay_ms_end \n" // 3 cycles (never taken) " addi %[cnt_w], %[cnt_r], -1 \n" // 2 cycles " nop \n" // 2 cycles " j __neorv32_cpu_delay_ms_start \n" // 6 cycles " __neorv32_cpu_delay_ms_end: " : [cnt_w] "=r" (ticks) : [cnt_r] "r" (ticks)); } /**********************************************************************//** * Switch from privilege mode MACHINE to privilege mode USER. * * @warning This function requires the U extension to be implemented. **************************************************************************/ void __attribute__((naked)) neorv32_cpu_goto_user_mode(void) { // make sure to use NO registers in here! -> naked asm volatile ("csrw mepc, ra \n" // move return address to mepc so we can return using "mret". also, we can now use ra as general purpose register in here "li ra, %[input_imm] \n" // bit mask to clear the two MPP bits "csrrc zero, mstatus, ra \n" // clear MPP bits -> MPP=u-mode "mret \n" // return and switch to user mode : : [input_imm] "i" ((1<<CSR_MSTATUS_MPP_H) | (1<<CSR_MSTATUS_MPP_L))); } /**********************************************************************//** * Atomic compare-and-swap operation (for implemeneting semaphores and mutexes). * * @warning This function requires the A (atomic) CPU extension. * * @param[in] addr Address of memory location. * @param[in] expected Expected value (for comparison). * @param[in] desired Desired value (new value). * @return Returns 0 on success, 1 on failure. **************************************************************************/ int __attribute__ ((noinline)) neorv32_cpu_atomic_cas(uint32_t addr, uint32_t expected, uint32_t desired) { #ifdef __riscv_atomic register uint32_t addr_reg = addr; register uint32_t des_reg = desired; register uint32_t tmp_reg; // load original value + reservation (lock) asm volatile ("lr.w %[result], (%[input])" : [result] "=r" (tmp_reg) : [input] "r" (addr_reg)); if (tmp_reg != expected) { asm volatile ("lw x0, 0(%[input])" : : [input] "r" (addr_reg)); // clear reservation lock return 1; } // store-conditional asm volatile ("sc.w %[result], %[input_i], (%[input_j])" : [result] "=r" (tmp_reg) : [input_i] "r" (des_reg), [input_j] "r" (addr_reg)); if (tmp_reg) { return 1; } return 0; #else return 1; // A extension not implemented - function always fails #endif } /**********************************************************************//** * Physical memory protection (PMP): Get number of available regions. * * @warning This function overrides all available PMPCFG* CSRs. * @warning This function requires the PMP CPU extension. * * @return Returns number of available PMP regions. **************************************************************************/ uint32_t neorv32_cpu_pmp_get_num_regions(void) { uint32_t i = 0; // try setting R bit in all PMPCFG CSRs const uint32_t tmp = 0x01010101; for (i=0; i<16; i++) { __neorv32_cpu_pmp_cfg_write(i, tmp); } // sum up all written ones (only available PMPCFG* CSRs/entries will return =! 0) union { uint32_t uint32; uint8_t uint8[sizeof(uint32_t)/sizeof(uint8_t)]; } cnt; cnt.uint32 = 0; for (i=0; i<16; i++) { cnt.uint32 += __neorv32_cpu_pmp_cfg_read(i); } // sum up bytes uint32_t num_regions = 0; num_regions += (uint32_t)cnt.uint8[0]; num_regions += (uint32_t)cnt.uint8[1]; num_regions += (uint32_t)cnt.uint8[2]; num_regions += (uint32_t)cnt.uint8[3]; return num_regions; } /**********************************************************************//** * Physical memory protection (PMP): Get minimal region size (granularity). * * @warning This function overrides PMPCFG0[0] and PMPADDR0 CSRs. * @warning This function requires the PMP CPU extension. * * @return Returns minimal region size in bytes. **************************************************************************/ uint32_t neorv32_cpu_pmp_get_granularity(void) { // check min granulartiy uint32_t tmp = neorv32_cpu_csr_read(CSR_PMPCFG0); tmp &= 0xffffff00; // disable entry 0 neorv32_cpu_csr_write(CSR_PMPCFG0, tmp); neorv32_cpu_csr_write(CSR_PMPADDR0, 0xffffffff); uint32_t tmp_a = neorv32_cpu_csr_read(CSR_PMPADDR0); uint32_t i; // find least-significat set bit for (i=31; i!=0; i--) { if (((tmp_a >> i) & 1) == 0) { break; } } return (uint32_t)(1 << (i+1+2)); } /**********************************************************************//** * Physical memory protection (PMP): Configure region. * * @note Using NAPOT mode - page base address has to be naturally aligned. * * @warning This function requires the PMP CPU extension. * @warning Only use available PMP regions. Check before using neorv32_cpu_pmp_get_regions(void). * * @param[in] index Region number (index, 0..PMP_NUM_REGIONS-1). * @param[in] base Region base address (has to be naturally aligned!). * @param[in] size Region size, has to be a power of 2 (min 8 bytes or according to HW's PMP.granularity configuration). * @param[in] config Region configuration (attributes) byte (for PMPCFGx). * @return Returns 0 on success, 1 on failure. **************************************************************************/ int neorv32_cpu_pmp_configure_region(uint32_t index, uint32_t base, uint32_t size, uint8_t config) { if (size < 8) { return 1; // minimal region size is 8 bytes } if ((size & (size - 1)) != 0) { return 1; // region size is not a power of two } // pmpcfg register index uint32_t pmpcfg_index = index >> 4; // 4 entries per pmpcfg csr // setup configuration uint32_t tmp; uint32_t config_int = ((uint32_t)config) << ((index%4)*8); uint32_t config_mask = ((uint32_t)0xFF) << ((index%4)*8); config_mask = ~config_mask; // clear old configuration __neorv32_cpu_pmp_cfg_write(pmpcfg_index, __neorv32_cpu_pmp_cfg_read(pmpcfg_index) & config_mask); // set base address and region size uint32_t addr_mask = ~((size - 1) >> 2); uint32_t size_mask = (size - 1) >> 3; tmp = base & addr_mask; tmp = tmp | size_mask; switch(index & 63) { case 0: neorv32_cpu_csr_write(CSR_PMPADDR0, tmp); break; case 1: neorv32_cpu_csr_write(CSR_PMPADDR1, tmp); break; case 2: neorv32_cpu_csr_write(CSR_PMPADDR2, tmp); break; case 3: neorv32_cpu_csr_write(CSR_PMPADDR3, tmp); break; case 4: neorv32_cpu_csr_write(CSR_PMPADDR4, tmp); break; case 5: neorv32_cpu_csr_write(CSR_PMPADDR5, tmp); break; case 6: neorv32_cpu_csr_write(CSR_PMPADDR6, tmp); break; case 7: neorv32_cpu_csr_write(CSR_PMPADDR7, tmp); break; case 8: neorv32_cpu_csr_write(CSR_PMPADDR8, tmp); break; case 9: neorv32_cpu_csr_write(CSR_PMPADDR9, tmp); break; case 10: neorv32_cpu_csr_write(CSR_PMPADDR10, tmp); break; case 11: neorv32_cpu_csr_write(CSR_PMPADDR11, tmp); break; case 12: neorv32_cpu_csr_write(CSR_PMPADDR12, tmp); break; case 13: neorv32_cpu_csr_write(CSR_PMPADDR13, tmp); break; case 14: neorv32_cpu_csr_write(CSR_PMPADDR14, tmp); break; case 15: neorv32_cpu_csr_write(CSR_PMPADDR15, tmp); break; case 16: neorv32_cpu_csr_write(CSR_PMPADDR16, tmp); break; case 17: neorv32_cpu_csr_write(CSR_PMPADDR17, tmp); break; case 18: neorv32_cpu_csr_write(CSR_PMPADDR18, tmp); break; case 19: neorv32_cpu_csr_write(CSR_PMPADDR19, tmp); break; case 20: neorv32_cpu_csr_write(CSR_PMPADDR20, tmp); break; case 21: neorv32_cpu_csr_write(CSR_PMPADDR21, tmp); break; case 22: neorv32_cpu_csr_write(CSR_PMPADDR22, tmp); break; case 23: neorv32_cpu_csr_write(CSR_PMPADDR23, tmp); break; case 24: neorv32_cpu_csr_write(CSR_PMPADDR24, tmp); break; case 25: neorv32_cpu_csr_write(CSR_PMPADDR25, tmp); break; case 26: neorv32_cpu_csr_write(CSR_PMPADDR26, tmp); break; case 27: neorv32_cpu_csr_write(CSR_PMPADDR27, tmp); break; case 28: neorv32_cpu_csr_write(CSR_PMPADDR28, tmp); break; case 29: neorv32_cpu_csr_write(CSR_PMPADDR29, tmp); break; case 30: neorv32_cpu_csr_write(CSR_PMPADDR30, tmp); break; case 31: neorv32_cpu_csr_write(CSR_PMPADDR31, tmp); break; case 32: neorv32_cpu_csr_write(CSR_PMPADDR32, tmp); break; case 33: neorv32_cpu_csr_write(CSR_PMPADDR33, tmp); break; case 34: neorv32_cpu_csr_write(CSR_PMPADDR34, tmp); break; case 35: neorv32_cpu_csr_write(CSR_PMPADDR35, tmp); break; case 36: neorv32_cpu_csr_write(CSR_PMPADDR36, tmp); break; case 37: neorv32_cpu_csr_write(CSR_PMPADDR37, tmp); break; case 38: neorv32_cpu_csr_write(CSR_PMPADDR38, tmp); break; case 39: neorv32_cpu_csr_write(CSR_PMPADDR39, tmp); break; case 40: neorv32_cpu_csr_write(CSR_PMPADDR40, tmp); break; case 41: neorv32_cpu_csr_write(CSR_PMPADDR41, tmp); break; case 42: neorv32_cpu_csr_write(CSR_PMPADDR42, tmp); break; case 43: neorv32_cpu_csr_write(CSR_PMPADDR43, tmp); break; case 44: neorv32_cpu_csr_write(CSR_PMPADDR44, tmp); break; case 45: neorv32_cpu_csr_write(CSR_PMPADDR45, tmp); break; case 46: neorv32_cpu_csr_write(CSR_PMPADDR46, tmp); break; case 47: neorv32_cpu_csr_write(CSR_PMPADDR47, tmp); break; case 48: neorv32_cpu_csr_write(CSR_PMPADDR48, tmp); break; case 49: neorv32_cpu_csr_write(CSR_PMPADDR49, tmp); break; case 50: neorv32_cpu_csr_write(CSR_PMPADDR50, tmp); break; case 51: neorv32_cpu_csr_write(CSR_PMPADDR51, tmp); break; case 52: neorv32_cpu_csr_write(CSR_PMPADDR52, tmp); break; case 53: neorv32_cpu_csr_write(CSR_PMPADDR53, tmp); break; case 54: neorv32_cpu_csr_write(CSR_PMPADDR54, tmp); break; case 55: neorv32_cpu_csr_write(CSR_PMPADDR55, tmp); break; case 56: neorv32_cpu_csr_write(CSR_PMPADDR56, tmp); break; case 57: neorv32_cpu_csr_write(CSR_PMPADDR57, tmp); break; case 58: neorv32_cpu_csr_write(CSR_PMPADDR58, tmp); break; case 59: neorv32_cpu_csr_write(CSR_PMPADDR59, tmp); break; case 60: neorv32_cpu_csr_write(CSR_PMPADDR60, tmp); break; case 61: neorv32_cpu_csr_write(CSR_PMPADDR61, tmp); break; case 62: neorv32_cpu_csr_write(CSR_PMPADDR62, tmp); break; case 63: neorv32_cpu_csr_write(CSR_PMPADDR63, tmp); break; default: break; } // wait for HW to compute PMP-internal stuff (address masks) for (tmp=0; tmp<16; tmp++) { asm volatile ("nop"); } // set new configuration __neorv32_cpu_pmp_cfg_write(pmpcfg_index, __neorv32_cpu_pmp_cfg_read(pmpcfg_index) | config_int); return 0; } /**********************************************************************//** * Internal helper function: Read PMP configuration register 0..15 * * @warning This function requires the PMP CPU extension. * * @param[in] index PMP CFG configuration register ID (0..15). * @return PMP CFG read data. **************************************************************************/ static uint32_t __neorv32_cpu_pmp_cfg_read(uint32_t index) { uint32_t tmp = 0; switch(index & 15) { case 0: tmp = neorv32_cpu_csr_read(CSR_PMPCFG0); break; case 1: tmp = neorv32_cpu_csr_read(CSR_PMPCFG1); break; case 2: tmp = neorv32_cpu_csr_read(CSR_PMPCFG2); break; case 3: tmp = neorv32_cpu_csr_read(CSR_PMPCFG3); break; case 4: tmp = neorv32_cpu_csr_read(CSR_PMPCFG4); break; case 5: tmp = neorv32_cpu_csr_read(CSR_PMPCFG5); break; case 6: tmp = neorv32_cpu_csr_read(CSR_PMPCFG6); break; case 7: tmp = neorv32_cpu_csr_read(CSR_PMPCFG7); break; case 8: tmp = neorv32_cpu_csr_read(CSR_PMPCFG8); break; case 9: tmp = neorv32_cpu_csr_read(CSR_PMPCFG9); break; case 10: tmp = neorv32_cpu_csr_read(CSR_PMPCFG10); break; case 11: tmp = neorv32_cpu_csr_read(CSR_PMPCFG11); break; case 12: tmp = neorv32_cpu_csr_read(CSR_PMPCFG12); break; case 13: tmp = neorv32_cpu_csr_read(CSR_PMPCFG13); break; case 14: tmp = neorv32_cpu_csr_read(CSR_PMPCFG14); break; case 15: tmp = neorv32_cpu_csr_read(CSR_PMPCFG15); break; default: break; } return tmp; } /**********************************************************************//** * Internal helper function: Write PMP configuration register 0..15 * * @warning This function requires the PMP CPU extension. * * @param[in] index PMP CFG configuration register ID (0..15). * @param[in] data PMP CFG write data. **************************************************************************/ static void __neorv32_cpu_pmp_cfg_write(uint32_t index, uint32_t data) { switch(index & 15) { case 0: neorv32_cpu_csr_write(CSR_PMPCFG0, data); break; case 1: neorv32_cpu_csr_write(CSR_PMPCFG1, data); break; case 2: neorv32_cpu_csr_write(CSR_PMPCFG2, data); break; case 3: neorv32_cpu_csr_write(CSR_PMPCFG3, data); break; case 4: neorv32_cpu_csr_write(CSR_PMPCFG4, data); break; case 5: neorv32_cpu_csr_write(CSR_PMPCFG5, data); break; case 6: neorv32_cpu_csr_write(CSR_PMPCFG6, data); break; case 7: neorv32_cpu_csr_write(CSR_PMPCFG7, data); break; case 8: neorv32_cpu_csr_write(CSR_PMPCFG8, data); break; case 9: neorv32_cpu_csr_write(CSR_PMPCFG9, data); break; case 10: neorv32_cpu_csr_write(CSR_PMPCFG10, data); break; case 11: neorv32_cpu_csr_write(CSR_PMPCFG11, data); break; case 12: neorv32_cpu_csr_write(CSR_PMPCFG12, data); break; case 13: neorv32_cpu_csr_write(CSR_PMPCFG13, data); break; case 14: neorv32_cpu_csr_write(CSR_PMPCFG14, data); break; case 15: neorv32_cpu_csr_write(CSR_PMPCFG15, data); break; default: break; } } /**********************************************************************//** * Hardware performance monitors (HPM): Get number of available HPM counters. * * @warning This function overrides all available mhpmcounter* CSRs. * * @return Returns number of available HPM counters (..29). **************************************************************************/ uint32_t neorv32_cpu_hpm_get_counters(void) { // inhibit all HPM counters uint32_t tmp = neorv32_cpu_csr_read(CSR_MCOUNTINHIBIT); tmp |= 0xfffffff8; neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, tmp); // try setting all mhpmcounter* CSRs to 1 neorv32_cpu_csr_write(CSR_MHPMCOUNTER3, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER4, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER5, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER6, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER7, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER8, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER9, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER10, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER11, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER12, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER13, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER14, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER15, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER16, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER17, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER18, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER19, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER20, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER21, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER22, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER23, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER24, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER25, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER26, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER27, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER28, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER29, 1); // sum up all written ones (only available HPM counter CSRs will return =! 0) uint32_t num_hpm_cnts = 0; num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER3); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER4); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER5); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER6); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER7); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER8); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER9); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER10); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER11); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER12); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER13); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER14); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER15); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER16); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER17); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER18); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER19); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER20); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER21); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER22); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER23); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER24); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER25); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER26); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER27); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER28); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER29); return num_hpm_cnts; } /**********************************************************************//** * Hardware performance monitors (HPM): Get total counter width * * @warning This function overrides mhpmcounter3[h] CSRs. * * @return Size of HPM counter bits (1-64). **************************************************************************/ uint32_t neorv32_cpu_hpm_get_size(void) { // inhibt auto-update asm volatile ("csrwi %[addr], %[imm]" : : [addr] "i" (CSR_MCOUNTINHIBIT), [imm] "i" (1<<CSR_MCOUNTEREN_HPM3)); neorv32_cpu_csr_write(CSR_MHPMCOUNTER3, 0xffffffff); neorv32_cpu_csr_write(CSR_MHPMCOUNTER3H, 0xffffffff); uint32_t tmp, size, i; if (neorv32_cpu_csr_read(CSR_MHPMCOUNTER3H) == 0) { size = 0; tmp = neorv32_cpu_csr_read(CSR_MHPMCOUNTER3); } else { size = 32; tmp = neorv32_cpu_csr_read(CSR_MHPMCOUNTER3H); } for (i=0; i<32; i++) { if (tmp & (1<<i)) { size++; } } return size; } /**********************************************************************//** * Check if certain Z* extension is available * * @param[in] flag Index of the Z-extension to check from #NEORV32_CSR_MZEXT_enum * @return 0 if extension is NOT available, != 0 if extension is available. **************************************************************************/ int neorv32_check_zextension(uint32_t flag) { // check if out of range if (flag > 31) { return 0; } uint32_t tmp = neorv32_cpu_csr_read(CSR_MZEXT); if ((tmp & (1 << flag)) == 0) { return 0; } else { return 1; } }
Go to most recent revision | Compare with Previous | Blame | View Log