URL
https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk
Subversion Repositories open8_urisc
[/] [open8_urisc/] [trunk/] [VHDL/] [o8_rtc.vhd] - Rev 211
Go to most recent revision | Compare with Previous | Blame | View Log
-- Copyright (c)2020 Jeremy Seth Henry -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions are met: -- * Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- * Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in the -- documentation and/or other materials provided with the distribution, -- where applicable (as part of a user interface, debugging port, etc.) -- -- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY -- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY -- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND -- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF -- THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -- -- VHDL Units : o8_rtc -- Description: Provides automatically updated registers that maintain the -- : time of day. Keeps track of the day of week, hours, minutes -- : seconds, and tenths of a second. Module is doubled buffered -- : to ensure time consistency during accesses. Also provides -- : a programmable periodic interrupt timer, as well as a uSec -- : tick for external use. -- -- Register Map: -- Offset Bitfield Description Read/Write -- 0x0 AAAAAAAA Periodic Interval Timer in uS (RW) -- 0x1 -AAAAAAA Tenths (0x00 - 0x63) (RW) -- 0x2 --AAAAAA Seconds (0x00 - 0x3B) (RW) -- 0x3 --AAAAAA Minutes (0x00 - 0x3B) (RW) -- 0x4 ---AAAAA Hours (0x00 - 0x17) (RW) -- 0x5 -----AAA Day of Week (0x00 - 0x06) (RW) -- 0x6 -------- Update RTC regs from Shadow Regs (WO) -- 0x7 A------- Update Shadow Regs from RTC regs (RW) -- A = Update is Busy library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; use ieee.std_logic_misc.all; library work; use work.open8_pkg.all; entity o8_rtc is generic( Sys_Freq : real; Reset_Level : std_logic; Address : ADDRESS_TYPE ); port( Clock : in std_logic; Reset : in std_logic; uSec_Tick : out std_logic; -- Bus_Address : in ADDRESS_TYPE; Wr_Enable : in std_logic; Wr_Data : in DATA_TYPE; Rd_Enable : in std_logic; Rd_Data : out DATA_TYPE; -- Interrupt_PIT : out std_logic; Interrupt_RTC : out std_logic ); end entity; architecture behave of o8_rtc is constant User_Addr : std_logic_vector(15 downto 3) := Address(15 downto 3); alias Comp_Addr is Bus_Address(15 downto 3); signal Addr_Match : std_logic; alias Reg_Addr is Bus_Address(2 downto 0); signal Reg_Addr_q : std_logic_vector(2 downto 0); signal Wr_En : std_logic; signal Wr_Data_q : DATA_TYPE; signal Rd_En : std_logic; constant DLY_1USEC_VAL : integer := integer(Sys_Freq / 1000000.0); constant DLY_1USEC_WDT : integer := ceil_log2(DLY_1USEC_VAL - 1); constant DLY_1USEC : std_logic_vector := conv_std_logic_vector( DLY_1USEC_VAL - 1, DLY_1USEC_WDT); signal uSec_Cntr : std_logic_vector( DLY_1USEC_WDT - 1 downto 0 ) := (others => '0'); signal uSec_Tick_i : std_logic; type PIT_TYPE is record timer_cnt : DATA_TYPE; timer_ro : std_logic; end record; signal pit : PIT_TYPE; type RTC_TYPE is record frac : std_logic_vector(15 downto 0); frac_ro : std_logic; tens_l : std_logic_vector(3 downto 0); tens_l_ro : std_logic; tens_u : std_logic_vector(3 downto 0); tens_u_ro : std_logic; secs_l : std_logic_vector(3 downto 0); secs_l_ro : std_logic; secs_u : std_logic_vector(3 downto 0); secs_u_ro : std_logic; mins_l : std_logic_vector(3 downto 0); mins_l_ro : std_logic; mins_u : std_logic_vector(3 downto 0); mins_u_ro : std_logic; hours_l : std_logic_vector(3 downto 0); hours_l_ro : std_logic; hours_u : std_logic_vector(3 downto 0); hours_u_ro : std_logic; dow : std_logic_vector(2 downto 0); end record; constant DECISEC : std_logic_vector(15 downto 0) := conv_std_logic_vector(10000,16); signal rtc : RTC_TYPE; signal interval : DATA_TYPE; signal update_interval: std_logic; signal shd_tens : DATA_TYPE; signal shd_secs : DATA_TYPE; signal shd_mins : DATA_TYPE; signal shd_hours : DATA_TYPE; signal shd_dow : DATA_TYPE; signal update_rtc : std_logic; signal update_shd : std_logic; signal update_ctmr : std_logic_vector(3 downto 0); begin uSec_Tick <= uSec_Tick_i; Addr_Match <= '1' when Comp_Addr = User_Addr else '0'; Interrupt_PIT <= pit.timer_ro; Interrupt_RTC <= rtc.frac_ro; io_reg: process( Clock, Reset ) begin if( Reset = Reset_Level )then uSec_Cntr <= (others => '0'); uSec_Tick_i <= '0'; pit.timer_cnt <= x"00"; pit.timer_ro <= '0'; rtc.frac <= DECISEC; rtc.frac_ro <= '0'; rtc.tens_l <= (others => '0'); rtc.tens_l_ro <= '0'; rtc.tens_u <= (others => '0'); rtc.tens_u_ro <= '0'; rtc.secs_l <= (others => '0'); rtc.secs_l_ro <= '0'; rtc.secs_u <= (others => '0'); rtc.secs_u_ro <= '0'; rtc.mins_l <= (others => '0'); rtc.mins_l_ro <= '0'; rtc.mins_u <= (others => '0'); rtc.mins_u_ro <= '0'; rtc.hours_l <= (others => '0'); rtc.hours_l_ro <= '0'; rtc.hours_u <= (others => '0'); rtc.hours_u_ro <= '0'; rtc.dow <= (others => '0'); shd_tens <= (others => '0'); shd_secs <= (others => '0'); shd_mins <= (others => '0'); shd_hours <= (others => '0'); shd_dow <= (others => '0'); update_rtc <= '0'; update_shd <= '0'; update_ctmr <= (others => '0'); interval <= x"00"; update_interval <= '0'; Wr_Data_q <= (others => '0'); Reg_Addr_q <= (others => '0'); Wr_En <= '0'; Rd_En <= '0'; Rd_Data <= OPEN8_NULLBUS; elsif( rising_edge( Clock ) )then uSec_Cntr <= uSec_Cntr - 1; uSec_Tick_i <= '0'; if( uSec_Cntr = 0 )then uSec_Cntr <= DLY_1USEC; uSec_Tick_i <= '1'; end if; -- Periodic Interval Timer pit.timer_cnt <= pit.timer_cnt - uSec_Tick_i; pit.timer_ro <= '0'; if( update_interval = '1' )then pit.timer_cnt <= interval; elsif( or_reduce(pit.timer_cnt) = '0' )then pit.timer_cnt <= interval; pit.timer_ro <= or_reduce(interval); end if; -- Fractional decisecond counter - cycles every 10k microseconds rtc.frac <= rtc.frac - uSec_Tick_i; rtc.frac_ro <= '0'; if( or_reduce(rtc.frac) = '0' or update_rtc = '1' )then rtc.frac <= DECISEC; rtc.frac_ro <= not update_rtc; end if; -- Decisecond counter (lower) rtc.tens_l <= rtc.tens_l + rtc.frac_ro; rtc.tens_l_ro <= '0'; if( update_rtc = '1' )then rtc.tens_l <= shd_tens(3 downto 0); elsif( rtc.tens_l > x"9")then rtc.tens_l <= (others => '0'); rtc.tens_l_ro <= '1'; end if; -- Decisecond counter (upper) rtc.tens_u <= rtc.tens_u + rtc.tens_l_ro; rtc.tens_u_ro <= '0'; if( update_rtc = '1' )then rtc.tens_u <= shd_tens(7 downto 4); elsif( rtc.tens_u > x"9")then rtc.tens_u <= (others => '0'); rtc.tens_u_ro <= '1'; end if; -- Second counter (lower) rtc.secs_l <= rtc.secs_l + rtc.tens_u_ro; rtc.secs_l_ro <= '0'; if( update_rtc = '1' )then rtc.secs_l <= shd_secs(3 downto 0); elsif( rtc.secs_l > x"9")then rtc.secs_l <= (others => '0'); rtc.secs_l_ro <= '1'; end if; -- Second counter (upper) rtc.secs_u <= rtc.secs_u + rtc.secs_l_ro; rtc.secs_u_ro <= '0'; if( update_rtc = '1' )then rtc.secs_u <= shd_secs(7 downto 4); elsif( rtc.secs_u > x"5")then rtc.secs_u <= (others => '0'); rtc.secs_u_ro <= '1'; end if; -- Minutes counter (lower) rtc.mins_l <= rtc.mins_l + rtc.secs_u_ro; rtc.mins_l_ro <= '0'; if( update_rtc = '1' )then rtc.mins_l <= shd_mins(3 downto 0); elsif( rtc.mins_l > x"9")then rtc.mins_l <= (others => '0'); rtc.mins_l_ro <= '1'; end if; -- Minutes counter (upper) rtc.mins_u <= rtc.mins_u + rtc.mins_l_ro; rtc.mins_u_ro <= '0'; if( update_rtc = '1' )then rtc.mins_u <= shd_mins(7 downto 4); elsif( rtc.mins_u > x"5")then rtc.mins_u <= (others => '0'); rtc.mins_u_ro <= '1'; end if; -- Hour counter (lower) rtc.hours_l <= rtc.hours_l + rtc.mins_u_ro; rtc.hours_l_ro <= '0'; if( update_rtc = '1' )then rtc.hours_l <= shd_hours(3 downto 0); elsif( rtc.hours_l > x"9")then rtc.hours_l <= (others => '0'); rtc.hours_l_ro <= '1'; end if; -- Hour counter (upper) rtc.hours_u <= rtc.hours_u + rtc.hours_l_ro; if( update_rtc = '1' )then rtc.hours_u <= shd_hours(7 downto 4); end if; rtc.hours_u_ro <= '0'; if( rtc.hours_u >= x"2" and rtc.hours_l > x"3" )then rtc.hours_l <= (others => '0'); rtc.hours_u <= (others => '0'); rtc.hours_u_ro <= '1'; end if; -- Day of Week counter rtc.dow <= rtc.dow + rtc.hours_u_ro; if( update_rtc = '1' )then rtc.dow <= shd_dow(2 downto 0); elsif( rtc.dow = x"07")then rtc.dow <= (others => '0'); end if; -- Copy the RTC registers to the shadow registers when the coherency -- timer is zero (RTC registers are static) if( update_shd = '1' and or_reduce(update_ctmr) = '0' )then shd_tens <= rtc.tens_u & rtc.tens_l; shd_secs <= rtc.secs_u & rtc.secs_l; shd_mins <= rtc.mins_u & rtc.mins_l; shd_hours <= rtc.hours_u & rtc.hours_l; shd_dow <= "00000" & rtc.dow; update_shd <= '0'; end if; update_interval <= '0'; Reg_Addr_q <= Reg_Addr; Wr_Data_q <= Wr_Data; Wr_En <= Addr_Match and Wr_Enable; update_rtc <= '0'; if( Wr_En = '1' )then case( Reg_Addr_q )is when "000" => interval <= Wr_Data_q; update_interval <= '1'; when "001" => shd_tens <= Wr_Data_q; when "010" => shd_secs <= Wr_Data_q; when "011" => shd_mins <= Wr_Data_q; when "100" => shd_hours <= Wr_Data_q; when "101" => shd_dow <= Wr_Data_q; when "110" => update_rtc <= '1'; when "111" => update_shd <= '1'; when others => null; end case; end if; -- Coherency timer - ensures that the shadow registers are updated with -- valid time data by delaying updates until the rtc registers have -- finished cascading. update_ctmr <= update_ctmr - or_reduce(update_ctmr); if( rtc.frac_ro = '1' )then update_ctmr <= (others => '1'); end if; Rd_Data <= OPEN8_NULLBUS; Rd_En <= Addr_Match and Rd_Enable; if( Rd_En = '1' )then case( Reg_Addr_q )is when "000" => Rd_Data <= interval; when "001" => Rd_Data <= shd_tens; when "010" => Rd_Data <= shd_secs; when "011" => Rd_Data <= shd_mins; when "100" => Rd_Data <= shd_hours; when "101" => Rd_Data <= shd_dow; when "110" => null; when "111" => Rd_Data <= update_shd & "0000000"; when others => null; end case; end if; end if; end process; end architecture;
Go to most recent revision | Compare with Previous | Blame | View Log