URL
https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk
Subversion Repositories open8_urisc
[/] [open8_urisc/] [trunk/] [VHDL/] [o8_vdsm12.vhd] - Rev 294
Go to most recent revision | Compare with Previous | Blame | View Log
-- Copyright (c)2019, 2020 Jeremy Seth Henry -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions are met: -- * Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- * Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in the -- documentation and/or other materials provided with the distribution, -- where applicable (as part of a user interface, debugging port, etc.) -- -- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY -- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY -- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND -- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF -- THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -- -- VHDL Units : o8_vdsm12 -- Description: 12-bit variable delta-sigma modulator. Requires Open8_pkg.vhd -- -- Register Map: -- Offset Bitfield Description Read/Write -- 0x0 AAAAAAAA Pending DAC Level (7:0) (R/W) -- 0x1 ----AAAA Pending DAC Level (11:8) (R/W) -- 0x2 -------- Clear DAC Output (on write) (WO) -- 0x3 AAAAAAAA Update DAC Output (on write) (RO) -- -- Revision History -- Author Date Change ------------------ -------- --------------------------------------------------- -- Seth Henry 12/18/19 Design start -- Seth Henry 04/10/20 Code Cleanup -- Seth Henry 04/16/20 Modified to use Open8 bus record -- Seth Henry 05/18/20 Added write qualification input library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; use ieee.std_logic_misc.all; library work; use work.open8_pkg.all; entity o8_vdsm12 is generic( Invert_Output : boolean := FALSE; Default_Value : std_logic_vector(11 downto 0) := x"000"; Address : ADDRESS_TYPE ); port( Open8_Bus : in OPEN8_BUS_TYPE; Write_Qual : in std_logic := '1'; Rd_Data : out DATA_TYPE; -- DACOut : out std_logic ); end entity; architecture behave of o8_vdsm12 is alias Clock is Open8_Bus.Clock; alias Reset is Open8_Bus.Reset; constant User_Addr : std_logic_vector(15 downto 2) := Address(15 downto 2); alias Comp_Addr is Open8_Bus.Address(15 downto 2); signal Addr_Match : std_logic; alias Reg_Sel_d is Open8_Bus.Address(1 downto 0); signal Reg_Sel_q : std_logic_vector(1 downto 0) := "00"; signal Wr_En_d : std_logic := '0'; signal Wr_En_q : std_logic := '0'; alias Wr_Data_d is Open8_Bus.Wr_Data; signal Wr_Data_q : DATA_TYPE := x"00"; signal Rd_En_d : std_logic := '0'; signal Rd_En_q : std_logic := '0'; constant DAC_Width : integer := 12; signal DAC_Val_LB : std_logic_vector(7 downto 0) := x"00"; signal DAC_Val_UB : std_logic_vector(3 downto 0) := x"0"; signal DAC_Val : std_logic_vector(DAC_Width-1 downto 0) := (others => '0'); constant DELTA_1_I : integer := 1; constant DELTA_2_I : integer := 5; constant DELTA_3_I : integer := 25; constant DELTA_4_I : integer := 75; constant DELTA_5_I : integer := 125; constant DELTA_6_I : integer := 250; constant DELTA_7_I : integer := 500; constant DELTA_8_I : integer := 1000; constant DELTA_9_I : integer := 2000; constant DELTA_10_I : integer := 3000; constant DELTA_1 : std_logic_vector(DAC_Width-1 downto 0) := conv_std_logic_vector(DELTA_1_I, DAC_Width); constant DELTA_2 : std_logic_vector(DAC_Width-1 downto 0) := conv_std_logic_vector(DELTA_2_I, DAC_Width); constant DELTA_3 : std_logic_vector(DAC_Width-1 downto 0) := conv_std_logic_vector(DELTA_3_I, DAC_Width); constant DELTA_4 : std_logic_vector(DAC_Width-1 downto 0) := conv_std_logic_vector(DELTA_4_I, DAC_Width); constant DELTA_5 : std_logic_vector(DAC_Width-1 downto 0) := conv_std_logic_vector(DELTA_5_I, DAC_Width); constant DELTA_6 : std_logic_vector(DAC_Width-1 downto 0) := conv_std_logic_vector(DELTA_6_I, DAC_Width); constant DELTA_7 : std_logic_vector(DAC_Width-1 downto 0) := conv_std_logic_vector(DELTA_7_I, DAC_Width); constant DELTA_8 : std_logic_vector(DAC_Width-1 downto 0) := conv_std_logic_vector(DELTA_8_I, DAC_Width); constant DELTA_9 : std_logic_vector(DAC_Width-1 downto 0) := conv_std_logic_vector(DELTA_9_I, DAC_Width); constant DELTA_10 : std_logic_vector(DAC_Width-1 downto 0) := conv_std_logic_vector(DELTA_10_I, DAC_Width); constant MAX_PERIOD : integer := 2**DAC_Width; constant DIV_WIDTH : integer := DAC_Width * 2; constant PADJ_1_I : integer := DELTA_1_I * MAX_PERIOD; constant PADJ_2_I : integer := DELTA_2_I * MAX_PERIOD; constant PADJ_3_I : integer := DELTA_3_I * MAX_PERIOD; constant PADJ_4_I : integer := DELTA_4_I * MAX_PERIOD; constant PADJ_5_I : integer := DELTA_5_I * MAX_PERIOD; constant PADJ_6_I : integer := DELTA_6_I * MAX_PERIOD; constant PADJ_7_I : integer := DELTA_7_I * MAX_PERIOD; constant PADJ_8_I : integer := DELTA_8_I * MAX_PERIOD; constant PADJ_9_I : integer := DELTA_9_I * MAX_PERIOD; constant PADJ_10_I : integer := DELTA_10_I * MAX_PERIOD; constant PADJ_1 : std_logic_vector(DIV_WIDTH-1 downto 0) := conv_std_logic_vector(PADJ_1_I,DIV_WIDTH); constant PADJ_2 : std_logic_vector(DIV_WIDTH-1 downto 0) := conv_std_logic_vector(PADJ_2_I,DIV_WIDTH); constant PADJ_3 : std_logic_vector(DIV_WIDTH-1 downto 0) := conv_std_logic_vector(PADJ_3_I,DIV_WIDTH); constant PADJ_4 : std_logic_vector(DIV_WIDTH-1 downto 0) := conv_std_logic_vector(PADJ_4_I,DIV_WIDTH); constant PADJ_5 : std_logic_vector(DIV_WIDTH-1 downto 0) := conv_std_logic_vector(PADJ_5_I,DIV_WIDTH); constant PADJ_6 : std_logic_vector(DIV_WIDTH-1 downto 0) := conv_std_logic_vector(PADJ_6_I,DIV_WIDTH); constant PADJ_7 : std_logic_vector(DIV_WIDTH-1 downto 0) := conv_std_logic_vector(PADJ_7_I,DIV_WIDTH); constant PADJ_8 : std_logic_vector(DIV_WIDTH-1 downto 0) := conv_std_logic_vector(PADJ_8_I,DIV_WIDTH); constant PADJ_9 : std_logic_vector(DIV_WIDTH-1 downto 0) := conv_std_logic_vector(PADJ_9_I,DIV_WIDTH); constant PADJ_10 : std_logic_vector(DIV_WIDTH-1 downto 0) := conv_std_logic_vector(PADJ_10_I,DIV_WIDTH); signal DACin_q : std_logic_vector(DAC_Width-1 downto 0) := (others => '0'); signal Divisor : std_logic_vector(DIV_WIDTH-1 downto 0) := (others => '0'); signal Dividend : std_logic_vector(DIV_WIDTH-1 downto 0) := (others => '0'); signal q : std_logic_vector(DIV_WIDTH*2-1 downto 0) := (others => '0'); signal diff : std_logic_vector(DIV_WIDTH downto 0) := (others => '0'); constant CB : integer := ceil_log2(DIV_WIDTH); signal count : std_logic_vector(CB-1 downto 0) := (others => '0'); signal Next_Width : std_logic_vector(DAC_Width-1 downto 0) := (others => '0'); signal Next_Period : std_logic_vector(DAC_Width-1 downto 0) := (others => '0'); signal PWM_Width : std_logic_vector(DAC_Width-1 downto 0) := (others => '0'); signal PWM_Period : std_logic_vector(DAC_Width-1 downto 0) := (others => '0'); signal Width_Ctr : std_logic_vector(DAC_Width-1 downto 0) := (others => '0'); signal Period_Ctr : std_logic_vector(DAC_Width-1 downto 0) := (others => '0'); begin Addr_Match <= '1' when Comp_Addr = User_Addr else '0'; Wr_En_d <= Addr_Match and Open8_Bus.Wr_En; Rd_En_d <= Addr_Match and Open8_Bus.Rd_En; io_reg: process( Clock, Reset ) begin if( Reset = Reset_Level )then Reg_Sel_q <= "00"; Wr_En_q <= '0'; Wr_Data_q <= x"00"; Rd_En_q <= '0'; Rd_Data <= OPEN8_NULLBUS; DAC_Val_LB <= x"00"; DAC_Val_UB <= x"0"; DAC_Val <= Default_Value; elsif( rising_edge( Clock ) )then Reg_Sel_q <= Reg_Sel_d; Wr_En_q <= Wr_En_d; Wr_Data_q <= Wr_Data_d; if( Wr_En_q = '1' and Write_Qual = '1' )then case( Reg_Sel_q )is when "00" => DAC_Val_LB <= Wr_Data_q; when "01" => DAC_Val_UB <= Wr_Data_q(3 downto 0); when "10" => DAC_Val <= (others => '0'); when "11" => DAC_Val <= DAC_Val_UB & DAC_Val_LB; when others => null; end case; end if; Rd_En_q <= Rd_En_d; Rd_Data <= OPEN8_NULLBUS; if( Rd_En_q = '1' )then case( Reg_Sel_q )is when "00" => Rd_Data <= DAC_Val_LB; when "01" => Rd_Data <= x"0" & DAC_Val_UB; when others => null; end case; end if; end if; end process; diff <= ('0' & q(DIV_WIDTH*2-2 downto DIV_WIDTH-1)) - ('0' & Divisor); Dividend <= PADJ_2 when DACin_q >= DELTA_2_I and DACin_q < DELTA_3_I else PADJ_3 when DACin_q >= DELTA_3_I and DACin_q < DELTA_4_I else PADJ_4 when DACin_q >= DELTA_4_I and DACin_q < DELTA_5_I else PADJ_5 when DACin_q >= DELTA_5_I and DACin_q < DELTA_6_I else PADJ_6 when DACin_q >= DELTA_6_I and DACin_q < DELTA_7_I else PADJ_7 when DACin_q >= DELTA_7_I and DACin_q < DELTA_8_I else PADJ_8 when DACin_q >= DELTA_8_I and DACin_q < DELTA_9_I else PADJ_9 when DACin_q >= DELTA_9_I and DACin_q < DELTA_10_I else PADJ_10 when DACin_q >= DELTA_10_I else PADJ_1; Next_Width <= DELTA_1 when DACin_q >= DELTA_1_I and DACin_q < DELTA_2_I else DELTA_2 when DACin_q >= DELTA_2_I and DACin_q < DELTA_3_I else DELTA_3 when DACin_q >= DELTA_3_I and DACin_q < DELTA_4_I else DELTA_4 when DACin_q >= DELTA_4_I and DACin_q < DELTA_5_I else DELTA_5 when DACin_q >= DELTA_5_I and DACin_q < DELTA_6_I else DELTA_6 when DACin_q >= DELTA_6_I and DACin_q < DELTA_7_I else DELTA_7 when DACin_q >= DELTA_7_I and DACin_q < DELTA_8_I else DELTA_8 when DACin_q >= DELTA_8_I and DACin_q < DELTA_9_I else DELTA_9 when DACin_q >= DELTA_9_I and DACin_q < DELTA_10_I else DELTA_10 when DACin_q >= DELTA_10_I else (others => '0'); Next_Period <= q(DAC_Width-1 downto 0) - 1; vDSM_proc: process( Clock, Reset ) begin if( Reset = Reset_Level )then q <= (others => '0'); count <= (others => '1'); Divisor <= (others => '0'); DACin_q <= (others => '0'); PWM_Width <= (others => '0'); PWM_Period <= (others => '0'); Period_Ctr <= (others => '0'); Width_Ctr <= (others => '0'); DACOut <= '0'; elsif( rising_edge(Clock) )then q <= diff(DIV_WIDTH-1 downto 0) & q(DIV_WIDTH-2 downto 0) & '1'; if( diff(DIV_WIDTH) = '1' )then q <= q(DIV_WIDTH*2-2 downto 0) & '0'; end if; count <= count + 1; if( count = DIV_WIDTH )then PWM_Width <= Next_Width; PWM_Period <= Next_Period; DACin_q <= DAC_val; Divisor <= (others => '0'); Divisor(DAC_Width-1 downto 0) <= DACin_q; q <= conv_std_logic_vector(0,DIV_WIDTH) & Dividend; count <= (others => '0'); end if; Period_Ctr <= Period_Ctr - 1; Width_Ctr <= Width_Ctr - 1; if( Invert_Output )then DACOut <= or_reduce(Width_Ctr); else DACOut <= nor_reduce(Width_Ctr); end if; if( Width_Ctr = 0 )then Width_Ctr <= (others => '0'); end if; if( Period_Ctr = 0 )then Period_Ctr <= PWM_Period; Width_Ctr <= PWM_Width; end if; end if; end process; end architecture;
Go to most recent revision | Compare with Previous | Blame | View Log