URL
https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk
Subversion Repositories open8_urisc
[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [bfd/] [elf32-sh.c] - Rev 203
Go to most recent revision | Compare with Previous | Blame | View Log
/* Renesas / SuperH SH specific support for 32-bit ELF Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc. Contributed by Ian Lance Taylor, Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "bfd.h" #include "bfdlink.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf-vxworks.h" #include "elf/sh.h" #include "dwarf2.h" #include "libiberty.h" #include "../opcodes/sh-opc.h" static bfd_reloc_status_type sh_elf_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type sh_elf_ignore_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_boolean sh_elf_relax_delete_bytes (bfd *, asection *, bfd_vma, int); static bfd_boolean sh_elf_align_loads (bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_boolean *); #ifndef SH64_ELF static bfd_boolean sh_elf_swap_insns (bfd *, asection *, void *, bfd_byte *, bfd_vma); #endif static int sh_elf_optimized_tls_reloc (struct bfd_link_info *, int, int); static bfd_vma dtpoff_base (struct bfd_link_info *); static bfd_vma tpoff (struct bfd_link_info *, bfd_vma); /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" /* FDPIC binaries have a default 128K stack. */ #define DEFAULT_STACK_SIZE 0x20000 #define MINUS_ONE ((bfd_vma) 0 - 1) /* Decide whether a reference to a symbol can be resolved locally or not. If the symbol is protected, we want the local address, but its function descriptor must be assigned by the dynamic linker. */ #define SYMBOL_FUNCDESC_LOCAL(INFO, H) \ (SYMBOL_REFERENCES_LOCAL (INFO, H) \ || ! elf_hash_table (INFO)->dynamic_sections_created) #define SH_PARTIAL32 TRUE #define SH_SRC_MASK32 0xffffffff #define SH_ELF_RELOC sh_elf_reloc static reloc_howto_type sh_elf_howto_table[] = { #include "elf32-sh-relocs.h" }; #define SH_PARTIAL32 FALSE #define SH_SRC_MASK32 0 #define SH_ELF_RELOC bfd_elf_generic_reloc static reloc_howto_type sh_vxworks_howto_table[] = { #include "elf32-sh-relocs.h" }; /* Return true if OUTPUT_BFD is a VxWorks object. */ static bfd_boolean vxworks_object_p (bfd *abfd ATTRIBUTE_UNUSED) { #if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED extern const bfd_target bfd_elf32_shlvxworks_vec; extern const bfd_target bfd_elf32_shvxworks_vec; return (abfd->xvec == &bfd_elf32_shlvxworks_vec || abfd->xvec == &bfd_elf32_shvxworks_vec); #else return FALSE; #endif } /* Return true if OUTPUT_BFD is an FDPIC object. */ static bfd_boolean fdpic_object_p (bfd *abfd ATTRIBUTE_UNUSED) { #if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED extern const bfd_target bfd_elf32_shfd_vec; extern const bfd_target bfd_elf32_shbfd_vec; return (abfd->xvec == &bfd_elf32_shfd_vec || abfd->xvec == &bfd_elf32_shbfd_vec); #else return FALSE; #endif } /* Return the howto table for ABFD. */ static reloc_howto_type * get_howto_table (bfd *abfd) { if (vxworks_object_p (abfd)) return sh_vxworks_howto_table; return sh_elf_howto_table; } static bfd_reloc_status_type sh_elf_reloc_loop (int r_type ATTRIBUTE_UNUSED, bfd *input_bfd, asection *input_section, bfd_byte *contents, bfd_vma addr, asection *symbol_section, bfd_vma start, bfd_vma end) { static bfd_vma last_addr; static asection *last_symbol_section; bfd_byte *start_ptr, *ptr, *last_ptr; int diff, cum_diff; bfd_signed_vma x; int insn; /* Sanity check the address. */ if (addr > bfd_get_section_limit (input_bfd, input_section)) return bfd_reloc_outofrange; /* We require the start and end relocations to be processed consecutively - although we allow then to be processed forwards or backwards. */ if (! last_addr) { last_addr = addr; last_symbol_section = symbol_section; return bfd_reloc_ok; } if (last_addr != addr) abort (); last_addr = 0; if (! symbol_section || last_symbol_section != symbol_section || end < start) return bfd_reloc_outofrange; /* Get the symbol_section contents. */ if (symbol_section != input_section) { if (elf_section_data (symbol_section)->this_hdr.contents != NULL) contents = elf_section_data (symbol_section)->this_hdr.contents; else { if (!bfd_malloc_and_get_section (input_bfd, symbol_section, &contents)) { if (contents != NULL) free (contents); return bfd_reloc_outofrange; } } } #define IS_PPI(PTR) ((bfd_get_16 (input_bfd, (PTR)) & 0xfc00) == 0xf800) start_ptr = contents + start; for (cum_diff = -6, ptr = contents + end; cum_diff < 0 && ptr > start_ptr;) { for (last_ptr = ptr, ptr -= 4; ptr >= start_ptr && IS_PPI (ptr);) ptr -= 2; ptr += 2; diff = (last_ptr - ptr) >> 1; cum_diff += diff & 1; cum_diff += diff; } /* Calculate the start / end values to load into rs / re minus four - so that will cancel out the four we would otherwise have to add to addr to get the value to subtract in order to get relative addressing. */ if (cum_diff >= 0) { start -= 4; end = (ptr + cum_diff * 2) - contents; } else { bfd_vma start0 = start - 4; while (start0 && IS_PPI (contents + start0)) start0 -= 2; start0 = start - 2 - ((start - start0) & 2); start = start0 - cum_diff - 2; end = start0; } if (contents != NULL && elf_section_data (symbol_section)->this_hdr.contents != contents) free (contents); insn = bfd_get_16 (input_bfd, contents + addr); x = (insn & 0x200 ? end : start) - addr; if (input_section != symbol_section) x += ((symbol_section->output_section->vma + symbol_section->output_offset) - (input_section->output_section->vma + input_section->output_offset)); x >>= 1; if (x < -128 || x > 127) return bfd_reloc_overflow; x = (insn & ~0xff) | (x & 0xff); bfd_put_16 (input_bfd, (bfd_vma) x, contents + addr); return bfd_reloc_ok; } /* This function is used for normal relocs. This used to be like the COFF function, and is almost certainly incorrect for other ELF targets. */ static bfd_reloc_status_type sh_elf_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol_in, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { unsigned long insn; bfd_vma sym_value; enum elf_sh_reloc_type r_type; bfd_vma addr = reloc_entry->address; bfd_byte *hit_data = addr + (bfd_byte *) data; r_type = (enum elf_sh_reloc_type) reloc_entry->howto->type; if (output_bfd != NULL) { /* Partial linking--do nothing. */ reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Almost all relocs have to do with relaxing. If any work must be done for them, it has been done in sh_relax_section. */ if (r_type == R_SH_IND12W && (symbol_in->flags & BSF_LOCAL) != 0) return bfd_reloc_ok; if (symbol_in != NULL && bfd_is_und_section (symbol_in->section)) return bfd_reloc_undefined; if (bfd_is_com_section (symbol_in->section)) sym_value = 0; else sym_value = (symbol_in->value + symbol_in->section->output_section->vma + symbol_in->section->output_offset); switch (r_type) { case R_SH_DIR32: insn = bfd_get_32 (abfd, hit_data); insn += sym_value + reloc_entry->addend; bfd_put_32 (abfd, (bfd_vma) insn, hit_data); break; case R_SH_IND12W: insn = bfd_get_16 (abfd, hit_data); sym_value += reloc_entry->addend; sym_value -= (input_section->output_section->vma + input_section->output_offset + addr + 4); sym_value += (insn & 0xfff) << 1; if (insn & 0x800) sym_value -= 0x1000; insn = (insn & 0xf000) | (sym_value & 0xfff); bfd_put_16 (abfd, (bfd_vma) insn, hit_data); if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000) return bfd_reloc_overflow; break; default: abort (); break; } return bfd_reloc_ok; } /* This function is used for relocs which are only used for relaxing, which the linker should otherwise ignore. */ static bfd_reloc_status_type sh_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { if (output_bfd != NULL) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* This structure is used to map BFD reloc codes to SH ELF relocs. */ struct elf_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; unsigned char elf_reloc_val; }; /* An array mapping BFD reloc codes to SH ELF relocs. */ static const struct elf_reloc_map sh_reloc_map[] = { { BFD_RELOC_NONE, R_SH_NONE }, { BFD_RELOC_32, R_SH_DIR32 }, { BFD_RELOC_16, R_SH_DIR16 }, { BFD_RELOC_8, R_SH_DIR8 }, { BFD_RELOC_CTOR, R_SH_DIR32 }, { BFD_RELOC_32_PCREL, R_SH_REL32 }, { BFD_RELOC_SH_PCDISP8BY2, R_SH_DIR8WPN }, { BFD_RELOC_SH_PCDISP12BY2, R_SH_IND12W }, { BFD_RELOC_SH_PCRELIMM8BY2, R_SH_DIR8WPZ }, { BFD_RELOC_SH_PCRELIMM8BY4, R_SH_DIR8WPL }, { BFD_RELOC_8_PCREL, R_SH_SWITCH8 }, { BFD_RELOC_SH_SWITCH16, R_SH_SWITCH16 }, { BFD_RELOC_SH_SWITCH32, R_SH_SWITCH32 }, { BFD_RELOC_SH_USES, R_SH_USES }, { BFD_RELOC_SH_COUNT, R_SH_COUNT }, { BFD_RELOC_SH_ALIGN, R_SH_ALIGN }, { BFD_RELOC_SH_CODE, R_SH_CODE }, { BFD_RELOC_SH_DATA, R_SH_DATA }, { BFD_RELOC_SH_LABEL, R_SH_LABEL }, { BFD_RELOC_VTABLE_INHERIT, R_SH_GNU_VTINHERIT }, { BFD_RELOC_VTABLE_ENTRY, R_SH_GNU_VTENTRY }, { BFD_RELOC_SH_LOOP_START, R_SH_LOOP_START }, { BFD_RELOC_SH_LOOP_END, R_SH_LOOP_END }, { BFD_RELOC_SH_TLS_GD_32, R_SH_TLS_GD_32 }, { BFD_RELOC_SH_TLS_LD_32, R_SH_TLS_LD_32 }, { BFD_RELOC_SH_TLS_LDO_32, R_SH_TLS_LDO_32 }, { BFD_RELOC_SH_TLS_IE_32, R_SH_TLS_IE_32 }, { BFD_RELOC_SH_TLS_LE_32, R_SH_TLS_LE_32 }, { BFD_RELOC_SH_TLS_DTPMOD32, R_SH_TLS_DTPMOD32 }, { BFD_RELOC_SH_TLS_DTPOFF32, R_SH_TLS_DTPOFF32 }, { BFD_RELOC_SH_TLS_TPOFF32, R_SH_TLS_TPOFF32 }, { BFD_RELOC_32_GOT_PCREL, R_SH_GOT32 }, { BFD_RELOC_32_PLT_PCREL, R_SH_PLT32 }, { BFD_RELOC_SH_COPY, R_SH_COPY }, { BFD_RELOC_SH_GLOB_DAT, R_SH_GLOB_DAT }, { BFD_RELOC_SH_JMP_SLOT, R_SH_JMP_SLOT }, { BFD_RELOC_SH_RELATIVE, R_SH_RELATIVE }, { BFD_RELOC_32_GOTOFF, R_SH_GOTOFF }, { BFD_RELOC_SH_GOTPC, R_SH_GOTPC }, { BFD_RELOC_SH_GOTPLT32, R_SH_GOTPLT32 }, { BFD_RELOC_SH_GOT20, R_SH_GOT20 }, { BFD_RELOC_SH_GOTOFF20, R_SH_GOTOFF20 }, { BFD_RELOC_SH_GOTFUNCDESC, R_SH_GOTFUNCDESC }, { BFD_RELOC_SH_GOTFUNCDESC20, R_SH_GOTFUNCDESC20 }, { BFD_RELOC_SH_GOTOFFFUNCDESC, R_SH_GOTOFFFUNCDESC }, { BFD_RELOC_SH_GOTOFFFUNCDESC20, R_SH_GOTOFFFUNCDESC20 }, { BFD_RELOC_SH_FUNCDESC, R_SH_FUNCDESC }, #ifdef INCLUDE_SHMEDIA { BFD_RELOC_SH_GOT_LOW16, R_SH_GOT_LOW16 }, { BFD_RELOC_SH_GOT_MEDLOW16, R_SH_GOT_MEDLOW16 }, { BFD_RELOC_SH_GOT_MEDHI16, R_SH_GOT_MEDHI16 }, { BFD_RELOC_SH_GOT_HI16, R_SH_GOT_HI16 }, { BFD_RELOC_SH_GOTPLT_LOW16, R_SH_GOTPLT_LOW16 }, { BFD_RELOC_SH_GOTPLT_MEDLOW16, R_SH_GOTPLT_MEDLOW16 }, { BFD_RELOC_SH_GOTPLT_MEDHI16, R_SH_GOTPLT_MEDHI16 }, { BFD_RELOC_SH_GOTPLT_HI16, R_SH_GOTPLT_HI16 }, { BFD_RELOC_SH_PLT_LOW16, R_SH_PLT_LOW16 }, { BFD_RELOC_SH_PLT_MEDLOW16, R_SH_PLT_MEDLOW16 }, { BFD_RELOC_SH_PLT_MEDHI16, R_SH_PLT_MEDHI16 }, { BFD_RELOC_SH_PLT_HI16, R_SH_PLT_HI16 }, { BFD_RELOC_SH_GOTOFF_LOW16, R_SH_GOTOFF_LOW16 }, { BFD_RELOC_SH_GOTOFF_MEDLOW16, R_SH_GOTOFF_MEDLOW16 }, { BFD_RELOC_SH_GOTOFF_MEDHI16, R_SH_GOTOFF_MEDHI16 }, { BFD_RELOC_SH_GOTOFF_HI16, R_SH_GOTOFF_HI16 }, { BFD_RELOC_SH_GOTPC_LOW16, R_SH_GOTPC_LOW16 }, { BFD_RELOC_SH_GOTPC_MEDLOW16, R_SH_GOTPC_MEDLOW16 }, { BFD_RELOC_SH_GOTPC_MEDHI16, R_SH_GOTPC_MEDHI16 }, { BFD_RELOC_SH_GOTPC_HI16, R_SH_GOTPC_HI16 }, { BFD_RELOC_SH_COPY64, R_SH_COPY64 }, { BFD_RELOC_SH_GLOB_DAT64, R_SH_GLOB_DAT64 }, { BFD_RELOC_SH_JMP_SLOT64, R_SH_JMP_SLOT64 }, { BFD_RELOC_SH_RELATIVE64, R_SH_RELATIVE64 }, { BFD_RELOC_SH_GOT10BY4, R_SH_GOT10BY4 }, { BFD_RELOC_SH_GOT10BY8, R_SH_GOT10BY8 }, { BFD_RELOC_SH_GOTPLT10BY4, R_SH_GOTPLT10BY4 }, { BFD_RELOC_SH_GOTPLT10BY8, R_SH_GOTPLT10BY8 }, { BFD_RELOC_SH_PT_16, R_SH_PT_16 }, { BFD_RELOC_SH_SHMEDIA_CODE, R_SH_SHMEDIA_CODE }, { BFD_RELOC_SH_IMMU5, R_SH_DIR5U }, { BFD_RELOC_SH_IMMS6, R_SH_DIR6S }, { BFD_RELOC_SH_IMMU6, R_SH_DIR6U }, { BFD_RELOC_SH_IMMS10, R_SH_DIR10S }, { BFD_RELOC_SH_IMMS10BY2, R_SH_DIR10SW }, { BFD_RELOC_SH_IMMS10BY4, R_SH_DIR10SL }, { BFD_RELOC_SH_IMMS10BY8, R_SH_DIR10SQ }, { BFD_RELOC_SH_IMMS16, R_SH_IMMS16 }, { BFD_RELOC_SH_IMMU16, R_SH_IMMU16 }, { BFD_RELOC_SH_IMM_LOW16, R_SH_IMM_LOW16 }, { BFD_RELOC_SH_IMM_LOW16_PCREL, R_SH_IMM_LOW16_PCREL }, { BFD_RELOC_SH_IMM_MEDLOW16, R_SH_IMM_MEDLOW16 }, { BFD_RELOC_SH_IMM_MEDLOW16_PCREL, R_SH_IMM_MEDLOW16_PCREL }, { BFD_RELOC_SH_IMM_MEDHI16, R_SH_IMM_MEDHI16 }, { BFD_RELOC_SH_IMM_MEDHI16_PCREL, R_SH_IMM_MEDHI16_PCREL }, { BFD_RELOC_SH_IMM_HI16, R_SH_IMM_HI16 }, { BFD_RELOC_SH_IMM_HI16_PCREL, R_SH_IMM_HI16_PCREL }, { BFD_RELOC_64, R_SH_64 }, { BFD_RELOC_64_PCREL, R_SH_64_PCREL }, #endif /* not INCLUDE_SHMEDIA */ }; /* Given a BFD reloc code, return the howto structure for the corresponding SH ELF reloc. */ static reloc_howto_type * sh_elf_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code) { unsigned int i; for (i = 0; i < sizeof (sh_reloc_map) / sizeof (struct elf_reloc_map); i++) { if (sh_reloc_map[i].bfd_reloc_val == code) return get_howto_table (abfd) + (int) sh_reloc_map[i].elf_reloc_val; } return NULL; } static reloc_howto_type * sh_elf_reloc_name_lookup (bfd *abfd, const char *r_name) { unsigned int i; if (vxworks_object_p (abfd)) { for (i = 0; i < (sizeof (sh_vxworks_howto_table) / sizeof (sh_vxworks_howto_table[0])); i++) if (sh_vxworks_howto_table[i].name != NULL && strcasecmp (sh_vxworks_howto_table[i].name, r_name) == 0) return &sh_vxworks_howto_table[i]; } else { for (i = 0; i < (sizeof (sh_elf_howto_table) / sizeof (sh_elf_howto_table[0])); i++) if (sh_elf_howto_table[i].name != NULL && strcasecmp (sh_elf_howto_table[i].name, r_name) == 0) return &sh_elf_howto_table[i]; } return NULL; } /* Given an ELF reloc, fill in the howto field of a relent. */ static void sh_elf_info_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst) { unsigned int r; r = ELF32_R_TYPE (dst->r_info); BFD_ASSERT (r < (unsigned int) R_SH_max); BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC || r > R_SH_LAST_INVALID_RELOC); BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_2 || r > R_SH_LAST_INVALID_RELOC_2); BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_3 || r > R_SH_LAST_INVALID_RELOC_3); BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_4 || r > R_SH_LAST_INVALID_RELOC_4); BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_5 || r > R_SH_LAST_INVALID_RELOC_5); BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_6 || r > R_SH_LAST_INVALID_RELOC_6); cache_ptr->howto = get_howto_table (abfd) + r; } /* This function handles relaxing for SH ELF. See the corresponding function in coff-sh.c for a description of what this does. FIXME: There is a lot of duplication here between this code and the COFF specific code. The format of relocs and symbols is wound deeply into this code, but it would still be better if the duplication could be eliminated somehow. Note in particular that although both functions use symbols like R_SH_CODE, those symbols have different values; in coff-sh.c they come from include/coff/sh.h, whereas here they come from enum elf_sh_reloc_type in include/elf/sh.h. */ static bfd_boolean sh_elf_relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info, bfd_boolean *again) { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *internal_relocs; bfd_boolean have_code; Elf_Internal_Rela *irel, *irelend; bfd_byte *contents = NULL; Elf_Internal_Sym *isymbuf = NULL; *again = FALSE; if (link_info->relocatable || (sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0) return TRUE; #ifdef INCLUDE_SHMEDIA if (elf_section_data (sec)->this_hdr.sh_flags & (SHF_SH5_ISA32 | SHF_SH5_ISA32_MIXED)) { return TRUE; } #endif symtab_hdr = &elf_symtab_hdr (abfd); internal_relocs = (_bfd_elf_link_read_relocs (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, link_info->keep_memory)); if (internal_relocs == NULL) goto error_return; have_code = FALSE; irelend = internal_relocs + sec->reloc_count; for (irel = internal_relocs; irel < irelend; irel++) { bfd_vma laddr, paddr, symval; unsigned short insn; Elf_Internal_Rela *irelfn, *irelscan, *irelcount; bfd_signed_vma foff; if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_CODE) have_code = TRUE; if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_USES) continue; /* Get the section contents. */ if (contents == NULL) { if (elf_section_data (sec)->this_hdr.contents != NULL) contents = elf_section_data (sec)->this_hdr.contents; else { if (!bfd_malloc_and_get_section (abfd, sec, &contents)) goto error_return; } } /* The r_addend field of the R_SH_USES reloc will point us to the register load. The 4 is because the r_addend field is computed as though it were a jump offset, which are based from 4 bytes after the jump instruction. */ laddr = irel->r_offset + 4 + irel->r_addend; if (laddr >= sec->size) { (*_bfd_error_handler) (_("%B: 0x%lx: warning: bad R_SH_USES offset"), abfd, (unsigned long) irel->r_offset); continue; } insn = bfd_get_16 (abfd, contents + laddr); /* If the instruction is not mov.l NN,rN, we don't know what to do. */ if ((insn & 0xf000) != 0xd000) { ((*_bfd_error_handler) (_("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x"), abfd, (unsigned long) irel->r_offset, insn)); continue; } /* Get the address from which the register is being loaded. The displacement in the mov.l instruction is quadrupled. It is a displacement from four bytes after the movl instruction, but, before adding in the PC address, two least significant bits of the PC are cleared. We assume that the section is aligned on a four byte boundary. */ paddr = insn & 0xff; paddr *= 4; paddr += (laddr + 4) &~ (bfd_vma) 3; if (paddr >= sec->size) { ((*_bfd_error_handler) (_("%B: 0x%lx: warning: bad R_SH_USES load offset"), abfd, (unsigned long) irel->r_offset)); continue; } /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ for (irelfn = internal_relocs; irelfn < irelend; irelfn++) if (irelfn->r_offset == paddr && ELF32_R_TYPE (irelfn->r_info) == (int) R_SH_DIR32) break; if (irelfn >= irelend) { ((*_bfd_error_handler) (_("%B: 0x%lx: warning: could not find expected reloc"), abfd, (unsigned long) paddr)); continue; } /* Read this BFD's symbols if we haven't done so already. */ if (isymbuf == NULL && symtab_hdr->sh_info != 0) { isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; if (isymbuf == NULL) isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (isymbuf == NULL) goto error_return; } /* Get the value of the symbol referred to by the reloc. */ if (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info) { /* A local symbol. */ Elf_Internal_Sym *isym; isym = isymbuf + ELF32_R_SYM (irelfn->r_info); if (isym->st_shndx != (unsigned int) _bfd_elf_section_from_bfd_section (abfd, sec)) { ((*_bfd_error_handler) (_("%B: 0x%lx: warning: symbol in unexpected section"), abfd, (unsigned long) paddr)); continue; } symval = (isym->st_value + sec->output_section->vma + sec->output_offset); } else { unsigned long indx; struct elf_link_hash_entry *h; indx = ELF32_R_SYM (irelfn->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; BFD_ASSERT (h != NULL); if (h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) { /* This appears to be a reference to an undefined symbol. Just ignore it--it will be caught by the regular reloc processing. */ continue; } symval = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace) symval += bfd_get_32 (abfd, contents + paddr); else symval += irelfn->r_addend; /* See if this function call can be shortened. */ foff = (symval - (irel->r_offset + sec->output_section->vma + sec->output_offset + 4)); /* A branch to an address beyond ours might be increased by an .align that doesn't move when bytes behind us are deleted. So, we add some slop in this calculation to allow for that. */ if (foff < -0x1000 || foff >= 0x1000 - 8) { /* After all that work, we can't shorten this function call. */ continue; } /* Shorten the function call. */ /* For simplicity of coding, we are going to modify the section contents, the section relocs, and the BFD symbol table. We must tell the rest of the code not to free up this information. It would be possible to instead create a table of changes which have to be made, as is done in coff-mips.c; that would be more work, but would require less memory when the linker is run. */ elf_section_data (sec)->relocs = internal_relocs; elf_section_data (sec)->this_hdr.contents = contents; symtab_hdr->contents = (unsigned char *) isymbuf; /* Replace the jsr with a bsr. */ /* Change the R_SH_USES reloc into an R_SH_IND12W reloc, and replace the jsr with a bsr. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irelfn->r_info), R_SH_IND12W); /* We used to test (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info) here, but that only checks if the symbol is an external symbol, not if the symbol is in a different section. Besides, we need a consistent meaning for the relocation, so we just assume here that the value of the symbol is not available. */ /* We can't fully resolve this yet, because the external symbol value may be changed by future relaxing. We let the final link phase handle it. */ bfd_put_16 (abfd, (bfd_vma) 0xb000, contents + irel->r_offset); irel->r_addend = -4; /* When we calculated the symbol "value" we had an offset in the DIR32's word in memory (we read and add it above). However, the jsr we create does NOT have this offset encoded, so we have to add it to the addend to preserve it. */ irel->r_addend += bfd_get_32 (abfd, contents + paddr); /* See if there is another R_SH_USES reloc referring to the same register load. */ for (irelscan = internal_relocs; irelscan < irelend; irelscan++) if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_USES && laddr == irelscan->r_offset + 4 + irelscan->r_addend) break; if (irelscan < irelend) { /* Some other function call depends upon this register load, and we have not yet converted that function call. Indeed, we may never be able to convert it. There is nothing else we can do at this point. */ continue; } /* Look for a R_SH_COUNT reloc on the location where the function address is stored. Do this before deleting any bytes, to avoid confusion about the address. */ for (irelcount = internal_relocs; irelcount < irelend; irelcount++) if (irelcount->r_offset == paddr && ELF32_R_TYPE (irelcount->r_info) == (int) R_SH_COUNT) break; /* Delete the register load. */ if (! sh_elf_relax_delete_bytes (abfd, sec, laddr, 2)) goto error_return; /* That will change things, so, just in case it permits some other function call to come within range, we should relax again. Note that this is not required, and it may be slow. */ *again = TRUE; /* Now check whether we got a COUNT reloc. */ if (irelcount >= irelend) { ((*_bfd_error_handler) (_("%B: 0x%lx: warning: could not find expected COUNT reloc"), abfd, (unsigned long) paddr)); continue; } /* The number of uses is stored in the r_addend field. We've just deleted one. */ if (irelcount->r_addend == 0) { ((*_bfd_error_handler) (_("%B: 0x%lx: warning: bad count"), abfd, (unsigned long) paddr)); continue; } --irelcount->r_addend; /* If there are no more uses, we can delete the address. Reload the address from irelfn, in case it was changed by the previous call to sh_elf_relax_delete_bytes. */ if (irelcount->r_addend == 0) { if (! sh_elf_relax_delete_bytes (abfd, sec, irelfn->r_offset, 4)) goto error_return; } /* We've done all we can with that function call. */ } /* Look for load and store instructions that we can align on four byte boundaries. */ if ((elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK) != EF_SH4 && have_code) { bfd_boolean swapped; /* Get the section contents. */ if (contents == NULL) { if (elf_section_data (sec)->this_hdr.contents != NULL) contents = elf_section_data (sec)->this_hdr.contents; else { if (!bfd_malloc_and_get_section (abfd, sec, &contents)) goto error_return; } } if (! sh_elf_align_loads (abfd, sec, internal_relocs, contents, &swapped)) goto error_return; if (swapped) { elf_section_data (sec)->relocs = internal_relocs; elf_section_data (sec)->this_hdr.contents = contents; symtab_hdr->contents = (unsigned char *) isymbuf; } } if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) { if (! link_info->keep_memory) free (isymbuf); else { /* Cache the symbols for elf_link_input_bfd. */ symtab_hdr->contents = (unsigned char *) isymbuf; } } if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) { if (! link_info->keep_memory) free (contents); else { /* Cache the section contents for elf_link_input_bfd. */ elf_section_data (sec)->this_hdr.contents = contents; } } if (internal_relocs != NULL && elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); return TRUE; error_return: if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) free (isymbuf); if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); if (internal_relocs != NULL && elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); return FALSE; } /* Delete some bytes from a section while relaxing. FIXME: There is a lot of duplication between this function and sh_relax_delete_bytes in coff-sh.c. */ static bfd_boolean sh_elf_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, int count) { Elf_Internal_Shdr *symtab_hdr; unsigned int sec_shndx; bfd_byte *contents; Elf_Internal_Rela *irel, *irelend; Elf_Internal_Rela *irelalign; bfd_vma toaddr; Elf_Internal_Sym *isymbuf, *isym, *isymend; struct elf_link_hash_entry **sym_hashes; struct elf_link_hash_entry **end_hashes; unsigned int symcount; asection *o; symtab_hdr = &elf_symtab_hdr (abfd); isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); contents = elf_section_data (sec)->this_hdr.contents; /* The deletion must stop at the next ALIGN reloc for an aligment power larger than the number of bytes we are deleting. */ irelalign = NULL; toaddr = sec->size; irel = elf_section_data (sec)->relocs; irelend = irel + sec->reloc_count; for (; irel < irelend; irel++) { if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN && irel->r_offset > addr && count < (1 << irel->r_addend)) { irelalign = irel; toaddr = irel->r_offset; break; } } /* Actually delete the bytes. */ memmove (contents + addr, contents + addr + count, (size_t) (toaddr - addr - count)); if (irelalign == NULL) sec->size -= count; else { int i; #define NOP_OPCODE (0x0009) BFD_ASSERT ((count & 1) == 0); for (i = 0; i < count; i += 2) bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); } /* Adjust all the relocs. */ for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) { bfd_vma nraddr, stop; bfd_vma start = 0; int insn = 0; int off, adjust, oinsn; bfd_signed_vma voff = 0; bfd_boolean overflow; /* Get the new reloc address. */ nraddr = irel->r_offset; if ((irel->r_offset > addr && irel->r_offset < toaddr) || (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN && irel->r_offset == toaddr)) nraddr -= count; /* See if this reloc was for the bytes we have deleted, in which case we no longer care about it. Don't delete relocs which represent addresses, though. */ if (irel->r_offset >= addr && irel->r_offset < addr + count && ELF32_R_TYPE (irel->r_info) != (int) R_SH_ALIGN && ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE && ELF32_R_TYPE (irel->r_info) != (int) R_SH_DATA && ELF32_R_TYPE (irel->r_info) != (int) R_SH_LABEL) irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), (int) R_SH_NONE); /* If this is a PC relative reloc, see if the range it covers includes the bytes we have deleted. */ switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info)) { default: break; case R_SH_DIR8WPN: case R_SH_IND12W: case R_SH_DIR8WPZ: case R_SH_DIR8WPL: start = irel->r_offset; insn = bfd_get_16 (abfd, contents + nraddr); break; } switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info)) { default: start = stop = addr; break; case R_SH_DIR32: /* If this reloc is against a symbol defined in this section, and the symbol will not be adjusted below, we must check the addend to see it will put the value in range to be adjusted, and hence must be changed. */ if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) { isym = isymbuf + ELF32_R_SYM (irel->r_info); if (isym->st_shndx == sec_shndx && (isym->st_value <= addr || isym->st_value >= toaddr)) { bfd_vma val; if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace) { val = bfd_get_32 (abfd, contents + nraddr); val += isym->st_value; if (val > addr && val < toaddr) bfd_put_32 (abfd, val - count, contents + nraddr); } else { val = isym->st_value + irel->r_addend; if (val > addr && val < toaddr) irel->r_addend -= count; } } } start = stop = addr; break; case R_SH_DIR8WPN: off = insn & 0xff; if (off & 0x80) off -= 0x100; stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); break; case R_SH_IND12W: off = insn & 0xfff; if (! off) { /* This has been made by previous relaxation. Since the relocation will be against an external symbol, the final relocation will just do the right thing. */ start = stop = addr; } else { if (off & 0x800) off -= 0x1000; stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); /* The addend will be against the section symbol, thus for adjusting the addend, the relevant start is the start of the section. N.B. If we want to abandon in-place changes here and test directly using symbol + addend, we have to take into account that the addend has already been adjusted by -4. */ if (stop > addr && stop < toaddr) irel->r_addend -= count; } break; case R_SH_DIR8WPZ: off = insn & 0xff; stop = start + 4 + off * 2; break; case R_SH_DIR8WPL: off = insn & 0xff; stop = (start & ~(bfd_vma) 3) + 4 + off * 4; break; case R_SH_SWITCH8: case R_SH_SWITCH16: case R_SH_SWITCH32: /* These relocs types represent .word L2-L1 The r_addend field holds the difference between the reloc address and L1. That is the start of the reloc, and adding in the contents gives us the top. We must adjust both the r_offset field and the section contents. N.B. in gas / coff bfd, the elf bfd r_addend is called r_offset, and the elf bfd r_offset is called r_vaddr. */ stop = irel->r_offset; start = (bfd_vma) ((bfd_signed_vma) stop - (long) irel->r_addend); if (start > addr && start < toaddr && (stop <= addr || stop >= toaddr)) irel->r_addend += count; else if (stop > addr && stop < toaddr && (start <= addr || start >= toaddr)) irel->r_addend -= count; if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH16) voff = bfd_get_signed_16 (abfd, contents + nraddr); else if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH8) voff = bfd_get_8 (abfd, contents + nraddr); else voff = bfd_get_signed_32 (abfd, contents + nraddr); stop = (bfd_vma) ((bfd_signed_vma) start + voff); break; case R_SH_USES: start = irel->r_offset; stop = (bfd_vma) ((bfd_signed_vma) start + (long) irel->r_addend + 4); break; } if (start > addr && start < toaddr && (stop <= addr || stop >= toaddr)) adjust = count; else if (stop > addr && stop < toaddr && (start <= addr || start >= toaddr)) adjust = - count; else adjust = 0; if (adjust != 0) { oinsn = insn; overflow = FALSE; switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info)) { default: abort (); break; case R_SH_DIR8WPN: case R_SH_DIR8WPZ: insn += adjust / 2; if ((oinsn & 0xff00) != (insn & 0xff00)) overflow = TRUE; bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); break; case R_SH_IND12W: insn += adjust / 2; if ((oinsn & 0xf000) != (insn & 0xf000)) overflow = TRUE; bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); break; case R_SH_DIR8WPL: BFD_ASSERT (adjust == count || count >= 4); if (count >= 4) insn += adjust / 4; else { if ((irel->r_offset & 3) == 0) ++insn; } if ((oinsn & 0xff00) != (insn & 0xff00)) overflow = TRUE; bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); break; case R_SH_SWITCH8: voff += adjust; if (voff < 0 || voff >= 0xff) overflow = TRUE; bfd_put_8 (abfd, voff, contents + nraddr); break; case R_SH_SWITCH16: voff += adjust; if (voff < - 0x8000 || voff >= 0x8000) overflow = TRUE; bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr); break; case R_SH_SWITCH32: voff += adjust; bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr); break; case R_SH_USES: irel->r_addend += adjust; break; } if (overflow) { ((*_bfd_error_handler) (_("%B: 0x%lx: fatal: reloc overflow while relaxing"), abfd, (unsigned long) irel->r_offset)); bfd_set_error (bfd_error_bad_value); return FALSE; } } irel->r_offset = nraddr; } /* Look through all the other sections. If there contain any IMM32 relocs against internal symbols which we are not going to adjust below, we may need to adjust the addends. */ for (o = abfd->sections; o != NULL; o = o->next) { Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *irelscan, *irelscanend; bfd_byte *ocontents; if (o == sec || (o->flags & SEC_RELOC) == 0 || o->reloc_count == 0) continue; /* We always cache the relocs. Perhaps, if info->keep_memory is FALSE, we should free them, if we are permitted to, when we leave sh_coff_relax_section. */ internal_relocs = (_bfd_elf_link_read_relocs (abfd, o, NULL, (Elf_Internal_Rela *) NULL, TRUE)); if (internal_relocs == NULL) return FALSE; ocontents = NULL; irelscanend = internal_relocs + o->reloc_count; for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++) { /* Dwarf line numbers use R_SH_SWITCH32 relocs. */ if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_SWITCH32) { bfd_vma start, stop; bfd_signed_vma voff; if (ocontents == NULL) { if (elf_section_data (o)->this_hdr.contents != NULL) ocontents = elf_section_data (o)->this_hdr.contents; else { /* We always cache the section contents. Perhaps, if info->keep_memory is FALSE, we should free them, if we are permitted to, when we leave sh_coff_relax_section. */ if (!bfd_malloc_and_get_section (abfd, o, &ocontents)) { if (ocontents != NULL) free (ocontents); return FALSE; } elf_section_data (o)->this_hdr.contents = ocontents; } } stop = irelscan->r_offset; start = (bfd_vma) ((bfd_signed_vma) stop - (long) irelscan->r_addend); /* STOP is in a different section, so it won't change. */ if (start > addr && start < toaddr) irelscan->r_addend += count; voff = bfd_get_signed_32 (abfd, ocontents + irelscan->r_offset); stop = (bfd_vma) ((bfd_signed_vma) start + voff); if (start > addr && start < toaddr && (stop <= addr || stop >= toaddr)) bfd_put_signed_32 (abfd, (bfd_vma) voff + count, ocontents + irelscan->r_offset); else if (stop > addr && stop < toaddr && (start <= addr || start >= toaddr)) bfd_put_signed_32 (abfd, (bfd_vma) voff - count, ocontents + irelscan->r_offset); } if (ELF32_R_TYPE (irelscan->r_info) != (int) R_SH_DIR32) continue; if (ELF32_R_SYM (irelscan->r_info) >= symtab_hdr->sh_info) continue; isym = isymbuf + ELF32_R_SYM (irelscan->r_info); if (isym->st_shndx == sec_shndx && (isym->st_value <= addr || isym->st_value >= toaddr)) { bfd_vma val; if (ocontents == NULL) { if (elf_section_data (o)->this_hdr.contents != NULL) ocontents = elf_section_data (o)->this_hdr.contents; else { /* We always cache the section contents. Perhaps, if info->keep_memory is FALSE, we should free them, if we are permitted to, when we leave sh_coff_relax_section. */ if (!bfd_malloc_and_get_section (abfd, o, &ocontents)) { if (ocontents != NULL) free (ocontents); return FALSE; } elf_section_data (o)->this_hdr.contents = ocontents; } } val = bfd_get_32 (abfd, ocontents + irelscan->r_offset); val += isym->st_value; if (val > addr && val < toaddr) bfd_put_32 (abfd, val - count, ocontents + irelscan->r_offset); } } } /* Adjust the local symbols defined in this section. */ isymend = isymbuf + symtab_hdr->sh_info; for (isym = isymbuf; isym < isymend; isym++) { if (isym->st_shndx == sec_shndx && isym->st_value > addr && isym->st_value < toaddr) isym->st_value -= count; } /* Now adjust the global symbols defined in this section. */ symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) - symtab_hdr->sh_info); sym_hashes = elf_sym_hashes (abfd); end_hashes = sym_hashes + symcount; for (; sym_hashes < end_hashes; sym_hashes++) { struct elf_link_hash_entry *sym_hash = *sym_hashes; if ((sym_hash->root.type == bfd_link_hash_defined || sym_hash->root.type == bfd_link_hash_defweak) && sym_hash->root.u.def.section == sec && sym_hash->root.u.def.value > addr && sym_hash->root.u.def.value < toaddr) { sym_hash->root.u.def.value -= count; } } /* See if we can move the ALIGN reloc forward. We have adjusted r_offset for it already. */ if (irelalign != NULL) { bfd_vma alignto, alignaddr; alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend); alignaddr = BFD_ALIGN (irelalign->r_offset, 1 << irelalign->r_addend); if (alignto != alignaddr) { /* Tail recursion. */ return sh_elf_relax_delete_bytes (abfd, sec, alignaddr, (int) (alignto - alignaddr)); } } return TRUE; } /* Look for loads and stores which we can align to four byte boundaries. This is like sh_align_loads in coff-sh.c. */ static bfd_boolean sh_elf_align_loads (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, Elf_Internal_Rela *internal_relocs, bfd_byte *contents ATTRIBUTE_UNUSED, bfd_boolean *pswapped) { Elf_Internal_Rela *irel, *irelend; bfd_vma *labels = NULL; bfd_vma *label, *label_end; bfd_size_type amt; *pswapped = FALSE; irelend = internal_relocs + sec->reloc_count; /* Get all the addresses with labels on them. */ amt = sec->reloc_count; amt *= sizeof (bfd_vma); labels = (bfd_vma *) bfd_malloc (amt); if (labels == NULL) goto error_return; label_end = labels; for (irel = internal_relocs; irel < irelend; irel++) { if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_LABEL) { *label_end = irel->r_offset; ++label_end; } } /* Note that the assembler currently always outputs relocs in address order. If that ever changes, this code will need to sort the label values and the relocs. */ label = labels; for (irel = internal_relocs; irel < irelend; irel++) { bfd_vma start, stop; if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE) continue; start = irel->r_offset; for (irel++; irel < irelend; irel++) if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_DATA) break; if (irel < irelend) stop = irel->r_offset; else stop = sec->size; if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_elf_swap_insns, internal_relocs, &label, label_end, start, stop, pswapped)) goto error_return; } free (labels); return TRUE; error_return: if (labels != NULL) free (labels); return FALSE; } #ifndef SH64_ELF /* Swap two SH instructions. This is like sh_swap_insns in coff-sh.c. */ static bfd_boolean sh_elf_swap_insns (bfd *abfd, asection *sec, void *relocs, bfd_byte *contents, bfd_vma addr) { Elf_Internal_Rela *internal_relocs = (Elf_Internal_Rela *) relocs; unsigned short i1, i2; Elf_Internal_Rela *irel, *irelend; /* Swap the instructions themselves. */ i1 = bfd_get_16 (abfd, contents + addr); i2 = bfd_get_16 (abfd, contents + addr + 2); bfd_put_16 (abfd, (bfd_vma) i2, contents + addr); bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2); /* Adjust all reloc addresses. */ irelend = internal_relocs + sec->reloc_count; for (irel = internal_relocs; irel < irelend; irel++) { enum elf_sh_reloc_type type; int add; /* There are a few special types of relocs that we don't want to adjust. These relocs do not apply to the instruction itself, but are only associated with the address. */ type = (enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info); if (type == R_SH_ALIGN || type == R_SH_CODE || type == R_SH_DATA || type == R_SH_LABEL) continue; /* If an R_SH_USES reloc points to one of the addresses being swapped, we must adjust it. It would be incorrect to do this for a jump, though, since we want to execute both instructions after the jump. (We have avoided swapping around a label, so the jump will not wind up executing an instruction it shouldn't). */ if (type == R_SH_USES) { bfd_vma off; off = irel->r_offset + 4 + irel->r_addend; if (off == addr) irel->r_offset += 2; else if (off == addr + 2) irel->r_offset -= 2; } if (irel->r_offset == addr) { irel->r_offset += 2; add = -2; } else if (irel->r_offset == addr + 2) { irel->r_offset -= 2; add = 2; } else add = 0; if (add != 0) { bfd_byte *loc; unsigned short insn, oinsn; bfd_boolean overflow; loc = contents + irel->r_offset; overflow = FALSE; switch (type) { default: break; case R_SH_DIR8WPN: case R_SH_DIR8WPZ: insn = bfd_get_16 (abfd, loc); oinsn = insn; insn += add / 2; if ((oinsn & 0xff00) != (insn & 0xff00)) overflow = TRUE; bfd_put_16 (abfd, (bfd_vma) insn, loc); break; case R_SH_IND12W: insn = bfd_get_16 (abfd, loc); oinsn = insn; insn += add / 2; if ((oinsn & 0xf000) != (insn & 0xf000)) overflow = TRUE; bfd_put_16 (abfd, (bfd_vma) insn, loc); break; case R_SH_DIR8WPL: /* This reloc ignores the least significant 3 bits of the program counter before adding in the offset. This means that if ADDR is at an even address, the swap will not affect the offset. If ADDR is an at an odd address, then the instruction will be crossing a four byte boundary, and must be adjusted. */ if ((addr & 3) != 0) { insn = bfd_get_16 (abfd, loc); oinsn = insn; insn += add / 2; if ((oinsn & 0xff00) != (insn & 0xff00)) overflow = TRUE; bfd_put_16 (abfd, (bfd_vma) insn, loc); } break; } if (overflow) { ((*_bfd_error_handler) (_("%B: 0x%lx: fatal: reloc overflow while relaxing"), abfd, (unsigned long) irel->r_offset)); bfd_set_error (bfd_error_bad_value); return FALSE; } } } return TRUE; } #endif /* defined SH64_ELF */ /* Describes one of the various PLT styles. */ struct elf_sh_plt_info { /* The template for the first PLT entry, or NULL if there is no special first entry. */ const bfd_byte *plt0_entry; /* The size of PLT0_ENTRY in bytes, or 0 if PLT0_ENTRY is NULL. */ bfd_vma plt0_entry_size; /* Index I is the offset into PLT0_ENTRY of a pointer to _GLOBAL_OFFSET_TABLE_ + I * 4. The value is MINUS_ONE if there is no such pointer. */ bfd_vma plt0_got_fields[3]; /* The template for a symbol's PLT entry. */ const bfd_byte *symbol_entry; /* The size of SYMBOL_ENTRY in bytes. */ bfd_vma symbol_entry_size; /* Byte offsets of fields in SYMBOL_ENTRY. Not all fields are used on all targets. The comments by each member indicate the value that the field must hold. */ struct { bfd_vma got_entry; /* the address of the symbol's .got.plt entry */ bfd_vma plt; /* .plt (or a branch to .plt on VxWorks) */ bfd_vma reloc_offset; /* the offset of the symbol's JMP_SLOT reloc */ bfd_boolean got20; /* TRUE if got_entry points to a movi20 instruction (instead of a constant pool entry). */ } symbol_fields; /* The offset of the resolver stub from the start of SYMBOL_ENTRY. */ bfd_vma symbol_resolve_offset; /* A different PLT layout which can be used for the first MAX_SHORT_PLT entries. It must share the same plt0. NULL in other cases. */ const struct elf_sh_plt_info *short_plt; }; #ifdef INCLUDE_SHMEDIA /* The size in bytes of an entry in the procedure linkage table. */ #define ELF_PLT_ENTRY_SIZE 64 /* First entry in an absolute procedure linkage table look like this. */ static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] = { 0xcc, 0x00, 0x01, 0x10, /* movi .got.plt >> 16, r17 */ 0xc8, 0x00, 0x01, 0x10, /* shori .got.plt & 65535, r17 */ 0x89, 0x10, 0x09, 0x90, /* ld.l r17, 8, r25 */ 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */ 0x89, 0x10, 0x05, 0x10, /* ld.l r17, 4, r17 */ 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ }; static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] = { 0x10, 0x01, 0x00, 0xcc, /* movi .got.plt >> 16, r17 */ 0x10, 0x01, 0x00, 0xc8, /* shori .got.plt & 65535, r17 */ 0x90, 0x09, 0x10, 0x89, /* ld.l r17, 8, r25 */ 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */ 0x10, 0x05, 0x10, 0x89, /* ld.l r17, 4, r17 */ 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ }; /* Sebsequent entries in an absolute procedure linkage table look like this. */ static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] = { 0xcc, 0x00, 0x01, 0x90, /* movi nameN-in-GOT >> 16, r25 */ 0xc8, 0x00, 0x01, 0x90, /* shori nameN-in-GOT & 65535, r25 */ 0x89, 0x90, 0x01, 0x90, /* ld.l r25, 0, r25 */ 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */ 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0xcc, 0x00, 0x01, 0x90, /* movi .PLT0 >> 16, r25 */ 0xc8, 0x00, 0x01, 0x90, /* shori .PLT0 & 65535, r25 */ 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */ 0xcc, 0x00, 0x01, 0x50, /* movi reloc-offset >> 16, r21 */ 0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */ 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ }; static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] = { 0x90, 0x01, 0x00, 0xcc, /* movi nameN-in-GOT >> 16, r25 */ 0x90, 0x01, 0x00, 0xc8, /* shori nameN-in-GOT & 65535, r25 */ 0x90, 0x01, 0x90, 0x89, /* ld.l r25, 0, r25 */ 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */ 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0x90, 0x01, 0x00, 0xcc, /* movi .PLT0 >> 16, r25 */ 0x90, 0x01, 0x00, 0xc8, /* shori .PLT0 & 65535, r25 */ 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */ 0x50, 0x01, 0x00, 0xcc, /* movi reloc-offset >> 16, r21 */ 0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */ 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ }; /* Entries in a PIC procedure linkage table look like this. */ static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] = { 0xcc, 0x00, 0x01, 0x90, /* movi nameN@GOT >> 16, r25 */ 0xc8, 0x00, 0x01, 0x90, /* shori nameN@GOT & 65535, r25 */ 0x40, 0xc2, 0x65, 0x90, /* ldx.l r12, r25, r25 */ 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */ 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0x6f, 0xf0, 0xff, 0xf0, /* nop */ 0xce, 0x00, 0x01, 0x10, /* movi -GOT_BIAS, r17 */ 0x00, 0xc8, 0x45, 0x10, /* add.l r12, r17, r17 */ 0x89, 0x10, 0x09, 0x90, /* ld.l r17, 8, r25 */ 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */ 0x89, 0x10, 0x05, 0x10, /* ld.l r17, 4, r17 */ 0xcc, 0x00, 0x01, 0x50, /* movi reloc-offset >> 16, r21 */ 0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */ 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */ }; static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] = { 0x90, 0x01, 0x00, 0xcc, /* movi nameN@GOT >> 16, r25 */ 0x90, 0x01, 0x00, 0xc8, /* shori nameN@GOT & 65535, r25 */ 0x90, 0x65, 0xc2, 0x40, /* ldx.l r12, r25, r25 */ 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */ 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0xf0, 0xff, 0xf0, 0x6f, /* nop */ 0x10, 0x01, 0x00, 0xce, /* movi -GOT_BIAS, r17 */ 0x10, 0x45, 0xc8, 0x00, /* add.l r12, r17, r17 */ 0x90, 0x09, 0x10, 0x89, /* ld.l r17, 8, r25 */ 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */ 0x10, 0x05, 0x10, 0x89, /* ld.l r17, 4, r17 */ 0x50, 0x01, 0x00, 0xcc, /* movi reloc-offset >> 16, r21 */ 0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */ 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */ }; static const struct elf_sh_plt_info elf_sh_plts[2][2] = { { { /* Big-endian non-PIC. */ elf_sh_plt0_entry_be, ELF_PLT_ENTRY_SIZE, { 0, MINUS_ONE, MINUS_ONE }, elf_sh_plt_entry_be, ELF_PLT_ENTRY_SIZE, { 0, 32, 48, FALSE }, 33, /* includes ISA encoding */ NULL }, { /* Little-endian non-PIC. */ elf_sh_plt0_entry_le, ELF_PLT_ENTRY_SIZE, { 0, MINUS_ONE, MINUS_ONE }, elf_sh_plt_entry_le, ELF_PLT_ENTRY_SIZE, { 0, 32, 48, FALSE }, 33, /* includes ISA encoding */ NULL }, }, { { /* Big-endian PIC. */ elf_sh_plt0_entry_be, ELF_PLT_ENTRY_SIZE, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, elf_sh_pic_plt_entry_be, ELF_PLT_ENTRY_SIZE, { 0, MINUS_ONE, 52, FALSE }, 33, /* includes ISA encoding */ NULL }, { /* Little-endian PIC. */ elf_sh_plt0_entry_le, ELF_PLT_ENTRY_SIZE, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, elf_sh_pic_plt_entry_le, ELF_PLT_ENTRY_SIZE, { 0, MINUS_ONE, 52, FALSE }, 33, /* includes ISA encoding */ NULL }, } }; /* Return offset of the linker in PLT0 entry. */ #define elf_sh_plt0_gotplt_offset(info) 0 /* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD. VALUE is the field's value and CODE_P is true if VALUE refers to code, not data. On SH64, each 32-bit field is loaded by a movi/shori pair. */ inline static void install_plt_field (bfd *output_bfd, bfd_boolean code_p, unsigned long value, bfd_byte *addr) { value |= code_p; bfd_put_32 (output_bfd, bfd_get_32 (output_bfd, addr) | ((value >> 6) & 0x3fffc00), addr); bfd_put_32 (output_bfd, bfd_get_32 (output_bfd, addr + 4) | ((value << 10) & 0x3fffc00), addr + 4); } /* Return the type of PLT associated with ABFD. PIC_P is true if the object is position-independent. */ static const struct elf_sh_plt_info * get_plt_info (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean pic_p) { return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)]; } #else /* The size in bytes of an entry in the procedure linkage table. */ #define ELF_PLT_ENTRY_SIZE 28 /* First entry in an absolute procedure linkage table look like this. */ /* Note - this code has been "optimised" not to use r2. r2 is used by GCC to return the address of large structures, so it should not be corrupted here. This does mean however, that this PLT does not conform to the SH PIC ABI. That spec says that r0 contains the type of the PLT and r2 contains the GOT id. This version stores the GOT id in r0 and ignores the type. Loaders can easily detect this difference however, since the type will always be 0 or 8, and the GOT ids will always be greater than or equal to 12. */ static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] = { 0xd0, 0x05, /* mov.l 2f,r0 */ 0x60, 0x02, /* mov.l @r0,r0 */ 0x2f, 0x06, /* mov.l r0,@-r15 */ 0xd0, 0x03, /* mov.l 1f,r0 */ 0x60, 0x02, /* mov.l @r0,r0 */ 0x40, 0x2b, /* jmp @r0 */ 0x60, 0xf6, /* mov.l @r15+,r0 */ 0x00, 0x09, /* nop */ 0x00, 0x09, /* nop */ 0x00, 0x09, /* nop */ 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */ 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */ }; static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] = { 0x05, 0xd0, /* mov.l 2f,r0 */ 0x02, 0x60, /* mov.l @r0,r0 */ 0x06, 0x2f, /* mov.l r0,@-r15 */ 0x03, 0xd0, /* mov.l 1f,r0 */ 0x02, 0x60, /* mov.l @r0,r0 */ 0x2b, 0x40, /* jmp @r0 */ 0xf6, 0x60, /* mov.l @r15+,r0 */ 0x09, 0x00, /* nop */ 0x09, 0x00, /* nop */ 0x09, 0x00, /* nop */ 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */ 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */ }; /* Sebsequent entries in an absolute procedure linkage table look like this. */ static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] = { 0xd0, 0x04, /* mov.l 1f,r0 */ 0x60, 0x02, /* mov.l @(r0,r12),r0 */ 0xd1, 0x02, /* mov.l 0f,r1 */ 0x40, 0x2b, /* jmp @r0 */ 0x60, 0x13, /* mov r1,r0 */ 0xd1, 0x03, /* mov.l 2f,r1 */ 0x40, 0x2b, /* jmp @r0 */ 0x00, 0x09, /* nop */ 0, 0, 0, 0, /* 0: replaced with address of .PLT0. */ 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */ }; static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] = { 0x04, 0xd0, /* mov.l 1f,r0 */ 0x02, 0x60, /* mov.l @r0,r0 */ 0x02, 0xd1, /* mov.l 0f,r1 */ 0x2b, 0x40, /* jmp @r0 */ 0x13, 0x60, /* mov r1,r0 */ 0x03, 0xd1, /* mov.l 2f,r1 */ 0x2b, 0x40, /* jmp @r0 */ 0x09, 0x00, /* nop */ 0, 0, 0, 0, /* 0: replaced with address of .PLT0. */ 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */ }; /* Entries in a PIC procedure linkage table look like this. */ static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] = { 0xd0, 0x04, /* mov.l 1f,r0 */ 0x00, 0xce, /* mov.l @(r0,r12),r0 */ 0x40, 0x2b, /* jmp @r0 */ 0x00, 0x09, /* nop */ 0x50, 0xc2, /* mov.l @(8,r12),r0 */ 0xd1, 0x03, /* mov.l 2f,r1 */ 0x40, 0x2b, /* jmp @r0 */ 0x50, 0xc1, /* mov.l @(4,r12),r0 */ 0x00, 0x09, /* nop */ 0x00, 0x09, /* nop */ 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */ }; static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] = { 0x04, 0xd0, /* mov.l 1f,r0 */ 0xce, 0x00, /* mov.l @(r0,r12),r0 */ 0x2b, 0x40, /* jmp @r0 */ 0x09, 0x00, /* nop */ 0xc2, 0x50, /* mov.l @(8,r12),r0 */ 0x03, 0xd1, /* mov.l 2f,r1 */ 0x2b, 0x40, /* jmp @r0 */ 0xc1, 0x50, /* mov.l @(4,r12),r0 */ 0x09, 0x00, /* nop */ 0x09, 0x00, /* nop */ 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */ }; static const struct elf_sh_plt_info elf_sh_plts[2][2] = { { { /* Big-endian non-PIC. */ elf_sh_plt0_entry_be, ELF_PLT_ENTRY_SIZE, { MINUS_ONE, 24, 20 }, elf_sh_plt_entry_be, ELF_PLT_ENTRY_SIZE, { 20, 16, 24, FALSE }, 8, NULL }, { /* Little-endian non-PIC. */ elf_sh_plt0_entry_le, ELF_PLT_ENTRY_SIZE, { MINUS_ONE, 24, 20 }, elf_sh_plt_entry_le, ELF_PLT_ENTRY_SIZE, { 20, 16, 24, FALSE }, 8, NULL }, }, { { /* Big-endian PIC. */ elf_sh_plt0_entry_be, ELF_PLT_ENTRY_SIZE, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, elf_sh_pic_plt_entry_be, ELF_PLT_ENTRY_SIZE, { 20, MINUS_ONE, 24, FALSE }, 8, NULL }, { /* Little-endian PIC. */ elf_sh_plt0_entry_le, ELF_PLT_ENTRY_SIZE, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, elf_sh_pic_plt_entry_le, ELF_PLT_ENTRY_SIZE, { 20, MINUS_ONE, 24, FALSE }, 8, NULL }, } }; #define VXWORKS_PLT_HEADER_SIZE 12 #define VXWORKS_PLT_ENTRY_SIZE 24 static const bfd_byte vxworks_sh_plt0_entry_be[VXWORKS_PLT_HEADER_SIZE] = { 0xd1, 0x01, /* mov.l @(8,pc),r1 */ 0x61, 0x12, /* mov.l @r1,r1 */ 0x41, 0x2b, /* jmp @r1 */ 0x00, 0x09, /* nop */ 0, 0, 0, 0 /* 0: replaced with _GLOBAL_OFFSET_TABLE+8. */ }; static const bfd_byte vxworks_sh_plt0_entry_le[VXWORKS_PLT_HEADER_SIZE] = { 0x01, 0xd1, /* mov.l @(8,pc),r1 */ 0x12, 0x61, /* mov.l @r1,r1 */ 0x2b, 0x41, /* jmp @r1 */ 0x09, 0x00, /* nop */ 0, 0, 0, 0 /* 0: replaced with _GLOBAL_OFFSET_TABLE+8. */ }; static const bfd_byte vxworks_sh_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] = { 0xd0, 0x01, /* mov.l @(8,pc),r0 */ 0x60, 0x02, /* mov.l @r0,r0 */ 0x40, 0x2b, /* jmp @r0 */ 0x00, 0x09, /* nop */ 0, 0, 0, 0, /* 0: replaced with address of this symbol in .got. */ 0xd0, 0x01, /* mov.l @(8,pc),r0 */ 0xa0, 0x00, /* bra PLT (We need to fix the offset.) */ 0x00, 0x09, /* nop */ 0x00, 0x09, /* nop */ 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ }; static const bfd_byte vxworks_sh_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] = { 0x01, 0xd0, /* mov.l @(8,pc),r0 */ 0x02, 0x60, /* mov.l @r0,r0 */ 0x2b, 0x40, /* jmp @r0 */ 0x09, 0x00, /* nop */ 0, 0, 0, 0, /* 0: replaced with address of this symbol in .got. */ 0x01, 0xd0, /* mov.l @(8,pc),r0 */ 0x00, 0xa0, /* bra PLT (We need to fix the offset.) */ 0x09, 0x00, /* nop */ 0x09, 0x00, /* nop */ 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ }; static const bfd_byte vxworks_sh_pic_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] = { 0xd0, 0x01, /* mov.l @(8,pc),r0 */ 0x00, 0xce, /* mov.l @(r0,r12),r0 */ 0x40, 0x2b, /* jmp @r0 */ 0x00, 0x09, /* nop */ 0, 0, 0, 0, /* 0: replaced with offset of this symbol in .got. */ 0xd0, 0x01, /* mov.l @(8,pc),r0 */ 0x51, 0xc2, /* mov.l @(8,r12),r1 */ 0x41, 0x2b, /* jmp @r1 */ 0x00, 0x09, /* nop */ 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ }; static const bfd_byte vxworks_sh_pic_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] = { 0x01, 0xd0, /* mov.l @(8,pc),r0 */ 0xce, 0x00, /* mov.l @(r0,r12),r0 */ 0x2b, 0x40, /* jmp @r0 */ 0x09, 0x00, /* nop */ 0, 0, 0, 0, /* 0: replaced with offset of this symbol in .got. */ 0x01, 0xd0, /* mov.l @(8,pc),r0 */ 0xc2, 0x51, /* mov.l @(8,r12),r1 */ 0x2b, 0x41, /* jmp @r1 */ 0x09, 0x00, /* nop */ 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ }; static const struct elf_sh_plt_info vxworks_sh_plts[2][2] = { { { /* Big-endian non-PIC. */ vxworks_sh_plt0_entry_be, VXWORKS_PLT_HEADER_SIZE, { MINUS_ONE, MINUS_ONE, 8 }, vxworks_sh_plt_entry_be, VXWORKS_PLT_ENTRY_SIZE, { 8, 14, 20, FALSE }, 12, NULL }, { /* Little-endian non-PIC. */ vxworks_sh_plt0_entry_le, VXWORKS_PLT_HEADER_SIZE, { MINUS_ONE, MINUS_ONE, 8 }, vxworks_sh_plt_entry_le, VXWORKS_PLT_ENTRY_SIZE, { 8, 14, 20, FALSE }, 12, NULL }, }, { { /* Big-endian PIC. */ NULL, 0, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, vxworks_sh_pic_plt_entry_be, VXWORKS_PLT_ENTRY_SIZE, { 8, MINUS_ONE, 20, FALSE }, 12, NULL }, { /* Little-endian PIC. */ NULL, 0, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, vxworks_sh_pic_plt_entry_le, VXWORKS_PLT_ENTRY_SIZE, { 8, MINUS_ONE, 20, FALSE }, 12, NULL }, } }; /* FDPIC PLT entries. Two unimplemented optimizations for lazy binding are to omit the lazy binding stub when linking with -z now and to move lazy binding stubs into a separate region for better cache behavior. */ #define FDPIC_PLT_ENTRY_SIZE 28 #define FDPIC_PLT_LAZY_OFFSET 20 /* FIXME: The lazy binding stub requires a plt0 - which may need to be duplicated if it is out of range, or which can be inlined. So right now it is always inlined, which wastes a word per stub. It might be easier to handle the duplication if we put the lazy stubs separately. */ static const bfd_byte fdpic_sh_plt_entry_be[FDPIC_PLT_ENTRY_SIZE] = { 0xd0, 0x02, /* mov.l @(12,pc),r0 */ 0x01, 0xce, /* mov.l @(r0,r12),r1 */ 0x70, 0x04, /* add #4, r0 */ 0x41, 0x2b, /* jmp @r1 */ 0x0c, 0xce, /* mov.l @(r0,r12),r12 */ 0x00, 0x09, /* nop */ 0, 0, 0, 0, /* 0: replaced with offset of this symbol's funcdesc */ 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ 0x60, 0xc2, /* mov.l @r12,r0 */ 0x40, 0x2b, /* jmp @r0 */ 0x53, 0xc1, /* mov.l @(4,r12),r3 */ 0x00, 0x09, /* nop */ }; static const bfd_byte fdpic_sh_plt_entry_le[FDPIC_PLT_ENTRY_SIZE] = { 0x02, 0xd0, /* mov.l @(12,pc),r0 */ 0xce, 0x01, /* mov.l @(r0,r12),r1 */ 0x04, 0x70, /* add #4, r0 */ 0x2b, 0x41, /* jmp @r1 */ 0xce, 0x0c, /* mov.l @(r0,r12),r12 */ 0x09, 0x00, /* nop */ 0, 0, 0, 0, /* 0: replaced with offset of this symbol's funcdesc */ 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ 0xc2, 0x60, /* mov.l @r12,r0 */ 0x2b, 0x40, /* jmp @r0 */ 0xc1, 0x53, /* mov.l @(4,r12),r3 */ 0x09, 0x00, /* nop */ }; static const struct elf_sh_plt_info fdpic_sh_plts[2] = { { /* Big-endian PIC. */ NULL, 0, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, fdpic_sh_plt_entry_be, FDPIC_PLT_ENTRY_SIZE, { 12, MINUS_ONE, 16, FALSE }, FDPIC_PLT_LAZY_OFFSET, NULL }, { /* Little-endian PIC. */ NULL, 0, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, fdpic_sh_plt_entry_le, FDPIC_PLT_ENTRY_SIZE, { 12, MINUS_ONE, 16, FALSE }, FDPIC_PLT_LAZY_OFFSET, NULL }, }; /* On SH2A, we can use the movi20 instruction to generate shorter PLT entries for the first 64K slots. We use the normal FDPIC PLT entry past that point; we could also use movi20s, which might be faster, but would not be any smaller. */ #define FDPIC_SH2A_PLT_ENTRY_SIZE 24 #define FDPIC_SH2A_PLT_LAZY_OFFSET 16 static const bfd_byte fdpic_sh2a_plt_entry_be[FDPIC_SH2A_PLT_ENTRY_SIZE] = { 0, 0, 0, 0, /* movi20 #gotofffuncdesc,r0 */ 0x01, 0xce, /* mov.l @(r0,r12),r1 */ 0x70, 0x04, /* add #4, r0 */ 0x41, 0x2b, /* jmp @r1 */ 0x0c, 0xce, /* mov.l @(r0,r12),r12 */ 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ 0x60, 0xc2, /* mov.l @r12,r0 */ 0x40, 0x2b, /* jmp @r0 */ 0x53, 0xc1, /* mov.l @(4,r12),r3 */ 0x00, 0x09, /* nop */ }; static const bfd_byte fdpic_sh2a_plt_entry_le[FDPIC_SH2A_PLT_ENTRY_SIZE] = { 0, 0, 0, 0, /* movi20 #gotofffuncdesc,r0 */ 0xce, 0x01, /* mov.l @(r0,r12),r1 */ 0x04, 0x70, /* add #4, r0 */ 0x2b, 0x41, /* jmp @r1 */ 0xce, 0x0c, /* mov.l @(r0,r12),r12 */ 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ 0xc2, 0x60, /* mov.l @r12,r0 */ 0x2b, 0x40, /* jmp @r0 */ 0xc1, 0x53, /* mov.l @(4,r12),r3 */ 0x09, 0x00, /* nop */ }; static const struct elf_sh_plt_info fdpic_sh2a_short_plt_be = { /* Big-endian FDPIC, max index 64K. */ NULL, 0, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, fdpic_sh2a_plt_entry_be, FDPIC_SH2A_PLT_ENTRY_SIZE, { 0, MINUS_ONE, 12, TRUE }, FDPIC_SH2A_PLT_LAZY_OFFSET, NULL }; static const struct elf_sh_plt_info fdpic_sh2a_short_plt_le = { /* Little-endian FDPIC, max index 64K. */ NULL, 0, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, fdpic_sh2a_plt_entry_le, FDPIC_SH2A_PLT_ENTRY_SIZE, { 0, MINUS_ONE, 12, TRUE }, FDPIC_SH2A_PLT_LAZY_OFFSET, NULL }; static const struct elf_sh_plt_info fdpic_sh2a_plts[2] = { { /* Big-endian PIC. */ NULL, 0, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, fdpic_sh_plt_entry_be, FDPIC_PLT_ENTRY_SIZE, { 12, MINUS_ONE, 16, FALSE }, FDPIC_PLT_LAZY_OFFSET, &fdpic_sh2a_short_plt_be }, { /* Little-endian PIC. */ NULL, 0, { MINUS_ONE, MINUS_ONE, MINUS_ONE }, fdpic_sh_plt_entry_le, FDPIC_PLT_ENTRY_SIZE, { 12, MINUS_ONE, 16, FALSE }, FDPIC_PLT_LAZY_OFFSET, &fdpic_sh2a_short_plt_le }, }; /* Return the type of PLT associated with ABFD. PIC_P is true if the object is position-independent. */ static const struct elf_sh_plt_info * get_plt_info (bfd *abfd, bfd_boolean pic_p) { if (fdpic_object_p (abfd)) { /* If any input file requires SH2A we can use a shorter PLT sequence. */ if (sh_get_arch_from_bfd_mach (bfd_get_mach (abfd)) & arch_sh2a_base) return &fdpic_sh2a_plts[!bfd_big_endian (abfd)]; else return &fdpic_sh_plts[!bfd_big_endian (abfd)]; } if (vxworks_object_p (abfd)) return &vxworks_sh_plts[pic_p][!bfd_big_endian (abfd)]; return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)]; } /* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD. VALUE is the field's value and CODE_P is true if VALUE refers to code, not data. */ inline static void install_plt_field (bfd *output_bfd, bfd_boolean code_p ATTRIBUTE_UNUSED, unsigned long value, bfd_byte *addr) { bfd_put_32 (output_bfd, value, addr); } #endif /* The number of PLT entries which can use a shorter PLT, if any. Currently always 64K, since only SH-2A FDPIC uses this; a 20-bit movi20 can address that many function descriptors below _GLOBAL_OFFSET_TABLE_. */ #define MAX_SHORT_PLT 65536 /* Return the index of the PLT entry at byte offset OFFSET. */ static bfd_vma get_plt_index (const struct elf_sh_plt_info *info, bfd_vma offset) { bfd_vma plt_index = 0; offset -= info->plt0_entry_size; if (info->short_plt != NULL) { if (offset > MAX_SHORT_PLT * info->short_plt->symbol_entry_size) { plt_index = MAX_SHORT_PLT; offset -= MAX_SHORT_PLT * info->short_plt->symbol_entry_size; } else info = info->short_plt; } return plt_index + offset / info->symbol_entry_size; } /* Do the inverse operation. */ static bfd_vma get_plt_offset (const struct elf_sh_plt_info *info, bfd_vma plt_index) { bfd_vma offset = 0; if (info->short_plt != NULL) { if (plt_index > MAX_SHORT_PLT) { offset = MAX_SHORT_PLT * info->short_plt->symbol_entry_size; plt_index -= MAX_SHORT_PLT; } else info = info->short_plt; } return (offset + info->plt0_entry_size + (plt_index * info->symbol_entry_size)); } /* The sh linker needs to keep track of the number of relocs that it decides to copy as dynamic relocs in check_relocs for each symbol. This is so that it can later discard them if they are found to be unnecessary. We store the information in a field extending the regular ELF linker hash table. */ struct elf_sh_dyn_relocs { struct elf_sh_dyn_relocs *next; /* The input section of the reloc. */ asection *sec; /* Total number of relocs copied for the input section. */ bfd_size_type count; /* Number of pc-relative relocs copied for the input section. */ bfd_size_type pc_count; }; union gotref { bfd_signed_vma refcount; bfd_vma offset; }; /* sh ELF linker hash entry. */ struct elf_sh_link_hash_entry { struct elf_link_hash_entry root; #ifdef INCLUDE_SHMEDIA union { bfd_signed_vma refcount; bfd_vma offset; } datalabel_got; #endif /* Track dynamic relocs copied for this symbol. */ struct elf_sh_dyn_relocs *dyn_relocs; bfd_signed_vma gotplt_refcount; /* A local function descriptor, for FDPIC. The refcount counts R_SH_FUNCDESC, R_SH_GOTOFFFUNCDESC, and R_SH_GOTOFFFUNCDESC20 relocations; the PLT and GOT entry are accounted for separately. After adjust_dynamic_symbol, the offset is MINUS_ONE if there is no local descriptor (dynamic linker managed and no PLT entry, or undefined weak non-dynamic). During check_relocs we do not yet know whether the local descriptor will be canonical. */ union gotref funcdesc; /* How many of the above refcounted relocations were R_SH_FUNCDESC, and thus require fixups or relocations. */ bfd_signed_vma abs_funcdesc_refcount; enum { GOT_UNKNOWN = 0, GOT_NORMAL, GOT_TLS_GD, GOT_TLS_IE, GOT_FUNCDESC } got_type; }; #define sh_elf_hash_entry(ent) ((struct elf_sh_link_hash_entry *)(ent)) struct sh_elf_obj_tdata { struct elf_obj_tdata root; /* got_type for each local got entry. */ char *local_got_type; /* Function descriptor refcount and offset for each local symbol. */ union gotref *local_funcdesc; }; #define sh_elf_tdata(abfd) \ ((struct sh_elf_obj_tdata *) (abfd)->tdata.any) #define sh_elf_local_got_type(abfd) \ (sh_elf_tdata (abfd)->local_got_type) #define sh_elf_local_funcdesc(abfd) \ (sh_elf_tdata (abfd)->local_funcdesc) #define is_sh_elf(bfd) \ (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ && elf_tdata (bfd) != NULL \ && elf_object_id (bfd) == SH_ELF_DATA) /* Override the generic function because we need to store sh_elf_obj_tdata as the specific tdata. */ static bfd_boolean sh_elf_mkobject (bfd *abfd) { return bfd_elf_allocate_object (abfd, sizeof (struct sh_elf_obj_tdata), SH_ELF_DATA); } /* sh ELF linker hash table. */ struct elf_sh_link_hash_table { struct elf_link_hash_table root; /* Short-cuts to get to dynamic linker sections. */ asection *sgot; asection *sgotplt; asection *srelgot; asection *splt; asection *srelplt; asection *sdynbss; asection *srelbss; asection *sfuncdesc; asection *srelfuncdesc; asection *srofixup; /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */ asection *srelplt2; /* Small local sym cache. */ struct sym_cache sym_cache; /* A counter or offset to track a TLS got entry. */ union { bfd_signed_vma refcount; bfd_vma offset; } tls_ldm_got; /* The type of PLT to use. */ const struct elf_sh_plt_info *plt_info; /* True if the target system is VxWorks. */ bfd_boolean vxworks_p; /* True if the target system uses FDPIC. */ bfd_boolean fdpic_p; }; /* Traverse an sh ELF linker hash table. */ #define sh_elf_link_hash_traverse(table, func, info) \ (elf_link_hash_traverse \ (&(table)->root, \ (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ (info))) /* Get the sh ELF linker hash table from a link_info structure. */ #define sh_elf_hash_table(p) \ (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ == SH_ELF_DATA ? ((struct elf_sh_link_hash_table *) ((p)->hash)) : NULL) /* Create an entry in an sh ELF linker hash table. */ static struct bfd_hash_entry * sh_elf_link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { struct elf_sh_link_hash_entry *ret = (struct elf_sh_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == (struct elf_sh_link_hash_entry *) NULL) ret = ((struct elf_sh_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct elf_sh_link_hash_entry))); if (ret == (struct elf_sh_link_hash_entry *) NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct elf_sh_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != (struct elf_sh_link_hash_entry *) NULL) { ret->dyn_relocs = NULL; ret->gotplt_refcount = 0; #ifdef INCLUDE_SHMEDIA ret->datalabel_got.refcount = ret->root.got.refcount; #endif ret->funcdesc.refcount = 0; ret->abs_funcdesc_refcount = 0; ret->got_type = GOT_UNKNOWN; } return (struct bfd_hash_entry *) ret; } /* Create an sh ELF linker hash table. */ static struct bfd_link_hash_table * sh_elf_link_hash_table_create (bfd *abfd) { struct elf_sh_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf_sh_link_hash_table); ret = (struct elf_sh_link_hash_table *) bfd_malloc (amt); if (ret == (struct elf_sh_link_hash_table *) NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, sh_elf_link_hash_newfunc, sizeof (struct elf_sh_link_hash_entry), SH_ELF_DATA)) { free (ret); return NULL; } ret->sgot = NULL; ret->sgotplt = NULL; ret->srelgot = NULL; ret->splt = NULL; ret->srelplt = NULL; ret->sdynbss = NULL; ret->srelbss = NULL; ret->srelplt2 = NULL; ret->sym_cache.abfd = NULL; ret->tls_ldm_got.refcount = 0; ret->plt_info = NULL; ret->vxworks_p = vxworks_object_p (abfd); ret->fdpic_p = fdpic_object_p (abfd); return &ret->root.root; } static bfd_boolean sh_elf_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info, asection *p) { struct elf_sh_link_hash_table *htab = sh_elf_hash_table (info); /* Non-FDPIC binaries do not need dynamic symbols for sections. */ if (!htab->fdpic_p) return TRUE; /* We need dynamic symbols for every section, since segments can relocate independently. */ switch (elf_section_data (p)->this_hdr.sh_type) { case SHT_PROGBITS: case SHT_NOBITS: /* If sh_type is yet undecided, assume it could be SHT_PROGBITS/SHT_NOBITS. */ case SHT_NULL: return FALSE; /* There shouldn't be section relative relocations against any other section. */ default: return TRUE; } } /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bfd_boolean create_got_section (bfd *dynobj, struct bfd_link_info *info) { struct elf_sh_link_hash_table *htab; if (! _bfd_elf_create_got_section (dynobj, info)) return FALSE; htab = sh_elf_hash_table (info); if (htab == NULL) return FALSE; htab->sgot = bfd_get_section_by_name (dynobj, ".got"); htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); if (! htab->sgot || ! htab->sgotplt || ! htab->srelgot) abort (); htab->sfuncdesc = bfd_make_section_with_flags (dynobj, ".got.funcdesc", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)); if (htab->sfuncdesc == NULL || ! bfd_set_section_alignment (dynobj, htab->sfuncdesc, 2)) return FALSE; htab->srelfuncdesc = bfd_make_section_with_flags (dynobj, ".rela.got.funcdesc", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)); if (htab->srelfuncdesc == NULL || ! bfd_set_section_alignment (dynobj, htab->srelfuncdesc, 2)) return FALSE; /* Also create .rofixup. */ htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)); if (htab->srofixup == NULL || ! bfd_set_section_alignment (dynobj, htab->srofixup, 2)) return FALSE; return TRUE; } /* Create dynamic sections when linking against a dynamic object. */ static bfd_boolean sh_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) { struct elf_sh_link_hash_table *htab; flagword flags, pltflags; asection *s; const struct elf_backend_data *bed = get_elf_backend_data (abfd); int ptralign = 0; switch (bed->s->arch_size) { case 32: ptralign = 2; break; case 64: ptralign = 3; break; default: bfd_set_error (bfd_error_bad_value); return FALSE; } htab = sh_elf_hash_table (info); if (htab == NULL) return FALSE; if (htab->root.dynamic_sections_created) return TRUE; /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and .rel[a].bss sections. */ flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); pltflags = flags; pltflags |= SEC_CODE; if (bed->plt_not_loaded) pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS); if (bed->plt_readonly) pltflags |= SEC_READONLY; s = bfd_make_section_with_flags (abfd, ".plt", pltflags); htab->splt = s; if (s == NULL || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)) return FALSE; if (bed->want_plt_sym) { /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section. */ struct elf_link_hash_entry *h; struct bfd_link_hash_entry *bh = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0, (const char *) NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->def_regular = 1; h->type = STT_OBJECT; htab->root.hplt = h; if (info->shared && ! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } s = bfd_make_section_with_flags (abfd, bed->default_use_rela_p ? ".rela.plt" : ".rel.plt", flags | SEC_READONLY); htab->srelplt = s; if (s == NULL || ! bfd_set_section_alignment (abfd, s, ptralign)) return FALSE; if (htab->sgot == NULL && !create_got_section (abfd, info)) return FALSE; { const char *secname; char *relname; flagword secflags; asection *sec; for (sec = abfd->sections; sec; sec = sec->next) { secflags = bfd_get_section_flags (abfd, sec); if ((secflags & (SEC_DATA | SEC_LINKER_CREATED)) || ((secflags & SEC_HAS_CONTENTS) != SEC_HAS_CONTENTS)) continue; secname = bfd_get_section_name (abfd, sec); relname = (char *) bfd_malloc ((bfd_size_type) strlen (secname) + 6); strcpy (relname, ".rela"); strcat (relname, secname); if (bfd_get_section_by_name (abfd, secname)) continue; s = bfd_make_section_with_flags (abfd, relname, flags | SEC_READONLY); if (s == NULL || ! bfd_set_section_alignment (abfd, s, ptralign)) return FALSE; } } if (bed->want_dynbss) { /* The .dynbss section is a place to put symbols which are defined by dynamic objects, are referenced by regular objects, and are not functions. We must allocate space for them in the process image and use a R_*_COPY reloc to tell the dynamic linker to initialize them at run time. The linker script puts the .dynbss section into the .bss section of the final image. */ s = bfd_make_section_with_flags (abfd, ".dynbss", SEC_ALLOC | SEC_LINKER_CREATED); htab->sdynbss = s; if (s == NULL) return FALSE; /* The .rel[a].bss section holds copy relocs. This section is not normally needed. We need to create it here, though, so that the linker will map it to an output section. We can't just create it only if we need it, because we will not know whether we need it until we have seen all the input files, and the first time the main linker code calls BFD after examining all the input files (size_dynamic_sections) the input sections have already been mapped to the output sections. If the section turns out not to be needed, we can discard it later. We will never need this section when generating a shared object, since they do not use copy relocs. */ if (! info->shared) { s = bfd_make_section_with_flags (abfd, (bed->default_use_rela_p ? ".rela.bss" : ".rel.bss"), flags | SEC_READONLY); htab->srelbss = s; if (s == NULL || ! bfd_set_section_alignment (abfd, s, ptralign)) return FALSE; } } if (htab->vxworks_p) { if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) return FALSE; } return TRUE; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean sh_elf_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { struct elf_sh_link_hash_table *htab; struct elf_sh_link_hash_entry *eh; struct elf_sh_dyn_relocs *p; asection *s; htab = sh_elf_hash_table (info); if (htab == NULL) return FALSE; /* Make sure we know what is going on here. */ BFD_ASSERT (htab->root.dynobj != NULL && (h->needs_plt || h->u.weakdef != NULL || (h->def_dynamic && h->ref_regular && !h->def_regular))); /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC || h->needs_plt) { if (h->plt.refcount <= 0 || SYMBOL_CALLS_LOCAL (info, h) || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT && h->root.type == bfd_link_hash_undefweak)) { /* This case can occur if we saw a PLT reloc in an input file, but the symbol was never referred to by a dynamic object. In such a case, we don't actually need to build a procedure linkage table, and we can just do a REL32 reloc instead. */ h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } return TRUE; } else h->plt.offset = (bfd_vma) -1; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; if (info->nocopyreloc) h->non_got_ref = h->u.weakdef->non_got_ref; return TRUE; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return TRUE; /* If there are no references to this symbol that do not use the GOT, we don't need to generate a copy reloc. */ if (!h->non_got_ref) return TRUE; /* If -z nocopyreloc was given, we won't generate them either. */ if (info->nocopyreloc) { h->non_got_ref = 0; return TRUE; } eh = (struct elf_sh_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { s = p->sec->output_section; if (s != NULL && (s->flags & (SEC_READONLY | SEC_HAS_CONTENTS)) != 0) break; } /* If we didn't find any dynamic relocs in sections which needs the copy reloc, then we'll be keeping the dynamic relocs and avoiding the copy reloc. */ if (p == NULL) { h->non_got_ref = 0; return TRUE; } if (h->size == 0) { (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), h->root.root.string); return TRUE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ s = htab->sdynbss; BFD_ASSERT (s != NULL); /* We must generate a R_SH_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rela.bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { asection *srel; srel = htab->srelbss; BFD_ASSERT (srel != NULL); srel->size += sizeof (Elf32_External_Rela); h->needs_copy = 1; } return _bfd_elf_adjust_dynamic_copy (h, s); } /* Allocate space in .plt, .got and associated reloc sections for dynamic relocs. */ static bfd_boolean allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) { struct bfd_link_info *info; struct elf_sh_link_hash_table *htab; struct elf_sh_link_hash_entry *eh; struct elf_sh_dyn_relocs *p; if (h->root.type == bfd_link_hash_indirect) return TRUE; info = (struct bfd_link_info *) inf; htab = sh_elf_hash_table (info); if (htab == NULL) return FALSE; eh = (struct elf_sh_link_hash_entry *) h; if ((h->got.refcount > 0 || h->forced_local) && eh->gotplt_refcount > 0) { /* The symbol has been forced local, or we have some direct got refs, so treat all the gotplt refs as got refs. */ h->got.refcount += eh->gotplt_refcount; if (h->plt.refcount >= eh->gotplt_refcount) h->plt.refcount -= eh->gotplt_refcount; } if (htab->root.dynamic_sections_created && h->plt.refcount > 0 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) { asection *s = htab->splt; const struct elf_sh_plt_info *plt_info; /* If this is the first .plt entry, make room for the special first entry. */ if (s->size == 0) s->size += htab->plt_info->plt0_entry_size; h->plt.offset = s->size; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. Skip this for FDPIC, since the function's address will be the address of the canonical function descriptor. */ if (!htab->fdpic_p && !info->shared && !h->def_regular) { h->root.u.def.section = s; h->root.u.def.value = h->plt.offset; } /* Make room for this entry. */ plt_info = htab->plt_info; if (plt_info->short_plt != NULL && (get_plt_index (plt_info->short_plt, s->size) < MAX_SHORT_PLT)) plt_info = plt_info->short_plt; s->size += plt_info->symbol_entry_size; /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ if (!htab->fdpic_p) htab->sgotplt->size += 4; else htab->sgotplt->size += 8; /* We also need to make an entry in the .rel.plt section. */ htab->srelplt->size += sizeof (Elf32_External_Rela); if (htab->vxworks_p && !info->shared) { /* VxWorks executables have a second set of relocations for each PLT entry. They go in a separate relocation section, which is processed by the kernel loader. */ /* There is a relocation for the initial PLT entry: an R_SH_DIR32 relocation for _GLOBAL_OFFSET_TABLE_. */ if (h->plt.offset == htab->plt_info->plt0_entry_size) htab->srelplt2->size += sizeof (Elf32_External_Rela); /* There are two extra relocations for each subsequent PLT entry: an R_SH_DIR32 relocation for the GOT entry, and an R_SH_DIR32 relocation for the PLT entry. */ htab->srelplt2->size += sizeof (Elf32_External_Rela) * 2; } } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } if (h->got.refcount > 0) { asection *s; bfd_boolean dyn; int got_type = sh_elf_hash_entry (h)->got_type; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } s = htab->sgot; h->got.offset = s->size; s->size += 4; /* R_SH_TLS_GD needs 2 consecutive GOT slots. */ if (got_type == GOT_TLS_GD) s->size += 4; dyn = htab->root.dynamic_sections_created; if (!dyn) { /* No dynamic relocations required. */ if (htab->fdpic_p && !info->shared && h->root.type != bfd_link_hash_undefweak && (got_type == GOT_NORMAL || got_type == GOT_FUNCDESC)) htab->srofixup->size += 4; } /* R_SH_TLS_IE_32 needs one dynamic relocation if dynamic, R_SH_TLS_GD needs one if local symbol and two if global. */ else if ((got_type == GOT_TLS_GD && h->dynindx == -1) || got_type == GOT_TLS_IE) htab->srelgot->size += sizeof (Elf32_External_Rela); else if (got_type == GOT_TLS_GD) htab->srelgot->size += 2 * sizeof (Elf32_External_Rela); else if (got_type == GOT_FUNCDESC) { if (!info->shared && SYMBOL_FUNCDESC_LOCAL (info, h)) htab->srofixup->size += 4; else htab->srelgot->size += sizeof (Elf32_External_Rela); } else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) htab->srelgot->size += sizeof (Elf32_External_Rela); else if (htab->fdpic_p && !info->shared && got_type == GOT_NORMAL && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) htab->srofixup->size += 4; } else h->got.offset = (bfd_vma) -1; #ifdef INCLUDE_SHMEDIA if (eh->datalabel_got.refcount > 0) { asection *s; bfd_boolean dyn; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } s = htab->sgot; eh->datalabel_got.offset = s->size; s->size += 4; dyn = htab->root.dynamic_sections_created; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)) htab->srelgot->size += sizeof (Elf32_External_Rela); } else eh->datalabel_got.offset = (bfd_vma) -1; #endif /* Allocate space for any dynamic relocations to function descriptors, canonical or otherwise. We need to relocate the reference unless it resolves to zero, which only happens for undefined weak symbols (either non-default visibility, or when static linking). Any GOT slot is accounted for elsewhere. */ if (eh->abs_funcdesc_refcount > 0 && (h->root.type != bfd_link_hash_undefweak || (htab->root.dynamic_sections_created && ! SYMBOL_CALLS_LOCAL (info, h)))) { if (!info->shared && SYMBOL_FUNCDESC_LOCAL (info, h)) htab->srofixup->size += eh->abs_funcdesc_refcount * 4; else htab->srelgot->size += eh->abs_funcdesc_refcount * sizeof (Elf32_External_Rela); } /* We must allocate a function descriptor if there are references to a canonical descriptor (R_SH_GOTFUNCDESC or R_SH_FUNCDESC) and the dynamic linker isn't going to allocate it. None of this applies if we already created one in .got.plt, but if the canonical function descriptor can be in this object, there won't be a PLT entry at all. */ if ((eh->funcdesc.refcount > 0 || (h->got.offset != MINUS_ONE && eh->got_type == GOT_FUNCDESC)) && h->root.type != bfd_link_hash_undefweak && SYMBOL_FUNCDESC_LOCAL (info, h)) { /* Make room for this function descriptor. */ eh->funcdesc.offset = htab->sfuncdesc->size; htab->sfuncdesc->size += 8; /* We will need a relocation or two fixups to initialize the function descriptor, so allocate those too. */ if (!info->shared && SYMBOL_CALLS_LOCAL (info, h)) htab->srofixup->size += 8; else htab->srelfuncdesc->size += sizeof (Elf32_External_Rela); } if (eh->dyn_relocs == NULL) return TRUE; /* In the shared -Bsymbolic case, discard space allocated for dynamic pc-relative relocs against symbols which turn out to be defined in regular objects. For the normal shared case, discard space for pc-relative relocs that have become local due to symbol visibility changes. */ if (info->shared) { if (SYMBOL_CALLS_LOCAL (info, h)) { struct elf_sh_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } if (htab->vxworks_p) { struct elf_sh_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) { if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) *pp = p->next; else pp = &p->next; } } /* Also discard relocs on undefined weak syms with non-default visibility. */ if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak) { if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) eh->dyn_relocs = NULL; /* Make sure undefined weak symbols are output as a dynamic symbol in PIEs. */ else if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } } } else { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if (!h->non_got_ref && ((h->def_dynamic && !h->def_regular) || (htab->root.dynamic_sections_created && (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->dyn_relocs = NULL; keep: ; } /* Finally, allocate space. */ for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *sreloc = elf_section_data (p->sec)->sreloc; sreloc->size += p->count * sizeof (Elf32_External_Rela); /* If we need relocations, we do not need fixups. */ if (htab->fdpic_p && !info->shared) htab->srofixup->size -= 4 * (p->count - p->pc_count); } return TRUE; } /* Find any dynamic relocs that apply to read-only sections. */ static bfd_boolean readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf) { struct elf_sh_link_hash_entry *eh; struct elf_sh_dyn_relocs *p; eh = (struct elf_sh_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) { struct bfd_link_info *info = (struct bfd_link_info *) inf; info->flags |= DF_TEXTREL; /* Not an error, just cut short the traversal. */ return FALSE; } } return TRUE; } /* This function is called after all the input files have been read, and the input sections have been assigned to output sections. It's a convenient place to determine the PLT style. */ static bfd_boolean sh_elf_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) { sh_elf_hash_table (info)->plt_info = get_plt_info (output_bfd, info->shared); if (sh_elf_hash_table (info)->fdpic_p && !info->relocatable) { struct elf_link_hash_entry *h; /* Force a PT_GNU_STACK segment to be created. */ if (! elf_tdata (output_bfd)->stack_flags) elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X; /* Define __stacksize if it's not defined yet. */ h = elf_link_hash_lookup (elf_hash_table (info), "__stacksize", FALSE, FALSE, FALSE); if (! h || h->root.type != bfd_link_hash_defined || h->type != STT_OBJECT || !h->def_regular) { struct bfd_link_hash_entry *bh = NULL; if (!(_bfd_generic_link_add_one_symbol (info, output_bfd, "__stacksize", BSF_GLOBAL, bfd_abs_section_ptr, DEFAULT_STACK_SIZE, (const char *) NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->def_regular = 1; h->type = STT_OBJECT; } } return TRUE; } #if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED static bfd_boolean sh_elf_modify_program_headers (bfd *output_bfd, struct bfd_link_info *info) { struct elf_obj_tdata *tdata = elf_tdata (output_bfd); struct elf_segment_map *m; Elf_Internal_Phdr *p; /* objcopy and strip preserve what's already there using sh_elf_copy_private_bfd_data (). */ if (! info) return TRUE; for (p = tdata->phdr, m = tdata->segment_map; m != NULL; m = m->next, p++) if (m->p_type == PT_GNU_STACK) break; if (m) { struct elf_link_hash_entry *h; /* Obtain the pointer to the __stacksize symbol. */ h = elf_link_hash_lookup (elf_hash_table (info), "__stacksize", FALSE, FALSE, FALSE); if (h) { while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; BFD_ASSERT (h->root.type == bfd_link_hash_defined); } /* Set the header p_memsz from the symbol value. We intentionally ignore the symbol section. */ if (h && h->root.type == bfd_link_hash_defined) p->p_memsz = h->root.u.def.value; else p->p_memsz = DEFAULT_STACK_SIZE; p->p_align = 8; } return TRUE; } #endif /* Set the sizes of the dynamic sections. */ static bfd_boolean sh_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { struct elf_sh_link_hash_table *htab; bfd *dynobj; asection *s; bfd_boolean relocs; bfd *ibfd; htab = sh_elf_hash_table (info); if (htab == NULL) return FALSE; dynobj = htab->root.dynobj; BFD_ASSERT (dynobj != NULL); if (htab->root.dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; union gotref *local_funcdesc, *end_local_funcdesc; char *local_got_type; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; if (! is_sh_elf (ibfd)) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct elf_sh_dyn_relocs *p; for (p = ((struct elf_sh_dyn_relocs *) elf_section_data (s)->local_dynrel); p != NULL; p = p->next) { if (! bfd_is_abs_section (p->sec) && bfd_is_abs_section (p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (htab->vxworks_p && strcmp (p->sec->output_section->name, ".tls_vars") == 0) { /* Relocations in vxworks .tls_vars sections are handled specially by the loader. */ } else if (p->count != 0) { srel = elf_section_data (p->sec)->sreloc; srel->size += p->count * sizeof (Elf32_External_Rela); if ((p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; /* If we need relocations, we do not need fixups. */ if (htab->fdpic_p && !info->shared) htab->srofixup->size -= 4 * (p->count - p->pc_count); } } } symtab_hdr = &elf_symtab_hdr (ibfd); locsymcount = symtab_hdr->sh_info; #ifdef INCLUDE_SHMEDIA /* Count datalabel local GOT. */ locsymcount *= 2; #endif s = htab->sgot; srel = htab->srelgot; local_got = elf_local_got_refcounts (ibfd); if (local_got) { end_local_got = local_got + locsymcount; local_got_type = sh_elf_local_got_type (ibfd); local_funcdesc = sh_elf_local_funcdesc (ibfd); for (; local_got < end_local_got; ++local_got) { if (*local_got > 0) { *local_got = s->size; s->size += 4; if (*local_got_type == GOT_TLS_GD) s->size += 4; if (info->shared) srel->size += sizeof (Elf32_External_Rela); else htab->srofixup->size += 4; if (*local_got_type == GOT_FUNCDESC) { if (local_funcdesc == NULL) { bfd_size_type size; size = locsymcount * sizeof (union gotref); local_funcdesc = (union gotref *) bfd_zalloc (ibfd, size); if (local_funcdesc == NULL) return FALSE; sh_elf_local_funcdesc (ibfd) = local_funcdesc; local_funcdesc += (local_got - elf_local_got_refcounts (ibfd)); } local_funcdesc->refcount++; ++local_funcdesc; } } else *local_got = (bfd_vma) -1; ++local_got_type; } } local_funcdesc = sh_elf_local_funcdesc (ibfd); if (local_funcdesc) { end_local_funcdesc = local_funcdesc + locsymcount; for (; local_funcdesc < end_local_funcdesc; ++local_funcdesc) { if (local_funcdesc->refcount > 0) { local_funcdesc->offset = htab->sfuncdesc->size; htab->sfuncdesc->size += 8; if (!info->shared) htab->srofixup->size += 8; else htab->srelfuncdesc->size += sizeof (Elf32_External_Rela); } else local_funcdesc->offset = MINUS_ONE; } } } if (htab->tls_ldm_got.refcount > 0) { /* Allocate 2 got entries and 1 dynamic reloc for R_SH_TLS_LD_32 relocs. */ htab->tls_ldm_got.offset = htab->sgot->size; htab->sgot->size += 8; htab->srelgot->size += sizeof (Elf32_External_Rela); } else htab->tls_ldm_got.offset = -1; /* Only the reserved entries should be present. For FDPIC, they go at the end of .got.plt. */ if (htab->fdpic_p) { BFD_ASSERT (htab->sgotplt && htab->sgotplt->size == 12); htab->sgotplt->size = 0; } /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); /* Move the reserved entries and the _GLOBAL_OFFSET_TABLE_ symbol to the end of the FDPIC .got.plt. */ if (htab->fdpic_p) { htab->root.hgot->root.u.def.value = htab->sgotplt->size; htab->sgotplt->size += 12; } /* At the very end of the .rofixup section is a pointer to the GOT. */ if (htab->fdpic_p && htab->srofixup != NULL) htab->srofixup->size += 4; /* We now have determined the sizes of the various dynamic sections. Allocate memory for them. */ relocs = FALSE; for (s = dynobj->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (s == htab->splt || s == htab->sgot || s == htab->sgotplt || s == htab->sfuncdesc || s == htab->srofixup || s == htab->sdynbss) { /* Strip this section if we don't need it; see the comment below. */ } else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela")) { if (s->size != 0 && s != htab->srelplt && s != htab->srelplt2) relocs = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } else { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. We use bfd_zalloc here in case unused entries are not reclaimed before the section's contents are written out. This should not happen, but this way if it does, we get a R_SH_NONE reloc instead of garbage. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return FALSE; } if (htab->root.dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in sh_elf_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (info->executable) { if (! add_dynamic_entry (DT_DEBUG, 0)) return FALSE; } if (htab->splt->size != 0) { if (! add_dynamic_entry (DT_PLTGOT, 0) || ! add_dynamic_entry (DT_PLTRELSZ, 0) || ! add_dynamic_entry (DT_PLTREL, DT_RELA) || ! add_dynamic_entry (DT_JMPREL, 0)) return FALSE; } else if ((elf_elfheader (output_bfd)->e_flags & EF_SH_FDPIC) && htab->sgot->size != 0) { if (! add_dynamic_entry (DT_PLTGOT, 0)) return FALSE; } if (relocs) { if (! add_dynamic_entry (DT_RELA, 0) || ! add_dynamic_entry (DT_RELASZ, 0) || ! add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) return FALSE; /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) == 0) elf_link_hash_traverse (&htab->root, readonly_dynrelocs, info); if ((info->flags & DF_TEXTREL) != 0) { if (! add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } } if (htab->vxworks_p && !elf_vxworks_add_dynamic_entries (output_bfd, info)) return FALSE; } #undef add_dynamic_entry return TRUE; } /* Add a dynamic relocation to the SRELOC section. */ inline static bfd_vma sh_elf_add_dyn_reloc (bfd *output_bfd, asection *sreloc, bfd_vma offset, int reloc_type, long dynindx, bfd_vma addend) { Elf_Internal_Rela outrel; bfd_vma reloc_offset; outrel.r_offset = offset; outrel.r_info = ELF32_R_INFO (dynindx, reloc_type); outrel.r_addend = addend; reloc_offset = sreloc->reloc_count * sizeof (Elf32_External_Rela); BFD_ASSERT (reloc_offset < sreloc->size); bfd_elf32_swap_reloca_out (output_bfd, &outrel, sreloc->contents + reloc_offset); sreloc->reloc_count++; return reloc_offset; } /* Add an FDPIC read-only fixup. */ inline static void sh_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset) { bfd_vma fixup_offset; fixup_offset = srofixup->reloc_count++ * 4; BFD_ASSERT (fixup_offset < srofixup->size); bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset); } /* Return the offset of the generated .got section from the _GLOBAL_OFFSET_TABLE_ symbol. */ static bfd_signed_vma sh_elf_got_offset (struct elf_sh_link_hash_table *htab) { return (htab->sgot->output_offset - htab->sgotplt->output_offset - htab->root.hgot->root.u.def.value); } /* Find the segment number in which OSEC, and output section, is located. */ static unsigned sh_elf_osec_to_segment (bfd *output_bfd, asection *osec) { Elf_Internal_Phdr *p = NULL; if (output_bfd->xvec->flavour == bfd_target_elf_flavour) p = _bfd_elf_find_segment_containing_section (output_bfd, osec); /* FIXME: Nothing ever says what this index is relative to. The kernel supplies data in terms of the number of load segments but this is a phdr index and the first phdr may not be a load segment. */ return (p != NULL) ? p - elf_tdata (output_bfd)->phdr : -1; } static bfd_boolean sh_elf_osec_readonly_p (bfd *output_bfd, asection *osec) { unsigned seg = sh_elf_osec_to_segment (output_bfd, osec); return (seg != (unsigned) -1 && ! (elf_tdata (output_bfd)->phdr[seg].p_flags & PF_W)); } /* Generate the initial contents of a local function descriptor, along with any relocations or fixups required. */ static bfd_boolean sh_elf_initialize_funcdesc (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, bfd_vma offset, asection *section, bfd_vma value) { struct elf_sh_link_hash_table *htab; int dynindx; bfd_vma addr, seg; htab = sh_elf_hash_table (info); /* FIXME: The ABI says that the offset to the function goes in the descriptor, along with the segment index. We're RELA, so it could go in the reloc instead... */ if (h != NULL && SYMBOL_CALLS_LOCAL (info, h)) { section = h->root.u.def.section; value = h->root.u.def.value; } if (h == NULL || SYMBOL_CALLS_LOCAL (info, h)) { dynindx = elf_section_data (section->output_section)->dynindx; addr = value + section->output_offset; seg = sh_elf_osec_to_segment (output_bfd, section->output_section); } else { BFD_ASSERT (h->dynindx != -1); dynindx = h->dynindx; addr = seg = 0; } if (!info->shared && SYMBOL_CALLS_LOCAL (info, h)) { if (h == NULL || h->root.type != bfd_link_hash_undefweak) { sh_elf_add_rofixup (output_bfd, htab->srofixup, offset + htab->sfuncdesc->output_section->vma + htab->sfuncdesc->output_offset); sh_elf_add_rofixup (output_bfd, htab->srofixup, offset + 4 + htab->sfuncdesc->output_section->vma + htab->sfuncdesc->output_offset); } /* There are no dynamic relocations so fill in the final address and gp value (barring fixups). */ addr += section->output_section->vma; seg = htab->root.hgot->root.u.def.value + htab->root.hgot->root.u.def.section->output_section->vma + htab->root.hgot->root.u.def.section->output_offset; } else sh_elf_add_dyn_reloc (output_bfd, htab->srelfuncdesc, offset + htab->sfuncdesc->output_section->vma + htab->sfuncdesc->output_offset, R_SH_FUNCDESC_VALUE, dynindx, 0); bfd_put_32 (output_bfd, addr, htab->sfuncdesc->contents + offset); bfd_put_32 (output_bfd, seg, htab->sfuncdesc->contents + offset + 4); return TRUE; } /* Install a 20-bit movi20 field starting at ADDR, which occurs in OUTPUT_BFD. VALUE is the field's value. Return bfd_reloc_ok if successful or an error otherwise. */ static bfd_reloc_status_type install_movi20_field (bfd *output_bfd, unsigned long relocation, bfd *input_bfd, asection *input_section, bfd_byte *contents, bfd_vma offset) { unsigned long cur_val; bfd_byte *addr; bfd_reloc_status_type r; if (offset > bfd_get_section_limit (input_bfd, input_section)) return bfd_reloc_outofrange; r = bfd_check_overflow (complain_overflow_signed, 20, 0, bfd_arch_bits_per_address (input_bfd), relocation); if (r != bfd_reloc_ok) return r; addr = contents + offset; cur_val = bfd_get_16 (output_bfd, addr); bfd_put_16 (output_bfd, cur_val | ((relocation & 0xf0000) >> 12), addr); bfd_put_16 (output_bfd, relocation & 0xffff, addr + 2); return bfd_reloc_ok; } /* Relocate an SH ELF section. */ static bfd_boolean sh_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { struct elf_sh_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; Elf_Internal_Rela *rel, *relend; bfd *dynobj = NULL; bfd_vma *local_got_offsets; asection *sgot = NULL; asection *sgotplt = NULL; asection *splt = NULL; asection *sreloc = NULL; asection *srelgot = NULL; bfd_boolean is_vxworks_tls; unsigned isec_segment, got_segment, plt_segment, check_segment[2]; bfd_boolean fdpic_p = FALSE; BFD_ASSERT (is_sh_elf (input_bfd)); htab = sh_elf_hash_table (info); if (htab != NULL) { dynobj = htab->root.dynobj; sgot = htab->sgot; sgotplt = htab->sgotplt; splt = htab->splt; fdpic_p = htab->fdpic_p; } symtab_hdr = &elf_symtab_hdr (input_bfd); sym_hashes = elf_sym_hashes (input_bfd); local_got_offsets = elf_local_got_offsets (input_bfd); isec_segment = sh_elf_osec_to_segment (output_bfd, input_section->output_section); if (fdpic_p && sgot) got_segment = sh_elf_osec_to_segment (output_bfd, sgot->output_section); else got_segment = -1; if (fdpic_p && splt) plt_segment = sh_elf_osec_to_segment (output_bfd, splt->output_section); else plt_segment = -1; /* We have to handle relocations in vxworks .tls_vars sections specially, because the dynamic loader is 'weird'. */ is_vxworks_tls = (htab && htab->vxworks_p && info->shared && !strcmp (input_section->output_section->name, ".tls_vars")); rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; reloc_howto_type *howto; unsigned long r_symndx; Elf_Internal_Sym *sym; asection *sec; struct elf_link_hash_entry *h; bfd_vma relocation; bfd_vma addend = (bfd_vma) 0; bfd_reloc_status_type r; int seen_stt_datalabel = 0; bfd_vma off; int got_type; const char *symname = NULL; r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); /* Many of the relocs are only used for relaxing, and are handled entirely by the relaxation code. */ if (r_type >= (int) R_SH_GNU_VTINHERIT && r_type <= (int) R_SH_LABEL) continue; if (r_type == (int) R_SH_NONE) continue; if (r_type < 0 || r_type >= R_SH_max || (r_type >= (int) R_SH_FIRST_INVALID_RELOC && r_type <= (int) R_SH_LAST_INVALID_RELOC) || (r_type >= (int) R_SH_FIRST_INVALID_RELOC_2 && r_type <= (int) R_SH_LAST_INVALID_RELOC_2) || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_3 && r_type <= (int) R_SH_LAST_INVALID_RELOC_3) || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_4 && r_type <= (int) R_SH_LAST_INVALID_RELOC_4) || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_5 && r_type <= (int) R_SH_LAST_INVALID_RELOC_5) || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_6 && r_type <= (int) R_SH_LAST_INVALID_RELOC_6)) { bfd_set_error (bfd_error_bad_value); return FALSE; } howto = get_howto_table (output_bfd) + r_type; /* For relocs that aren't partial_inplace, we get the addend from the relocation. */ if (! howto->partial_inplace) addend = rel->r_addend; h = NULL; sym = NULL; sec = NULL; check_segment[0] = -1; check_segment[1] = -1; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; symname = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (symname == NULL || *symname == '\0') symname = bfd_section_name (input_bfd, sec); relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); /* A local symbol never has STO_SH5_ISA32, so we don't need datalabel processing here. Make sure this does not change without notice. */ if ((sym->st_other & STO_SH5_ISA32) != 0) ((*info->callbacks->reloc_dangerous) (info, _("Unexpected STO_SH5_ISA32 on local symbol is not handled"), input_bfd, input_section, rel->r_offset)); if (sec != NULL && elf_discarded_section (sec)) /* Handled below. */ ; else if (info->relocatable) { /* This is a relocatable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) { if (! howto->partial_inplace) { /* For relocations with the addend in the relocation, we need just to update the addend. All real relocs are of type partial_inplace; this code is mostly for completeness. */ rel->r_addend += sec->output_offset; continue; } /* Relocs of type partial_inplace need to pick up the contents in the contents and add the offset resulting from the changed location of the section symbol. Using _bfd_final_link_relocate (e.g. goto final_link_relocate) here would be wrong, because relocations marked pc_relative would get the current location subtracted, and we must only do that at the final link. */ r = _bfd_relocate_contents (howto, input_bfd, sec->output_offset + sym->st_value, contents + rel->r_offset); goto relocation_done; } continue; } else if (! howto->partial_inplace) { relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); addend = rel->r_addend; } else if ((sec->flags & SEC_MERGE) && ELF_ST_TYPE (sym->st_info) == STT_SECTION) { asection *msec; if (howto->rightshift || howto->src_mask != 0xffffffff) { (*_bfd_error_handler) (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"), input_bfd, input_section, (long) rel->r_offset, howto->name); return FALSE; } addend = bfd_get_32 (input_bfd, contents + rel->r_offset); msec = sec; addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend) - relocation; addend += msec->output_section->vma + msec->output_offset; bfd_put_32 (input_bfd, addend, contents + rel->r_offset); addend = 0; } } else { /* FIXME: Ought to make use of the RELOC_FOR_GLOBAL_SYMBOL macro. */ relocation = 0; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; symname = h->root.root.string; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) { #ifdef INCLUDE_SHMEDIA /* If the reference passes a symbol marked with STT_DATALABEL, then any STO_SH5_ISA32 on the final value doesn't count. */ seen_stt_datalabel |= h->type == STT_DATALABEL; #endif h = (struct elf_link_hash_entry *) h->root.u.i.link; } if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { bfd_boolean dyn; dyn = htab ? htab->root.dynamic_sections_created : FALSE; sec = h->root.u.def.section; /* In these cases, we don't need the relocation value. We check specially because in some obscure cases sec->output_section will be NULL. */ if (r_type == R_SH_GOTPC || r_type == R_SH_GOTPC_LOW16 || r_type == R_SH_GOTPC_MEDLOW16 || r_type == R_SH_GOTPC_MEDHI16 || r_type == R_SH_GOTPC_HI16 || ((r_type == R_SH_PLT32 || r_type == R_SH_PLT_LOW16 || r_type == R_SH_PLT_MEDLOW16 || r_type == R_SH_PLT_MEDHI16 || r_type == R_SH_PLT_HI16) && h->plt.offset != (bfd_vma) -1) || ((r_type == R_SH_GOT32 || r_type == R_SH_GOT20 || r_type == R_SH_GOTFUNCDESC || r_type == R_SH_GOTFUNCDESC20 || r_type == R_SH_GOTOFFFUNCDESC || r_type == R_SH_GOTOFFFUNCDESC20 || r_type == R_SH_FUNCDESC || r_type == R_SH_GOT_LOW16 || r_type == R_SH_GOT_MEDLOW16 || r_type == R_SH_GOT_MEDHI16 || r_type == R_SH_GOT_HI16) && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) && (! info->shared || (! info->symbolic && h->dynindx != -1) || !h->def_regular)) /* The cases above are those in which relocation is overwritten in the switch block below. The cases below are those in which we must defer relocation to run-time, because we can't resolve absolute addresses when creating a shared library. */ || (info->shared && ((! info->symbolic && h->dynindx != -1) || !h->def_regular) && ((r_type == R_SH_DIR32 && !h->forced_local) || (r_type == R_SH_REL32 && !SYMBOL_CALLS_LOCAL (info, h))) && ((input_section->flags & SEC_ALLOC) != 0 /* DWARF will emit R_SH_DIR32 relocations in its sections against symbols defined externally in shared libraries. We can't do anything with them here. */ || ((input_section->flags & SEC_DEBUGGING) != 0 && h->def_dynamic))) /* Dynamic relocs are not propagated for SEC_DEBUGGING sections because such sections are not SEC_ALLOC and thus ld.so will not process them. */ || (sec->output_section == NULL && ((input_section->flags & SEC_DEBUGGING) != 0 && h->def_dynamic)) || (sec->output_section == NULL && (sh_elf_hash_entry (h)->got_type == GOT_TLS_IE || sh_elf_hash_entry (h)->got_type == GOT_TLS_GD))) ; else if (sec->output_section != NULL) relocation = ((h->root.u.def.value + sec->output_section->vma + sec->output_offset) /* A STO_SH5_ISA32 causes a "bitor 1" to the symbol value, unless we've seen STT_DATALABEL on the way to it. */ | ((h->other & STO_SH5_ISA32) != 0 && ! seen_stt_datalabel)); else if (!info->relocatable && (_bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset) != (bfd_vma) -1)) { (*_bfd_error_handler) (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), input_bfd, input_section, (long) rel->r_offset, howto->name, h->root.root.string); return FALSE; } } else if (h->root.type == bfd_link_hash_undefweak) ; else if (info->unresolved_syms_in_objects == RM_IGNORE && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) ; else if (!info->relocatable) { if (! info->callbacks->undefined_symbol (info, h->root.root.string, input_bfd, input_section, rel->r_offset, (info->unresolved_syms_in_objects == RM_GENERATE_ERROR || ELF_ST_VISIBILITY (h->other)))) return FALSE; } } if (sec != NULL && elf_discarded_section (sec)) RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, rel, relend, howto, contents); if (info->relocatable) continue; /* Check for inter-segment relocations in FDPIC files. Most relocations connect the relocation site to the location of the target symbol, but there are some exceptions below. */ check_segment[0] = isec_segment; if (sec != NULL) check_segment[1] = sh_elf_osec_to_segment (output_bfd, sec->output_section); else check_segment[1] = -1; switch ((int) r_type) { final_link_relocate: /* COFF relocs don't use the addend. The addend is used for R_SH_DIR32 to be compatible with other compilers. */ r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, addend); break; case R_SH_IND12W: goto final_link_relocate; case R_SH_DIR8WPN: case R_SH_DIR8WPZ: case R_SH_DIR8WPL: /* If the reloc is against the start of this section, then the assembler has already taken care of it and the reloc is here only to assist in relaxing. If the reloc is not against the start of this section, then it's against an external symbol and we must deal with it ourselves. */ if (input_section->output_section->vma + input_section->output_offset != relocation) { int disp = (relocation - input_section->output_section->vma - input_section->output_offset - rel->r_offset); int mask = 0; switch (r_type) { case R_SH_DIR8WPN: case R_SH_DIR8WPZ: mask = 1; break; case R_SH_DIR8WPL: mask = 3; break; default: mask = 0; break; } if (disp & mask) { ((*_bfd_error_handler) (_("%B: 0x%lx: fatal: unaligned branch target for relax-support relocation"), input_section->owner, (unsigned long) rel->r_offset)); bfd_set_error (bfd_error_bad_value); return FALSE; } relocation -= 4; goto final_link_relocate; } r = bfd_reloc_ok; break; default: #ifdef INCLUDE_SHMEDIA if (shmedia_prepare_reloc (info, input_bfd, input_section, contents, rel, &relocation)) goto final_link_relocate; #endif bfd_set_error (bfd_error_bad_value); return FALSE; case R_SH_DIR16: case R_SH_DIR8: case R_SH_DIR8U: case R_SH_DIR8S: case R_SH_DIR4U: goto final_link_relocate; case R_SH_DIR8UL: case R_SH_DIR4UL: if (relocation & 3) { ((*_bfd_error_handler) (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"), input_section->owner, (unsigned long) rel->r_offset, howto->name, (unsigned long) relocation)); bfd_set_error (bfd_error_bad_value); return FALSE; } goto final_link_relocate; case R_SH_DIR8UW: case R_SH_DIR8SW: case R_SH_DIR4UW: if (relocation & 1) { ((*_bfd_error_handler) (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"), input_section->owner, (unsigned long) rel->r_offset, howto->name, (unsigned long) relocation)); bfd_set_error (bfd_error_bad_value); return FALSE; } goto final_link_relocate; case R_SH_PSHA: if ((signed int)relocation < -32 || (signed int)relocation > 32) { ((*_bfd_error_handler) (_("%B: 0x%lx: fatal: R_SH_PSHA relocation %d not in range -32..32"), input_section->owner, (unsigned long) rel->r_offset, (unsigned long) relocation)); bfd_set_error (bfd_error_bad_value); return FALSE; } goto final_link_relocate; case R_SH_PSHL: if ((signed int)relocation < -16 || (signed int)relocation > 16) { ((*_bfd_error_handler) (_("%B: 0x%lx: fatal: R_SH_PSHL relocation %d not in range -32..32"), input_section->owner, (unsigned long) rel->r_offset, (unsigned long) relocation)); bfd_set_error (bfd_error_bad_value); return FALSE; } goto final_link_relocate; case R_SH_DIR32: case R_SH_REL32: #ifdef INCLUDE_SHMEDIA case R_SH_IMM_LOW16_PCREL: case R_SH_IMM_MEDLOW16_PCREL: case R_SH_IMM_MEDHI16_PCREL: case R_SH_IMM_HI16_PCREL: #endif if (info->shared && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && r_symndx != STN_UNDEF && (input_section->flags & SEC_ALLOC) != 0 && !is_vxworks_tls && (r_type == R_SH_DIR32 || !SYMBOL_CALLS_LOCAL (info, h))) { Elf_Internal_Rela outrel; bfd_byte *loc; bfd_boolean skip, relocate; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ if (sreloc == NULL) { sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section, /*rela?*/ TRUE); if (sreloc == NULL) return FALSE; } skip = FALSE; relocate = FALSE; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1) skip = TRUE; else if (outrel.r_offset == (bfd_vma) -2) skip = TRUE, relocate = TRUE; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else if (r_type == R_SH_REL32) { BFD_ASSERT (h != NULL && h->dynindx != -1); outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_REL32); outrel.r_addend = (howto->partial_inplace ? bfd_get_32 (input_bfd, contents + rel->r_offset) : addend); } #ifdef INCLUDE_SHMEDIA else if (r_type == R_SH_IMM_LOW16_PCREL || r_type == R_SH_IMM_MEDLOW16_PCREL || r_type == R_SH_IMM_MEDHI16_PCREL || r_type == R_SH_IMM_HI16_PCREL) { BFD_ASSERT (h != NULL && h->dynindx != -1); outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); outrel.r_addend = addend; } #endif else if (fdpic_p && (h == NULL || ((info->symbolic || h->dynindx == -1) && h->def_regular))) { int dynindx; BFD_ASSERT (sec != NULL); BFD_ASSERT (sec->output_section != NULL); dynindx = elf_section_data (sec->output_section)->dynindx; outrel.r_info = ELF32_R_INFO (dynindx, R_SH_DIR32); outrel.r_addend = relocation; outrel.r_addend += (howto->partial_inplace ? bfd_get_32 (input_bfd, contents + rel->r_offset) : addend); outrel.r_addend -= sec->output_section->vma; } else { /* h->dynindx may be -1 if this symbol was marked to become local. */ if (h == NULL || ((info->symbolic || h->dynindx == -1) && h->def_regular)) { relocate = howto->partial_inplace; outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE); } else { BFD_ASSERT (h->dynindx != -1); outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_DIR32); } outrel.r_addend = relocation; outrel.r_addend += (howto->partial_inplace ? bfd_get_32 (input_bfd, contents + rel->r_offset) : addend); } loc = sreloc->contents; loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); check_segment[0] = check_segment[1] = -1; /* If this reloc is against an external symbol, we do not want to fiddle with the addend. Otherwise, we need to include the symbol value so that it becomes an addend for the dynamic reloc. */ if (! relocate) continue; } else if (fdpic_p && !info->shared && r_type == R_SH_DIR32 && (input_section->flags & SEC_ALLOC) != 0) { bfd_vma offset; BFD_ASSERT (htab); if (sh_elf_osec_readonly_p (output_bfd, input_section->output_section)) { (*_bfd_error_handler) (_("%B(%A+0x%lx): cannot emit fixup to `%s' in read-only section"), input_bfd, input_section, (long) rel->r_offset, symname); return FALSE; } offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (offset != (bfd_vma)-1) sh_elf_add_rofixup (output_bfd, htab->srofixup, input_section->output_section->vma + input_section->output_offset + rel->r_offset); check_segment[0] = check_segment[1] = -1; } goto final_link_relocate; case R_SH_GOTPLT32: #ifdef INCLUDE_SHMEDIA case R_SH_GOTPLT_LOW16: case R_SH_GOTPLT_MEDLOW16: case R_SH_GOTPLT_MEDHI16: case R_SH_GOTPLT_HI16: case R_SH_GOTPLT10BY4: case R_SH_GOTPLT10BY8: #endif /* Relocation is to the entry for this symbol in the procedure linkage table. */ if (h == NULL || h->forced_local || ! info->shared || info->symbolic || h->dynindx == -1 || h->plt.offset == (bfd_vma) -1 || h->got.offset != (bfd_vma) -1) goto force_got; /* Relocation is to the entry for this symbol in the global offset table extension for the procedure linkage table. */ BFD_ASSERT (htab); BFD_ASSERT (sgotplt != NULL); relocation = (sgotplt->output_offset + (get_plt_index (htab->plt_info, h->plt.offset) + 3) * 4); #ifdef GOT_BIAS relocation -= GOT_BIAS; #endif goto final_link_relocate; force_got: case R_SH_GOT32: case R_SH_GOT20: #ifdef INCLUDE_SHMEDIA case R_SH_GOT_LOW16: case R_SH_GOT_MEDLOW16: case R_SH_GOT_MEDHI16: case R_SH_GOT_HI16: case R_SH_GOT10BY4: case R_SH_GOT10BY8: #endif /* Relocation is to the entry for this symbol in the global offset table. */ BFD_ASSERT (htab); BFD_ASSERT (sgot != NULL); check_segment[0] = check_segment[1] = -1; if (h != NULL) { bfd_boolean dyn; off = h->got.offset; #ifdef INCLUDE_SHMEDIA if (seen_stt_datalabel) { struct elf_sh_link_hash_entry *hsh; hsh = (struct elf_sh_link_hash_entry *)h; off = hsh->datalabel_got.offset; } #endif BFD_ASSERT (off != (bfd_vma) -1); dyn = htab->root.dynamic_sections_created; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) || (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) || (ELF_ST_VISIBILITY (h->other) && h->root.type == bfd_link_hash_undefweak)) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally, or the symbol was forced to be local because of a version file. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 4, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rela.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); #ifdef INCLUDE_SHMEDIA if (seen_stt_datalabel) { struct elf_sh_link_hash_entry *hsh; hsh = (struct elf_sh_link_hash_entry *)h; hsh->datalabel_got.offset |= 1; } else #endif h->got.offset |= 1; /* If we initialize the GOT entry here with a valid symbol address, also add a fixup. */ if (fdpic_p && !info->shared && sh_elf_hash_entry (h)->got_type == GOT_NORMAL && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) sh_elf_add_rofixup (output_bfd, htab->srofixup, sgot->output_section->vma + sgot->output_offset + off); } } relocation = sh_elf_got_offset (htab) + off; } else { #ifdef INCLUDE_SHMEDIA if (rel->r_addend) { BFD_ASSERT (local_got_offsets != NULL && (local_got_offsets[symtab_hdr->sh_info + r_symndx] != (bfd_vma) -1)); off = local_got_offsets[symtab_hdr->sh_info + r_symndx]; } else { #endif BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) -1); off = local_got_offsets[r_symndx]; #ifdef INCLUDE_SHMEDIA } #endif /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already generated the necessary reloc. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); if (info->shared) { Elf_Internal_Rela outrel; bfd_byte *loc; if (srelgot == NULL) { srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (srelgot != NULL); } outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); if (fdpic_p) { int dynindx = elf_section_data (sec->output_section)->dynindx; outrel.r_info = ELF32_R_INFO (dynindx, R_SH_DIR32); outrel.r_addend = relocation; outrel.r_addend -= sec->output_section->vma; } else { outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE); outrel.r_addend = relocation; } loc = srelgot->contents; loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } else if (fdpic_p && (sh_elf_local_got_type (input_bfd) [r_symndx] == GOT_NORMAL)) sh_elf_add_rofixup (output_bfd, htab->srofixup, sgot->output_section->vma + sgot->output_offset + off); #ifdef INCLUDE_SHMEDIA if (rel->r_addend) local_got_offsets[symtab_hdr->sh_info + r_symndx] |= 1; else #endif local_got_offsets[r_symndx] |= 1; } relocation = sh_elf_got_offset (htab) + off; } #ifdef GOT_BIAS relocation -= GOT_BIAS; #endif if (r_type == R_SH_GOT20) { r = install_movi20_field (output_bfd, relocation + addend, input_bfd, input_section, contents, rel->r_offset); break; } else goto final_link_relocate; case R_SH_GOTOFF: case R_SH_GOTOFF20: #ifdef INCLUDE_SHMEDIA case R_SH_GOTOFF_LOW16: case R_SH_GOTOFF_MEDLOW16: case R_SH_GOTOFF_MEDHI16: case R_SH_GOTOFF_HI16: #endif /* GOTOFF relocations are relative to _GLOBAL_OFFSET_TABLE_, which we place at the start of the .got.plt section. This is the same as the start of the output .got section, unless there are function descriptors in front of it. */ BFD_ASSERT (htab); BFD_ASSERT (sgotplt != NULL); check_segment[0] = got_segment; relocation -= sgotplt->output_section->vma + sgotplt->output_offset + htab->root.hgot->root.u.def.value; #ifdef GOT_BIAS relocation -= GOT_BIAS; #endif addend = rel->r_addend; if (r_type == R_SH_GOTOFF20) { r = install_movi20_field (output_bfd, relocation + addend, input_bfd, input_section, contents, rel->r_offset); break; } else goto final_link_relocate; case R_SH_GOTPC: #ifdef INCLUDE_SHMEDIA case R_SH_GOTPC_LOW16: case R_SH_GOTPC_MEDLOW16: case R_SH_GOTPC_MEDHI16: case R_SH_GOTPC_HI16: #endif /* Use global offset table as symbol value. */ BFD_ASSERT (sgotplt != NULL); relocation = sgotplt->output_section->vma + sgotplt->output_offset; #ifdef GOT_BIAS relocation += GOT_BIAS; #endif addend = rel->r_addend; goto final_link_relocate; case R_SH_PLT32: #ifdef INCLUDE_SHMEDIA case R_SH_PLT_LOW16: case R_SH_PLT_MEDLOW16: case R_SH_PLT_MEDHI16: case R_SH_PLT_HI16: #endif /* Relocation is to the entry for this symbol in the procedure linkage table. */ /* Resolve a PLT reloc against a local symbol directly, without using the procedure linkage table. */ if (h == NULL) goto final_link_relocate; /* We don't want to warn on calls to undefined weak symbols, as calls to them must be protected by non-NULL tests anyway, and unprotected calls would invoke undefined behavior. */ if (h->root.type == bfd_link_hash_undefweak) check_segment[0] = check_segment[1] = -1; if (h->forced_local) goto final_link_relocate; if (h->plt.offset == (bfd_vma) -1) { /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ goto final_link_relocate; } BFD_ASSERT (splt != NULL); check_segment[1] = plt_segment; relocation = (splt->output_section->vma + splt->output_offset + h->plt.offset); #ifdef INCLUDE_SHMEDIA relocation++; #endif addend = rel->r_addend; goto final_link_relocate; /* Relocation is to the canonical function descriptor for this symbol, possibly via the GOT. Initialize the GOT entry and function descriptor if necessary. */ case R_SH_GOTFUNCDESC: case R_SH_GOTFUNCDESC20: case R_SH_FUNCDESC: { int dynindx = -1; asection *reloc_section; bfd_vma reloc_offset; int reloc_type = R_SH_FUNCDESC; BFD_ASSERT (htab); check_segment[0] = check_segment[1] = -1; /* FIXME: See what FRV does for global symbols in the executable, with --export-dynamic. Do they need ld.so to allocate official descriptors? See what this code does. */ relocation = 0; addend = 0; if (r_type == R_SH_FUNCDESC) { reloc_section = input_section; reloc_offset = rel->r_offset; } else { reloc_section = sgot; if (h != NULL) reloc_offset = h->got.offset; else { BFD_ASSERT (local_got_offsets != NULL); reloc_offset = local_got_offsets[r_symndx]; } BFD_ASSERT (reloc_offset != MINUS_ONE); if (reloc_offset & 1) { reloc_offset &= ~1; goto funcdesc_done_got; } } if (h && h->root.type == bfd_link_hash_undefweak && (SYMBOL_CALLS_LOCAL (info, h) || !htab->root.dynamic_sections_created)) /* Undefined weak symbol which will not be dynamically resolved later; leave it at zero. */ goto funcdesc_leave_zero; else if (SYMBOL_CALLS_LOCAL (info, h) && ! SYMBOL_FUNCDESC_LOCAL (info, h)) { /* If the symbol needs a non-local function descriptor but binds locally (i.e., its visibility is protected), emit a dynamic relocation decayed to section+offset. This is an optimization; the dynamic linker would resolve our function descriptor request to our copy of the function anyway. */ dynindx = elf_section_data (h->root.u.def.section ->output_section)->dynindx; relocation += h->root.u.def.section->output_offset + h->root.u.def.value; } else if (! SYMBOL_FUNCDESC_LOCAL (info, h)) { /* If the symbol is dynamic and there will be dynamic symbol resolution because we are or are linked with a shared library, emit a FUNCDESC relocation such that the dynamic linker will allocate the function descriptor. */ BFD_ASSERT (h->dynindx != -1); dynindx = h->dynindx; } else { bfd_vma offset; /* Otherwise, we know we have a private function descriptor, so reference it directly. */ reloc_type = R_SH_DIR32; dynindx = elf_section_data (htab->sfuncdesc ->output_section)->dynindx; if (h) { offset = sh_elf_hash_entry (h)->funcdesc.offset; BFD_ASSERT (offset != MINUS_ONE); if ((offset & 1) == 0) { if (!sh_elf_initialize_funcdesc (output_bfd, info, h, offset, NULL, 0)) return FALSE; sh_elf_hash_entry (h)->funcdesc.offset |= 1; } } else { union gotref *local_funcdesc; local_funcdesc = sh_elf_local_funcdesc (input_bfd); offset = local_funcdesc[r_symndx].offset; BFD_ASSERT (offset != MINUS_ONE); if ((offset & 1) == 0) { if (!sh_elf_initialize_funcdesc (output_bfd, info, NULL, offset, sec, sym->st_value)) return FALSE; local_funcdesc[r_symndx].offset |= 1; } } relocation = htab->sfuncdesc->output_offset + (offset & ~1); } if (!info->shared && SYMBOL_FUNCDESC_LOCAL (info, h)) { bfd_vma offset; if (sh_elf_osec_readonly_p (output_bfd, reloc_section->output_section)) { (*_bfd_error_handler) (_("%B(%A+0x%lx): cannot emit fixup to `%s' in read-only section"), input_bfd, input_section, (long) rel->r_offset, symname); return FALSE; } offset = _bfd_elf_section_offset (output_bfd, info, reloc_section, reloc_offset); if (offset != (bfd_vma)-1) sh_elf_add_rofixup (output_bfd, htab->srofixup, offset + reloc_section->output_section->vma + reloc_section->output_offset); } else if ((reloc_section->output_section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) { bfd_vma offset; if (sh_elf_osec_readonly_p (output_bfd, reloc_section->output_section)) { info->callbacks->warning (info, _("cannot emit dynamic relocations in read-only section"), symname, input_bfd, reloc_section, reloc_offset); return FALSE; } if (srelgot == NULL) { srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (srelgot != NULL); } offset = _bfd_elf_section_offset (output_bfd, info, reloc_section, reloc_offset); if (offset != (bfd_vma)-1) sh_elf_add_dyn_reloc (output_bfd, srelgot, offset + reloc_section->output_section->vma + reloc_section->output_offset, reloc_type, dynindx, relocation); if (r_type == R_SH_FUNCDESC) { r = bfd_reloc_ok; break; } else { relocation = 0; goto funcdesc_leave_zero; } } if (SYMBOL_FUNCDESC_LOCAL (info, h)) relocation += htab->sfuncdesc->output_section->vma; funcdesc_leave_zero: if (r_type != R_SH_FUNCDESC) { bfd_put_32 (output_bfd, relocation, reloc_section->contents + reloc_offset); if (h != NULL) h->got.offset |= 1; else local_got_offsets[r_symndx] |= 1; funcdesc_done_got: relocation = sh_elf_got_offset (htab) + reloc_offset; #ifdef GOT_BIAS relocation -= GOT_BIAS; #endif } if (r_type == R_SH_GOTFUNCDESC20) { r = install_movi20_field (output_bfd, relocation + addend, input_bfd, input_section, contents, rel->r_offset); break; } else goto final_link_relocate; } break; case R_SH_GOTOFFFUNCDESC: case R_SH_GOTOFFFUNCDESC20: /* FIXME: See R_SH_FUNCDESC comment about global symbols in the executable and --export-dynamic. If such symbols get ld.so-allocated descriptors we can not use R_SH_GOTOFFFUNCDESC for them. */ BFD_ASSERT (htab); check_segment[0] = check_segment[1] = -1; relocation = 0; addend = rel->r_addend; if (h && (h->root.type == bfd_link_hash_undefweak || !SYMBOL_FUNCDESC_LOCAL (info, h))) { _bfd_error_handler (_("%B(%A+0x%lx): %s relocation against external symbol \"%s\""), input_bfd, input_section, (long) rel->r_offset, howto->name, h->root.root.string); return FALSE; } else { bfd_vma offset; /* Otherwise, we know we have a private function descriptor, so reference it directly. */ if (h) { offset = sh_elf_hash_entry (h)->funcdesc.offset; BFD_ASSERT (offset != MINUS_ONE); if ((offset & 1) == 0) { if (!sh_elf_initialize_funcdesc (output_bfd, info, h, offset, NULL, 0)) return FALSE; sh_elf_hash_entry (h)->funcdesc.offset |= 1; } } else { union gotref *local_funcdesc; local_funcdesc = sh_elf_local_funcdesc (input_bfd); offset = local_funcdesc[r_symndx].offset; BFD_ASSERT (offset != MINUS_ONE); if ((offset & 1) == 0) { if (!sh_elf_initialize_funcdesc (output_bfd, info, NULL, offset, sec, sym->st_value)) return FALSE; local_funcdesc[r_symndx].offset |= 1; } } relocation = htab->sfuncdesc->output_offset + (offset & ~1); } relocation -= (htab->root.hgot->root.u.def.value + sgotplt->output_offset); #ifdef GOT_BIAS relocation -= GOT_BIAS; #endif if (r_type == R_SH_GOTOFFFUNCDESC20) { r = install_movi20_field (output_bfd, relocation + addend, input_bfd, input_section, contents, rel->r_offset); break; } else goto final_link_relocate; case R_SH_LOOP_START: { static bfd_vma start, end; start = (relocation + rel->r_addend - (sec->output_section->vma + sec->output_offset)); r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents, rel->r_offset, sec, start, end); break; case R_SH_LOOP_END: end = (relocation + rel->r_addend - (sec->output_section->vma + sec->output_offset)); r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents, rel->r_offset, sec, start, end); break; } case R_SH_TLS_GD_32: case R_SH_TLS_IE_32: BFD_ASSERT (htab); check_segment[0] = check_segment[1] = -1; r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL); got_type = GOT_UNKNOWN; if (h == NULL && local_got_offsets) got_type = sh_elf_local_got_type (input_bfd) [r_symndx]; else if (h != NULL) { got_type = sh_elf_hash_entry (h)->got_type; if (! info->shared && (h->dynindx == -1 || h->def_regular)) r_type = R_SH_TLS_LE_32; } if (r_type == R_SH_TLS_GD_32 && got_type == GOT_TLS_IE) r_type = R_SH_TLS_IE_32; if (r_type == R_SH_TLS_LE_32) { bfd_vma offset; unsigned short insn; if (ELF32_R_TYPE (rel->r_info) == R_SH_TLS_GD_32) { /* GD->LE transition: mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1; jsr @r1; add r12,r4; bra 3f; nop; .align 2; 1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3: We change it into: mov.l 1f,r4; stc gbr,r0; add r4,r0; nop; nop; nop; ... 1: .long x@TPOFF; 2: .long __tls_get_addr@PLT; 3:. */ offset = rel->r_offset; BFD_ASSERT (offset >= 16); /* Size of GD instructions is 16 or 18. */ offset -= 16; insn = bfd_get_16 (input_bfd, contents + offset + 0); if ((insn & 0xff00) == 0xc700) { BFD_ASSERT (offset >= 2); offset -= 2; insn = bfd_get_16 (input_bfd, contents + offset + 0); } BFD_ASSERT ((insn & 0xff00) == 0xd400); insn = bfd_get_16 (input_bfd, contents + offset + 2); BFD_ASSERT ((insn & 0xff00) == 0xc700); insn = bfd_get_16 (input_bfd, contents + offset + 4); BFD_ASSERT ((insn & 0xff00) == 0xd100); insn = bfd_get_16 (input_bfd, contents + offset + 6); BFD_ASSERT (insn == 0x310c); insn = bfd_get_16 (input_bfd, contents + offset + 8); BFD_ASSERT (insn == 0x410b); insn = bfd_get_16 (input_bfd, contents + offset + 10); BFD_ASSERT (insn == 0x34cc); bfd_put_16 (output_bfd, 0x0012, contents + offset + 2); bfd_put_16 (output_bfd, 0x304c, contents + offset + 4); bfd_put_16 (output_bfd, 0x0009, contents + offset + 6); bfd_put_16 (output_bfd, 0x0009, contents + offset + 8); bfd_put_16 (output_bfd, 0x0009, contents + offset + 10); } else { int target; /* IE->LE transition: mov.l 1f,r0; stc gbr,rN; mov.l @(r0,r12),rM; bra 2f; add ...; .align 2; 1: x@GOTTPOFF; 2: We change it into: mov.l .Ln,rM; stc gbr,rN; nop; ...; 1: x@TPOFF; 2:. */ offset = rel->r_offset; BFD_ASSERT (offset >= 16); /* Size of IE instructions is 10 or 12. */ offset -= 10; insn = bfd_get_16 (input_bfd, contents + offset + 0); if ((insn & 0xf0ff) == 0x0012) { BFD_ASSERT (offset >= 2); offset -= 2; insn = bfd_get_16 (input_bfd, contents + offset + 0); } BFD_ASSERT ((insn & 0xff00) == 0xd000); target = insn & 0x00ff; insn = bfd_get_16 (input_bfd, contents + offset + 2); BFD_ASSERT ((insn & 0xf0ff) == 0x0012); insn = bfd_get_16 (input_bfd, contents + offset + 4); BFD_ASSERT ((insn & 0xf0ff) == 0x00ce); insn = 0xd000 | (insn & 0x0f00) | target; bfd_put_16 (output_bfd, insn, contents + offset + 0); bfd_put_16 (output_bfd, 0x0009, contents + offset + 4); } bfd_put_32 (output_bfd, tpoff (info, relocation), contents + rel->r_offset); continue; } if (sgot == NULL || sgotplt == NULL) abort (); if (h != NULL) off = h->got.offset; else { if (local_got_offsets == NULL) abort (); off = local_got_offsets[r_symndx]; } /* Relocate R_SH_TLS_IE_32 directly when statically linking. */ if (r_type == R_SH_TLS_IE_32 && ! htab->root.dynamic_sections_created) { off &= ~1; bfd_put_32 (output_bfd, tpoff (info, relocation), sgot->contents + off); bfd_put_32 (output_bfd, sh_elf_got_offset (htab) + off, contents + rel->r_offset); continue; } if ((off & 1) != 0) off &= ~1; else { Elf_Internal_Rela outrel; bfd_byte *loc; int dr_type, indx; if (srelgot == NULL) { srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (srelgot != NULL); } outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); if (h == NULL || h->dynindx == -1) indx = 0; else indx = h->dynindx; dr_type = (r_type == R_SH_TLS_GD_32 ? R_SH_TLS_DTPMOD32 : R_SH_TLS_TPOFF32); if (dr_type == R_SH_TLS_TPOFF32 && indx == 0) outrel.r_addend = relocation - dtpoff_base (info); else outrel.r_addend = 0; outrel.r_info = ELF32_R_INFO (indx, dr_type); loc = srelgot->contents; loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); if (r_type == R_SH_TLS_GD_32) { if (indx == 0) { bfd_put_32 (output_bfd, relocation - dtpoff_base (info), sgot->contents + off + 4); } else { outrel.r_info = ELF32_R_INFO (indx, R_SH_TLS_DTPOFF32); outrel.r_offset += 4; outrel.r_addend = 0; srelgot->reloc_count++; loc += sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } } if (h != NULL) h->got.offset |= 1; else local_got_offsets[r_symndx] |= 1; } if (off >= (bfd_vma) -2) abort (); if (r_type == (int) ELF32_R_TYPE (rel->r_info)) relocation = sh_elf_got_offset (htab) + off; else { bfd_vma offset; unsigned short insn; /* GD->IE transition: mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1; jsr @r1; add r12,r4; bra 3f; nop; .align 2; 1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3: We change it into: mov.l 1f,r0; stc gbr,r4; mov.l @(r0,r12),r0; add r4,r0; nop; nop; bra 3f; nop; .align 2; 1: .long x@TPOFF; 2:...; 3:. */ offset = rel->r_offset; BFD_ASSERT (offset >= 16); /* Size of GD instructions is 16 or 18. */ offset -= 16; insn = bfd_get_16 (input_bfd, contents + offset + 0); if ((insn & 0xff00) == 0xc700) { BFD_ASSERT (offset >= 2); offset -= 2; insn = bfd_get_16 (input_bfd, contents + offset + 0); } BFD_ASSERT ((insn & 0xff00) == 0xd400); /* Replace mov.l 1f,R4 with mov.l 1f,r0. */ bfd_put_16 (output_bfd, insn & 0xf0ff, contents + offset); insn = bfd_get_16 (input_bfd, contents + offset + 2); BFD_ASSERT ((insn & 0xff00) == 0xc700); insn = bfd_get_16 (input_bfd, contents + offset + 4); BFD_ASSERT ((insn & 0xff00) == 0xd100); insn = bfd_get_16 (input_bfd, contents + offset + 6); BFD_ASSERT (insn == 0x310c); insn = bfd_get_16 (input_bfd, contents + offset + 8); BFD_ASSERT (insn == 0x410b); insn = bfd_get_16 (input_bfd, contents + offset + 10); BFD_ASSERT (insn == 0x34cc); bfd_put_16 (output_bfd, 0x0412, contents + offset + 2); bfd_put_16 (output_bfd, 0x00ce, contents + offset + 4); bfd_put_16 (output_bfd, 0x304c, contents + offset + 6); bfd_put_16 (output_bfd, 0x0009, contents + offset + 8); bfd_put_16 (output_bfd, 0x0009, contents + offset + 10); bfd_put_32 (output_bfd, sh_elf_got_offset (htab) + off, contents + rel->r_offset); continue; } addend = rel->r_addend; goto final_link_relocate; case R_SH_TLS_LD_32: BFD_ASSERT (htab); check_segment[0] = check_segment[1] = -1; if (! info->shared) { bfd_vma offset; unsigned short insn; /* LD->LE transition: mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1; jsr @r1; add r12,r4; bra 3f; nop; .align 2; 1: .long x$TLSLD; 2: .long __tls_get_addr@PLT; 3: We change it into: stc gbr,r0; nop; nop; nop; nop; nop; bra 3f; ...; 3:. */ offset = rel->r_offset; BFD_ASSERT (offset >= 16); /* Size of LD instructions is 16 or 18. */ offset -= 16; insn = bfd_get_16 (input_bfd, contents + offset + 0); if ((insn & 0xff00) == 0xc700) { BFD_ASSERT (offset >= 2); offset -= 2; insn = bfd_get_16 (input_bfd, contents + offset + 0); } BFD_ASSERT ((insn & 0xff00) == 0xd400); insn = bfd_get_16 (input_bfd, contents + offset + 2); BFD_ASSERT ((insn & 0xff00) == 0xc700); insn = bfd_get_16 (input_bfd, contents + offset + 4); BFD_ASSERT ((insn & 0xff00) == 0xd100); insn = bfd_get_16 (input_bfd, contents + offset + 6); BFD_ASSERT (insn == 0x310c); insn = bfd_get_16 (input_bfd, contents + offset + 8); BFD_ASSERT (insn == 0x410b); insn = bfd_get_16 (input_bfd, contents + offset + 10); BFD_ASSERT (insn == 0x34cc); bfd_put_16 (output_bfd, 0x0012, contents + offset + 0); bfd_put_16 (output_bfd, 0x0009, contents + offset + 2); bfd_put_16 (output_bfd, 0x0009, contents + offset + 4); bfd_put_16 (output_bfd, 0x0009, contents + offset + 6); bfd_put_16 (output_bfd, 0x0009, contents + offset + 8); bfd_put_16 (output_bfd, 0x0009, contents + offset + 10); continue; } if (sgot == NULL || sgotplt == NULL) abort (); off = htab->tls_ldm_got.offset; if (off & 1) off &= ~1; else { Elf_Internal_Rela outrel; bfd_byte *loc; srelgot = htab->srelgot; if (srelgot == NULL) abort (); outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); outrel.r_addend = 0; outrel.r_info = ELF32_R_INFO (0, R_SH_TLS_DTPMOD32); loc = srelgot->contents; loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); htab->tls_ldm_got.offset |= 1; } relocation = sh_elf_got_offset (htab) + off; addend = rel->r_addend; goto final_link_relocate; case R_SH_TLS_LDO_32: check_segment[0] = check_segment[1] = -1; if (! info->shared) relocation = tpoff (info, relocation); else relocation -= dtpoff_base (info); addend = rel->r_addend; goto final_link_relocate; case R_SH_TLS_LE_32: { int indx; Elf_Internal_Rela outrel; bfd_byte *loc; check_segment[0] = check_segment[1] = -1; if (! info->shared || info->pie) { relocation = tpoff (info, relocation); addend = rel->r_addend; goto final_link_relocate; } if (sreloc == NULL) { sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section, /*rela?*/ TRUE); if (sreloc == NULL) return FALSE; } if (h == NULL || h->dynindx == -1) indx = 0; else indx = h->dynindx; outrel.r_offset = (input_section->output_section->vma + input_section->output_offset + rel->r_offset); outrel.r_info = ELF32_R_INFO (indx, R_SH_TLS_TPOFF32); if (indx == 0) outrel.r_addend = relocation - dtpoff_base (info); else outrel.r_addend = 0; loc = sreloc->contents; loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); continue; } } relocation_done: if (fdpic_p && check_segment[0] != (unsigned) -1 && check_segment[0] != check_segment[1]) { /* We don't want duplicate errors for undefined symbols. */ if (!h || h->root.type != bfd_link_hash_undefined) { if (info->shared) { info->callbacks->einfo (_("%X%C: relocation to \"%s\" references a different segment\n"), input_bfd, input_section, rel->r_offset, symname); return FALSE; } else info->callbacks->einfo (_("%C: warning: relocation to \"%s\" references a different segment\n"), input_bfd, input_section, rel->r_offset, symname); } elf_elfheader (output_bfd)->e_flags &= ~EF_SH_PIC; } if (r != bfd_reloc_ok) { switch (r) { default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: { const char *name; if (h != NULL) name = NULL; else { name = (bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name)); if (name == NULL) return FALSE; if (*name == '\0') name = bfd_section_name (input_bfd, sec); } if (! ((*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return FALSE; } break; } } } return TRUE; } /* This is a version of bfd_generic_get_relocated_section_contents which uses sh_elf_relocate_section. */ static bfd_byte * sh_elf_get_relocated_section_contents (bfd *output_bfd, struct bfd_link_info *link_info, struct bfd_link_order *link_order, bfd_byte *data, bfd_boolean relocatable, asymbol **symbols) { Elf_Internal_Shdr *symtab_hdr; asection *input_section = link_order->u.indirect.section; bfd *input_bfd = input_section->owner; asection **sections = NULL; Elf_Internal_Rela *internal_relocs = NULL; Elf_Internal_Sym *isymbuf = NULL; /* We only need to handle the case of relaxing, or of having a particular set of section contents, specially. */ if (relocatable || elf_section_data (input_section)->this_hdr.contents == NULL) return bfd_generic_get_relocated_section_contents (output_bfd, link_info, link_order, data, relocatable, symbols); symtab_hdr = &elf_symtab_hdr (input_bfd); memcpy (data, elf_section_data (input_section)->this_hdr.contents, (size_t) input_section->size); if ((input_section->flags & SEC_RELOC) != 0 && input_section->reloc_count > 0) { asection **secpp; Elf_Internal_Sym *isym, *isymend; bfd_size_type amt; internal_relocs = (_bfd_elf_link_read_relocs (input_bfd, input_section, NULL, (Elf_Internal_Rela *) NULL, FALSE)); if (internal_relocs == NULL) goto error_return; if (symtab_hdr->sh_info != 0) { isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; if (isymbuf == NULL) isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (isymbuf == NULL) goto error_return; } amt = symtab_hdr->sh_info; amt *= sizeof (asection *); sections = (asection **) bfd_malloc (amt); if (sections == NULL && amt != 0) goto error_return; isymend = isymbuf + symtab_hdr->sh_info; for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp) { asection *isec; if (isym->st_shndx == SHN_UNDEF) isec = bfd_und_section_ptr; else if (isym->st_shndx == SHN_ABS) isec = bfd_abs_section_ptr; else if (isym->st_shndx == SHN_COMMON) isec = bfd_com_section_ptr; else isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); *secpp = isec; } if (! sh_elf_relocate_section (output_bfd, link_info, input_bfd, input_section, data, internal_relocs, isymbuf, sections)) goto error_return; if (sections != NULL) free (sections); if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) free (isymbuf); if (elf_section_data (input_section)->relocs != internal_relocs) free (internal_relocs); } return data; error_return: if (sections != NULL) free (sections); if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) free (isymbuf); if (internal_relocs != NULL && elf_section_data (input_section)->relocs != internal_relocs) free (internal_relocs); return NULL; } /* Return the base VMA address which should be subtracted from real addresses when resolving @dtpoff relocation. This is PT_TLS segment p_vaddr. */ static bfd_vma dtpoff_base (struct bfd_link_info *info) { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; return elf_hash_table (info)->tls_sec->vma; } /* Return the relocation value for R_SH_TLS_TPOFF32.. */ static bfd_vma tpoff (struct bfd_link_info *info, bfd_vma address) { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; /* SH TLS ABI is variant I and static TLS block start just after tcbhead structure which has 2 pointer fields. */ return (address - elf_hash_table (info)->tls_sec->vma + align_power ((bfd_vma) 8, elf_hash_table (info)->tls_sec->alignment_power)); } static asection * sh_elf_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) switch (ELF32_R_TYPE (rel->r_info)) { case R_SH_GNU_VTINHERIT: case R_SH_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } /* Update the got entry reference counts for the section being removed. */ static bfd_boolean sh_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; union gotref *local_funcdesc; const Elf_Internal_Rela *rel, *relend; if (info->relocatable) return TRUE; elf_section_data (sec)->local_dynrel = NULL; symtab_hdr = &elf_symtab_hdr (abfd); sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); local_funcdesc = sh_elf_local_funcdesc (abfd); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) { unsigned long r_symndx; unsigned int r_type; struct elf_link_hash_entry *h = NULL; #ifdef INCLUDE_SHMEDIA int seen_stt_datalabel = 0; #endif r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { struct elf_sh_link_hash_entry *eh; struct elf_sh_dyn_relocs **pp; struct elf_sh_dyn_relocs *p; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) { #ifdef INCLUDE_SHMEDIA seen_stt_datalabel |= h->type == STT_DATALABEL; #endif h = (struct elf_link_hash_entry *) h->root.u.i.link; } eh = (struct elf_sh_link_hash_entry *) h; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) if (p->sec == sec) { /* Everything must go for SEC. */ *pp = p->next; break; } } r_type = ELF32_R_TYPE (rel->r_info); switch (sh_elf_optimized_tls_reloc (info, r_type, h != NULL)) { case R_SH_TLS_LD_32: if (sh_elf_hash_table (info)->tls_ldm_got.refcount > 0) sh_elf_hash_table (info)->tls_ldm_got.refcount -= 1; break; case R_SH_GOT32: case R_SH_GOT20: case R_SH_GOTOFF: case R_SH_GOTOFF20: case R_SH_GOTPC: #ifdef INCLUDE_SHMEDIA case R_SH_GOT_LOW16: case R_SH_GOT_MEDLOW16: case R_SH_GOT_MEDHI16: case R_SH_GOT_HI16: case R_SH_GOT10BY4: case R_SH_GOT10BY8: case R_SH_GOTOFF_LOW16: case R_SH_GOTOFF_MEDLOW16: case R_SH_GOTOFF_MEDHI16: case R_SH_GOTOFF_HI16: case R_SH_GOTPC_LOW16: case R_SH_GOTPC_MEDLOW16: case R_SH_GOTPC_MEDHI16: case R_SH_GOTPC_HI16: #endif case R_SH_TLS_GD_32: case R_SH_TLS_IE_32: case R_SH_GOTFUNCDESC: case R_SH_GOTFUNCDESC20: if (h != NULL) { #ifdef INCLUDE_SHMEDIA if (seen_stt_datalabel) { struct elf_sh_link_hash_entry *eh; eh = (struct elf_sh_link_hash_entry *) h; if (eh->datalabel_got.refcount > 0) eh->datalabel_got.refcount -= 1; } else #endif if (h->got.refcount > 0) h->got.refcount -= 1; } else if (local_got_refcounts != NULL) { #ifdef INCLUDE_SHMEDIA if (rel->r_addend & 1) { if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0) local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1; } else #endif if (local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx] -= 1; } break; case R_SH_FUNCDESC: if (h != NULL) sh_elf_hash_entry (h)->abs_funcdesc_refcount -= 1; else if (sh_elf_hash_table (info)->fdpic_p && !info->shared) sh_elf_hash_table (info)->srofixup->size -= 4; /* Fall through. */ case R_SH_GOTOFFFUNCDESC: case R_SH_GOTOFFFUNCDESC20: if (h != NULL) sh_elf_hash_entry (h)->funcdesc.refcount -= 1; else local_funcdesc[r_symndx].refcount -= 1; break; case R_SH_DIR32: if (sh_elf_hash_table (info)->fdpic_p && !info->shared && (sec->flags & SEC_ALLOC) != 0) sh_elf_hash_table (info)->srofixup->size -= 4; /* Fall thru */ case R_SH_REL32: if (info->shared) break; /* Fall thru */ case R_SH_PLT32: #ifdef INCLUDE_SHMEDIA case R_SH_PLT_LOW16: case R_SH_PLT_MEDLOW16: case R_SH_PLT_MEDHI16: case R_SH_PLT_HI16: #endif if (h != NULL) { if (h->plt.refcount > 0) h->plt.refcount -= 1; } break; case R_SH_GOTPLT32: #ifdef INCLUDE_SHMEDIA case R_SH_GOTPLT_LOW16: case R_SH_GOTPLT_MEDLOW16: case R_SH_GOTPLT_MEDHI16: case R_SH_GOTPLT_HI16: case R_SH_GOTPLT10BY4: case R_SH_GOTPLT10BY8: #endif if (h != NULL) { struct elf_sh_link_hash_entry *eh; eh = (struct elf_sh_link_hash_entry *) h; if (eh->gotplt_refcount > 0) { eh->gotplt_refcount -= 1; if (h->plt.refcount > 0) h->plt.refcount -= 1; } #ifdef INCLUDE_SHMEDIA else if (seen_stt_datalabel) { if (eh->datalabel_got.refcount > 0) eh->datalabel_got.refcount -= 1; } #endif else if (h->got.refcount > 0) h->got.refcount -= 1; } else if (local_got_refcounts != NULL) { #ifdef INCLUDE_SHMEDIA if (rel->r_addend & 1) { if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0) local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1; } else #endif if (local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx] -= 1; } break; default: break; } } return TRUE; } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void sh_elf_copy_indirect_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { struct elf_sh_link_hash_entry *edir, *eind; edir = (struct elf_sh_link_hash_entry *) dir; eind = (struct elf_sh_link_hash_entry *) ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct elf_sh_dyn_relocs **pp; struct elf_sh_dyn_relocs *p; /* Add reloc counts against the indirect sym to the direct sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) { struct elf_sh_dyn_relocs *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } edir->gotplt_refcount = eind->gotplt_refcount; eind->gotplt_refcount = 0; #ifdef INCLUDE_SHMEDIA edir->datalabel_got.refcount += eind->datalabel_got.refcount; eind->datalabel_got.refcount = 0; #endif edir->funcdesc.refcount += eind->funcdesc.refcount; eind->funcdesc.refcount = 0; edir->abs_funcdesc_refcount += eind->abs_funcdesc_refcount; eind->abs_funcdesc_refcount = 0; if (ind->root.type == bfd_link_hash_indirect && dir->got.refcount <= 0) { edir->got_type = eind->got_type; eind->got_type = GOT_UNKNOWN; } if (ind->root.type != bfd_link_hash_indirect && dir->dynamic_adjusted) { /* If called to transfer flags for a weakdef during processing of elf_adjust_dynamic_symbol, don't copy non_got_ref. We clear it ourselves for ELIMINATE_COPY_RELOCS. */ dir->ref_dynamic |= ind->ref_dynamic; dir->ref_regular |= ind->ref_regular; dir->ref_regular_nonweak |= ind->ref_regular_nonweak; dir->needs_plt |= ind->needs_plt; } else _bfd_elf_link_hash_copy_indirect (info, dir, ind); } static int sh_elf_optimized_tls_reloc (struct bfd_link_info *info, int r_type, int is_local) { if (info->shared) return r_type; switch (r_type) { case R_SH_TLS_GD_32: case R_SH_TLS_IE_32: if (is_local) return R_SH_TLS_LE_32; return R_SH_TLS_IE_32; case R_SH_TLS_LD_32: return R_SH_TLS_LE_32; } return r_type; } /* Look through the relocs for a section during the first phase. Since we don't do .gots or .plts, we just need to consider the virtual table relocs for gc. */ static bfd_boolean sh_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; struct elf_sh_link_hash_table *htab; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sreloc; unsigned int r_type; int got_type, old_got_type; sreloc = NULL; if (info->relocatable) return TRUE; BFD_ASSERT (is_sh_elf (abfd)); symtab_hdr = &elf_symtab_hdr (abfd); sym_hashes = elf_sym_hashes (abfd); htab = sh_elf_hash_table (info); if (htab == NULL) return FALSE; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { struct elf_link_hash_entry *h; unsigned long r_symndx; #ifdef INCLUDE_SHMEDIA int seen_stt_datalabel = 0; #endif r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) { #ifdef INCLUDE_SHMEDIA seen_stt_datalabel |= h->type == STT_DATALABEL; #endif h = (struct elf_link_hash_entry *) h->root.u.i.link; } } r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL); if (! info->shared && r_type == R_SH_TLS_IE_32 && h != NULL && h->root.type != bfd_link_hash_undefined && h->root.type != bfd_link_hash_undefweak && (h->dynindx == -1 || h->def_regular)) r_type = R_SH_TLS_LE_32; if (htab->fdpic_p) switch (r_type) { case R_SH_GOTOFFFUNCDESC: case R_SH_GOTOFFFUNCDESC20: case R_SH_FUNCDESC: case R_SH_GOTFUNCDESC: case R_SH_GOTFUNCDESC20: if (h != NULL) { if (h->dynindx == -1) switch (ELF_ST_VISIBILITY (h->other)) { case STV_INTERNAL: case STV_HIDDEN: break; default: bfd_elf_link_record_dynamic_symbol (info, h); break; } } break; } /* Some relocs require a global offset table. */ if (htab->sgot == NULL) { switch (r_type) { case R_SH_DIR32: /* This may require an rofixup. */ if (!htab->fdpic_p) break; case R_SH_GOTPLT32: case R_SH_GOT32: case R_SH_GOT20: case R_SH_GOTOFF: case R_SH_GOTOFF20: case R_SH_FUNCDESC: case R_SH_GOTFUNCDESC: case R_SH_GOTFUNCDESC20: case R_SH_GOTOFFFUNCDESC: case R_SH_GOTOFFFUNCDESC20: case R_SH_GOTPC: #ifdef INCLUDE_SHMEDIA case R_SH_GOTPLT_LOW16: case R_SH_GOTPLT_MEDLOW16: case R_SH_GOTPLT_MEDHI16: case R_SH_GOTPLT_HI16: case R_SH_GOTPLT10BY4: case R_SH_GOTPLT10BY8: case R_SH_GOT_LOW16: case R_SH_GOT_MEDLOW16: case R_SH_GOT_MEDHI16: case R_SH_GOT_HI16: case R_SH_GOT10BY4: case R_SH_GOT10BY8: case R_SH_GOTOFF_LOW16: case R_SH_GOTOFF_MEDLOW16: case R_SH_GOTOFF_MEDHI16: case R_SH_GOTOFF_HI16: case R_SH_GOTPC_LOW16: case R_SH_GOTPC_MEDLOW16: case R_SH_GOTPC_MEDHI16: case R_SH_GOTPC_HI16: #endif case R_SH_TLS_GD_32: case R_SH_TLS_LD_32: case R_SH_TLS_IE_32: if (htab->root.dynobj == NULL) htab->root.dynobj = abfd; if (!create_got_section (htab->root.dynobj, info)) return FALSE; break; default: break; } } switch (r_type) { /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_SH_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_SH_GNU_VTENTRY: BFD_ASSERT (h != NULL); if (h != NULL && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) return FALSE; break; case R_SH_TLS_IE_32: if (info->shared) info->flags |= DF_STATIC_TLS; /* FALLTHROUGH */ force_got: case R_SH_TLS_GD_32: case R_SH_GOT32: case R_SH_GOT20: #ifdef INCLUDE_SHMEDIA case R_SH_GOT_LOW16: case R_SH_GOT_MEDLOW16: case R_SH_GOT_MEDHI16: case R_SH_GOT_HI16: case R_SH_GOT10BY4: case R_SH_GOT10BY8: #endif case R_SH_GOTFUNCDESC: case R_SH_GOTFUNCDESC20: switch (r_type) { default: got_type = GOT_NORMAL; break; case R_SH_TLS_GD_32: got_type = GOT_TLS_GD; break; case R_SH_TLS_IE_32: got_type = GOT_TLS_IE; break; case R_SH_GOTFUNCDESC: case R_SH_GOTFUNCDESC20: got_type = GOT_FUNCDESC; break; } if (h != NULL) { #ifdef INCLUDE_SHMEDIA if (seen_stt_datalabel) { struct elf_sh_link_hash_entry *eh = (struct elf_sh_link_hash_entry *) h; eh->datalabel_got.refcount += 1; } else #endif h->got.refcount += 1; old_got_type = sh_elf_hash_entry (h)->got_type; } else { bfd_signed_vma *local_got_refcounts; /* This is a global offset table entry for a local symbol. */ local_got_refcounts = elf_local_got_refcounts (abfd); if (local_got_refcounts == NULL) { bfd_size_type size; size = symtab_hdr->sh_info; size *= sizeof (bfd_signed_vma); #ifdef INCLUDE_SHMEDIA /* Reserve space for both the datalabel and codelabel local GOT offsets. */ size *= 2; #endif size += symtab_hdr->sh_info; local_got_refcounts = ((bfd_signed_vma *) bfd_zalloc (abfd, size)); if (local_got_refcounts == NULL) return FALSE; elf_local_got_refcounts (abfd) = local_got_refcounts; #ifdef INCLUDE_SHMEDIA /* Take care of both the datalabel and codelabel local GOT offsets. */ sh_elf_local_got_type (abfd) = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info); #else sh_elf_local_got_type (abfd) = (char *) (local_got_refcounts + symtab_hdr->sh_info); #endif } #ifdef INCLUDE_SHMEDIA if (rel->r_addend & 1) local_got_refcounts[symtab_hdr->sh_info + r_symndx] += 1; else #endif local_got_refcounts[r_symndx] += 1; old_got_type = sh_elf_local_got_type (abfd) [r_symndx]; } /* If a TLS symbol is accessed using IE at least once, there is no point to use dynamic model for it. */ if (old_got_type != got_type && old_got_type != GOT_UNKNOWN && (old_got_type != GOT_TLS_GD || got_type != GOT_TLS_IE)) { if (old_got_type == GOT_TLS_IE && got_type == GOT_TLS_GD) got_type = GOT_TLS_IE; else { if ((old_got_type == GOT_FUNCDESC || got_type == GOT_FUNCDESC) && (old_got_type == GOT_NORMAL || got_type == GOT_NORMAL)) (*_bfd_error_handler) (_("%B: `%s' accessed both as normal and FDPIC symbol"), abfd, h->root.root.string); else if (old_got_type == GOT_FUNCDESC || got_type == GOT_FUNCDESC) (*_bfd_error_handler) (_("%B: `%s' accessed both as FDPIC and thread local symbol"), abfd, h->root.root.string); else (*_bfd_error_handler) (_("%B: `%s' accessed both as normal and thread local symbol"), abfd, h->root.root.string); return FALSE; } } if (old_got_type != got_type) { if (h != NULL) sh_elf_hash_entry (h)->got_type = got_type; else sh_elf_local_got_type (abfd) [r_symndx] = got_type; } break; case R_SH_TLS_LD_32: sh_elf_hash_table(info)->tls_ldm_got.refcount += 1; break; case R_SH_FUNCDESC: case R_SH_GOTOFFFUNCDESC: case R_SH_GOTOFFFUNCDESC20: if (rel->r_addend) { (*_bfd_error_handler) (_("%B: Function descriptor relocation with non-zero addend"), abfd); return FALSE; } if (h == NULL) { union gotref *local_funcdesc; /* We need a function descriptor for a local symbol. */ local_funcdesc = sh_elf_local_funcdesc (abfd); if (local_funcdesc == NULL) { bfd_size_type size; size = symtab_hdr->sh_info * sizeof (union gotref); #ifdef INCLUDE_SHMEDIA /* Count datalabel local GOT. */ size *= 2; #endif local_funcdesc = (union gotref *) bfd_zalloc (abfd, size); if (local_funcdesc == NULL) return FALSE; sh_elf_local_funcdesc (abfd) = local_funcdesc; } local_funcdesc[r_symndx].refcount += 1; if (r_type == R_SH_FUNCDESC) { if (!info->shared) htab->srofixup->size += 4; else htab->srelgot->size += sizeof (Elf32_External_Rela); } } else { sh_elf_hash_entry (h)->funcdesc.refcount++; if (r_type == R_SH_FUNCDESC) sh_elf_hash_entry (h)->abs_funcdesc_refcount++; /* If there is a function descriptor reference, then there should not be any non-FDPIC references. */ old_got_type = sh_elf_hash_entry (h)->got_type; if (old_got_type != GOT_FUNCDESC && old_got_type != GOT_UNKNOWN) { if (old_got_type == GOT_NORMAL) (*_bfd_error_handler) (_("%B: `%s' accessed both as normal and FDPIC symbol"), abfd, h->root.root.string); else (*_bfd_error_handler) (_("%B: `%s' accessed both as FDPIC and thread local symbol"), abfd, h->root.root.string); } } break; case R_SH_GOTPLT32: #ifdef INCLUDE_SHMEDIA case R_SH_GOTPLT_LOW16: case R_SH_GOTPLT_MEDLOW16: case R_SH_GOTPLT_MEDHI16: case R_SH_GOTPLT_HI16: case R_SH_GOTPLT10BY4: case R_SH_GOTPLT10BY8: #endif /* If this is a local symbol, we resolve it directly without creating a procedure linkage table entry. */ if (h == NULL || h->forced_local || ! info->shared || info->symbolic || h->dynindx == -1) goto force_got; h->needs_plt = 1; h->plt.refcount += 1; ((struct elf_sh_link_hash_entry *) h)->gotplt_refcount += 1; break; case R_SH_PLT32: #ifdef INCLUDE_SHMEDIA case R_SH_PLT_LOW16: case R_SH_PLT_MEDLOW16: case R_SH_PLT_MEDHI16: case R_SH_PLT_HI16: #endif /* This symbol requires a procedure linkage table entry. We actually build the entry in adjust_dynamic_symbol, because this might be a case of linking PIC code which is never referenced by a dynamic object, in which case we don't need to generate a procedure linkage table entry after all. */ /* If this is a local symbol, we resolve it directly without creating a procedure linkage table entry. */ if (h == NULL) continue; if (h->forced_local) break; h->needs_plt = 1; h->plt.refcount += 1; break; case R_SH_DIR32: case R_SH_REL32: #ifdef INCLUDE_SHMEDIA case R_SH_IMM_LOW16_PCREL: case R_SH_IMM_MEDLOW16_PCREL: case R_SH_IMM_MEDHI16_PCREL: case R_SH_IMM_HI16_PCREL: #endif if (h != NULL && ! info->shared) { h->non_got_ref = 1; h->plt.refcount += 1; } /* If we are creating a shared library, and this is a reloc against a global symbol, or a non PC relative reloc against a local symbol, then we need to copy the reloc into the shared library. However, if we are linking with -Bsymbolic, we do not need to copy a reloc against a global symbol which is defined in an object we are including in the link (i.e., DEF_REGULAR is set). At this point we have not seen all the input files, so it is possible that DEF_REGULAR is not set now but will be set later (it is never cleared). We account for that possibility below by storing information in the dyn_relocs field of the hash table entry. A similar situation occurs when creating shared libraries and symbol visibility changes render the symbol local. If on the other hand, we are creating an executable, we may need to keep relocations for symbols satisfied by a dynamic library if we manage to avoid copy relocs for the symbol. */ if ((info->shared && (sec->flags & SEC_ALLOC) != 0 && (r_type != R_SH_REL32 || (h != NULL && (! info->symbolic || h->root.type == bfd_link_hash_defweak || !h->def_regular)))) || (! info->shared && (sec->flags & SEC_ALLOC) != 0 && h != NULL && (h->root.type == bfd_link_hash_defweak || !h->def_regular))) { struct elf_sh_dyn_relocs *p; struct elf_sh_dyn_relocs **head; if (htab->root.dynobj == NULL) htab->root.dynobj = abfd; /* When creating a shared object, we must copy these reloc types into the output file. We create a reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { sreloc = _bfd_elf_make_dynamic_reloc_section (sec, htab->root.dynobj, 2, abfd, /*rela?*/ TRUE); if (sreloc == NULL) return FALSE; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) head = &((struct elf_sh_link_hash_entry *) h)->dyn_relocs; else { /* Track dynamic relocs needed for local syms too. */ asection *s; void *vpp; Elf_Internal_Sym *isym; isym = bfd_sym_from_r_symndx (&htab->sym_cache, abfd, r_symndx); if (isym == NULL) return FALSE; s = bfd_section_from_elf_index (abfd, isym->st_shndx); if (s == NULL) s = sec; vpp = &elf_section_data (s)->local_dynrel; head = (struct elf_sh_dyn_relocs **) vpp; } p = *head; if (p == NULL || p->sec != sec) { bfd_size_type amt = sizeof (*p); p = bfd_alloc (htab->root.dynobj, amt); if (p == NULL) return FALSE; p->next = *head; *head = p; p->sec = sec; p->count = 0; p->pc_count = 0; } p->count += 1; if (r_type == R_SH_REL32 #ifdef INCLUDE_SHMEDIA || r_type == R_SH_IMM_LOW16_PCREL || r_type == R_SH_IMM_MEDLOW16_PCREL || r_type == R_SH_IMM_MEDHI16_PCREL || r_type == R_SH_IMM_HI16_PCREL #endif ) p->pc_count += 1; } /* Allocate the fixup regardless of whether we need a relocation. If we end up generating the relocation, we'll unallocate the fixup. */ if (htab->fdpic_p && !info->shared && r_type == R_SH_DIR32 && (sec->flags & SEC_ALLOC) != 0) htab->srofixup->size += 4; break; case R_SH_TLS_LE_32: if (info->shared && !info->pie) { (*_bfd_error_handler) (_("%B: TLS local exec code cannot be linked into shared objects"), abfd); return FALSE; } break; case R_SH_TLS_LDO_32: /* Nothing to do. */ break; default: break; } } return TRUE; } #ifndef sh_elf_set_mach_from_flags static unsigned int sh_ef_bfd_table[] = { EF_SH_BFD_TABLE }; static bfd_boolean sh_elf_set_mach_from_flags (bfd *abfd) { flagword flags = elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK; if (flags >= sizeof(sh_ef_bfd_table)) return FALSE; if (sh_ef_bfd_table[flags] == 0) return FALSE; bfd_default_set_arch_mach (abfd, bfd_arch_sh, sh_ef_bfd_table[flags]); return TRUE; } /* Reverse table lookup for sh_ef_bfd_table[]. Given a bfd MACH value from archures.c return the equivalent ELF flags from the table. Return -1 if no match is found. */ int sh_elf_get_flags_from_mach (unsigned long mach) { int i = ARRAY_SIZE (sh_ef_bfd_table) - 1; for (; i>0; i--) if (sh_ef_bfd_table[i] == mach) return i; /* shouldn't get here */ BFD_FAIL(); return -1; } #endif /* not sh_elf_set_mach_from_flags */ #ifndef sh_elf_set_private_flags /* Function to keep SH specific file flags. */ static bfd_boolean sh_elf_set_private_flags (bfd *abfd, flagword flags) { BFD_ASSERT (! elf_flags_init (abfd) || elf_elfheader (abfd)->e_flags == flags); elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; return sh_elf_set_mach_from_flags (abfd); } #endif /* not sh_elf_set_private_flags */ #ifndef sh_elf_copy_private_data /* Copy backend specific data from one object module to another */ static bfd_boolean sh_elf_copy_private_data (bfd * ibfd, bfd * obfd) { /* Copy object attributes. */ _bfd_elf_copy_obj_attributes (ibfd, obfd); if (! is_sh_elf (ibfd) || ! is_sh_elf (obfd)) return TRUE; /* Copy the stack size. */ if (elf_tdata (ibfd)->phdr && elf_tdata (obfd)->phdr && fdpic_object_p (ibfd) && fdpic_object_p (obfd)) { unsigned i; for (i = 0; i < elf_elfheader (ibfd)->e_phnum; i++) if (elf_tdata (ibfd)->phdr[i].p_type == PT_GNU_STACK) { Elf_Internal_Phdr *iphdr = &elf_tdata (ibfd)->phdr[i]; for (i = 0; i < elf_elfheader (obfd)->e_phnum; i++) if (elf_tdata (obfd)->phdr[i].p_type == PT_GNU_STACK) { memcpy (&elf_tdata (obfd)->phdr[i], iphdr, sizeof (*iphdr)); /* Rewrite the phdrs, since we're only called after they were first written. */ if (bfd_seek (obfd, (bfd_signed_vma) get_elf_backend_data (obfd) ->s->sizeof_ehdr, SEEK_SET) != 0 || get_elf_backend_data (obfd)->s ->write_out_phdrs (obfd, elf_tdata (obfd)->phdr, elf_elfheader (obfd)->e_phnum) != 0) return FALSE; break; } break; } } return sh_elf_set_private_flags (obfd, elf_elfheader (ibfd)->e_flags); } #endif /* not sh_elf_copy_private_data */ #ifndef sh_elf_merge_private_data /* This function returns the ELF architecture number that corresponds to the given arch_sh* flags. */ int sh_find_elf_flags (unsigned int arch_set) { extern unsigned long sh_get_bfd_mach_from_arch_set (unsigned int); unsigned long bfd_mach = sh_get_bfd_mach_from_arch_set (arch_set); return sh_elf_get_flags_from_mach (bfd_mach); } /* This routine initialises the elf flags when required and calls sh_merge_bfd_arch() to check dsp/fpu compatibility. */ static bfd_boolean sh_elf_merge_private_data (bfd *ibfd, bfd *obfd) { extern bfd_boolean sh_merge_bfd_arch (bfd *, bfd *); if (! is_sh_elf (ibfd) || ! is_sh_elf (obfd)) return TRUE; if (! elf_flags_init (obfd)) { /* This happens when ld starts out with a 'blank' output file. */ elf_flags_init (obfd) = TRUE; elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; sh_elf_set_mach_from_flags (obfd); if (elf_elfheader (obfd)->e_flags & EF_SH_FDPIC) elf_elfheader (obfd)->e_flags |= EF_SH_PIC; } if (! sh_merge_bfd_arch (ibfd, obfd)) { _bfd_error_handler ("%B: uses instructions which are incompatible " "with instructions used in previous modules", ibfd); bfd_set_error (bfd_error_bad_value); return FALSE; } elf_elfheader (obfd)->e_flags &= ~EF_SH_MACH_MASK; elf_elfheader (obfd)->e_flags |= sh_elf_get_flags_from_mach (bfd_get_mach (obfd)); if (fdpic_object_p (ibfd) != fdpic_object_p (obfd)) { _bfd_error_handler ("%B: attempt to mix FDPIC and non-FDPIC objects", ibfd); bfd_set_error (bfd_error_bad_value); return FALSE; } return TRUE; } #endif /* not sh_elf_merge_private_data */ /* Override the generic function because we need to store sh_elf_obj_tdata as the specific tdata. We set also the machine architecture from flags here. */ static bfd_boolean sh_elf_object_p (bfd *abfd) { if (! sh_elf_set_mach_from_flags (abfd)) return FALSE; return (((elf_elfheader (abfd)->e_flags & EF_SH_FDPIC) != 0) == fdpic_object_p (abfd)); } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean sh_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { struct elf_sh_link_hash_table *htab; htab = sh_elf_hash_table (info); if (htab == NULL) return FALSE; if (h->plt.offset != (bfd_vma) -1) { asection *splt; asection *sgotplt; asection *srelplt; bfd_vma plt_index; bfd_vma got_offset; Elf_Internal_Rela rel; bfd_byte *loc; const struct elf_sh_plt_info *plt_info; /* This symbol has an entry in the procedure linkage table. Set it up. */ BFD_ASSERT (h->dynindx != -1); splt = htab->splt; sgotplt = htab->sgotplt; srelplt = htab->srelplt; BFD_ASSERT (splt != NULL && sgotplt != NULL && srelplt != NULL); /* Get the index in the procedure linkage table which corresponds to this symbol. This is the index of this symbol in all the symbols for which we are making plt entries. The first entry in the procedure linkage table is reserved. */ plt_index = get_plt_index (htab->plt_info, h->plt.offset); plt_info = htab->plt_info; if (plt_info->short_plt != NULL && plt_index <= MAX_SHORT_PLT) plt_info = plt_info->short_plt; /* Get the offset into the .got table of the entry that corresponds to this function. */ if (htab->fdpic_p) /* The offset must be relative to the GOT symbol, twelve bytes before the end of .got.plt. Each descriptor is eight bytes. */ got_offset = plt_index * 8 + 12 - sgotplt->size; else /* Each .got entry is 4 bytes. The first three are reserved. */ got_offset = (plt_index + 3) * 4; #ifdef GOT_BIAS if (info->shared) got_offset -= GOT_BIAS; #endif /* Fill in the entry in the procedure linkage table. */ memcpy (splt->contents + h->plt.offset, plt_info->symbol_entry, plt_info->symbol_entry_size); if (info->shared || htab->fdpic_p) { if (plt_info->symbol_fields.got20) { bfd_reloc_status_type r; r = install_movi20_field (output_bfd, got_offset, splt->owner, splt, splt->contents, h->plt.offset + plt_info->symbol_fields.got_entry); BFD_ASSERT (r == bfd_reloc_ok); } else install_plt_field (output_bfd, FALSE, got_offset, (splt->contents + h->plt.offset + plt_info->symbol_fields.got_entry)); } else { BFD_ASSERT (!plt_info->symbol_fields.got20); install_plt_field (output_bfd, FALSE, (sgotplt->output_section->vma + sgotplt->output_offset + got_offset), (splt->contents + h->plt.offset + plt_info->symbol_fields.got_entry)); if (htab->vxworks_p) { unsigned int reachable_plts, plts_per_4k; int distance; /* Divide the PLT into groups. The first group contains REACHABLE_PLTS entries and the other groups contain PLTS_PER_4K entries. Entries in the first group can branch directly to .plt; those in later groups branch to the last element of the previous group. */ /* ??? It would be better to create multiple copies of the common resolver stub. */ reachable_plts = ((4096 - plt_info->plt0_entry_size - (plt_info->symbol_fields.plt + 4)) / plt_info->symbol_entry_size) + 1; plts_per_4k = (4096 / plt_info->symbol_entry_size); if (plt_index < reachable_plts) distance = -(h->plt.offset + plt_info->symbol_fields.plt); else distance = -(((plt_index - reachable_plts) % plts_per_4k + 1) * plt_info->symbol_entry_size); /* Install the 'bra' with this offset. */ bfd_put_16 (output_bfd, 0xa000 | (0x0fff & ((distance - 4) / 2)), (splt->contents + h->plt.offset + plt_info->symbol_fields.plt)); } else install_plt_field (output_bfd, TRUE, splt->output_section->vma + splt->output_offset, (splt->contents + h->plt.offset + plt_info->symbol_fields.plt)); } /* Make got_offset relative to the start of .got.plt. */ #ifdef GOT_BIAS if (info->shared) got_offset += GOT_BIAS; #endif if (htab->fdpic_p) got_offset = plt_index * 8; if (plt_info->symbol_fields.reloc_offset != MINUS_ONE) install_plt_field (output_bfd, FALSE, plt_index * sizeof (Elf32_External_Rela), (splt->contents + h->plt.offset + plt_info->symbol_fields.reloc_offset)); /* Fill in the entry in the global offset table. */ bfd_put_32 (output_bfd, (splt->output_section->vma + splt->output_offset + h->plt.offset + plt_info->symbol_resolve_offset), sgotplt->contents + got_offset); if (htab->fdpic_p) bfd_put_32 (output_bfd, sh_elf_osec_to_segment (output_bfd, htab->splt->output_section), sgotplt->contents + got_offset + 4); /* Fill in the entry in the .rela.plt section. */ rel.r_offset = (sgotplt->output_section->vma + sgotplt->output_offset + got_offset); if (htab->fdpic_p) rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_FUNCDESC_VALUE); else rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_JMP_SLOT); rel.r_addend = 0; #ifdef GOT_BIAS rel.r_addend = GOT_BIAS; #endif loc = srelplt->contents + plt_index * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); if (htab->vxworks_p && !info->shared) { /* Create the .rela.plt.unloaded relocations for this PLT entry. Begin by pointing LOC to the first such relocation. */ loc = (htab->srelplt2->contents + (plt_index * 2 + 1) * sizeof (Elf32_External_Rela)); /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for the PLT entry's pointer to the .got.plt entry. */ rel.r_offset = (htab->splt->output_section->vma + htab->splt->output_offset + h->plt.offset + plt_info->symbol_fields.got_entry); rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32); rel.r_addend = got_offset; bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for the .got.plt entry, which initially points to .plt. */ rel.r_offset = (sgotplt->output_section->vma + sgotplt->output_offset + got_offset); rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_SH_DIR32); rel.r_addend = 0; bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); } if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; } } if (h->got.offset != (bfd_vma) -1 && sh_elf_hash_entry (h)->got_type != GOT_TLS_GD && sh_elf_hash_entry (h)->got_type != GOT_TLS_IE && sh_elf_hash_entry (h)->got_type != GOT_FUNCDESC) { asection *sgot; asection *srelgot; Elf_Internal_Rela rel; bfd_byte *loc; /* This symbol has an entry in the global offset table. Set it up. */ sgot = htab->sgot; srelgot = htab->srelgot; BFD_ASSERT (sgot != NULL && srelgot != NULL); rel.r_offset = (sgot->output_section->vma + sgot->output_offset + (h->got.offset &~ (bfd_vma) 1)); /* If this is a static link, or it is a -Bsymbolic link and the symbol is defined locally or was forced to be local because of a version file, we just want to emit a RELATIVE reloc. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) { if (htab->fdpic_p) { asection *sec = h->root.u.def.section; int dynindx = elf_section_data (sec->output_section)->dynindx; rel.r_info = ELF32_R_INFO (dynindx, R_SH_DIR32); rel.r_addend = (h->root.u.def.value + h->root.u.def.section->output_offset); } else { rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE); rel.r_addend = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } } else { bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT); rel.r_addend = 0; } loc = srelgot->contents; loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); } #ifdef INCLUDE_SHMEDIA { struct elf_sh_link_hash_entry *eh; eh = (struct elf_sh_link_hash_entry *) h; if (eh->datalabel_got.offset != (bfd_vma) -1) { asection *sgot; asection *srelgot; Elf_Internal_Rela rel; bfd_byte *loc; /* This symbol has a datalabel entry in the global offset table. Set it up. */ sgot = htab->sgot; srelgot = htab->srelgot; BFD_ASSERT (sgot != NULL && srelgot != NULL); rel.r_offset = (sgot->output_section->vma + sgot->output_offset + (eh->datalabel_got.offset &~ (bfd_vma) 1)); /* If this is a static link, or it is a -Bsymbolic link and the symbol is defined locally or was forced to be local because of a version file, we just want to emit a RELATIVE reloc. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) { if (htab->fdpic_p) { asection *sec = h->root.u.def.section; int dynindx = elf_section_data (sec->output_section)->dynindx; rel.r_info = ELF32_R_INFO (dynindx, R_SH_DIR32); rel.r_addend = (h->root.u.def.value + h->root.u.def.section->output_offset); } else { rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE); rel.r_addend = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } } else { bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + eh->datalabel_got.offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT); rel.r_addend = 0; } loc = srelgot->contents; loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); } } #endif if (h->needs_copy) { asection *s; Elf_Internal_Rela rel; bfd_byte *loc; /* This symbol needs a copy reloc. Set it up. */ BFD_ASSERT (h->dynindx != -1 && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)); s = bfd_get_section_by_name (h->root.u.def.section->owner, ".rela.bss"); BFD_ASSERT (s != NULL); rel.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_COPY); rel.r_addend = 0; loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks, _GLOBAL_OFFSET_TABLE_ is not absolute: it is relative to the ".got" section. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || (!htab->vxworks_p && h == htab->root.hgot)) sym->st_shndx = SHN_ABS; return TRUE; } /* Finish up the dynamic sections. */ static bfd_boolean sh_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { struct elf_sh_link_hash_table *htab; asection *sgotplt; asection *sdyn; htab = sh_elf_hash_table (info); if (htab == NULL) return FALSE; sgotplt = htab->sgotplt; sdyn = bfd_get_section_by_name (htab->root.dynobj, ".dynamic"); if (htab->root.dynamic_sections_created) { asection *splt; Elf32_External_Dyn *dyncon, *dynconend; BFD_ASSERT (sgotplt != NULL && sdyn != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; asection *s; #ifdef INCLUDE_SHMEDIA const char *name; #endif bfd_elf32_swap_dyn_in (htab->root.dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: if (htab->vxworks_p && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; #ifdef INCLUDE_SHMEDIA case DT_INIT: name = info->init_function; goto get_sym; case DT_FINI: name = info->fini_function; get_sym: if (dyn.d_un.d_val != 0) { struct elf_link_hash_entry *h; h = elf_link_hash_lookup (&htab->root, name, FALSE, FALSE, TRUE); if (h != NULL && (h->other & STO_SH5_ISA32)) { dyn.d_un.d_val |= 1; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); } } break; #endif case DT_PLTGOT: BFD_ASSERT (htab->root.hgot != NULL); s = htab->root.hgot->root.u.def.section; dyn.d_un.d_ptr = htab->root.hgot->root.u.def.value + s->output_section->vma + s->output_offset; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_JMPREL: s = htab->srelplt->output_section; BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_PLTRELSZ: s = htab->srelplt->output_section; BFD_ASSERT (s != NULL); dyn.d_un.d_val = s->size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_RELASZ: /* My reading of the SVR4 ABI indicates that the procedure linkage table relocs (DT_JMPREL) should be included in the overall relocs (DT_RELA). This is what Solaris does. However, UnixWare can not handle that case. Therefore, we override the DT_RELASZ entry here to make it not include the JMPREL relocs. Since the linker script arranges for .rela.plt to follow all other relocation sections, we don't have to worry about changing the DT_RELA entry. */ if (htab->srelplt != NULL) { s = htab->srelplt->output_section; dyn.d_un.d_val -= s->size; } bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; } } /* Fill in the first entry in the procedure linkage table. */ splt = htab->splt; if (splt && splt->size > 0 && htab->plt_info->plt0_entry) { unsigned int i; memcpy (splt->contents, htab->plt_info->plt0_entry, htab->plt_info->plt0_entry_size); for (i = 0; i < ARRAY_SIZE (htab->plt_info->plt0_got_fields); i++) if (htab->plt_info->plt0_got_fields[i] != MINUS_ONE) install_plt_field (output_bfd, FALSE, (sgotplt->output_section->vma + sgotplt->output_offset + (i * 4)), (splt->contents + htab->plt_info->plt0_got_fields[i])); if (htab->vxworks_p) { /* Finalize the .rela.plt.unloaded contents. */ Elf_Internal_Rela rel; bfd_byte *loc; /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for the first PLT entry's pointer to _GLOBAL_OFFSET_TABLE_ + 8. */ loc = htab->srelplt2->contents; rel.r_offset = (splt->output_section->vma + splt->output_offset + htab->plt_info->plt0_got_fields[2]); rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32); rel.r_addend = 8; bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); /* Fix up the remaining .rela.plt.unloaded relocations. They may have the wrong symbol index for _G_O_T_ or _P_L_T_ depending on the order in which symbols were output. */ while (loc < htab->srelplt2->contents + htab->srelplt2->size) { /* The PLT entry's pointer to the .got.plt slot. */ bfd_elf32_swap_reloc_in (output_bfd, loc, &rel); rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32); bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); /* The .got.plt slot's pointer to .plt. */ bfd_elf32_swap_reloc_in (output_bfd, loc, &rel); rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_SH_DIR32); bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); } } /* UnixWare sets the entsize of .plt to 4, although that doesn't really seem like the right value. */ elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; } } /* Fill in the first three entries in the global offset table. */ if (sgotplt && sgotplt->size > 0 && !htab->fdpic_p) { if (sdyn == NULL) bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents); else bfd_put_32 (output_bfd, sdyn->output_section->vma + sdyn->output_offset, sgotplt->contents); bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents + 4); bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents + 8); } if (sgotplt && sgotplt->size > 0) elf_section_data (sgotplt->output_section)->this_hdr.sh_entsize = 4; /* At the very end of the .rofixup section is a pointer to the GOT. */ if (htab->fdpic_p && htab->srofixup != NULL) { struct elf_link_hash_entry *hgot = htab->root.hgot; bfd_vma got_value = hgot->root.u.def.value + hgot->root.u.def.section->output_section->vma + hgot->root.u.def.section->output_offset; sh_elf_add_rofixup (output_bfd, htab->srofixup, got_value); /* Make sure we allocated and generated the same number of fixups. */ BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size); } if (htab->srelfuncdesc) BFD_ASSERT (htab->srelfuncdesc->reloc_count * sizeof (Elf32_External_Rela) == htab->srelfuncdesc->size); if (htab->srelgot) BFD_ASSERT (htab->srelgot->reloc_count * sizeof (Elf32_External_Rela) == htab->srelgot->size); return TRUE; } static enum elf_reloc_type_class sh_elf_reloc_type_class (const Elf_Internal_Rela *rela) { switch ((int) ELF32_R_TYPE (rela->r_info)) { case R_SH_RELATIVE: return reloc_class_relative; case R_SH_JMP_SLOT: return reloc_class_plt; case R_SH_COPY: return reloc_class_copy; default: return reloc_class_normal; } } #if !defined SH_TARGET_ALREADY_DEFINED /* Support for Linux core dump NOTE sections. */ static bfd_boolean elf32_shlin_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { int offset; unsigned int size; switch (note->descsz) { default: return FALSE; case 168: /* Linux/SH */ /* pr_cursig */ elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid */ elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24); /* pr_reg */ offset = 72; size = 92; break; } /* Make a ".reg/999" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", size, note->descpos + offset); } static bfd_boolean elf32_shlin_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) { switch (note->descsz) { default: return FALSE; case 124: /* Linux/SH elf_prpsinfo */ elf_tdata (abfd)->core_program = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); elf_tdata (abfd)->core_command = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ { char *command = elf_tdata (abfd)->core_command; int n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; } return TRUE; } #endif /* not SH_TARGET_ALREADY_DEFINED */ /* Return address for Ith PLT stub in section PLT, for relocation REL or (bfd_vma) -1 if it should not be included. */ static bfd_vma sh_elf_plt_sym_val (bfd_vma i, const asection *plt, const arelent *rel ATTRIBUTE_UNUSED) { const struct elf_sh_plt_info *plt_info; plt_info = get_plt_info (plt->owner, (plt->owner->flags & DYNAMIC) != 0); return plt->vma + get_plt_offset (plt_info, i); } /* Decide whether to attempt to turn absptr or lsda encodings in shared libraries into pcrel within the given input section. */ static bfd_boolean sh_elf_use_relative_eh_frame (bfd *input_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info, asection *eh_frame_section ATTRIBUTE_UNUSED) { struct elf_sh_link_hash_table *htab = sh_elf_hash_table (info); /* We can't use PC-relative encodings in FDPIC binaries, in general. */ if (htab->fdpic_p) return FALSE; return TRUE; } /* Adjust the contents of an eh_frame_hdr section before they're output. */ static bfd_byte sh_elf_encode_eh_address (bfd *abfd, struct bfd_link_info *info, asection *osec, bfd_vma offset, asection *loc_sec, bfd_vma loc_offset, bfd_vma *encoded) { struct elf_sh_link_hash_table *htab = sh_elf_hash_table (info); struct elf_link_hash_entry *h; if (!htab->fdpic_p) return _bfd_elf_encode_eh_address (abfd, info, osec, offset, loc_sec, loc_offset, encoded); h = htab->root.hgot; BFD_ASSERT (h && h->root.type == bfd_link_hash_defined); if (! h || (sh_elf_osec_to_segment (abfd, osec) == sh_elf_osec_to_segment (abfd, loc_sec->output_section))) return _bfd_elf_encode_eh_address (abfd, info, osec, offset, loc_sec, loc_offset, encoded); BFD_ASSERT (sh_elf_osec_to_segment (abfd, osec) == (sh_elf_osec_to_segment (abfd, h->root.u.def.section->output_section))); *encoded = osec->vma + offset - (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); return DW_EH_PE_datarel | DW_EH_PE_sdata4; } #if !defined SH_TARGET_ALREADY_DEFINED #define TARGET_BIG_SYM bfd_elf32_sh_vec #define TARGET_BIG_NAME "elf32-sh" #define TARGET_LITTLE_SYM bfd_elf32_shl_vec #define TARGET_LITTLE_NAME "elf32-shl" #endif #define ELF_ARCH bfd_arch_sh #define ELF_TARGET_ID SH_ELF_DATA #define ELF_MACHINE_CODE EM_SH #ifdef __QNXTARGET__ #define ELF_MAXPAGESIZE 0x1000 #else #define ELF_MAXPAGESIZE 0x80 #endif #define elf_symbol_leading_char '_' #define bfd_elf32_bfd_reloc_type_lookup sh_elf_reloc_type_lookup #define bfd_elf32_bfd_reloc_name_lookup \ sh_elf_reloc_name_lookup #define elf_info_to_howto sh_elf_info_to_howto #define bfd_elf32_bfd_relax_section sh_elf_relax_section #define elf_backend_relocate_section sh_elf_relocate_section #define bfd_elf32_bfd_get_relocated_section_contents \ sh_elf_get_relocated_section_contents #define bfd_elf32_mkobject sh_elf_mkobject #define elf_backend_object_p sh_elf_object_p #define bfd_elf32_bfd_set_private_bfd_flags \ sh_elf_set_private_flags #define bfd_elf32_bfd_copy_private_bfd_data \ sh_elf_copy_private_data #define bfd_elf32_bfd_merge_private_bfd_data \ sh_elf_merge_private_data #define elf_backend_gc_mark_hook sh_elf_gc_mark_hook #define elf_backend_gc_sweep_hook sh_elf_gc_sweep_hook #define elf_backend_check_relocs sh_elf_check_relocs #define elf_backend_copy_indirect_symbol \ sh_elf_copy_indirect_symbol #define elf_backend_create_dynamic_sections \ sh_elf_create_dynamic_sections #define bfd_elf32_bfd_link_hash_table_create \ sh_elf_link_hash_table_create #define elf_backend_adjust_dynamic_symbol \ sh_elf_adjust_dynamic_symbol #define elf_backend_always_size_sections \ sh_elf_always_size_sections #define elf_backend_size_dynamic_sections \ sh_elf_size_dynamic_sections #define elf_backend_omit_section_dynsym sh_elf_omit_section_dynsym #define elf_backend_finish_dynamic_symbol \ sh_elf_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ sh_elf_finish_dynamic_sections #define elf_backend_reloc_type_class sh_elf_reloc_type_class #define elf_backend_plt_sym_val sh_elf_plt_sym_val #define elf_backend_can_make_relative_eh_frame \ sh_elf_use_relative_eh_frame #define elf_backend_can_make_lsda_relative_eh_frame \ sh_elf_use_relative_eh_frame #define elf_backend_encode_eh_address \ sh_elf_encode_eh_address #define elf_backend_can_gc_sections 1 #define elf_backend_can_refcount 1 #define elf_backend_want_got_plt 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_plt_sym 0 #define elf_backend_got_header_size 12 #if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED #include "elf32-target.h" /* NetBSD support. */ #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf32_shnbsd_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-sh-nbsd" #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM bfd_elf32_shlnbsd_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-shl-nbsd" #undef ELF_MAXPAGESIZE #define ELF_MAXPAGESIZE 0x10000 #undef ELF_COMMONPAGESIZE #undef elf_symbol_leading_char #define elf_symbol_leading_char 0 #undef elf32_bed #define elf32_bed elf32_sh_nbsd_bed #include "elf32-target.h" /* Linux support. */ #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf32_shblin_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-shbig-linux" #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM bfd_elf32_shlin_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-sh-linux" #undef ELF_COMMONPAGESIZE #define ELF_COMMONPAGESIZE 0x1000 #undef elf_backend_grok_prstatus #define elf_backend_grok_prstatus elf32_shlin_grok_prstatus #undef elf_backend_grok_psinfo #define elf_backend_grok_psinfo elf32_shlin_grok_psinfo #undef elf32_bed #define elf32_bed elf32_sh_lin_bed #include "elf32-target.h" /* FDPIC support. */ #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf32_shbfd_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-shbig-fdpic" #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM bfd_elf32_shfd_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-sh-fdpic" #undef elf_backend_modify_program_headers #define elf_backend_modify_program_headers \ sh_elf_modify_program_headers #undef elf32_bed #define elf32_bed elf32_sh_fd_bed #include "elf32-target.h" #undef elf_backend_modify_program_headers /* VxWorks support. */ #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf32_shvxworks_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-sh-vxworks" #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM bfd_elf32_shlvxworks_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-shl-vxworks" #undef elf32_bed #define elf32_bed elf32_sh_vxworks_bed #undef elf_backend_want_plt_sym #define elf_backend_want_plt_sym 1 #undef elf_symbol_leading_char #define elf_symbol_leading_char '_' #define elf_backend_want_got_underscore 1 #undef elf_backend_grok_prstatus #undef elf_backend_grok_psinfo #undef elf_backend_add_symbol_hook #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook #undef elf_backend_link_output_symbol_hook #define elf_backend_link_output_symbol_hook \ elf_vxworks_link_output_symbol_hook #undef elf_backend_emit_relocs #define elf_backend_emit_relocs elf_vxworks_emit_relocs #undef elf_backend_final_write_processing #define elf_backend_final_write_processing \ elf_vxworks_final_write_processing #undef ELF_MAXPAGESIZE #define ELF_MAXPAGESIZE 0x1000 #undef ELF_COMMONPAGESIZE #include "elf32-target.h" #endif /* neither INCLUDE_SHMEDIA nor SH_TARGET_ALREADY_DEFINED */
Go to most recent revision | Compare with Previous | Blame | View Log