URL
https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk
Subversion Repositories open8_urisc
[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [bfd/] [elf64-s390.c] - Rev 249
Go to most recent revision | Compare with Previous | Blame | View Log
/* IBM S/390-specific support for 64-bit ELF Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed Martin Schwidefsky (schwidefsky@de.ibm.com). This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "bfd.h" #include "bfdlink.h" #include "libbfd.h" #include "elf-bfd.h" static reloc_howto_type *elf_s390_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type)); static void elf_s390_info_to_howto PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); static bfd_boolean elf_s390_is_local_label_name PARAMS ((bfd *, const char *)); static struct bfd_hash_entry *link_hash_newfunc PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); static struct bfd_link_hash_table *elf_s390_link_hash_table_create PARAMS ((bfd *)); static bfd_boolean create_got_section PARAMS((bfd *, struct bfd_link_info *)); static bfd_boolean elf_s390_create_dynamic_sections PARAMS((bfd *, struct bfd_link_info *)); static void elf_s390_copy_indirect_symbol PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, struct elf_link_hash_entry *)); static bfd_boolean elf_s390_check_relocs PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); struct elf_s390_link_hash_entry; static void elf_s390_adjust_gotplt PARAMS ((struct elf_s390_link_hash_entry *)); static bfd_boolean elf_s390_adjust_dynamic_symbol PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); static bfd_boolean allocate_dynrelocs PARAMS ((struct elf_link_hash_entry *, PTR)); static bfd_boolean readonly_dynrelocs PARAMS ((struct elf_link_hash_entry *, PTR)); static bfd_boolean elf_s390_size_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static bfd_boolean elf_s390_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); static bfd_boolean elf_s390_finish_dynamic_symbol PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); static enum elf_reloc_type_class elf_s390_reloc_type_class PARAMS ((const Elf_Internal_Rela *)); static bfd_boolean elf_s390_finish_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static bfd_boolean elf_s390_object_p PARAMS ((bfd *)); static int elf_s390_tls_transition PARAMS ((struct bfd_link_info *, int, int)); static bfd_reloc_status_type s390_tls_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_vma dtpoff_base PARAMS ((struct bfd_link_info *)); static bfd_vma tpoff PARAMS ((struct bfd_link_info *, bfd_vma)); static void invalid_tls_insn PARAMS ((bfd *, asection *, Elf_Internal_Rela *)); static bfd_reloc_status_type s390_elf_ldisp_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); #include "elf/s390.h" /* In case we're on a 32-bit machine, construct a 64-bit "-1" value from smaller values. Start with zero, widen, *then* decrement. */ #define MINUS_ONE (((bfd_vma)0) - 1) /* The relocation "howto" table. */ static reloc_howto_type elf_howto_table[] = { HOWTO (R_390_NONE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_390_NONE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO(R_390_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_8", FALSE, 0,0x000000ff, FALSE), HOWTO(R_390_12, 0, 1, 12, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_12", FALSE, 0,0x00000fff, FALSE), HOWTO(R_390_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_16", FALSE, 0,0x0000ffff, FALSE), HOWTO(R_390_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_32", FALSE, 0,0xffffffff, FALSE), HOWTO(R_390_PC32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32", FALSE, 0,0xffffffff, TRUE), HOWTO(R_390_GOT12, 0, 1, 12, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT12", FALSE, 0,0x00000fff, FALSE), HOWTO(R_390_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT32", FALSE, 0,0xffffffff, FALSE), HOWTO(R_390_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32", FALSE, 0,0xffffffff, TRUE), HOWTO(R_390_COPY, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_COPY", FALSE, 0,MINUS_ONE, FALSE), HOWTO(R_390_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GLOB_DAT", FALSE, 0,MINUS_ONE, FALSE), HOWTO(R_390_JMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_JMP_SLOT", FALSE, 0,MINUS_ONE, FALSE), HOWTO(R_390_RELATIVE, 0, 4, 64, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_RELATIVE", FALSE, 0,MINUS_ONE, FALSE), HOWTO(R_390_GOTOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF32", FALSE, 0,MINUS_ONE, FALSE), HOWTO(R_390_GOTPC, 0, 4, 64, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPC", FALSE, 0,MINUS_ONE, TRUE), HOWTO(R_390_GOT16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT16", FALSE, 0,0x0000ffff, FALSE), HOWTO(R_390_PC16, 0, 1, 16, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16", FALSE, 0,0x0000ffff, TRUE), HOWTO(R_390_PC16DBL, 1, 1, 16, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16DBL", FALSE, 0,0x0000ffff, TRUE), HOWTO(R_390_PLT16DBL, 1, 1, 16, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT16DBL", FALSE, 0,0x0000ffff, TRUE), HOWTO(R_390_PC32DBL, 1, 2, 32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32DBL", FALSE, 0,0xffffffff, TRUE), HOWTO(R_390_PLT32DBL, 1, 2, 32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32DBL", FALSE, 0,0xffffffff, TRUE), HOWTO(R_390_GOTPCDBL, 1, 2, 32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPCDBL", FALSE, 0,MINUS_ONE, TRUE), HOWTO(R_390_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_64", FALSE, 0,MINUS_ONE, FALSE), HOWTO(R_390_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC64", FALSE, 0,MINUS_ONE, TRUE), HOWTO(R_390_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT64", FALSE, 0,MINUS_ONE, FALSE), HOWTO(R_390_PLT64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT64", FALSE, 0,MINUS_ONE, TRUE), HOWTO(R_390_GOTENT, 1, 2, 32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTENT", FALSE, 0,MINUS_ONE, TRUE), HOWTO(R_390_GOTOFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF16", FALSE, 0,0x0000ffff, FALSE), HOWTO(R_390_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF64", FALSE, 0,MINUS_ONE, FALSE), HOWTO(R_390_GOTPLT12, 0, 1, 12, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_GOTPLT12", FALSE, 0,0x00000fff, FALSE), HOWTO(R_390_GOTPLT16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPLT16", FALSE, 0,0x0000ffff, FALSE), HOWTO(R_390_GOTPLT32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPLT32", FALSE, 0,0xffffffff, FALSE), HOWTO(R_390_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPLT64", FALSE, 0,MINUS_ONE, FALSE), HOWTO(R_390_GOTPLTENT, 1, 2, 32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPLTENT",FALSE, 0,MINUS_ONE, TRUE), HOWTO(R_390_PLTOFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLTOFF16", FALSE, 0,0x0000ffff, FALSE), HOWTO(R_390_PLTOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLTOFF32", FALSE, 0,0xffffffff, FALSE), HOWTO(R_390_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLTOFF64", FALSE, 0,MINUS_ONE, FALSE), HOWTO(R_390_TLS_LOAD, 0, 0, 0, FALSE, 0, complain_overflow_dont, s390_tls_reloc, "R_390_TLS_LOAD", FALSE, 0, 0, FALSE), HOWTO(R_390_TLS_GDCALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, s390_tls_reloc, "R_390_TLS_GDCALL", FALSE, 0, 0, FALSE), HOWTO(R_390_TLS_LDCALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, s390_tls_reloc, "R_390_TLS_LDCALL", FALSE, 0, 0, FALSE), EMPTY_HOWTO (R_390_TLS_GD32), /* Empty entry for R_390_TLS_GD32. */ HOWTO(R_390_TLS_GD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_TLS_GD64", FALSE, 0, MINUS_ONE, FALSE), HOWTO(R_390_TLS_GOTIE12, 0, 1, 12, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_TLS_GOTIE12", FALSE, 0, 0x00000fff, FALSE), EMPTY_HOWTO (R_390_TLS_GOTIE32), /* Empty entry for R_390_TLS_GOTIE32. */ HOWTO(R_390_TLS_GOTIE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_TLS_GOTIE64", FALSE, 0, MINUS_ONE, FALSE), EMPTY_HOWTO (R_390_TLS_LDM32), /* Empty entry for R_390_TLS_LDM32. */ HOWTO(R_390_TLS_LDM64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_TLS_LDM64", FALSE, 0, MINUS_ONE, FALSE), EMPTY_HOWTO (R_390_TLS_IE32), /* Empty entry for R_390_TLS_IE32. */ HOWTO(R_390_TLS_IE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_TLS_IE64", FALSE, 0, MINUS_ONE, FALSE), HOWTO(R_390_TLS_IEENT, 1, 2, 32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_TLS_IEENT", FALSE, 0, MINUS_ONE, TRUE), EMPTY_HOWTO (R_390_TLS_LE32), /* Empty entry for R_390_TLS_LE32. */ HOWTO(R_390_TLS_LE64, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_TLS_LE64", FALSE, 0, MINUS_ONE, FALSE), EMPTY_HOWTO (R_390_TLS_LDO32), /* Empty entry for R_390_TLS_LDO32. */ HOWTO(R_390_TLS_LDO64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_TLS_LDO64", FALSE, 0, MINUS_ONE, FALSE), HOWTO(R_390_TLS_DTPMOD, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_TLS_DTPMOD", FALSE, 0, MINUS_ONE, FALSE), HOWTO(R_390_TLS_DTPOFF, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_TLS_DTPOFF", FALSE, 0, MINUS_ONE, FALSE), HOWTO(R_390_TLS_TPOFF, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_TLS_TPOFF", FALSE, 0, MINUS_ONE, FALSE), HOWTO(R_390_20, 0, 2, 20, FALSE, 8, complain_overflow_dont, s390_elf_ldisp_reloc, "R_390_20", FALSE, 0,0x0fffff00, FALSE), HOWTO(R_390_GOT20, 0, 2, 20, FALSE, 8, complain_overflow_dont, s390_elf_ldisp_reloc, "R_390_GOT20", FALSE, 0,0x0fffff00, FALSE), HOWTO(R_390_GOTPLT20, 0, 2, 20, FALSE, 8, complain_overflow_dont, s390_elf_ldisp_reloc, "R_390_GOTPLT20", FALSE, 0,0x0fffff00, FALSE), HOWTO(R_390_TLS_GOTIE20, 0, 2, 20, FALSE, 8, complain_overflow_dont, s390_elf_ldisp_reloc, "R_390_TLS_GOTIE20", FALSE, 0,0x0fffff00, FALSE), }; /* GNU extension to record C++ vtable hierarchy. */ static reloc_howto_type elf64_s390_vtinherit_howto = HOWTO (R_390_GNU_VTINHERIT, 0,4,0,FALSE,0,complain_overflow_dont, NULL, "R_390_GNU_VTINHERIT", FALSE,0, 0, FALSE); static reloc_howto_type elf64_s390_vtentry_howto = HOWTO (R_390_GNU_VTENTRY, 0,4,0,FALSE,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_390_GNU_VTENTRY", FALSE,0,0, FALSE); static reloc_howto_type * elf_s390_reloc_type_lookup (abfd, code) bfd *abfd ATTRIBUTE_UNUSED; bfd_reloc_code_real_type code; { switch (code) { case BFD_RELOC_NONE: return &elf_howto_table[(int) R_390_NONE]; case BFD_RELOC_8: return &elf_howto_table[(int) R_390_8]; case BFD_RELOC_390_12: return &elf_howto_table[(int) R_390_12]; case BFD_RELOC_16: return &elf_howto_table[(int) R_390_16]; case BFD_RELOC_32: return &elf_howto_table[(int) R_390_32]; case BFD_RELOC_CTOR: return &elf_howto_table[(int) R_390_32]; case BFD_RELOC_32_PCREL: return &elf_howto_table[(int) R_390_PC32]; case BFD_RELOC_390_GOT12: return &elf_howto_table[(int) R_390_GOT12]; case BFD_RELOC_32_GOT_PCREL: return &elf_howto_table[(int) R_390_GOT32]; case BFD_RELOC_390_PLT32: return &elf_howto_table[(int) R_390_PLT32]; case BFD_RELOC_390_COPY: return &elf_howto_table[(int) R_390_COPY]; case BFD_RELOC_390_GLOB_DAT: return &elf_howto_table[(int) R_390_GLOB_DAT]; case BFD_RELOC_390_JMP_SLOT: return &elf_howto_table[(int) R_390_JMP_SLOT]; case BFD_RELOC_390_RELATIVE: return &elf_howto_table[(int) R_390_RELATIVE]; case BFD_RELOC_32_GOTOFF: return &elf_howto_table[(int) R_390_GOTOFF32]; case BFD_RELOC_390_GOTPC: return &elf_howto_table[(int) R_390_GOTPC]; case BFD_RELOC_390_GOT16: return &elf_howto_table[(int) R_390_GOT16]; case BFD_RELOC_16_PCREL: return &elf_howto_table[(int) R_390_PC16]; case BFD_RELOC_390_PC16DBL: return &elf_howto_table[(int) R_390_PC16DBL]; case BFD_RELOC_390_PLT16DBL: return &elf_howto_table[(int) R_390_PLT16DBL]; case BFD_RELOC_390_PC32DBL: return &elf_howto_table[(int) R_390_PC32DBL]; case BFD_RELOC_390_PLT32DBL: return &elf_howto_table[(int) R_390_PLT32DBL]; case BFD_RELOC_390_GOTPCDBL: return &elf_howto_table[(int) R_390_GOTPCDBL]; case BFD_RELOC_64: return &elf_howto_table[(int) R_390_64]; case BFD_RELOC_64_PCREL: return &elf_howto_table[(int) R_390_PC64]; case BFD_RELOC_390_GOT64: return &elf_howto_table[(int) R_390_GOT64]; case BFD_RELOC_390_PLT64: return &elf_howto_table[(int) R_390_PLT64]; case BFD_RELOC_390_GOTENT: return &elf_howto_table[(int) R_390_GOTENT]; case BFD_RELOC_16_GOTOFF: return &elf_howto_table[(int) R_390_GOTOFF16]; case BFD_RELOC_390_GOTOFF64: return &elf_howto_table[(int) R_390_GOTOFF64]; case BFD_RELOC_390_GOTPLT12: return &elf_howto_table[(int) R_390_GOTPLT12]; case BFD_RELOC_390_GOTPLT16: return &elf_howto_table[(int) R_390_GOTPLT16]; case BFD_RELOC_390_GOTPLT32: return &elf_howto_table[(int) R_390_GOTPLT32]; case BFD_RELOC_390_GOTPLT64: return &elf_howto_table[(int) R_390_GOTPLT64]; case BFD_RELOC_390_GOTPLTENT: return &elf_howto_table[(int) R_390_GOTPLTENT]; case BFD_RELOC_390_PLTOFF16: return &elf_howto_table[(int) R_390_PLTOFF16]; case BFD_RELOC_390_PLTOFF32: return &elf_howto_table[(int) R_390_PLTOFF32]; case BFD_RELOC_390_PLTOFF64: return &elf_howto_table[(int) R_390_PLTOFF64]; case BFD_RELOC_390_TLS_LOAD: return &elf_howto_table[(int) R_390_TLS_LOAD]; case BFD_RELOC_390_TLS_GDCALL: return &elf_howto_table[(int) R_390_TLS_GDCALL]; case BFD_RELOC_390_TLS_LDCALL: return &elf_howto_table[(int) R_390_TLS_LDCALL]; case BFD_RELOC_390_TLS_GD64: return &elf_howto_table[(int) R_390_TLS_GD64]; case BFD_RELOC_390_TLS_GOTIE12: return &elf_howto_table[(int) R_390_TLS_GOTIE12]; case BFD_RELOC_390_TLS_GOTIE64: return &elf_howto_table[(int) R_390_TLS_GOTIE64]; case BFD_RELOC_390_TLS_LDM64: return &elf_howto_table[(int) R_390_TLS_LDM64]; case BFD_RELOC_390_TLS_IE64: return &elf_howto_table[(int) R_390_TLS_IE64]; case BFD_RELOC_390_TLS_IEENT: return &elf_howto_table[(int) R_390_TLS_IEENT]; case BFD_RELOC_390_TLS_LE64: return &elf_howto_table[(int) R_390_TLS_LE64]; case BFD_RELOC_390_TLS_LDO64: return &elf_howto_table[(int) R_390_TLS_LDO64]; case BFD_RELOC_390_TLS_DTPMOD: return &elf_howto_table[(int) R_390_TLS_DTPMOD]; case BFD_RELOC_390_TLS_DTPOFF: return &elf_howto_table[(int) R_390_TLS_DTPOFF]; case BFD_RELOC_390_TLS_TPOFF: return &elf_howto_table[(int) R_390_TLS_TPOFF]; case BFD_RELOC_390_20: return &elf_howto_table[(int) R_390_20]; case BFD_RELOC_390_GOT20: return &elf_howto_table[(int) R_390_GOT20]; case BFD_RELOC_390_GOTPLT20: return &elf_howto_table[(int) R_390_GOTPLT20]; case BFD_RELOC_390_TLS_GOTIE20: return &elf_howto_table[(int) R_390_TLS_GOTIE20]; case BFD_RELOC_VTABLE_INHERIT: return &elf64_s390_vtinherit_howto; case BFD_RELOC_VTABLE_ENTRY: return &elf64_s390_vtentry_howto; default: break; } return 0; } static reloc_howto_type * elf_s390_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) if (elf_howto_table[i].name != NULL && strcasecmp (elf_howto_table[i].name, r_name) == 0) return &elf_howto_table[i]; if (strcasecmp (elf64_s390_vtinherit_howto.name, r_name) == 0) return &elf64_s390_vtinherit_howto; if (strcasecmp (elf64_s390_vtentry_howto.name, r_name) == 0) return &elf64_s390_vtentry_howto; return NULL; } /* We need to use ELF64_R_TYPE so we have our own copy of this function, and elf64-s390.c has its own copy. */ static void elf_s390_info_to_howto (abfd, cache_ptr, dst) bfd *abfd ATTRIBUTE_UNUSED; arelent *cache_ptr; Elf_Internal_Rela *dst; { unsigned int r_type = ELF64_R_TYPE(dst->r_info); switch (r_type) { case R_390_GNU_VTINHERIT: cache_ptr->howto = &elf64_s390_vtinherit_howto; break; case R_390_GNU_VTENTRY: cache_ptr->howto = &elf64_s390_vtentry_howto; break; default: if (r_type >= sizeof (elf_howto_table) / sizeof (elf_howto_table[0])) { (*_bfd_error_handler) (_("%B: invalid relocation type %d"), abfd, (int) r_type); r_type = R_390_NONE; } cache_ptr->howto = &elf_howto_table[r_type]; } } /* A relocation function which doesn't do anything. */ static bfd_reloc_status_type s390_tls_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd ATTRIBUTE_UNUSED; arelent *reloc_entry; asymbol *symbol ATTRIBUTE_UNUSED; PTR data ATTRIBUTE_UNUSED; asection *input_section; bfd *output_bfd; char **error_message ATTRIBUTE_UNUSED; { if (output_bfd) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Handle the large displacement relocs. */ static bfd_reloc_status_type s390_elf_ldisp_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message ATTRIBUTE_UNUSED; { reloc_howto_type *howto = reloc_entry->howto; bfd_vma relocation; bfd_vma insn; if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) return bfd_reloc_continue; if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; relocation = (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset); relocation += reloc_entry->addend; if (howto->pc_relative) { relocation -= (input_section->output_section->vma + input_section->output_offset); relocation -= reloc_entry->address; } insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); insn |= (relocation & 0xfff) << 16 | (relocation & 0xff000) >> 4; bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); if ((bfd_signed_vma) relocation < - 0x80000 || (bfd_signed_vma) relocation > 0x7ffff) return bfd_reloc_overflow; else return bfd_reloc_ok; } static bfd_boolean elf_s390_is_local_label_name (abfd, name) bfd *abfd; const char *name; { if (name[0] == '.' && (name[1] == 'X' || name[1] == 'L')) return TRUE; return _bfd_elf_is_local_label_name (abfd, name); } /* Functions for the 390 ELF linker. */ /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid copying dynamic variables from a shared lib into an app's dynbss section, and instead use a dynamic relocation to point into the shared lib. */ #define ELIMINATE_COPY_RELOCS 1 /* The size in bytes of the first entry in the procedure linkage table. */ #define PLT_FIRST_ENTRY_SIZE 32 /* The size in bytes of an entry in the procedure linkage table. */ #define PLT_ENTRY_SIZE 32 #define GOT_ENTRY_SIZE 8 /* The first three entries in a procedure linkage table are reserved, and the initial contents are unimportant (we zero them out). Subsequent entries look like this. See the SVR4 ABI 386 supplement to see how this works. */ /* For the s390, simple addr offset can only be 0 - 4096. To use the full 16777216 TB address space, several instructions are needed to load an address in a register and execute a branch( or just saving the address) Furthermore, only r 0 and 1 are free to use!!! */ /* The first 3 words in the GOT are then reserved. Word 0 is the address of the dynamic table. Word 1 is a pointer to a structure describing the object Word 2 is used to point to the loader entry address. The code for PLT entries looks like this: The GOT holds the address in the PLT to be executed. The loader then gets: 24(15) = Pointer to the structure describing the object. 28(15) = Offset in symbol table The loader must then find the module where the function is and insert the address in the GOT. PLT1: LARL 1,<fn>@GOTENT # 6 bytes Load address of GOT entry in r1 LG 1,0(1) # 6 bytes Load address from GOT in r1 BCR 15,1 # 2 bytes Jump to address RET1: BASR 1,0 # 2 bytes Return from GOT 1st time LGF 1,12(1) # 6 bytes Load offset in symbl table in r1 BRCL 15,-x # 6 bytes Jump to start of PLT .long ? # 4 bytes offset into symbol table Total = 32 bytes per PLT entry Fixup at offset 2: relative address to GOT entry Fixup at offset 22: relative branch to PLT0 Fixup at offset 28: 32 bit offset into symbol table A 32 bit offset into the symbol table is enough. It allows for symbol tables up to a size of 2 gigabyte. A single dynamic object (the main program, any shared library) is limited to 4GB in size and I want to see the program that manages to have a symbol table of more than 2 GB with a total size of at max 4 GB. */ #define PLT_ENTRY_WORD0 (bfd_vma) 0xc0100000 #define PLT_ENTRY_WORD1 (bfd_vma) 0x0000e310 #define PLT_ENTRY_WORD2 (bfd_vma) 0x10000004 #define PLT_ENTRY_WORD3 (bfd_vma) 0x07f10d10 #define PLT_ENTRY_WORD4 (bfd_vma) 0xe310100c #define PLT_ENTRY_WORD5 (bfd_vma) 0x0014c0f4 #define PLT_ENTRY_WORD6 (bfd_vma) 0x00000000 #define PLT_ENTRY_WORD7 (bfd_vma) 0x00000000 /* The first PLT entry pushes the offset into the symbol table from R1 onto the stack at 8(15) and the loader object info at 12(15), loads the loader address in R1 and jumps to it. */ /* The first entry in the PLT: PLT0: STG 1,56(15) # r1 contains the offset into the symbol table LARL 1,_GLOBAL_OFFSET_TABLE # load address of global offset table MVC 48(8,15),8(1) # move loader ino (object struct address) to stack LG 1,16(1) # get entry address of loader BCR 15,1 # jump to loader Fixup at offset 8: relative address to start of GOT. */ #define PLT_FIRST_ENTRY_WORD0 (bfd_vma) 0xe310f038 #define PLT_FIRST_ENTRY_WORD1 (bfd_vma) 0x0024c010 #define PLT_FIRST_ENTRY_WORD2 (bfd_vma) 0x00000000 #define PLT_FIRST_ENTRY_WORD3 (bfd_vma) 0xd207f030 #define PLT_FIRST_ENTRY_WORD4 (bfd_vma) 0x1008e310 #define PLT_FIRST_ENTRY_WORD5 (bfd_vma) 0x10100004 #define PLT_FIRST_ENTRY_WORD6 (bfd_vma) 0x07f10700 #define PLT_FIRST_ENTRY_WORD7 (bfd_vma) 0x07000700 /* The s390 linker needs to keep track of the number of relocs that it decides to copy as dynamic relocs in check_relocs for each symbol. This is so that it can later discard them if they are found to be unnecessary. We store the information in a field extending the regular ELF linker hash table. */ struct elf_s390_dyn_relocs { struct elf_s390_dyn_relocs *next; /* The input section of the reloc. */ asection *sec; /* Total number of relocs copied for the input section. */ bfd_size_type count; /* Number of pc-relative relocs copied for the input section. */ bfd_size_type pc_count; }; /* s390 ELF linker hash entry. */ struct elf_s390_link_hash_entry { struct elf_link_hash_entry elf; /* Track dynamic relocs copied for this symbol. */ struct elf_s390_dyn_relocs *dyn_relocs; /* Number of GOTPLT references for a function. */ bfd_signed_vma gotplt_refcount; #define GOT_UNKNOWN 0 #define GOT_NORMAL 1 #define GOT_TLS_GD 2 #define GOT_TLS_IE 3 #define GOT_TLS_IE_NLT 3 unsigned char tls_type; }; #define elf_s390_hash_entry(ent) \ ((struct elf_s390_link_hash_entry *)(ent)) /* NOTE: Keep this structure in sync with the one declared in elf32-s390.c. */ struct elf_s390_obj_tdata { struct elf_obj_tdata root; /* TLS type for each local got entry. */ char *local_got_tls_type; }; #define elf_s390_tdata(abfd) \ ((struct elf_s390_obj_tdata *) (abfd)->tdata.any) #define elf_s390_local_got_tls_type(abfd) \ (elf_s390_tdata (abfd)->local_got_tls_type) #define is_s390_elf(bfd) \ (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ && elf_tdata (bfd) != NULL \ && elf_object_id (bfd) == S390_ELF_DATA) static bfd_boolean elf_s390_mkobject (bfd *abfd) { return bfd_elf_allocate_object (abfd, sizeof (struct elf_s390_obj_tdata), S390_ELF_DATA); } static bfd_boolean elf_s390_object_p (abfd) bfd *abfd; { /* Set the right machine number for an s390 elf32 file. */ return bfd_default_set_arch_mach (abfd, bfd_arch_s390, bfd_mach_s390_64); } /* s390 ELF linker hash table. */ struct elf_s390_link_hash_table { struct elf_link_hash_table elf; /* Short-cuts to get to dynamic linker sections. */ asection *sgot; asection *sgotplt; asection *srelgot; asection *splt; asection *srelplt; asection *sdynbss; asection *srelbss; union { bfd_signed_vma refcount; bfd_vma offset; } tls_ldm_got; /* Small local sym cache. */ struct sym_cache sym_cache; }; /* Get the s390 ELF linker hash table from a link_info structure. */ #define elf_s390_hash_table(p) \ (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ == S390_ELF_DATA ? ((struct elf_s390_link_hash_table *) ((p)->hash)) : NULL) /* Create an entry in an s390 ELF linker hash table. */ static struct bfd_hash_entry * link_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct elf_s390_link_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = _bfd_elf_link_hash_newfunc (entry, table, string); if (entry != NULL) { struct elf_s390_link_hash_entry *eh; eh = (struct elf_s390_link_hash_entry *) entry; eh->dyn_relocs = NULL; eh->gotplt_refcount = 0; eh->tls_type = GOT_UNKNOWN; } return entry; } /* Create an s390 ELF linker hash table. */ static struct bfd_link_hash_table * elf_s390_link_hash_table_create (abfd) bfd *abfd; { struct elf_s390_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf_s390_link_hash_table); ret = (struct elf_s390_link_hash_table *) bfd_malloc (amt); if (ret == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc, sizeof (struct elf_s390_link_hash_entry), S390_ELF_DATA)) { free (ret); return NULL; } ret->sgot = NULL; ret->sgotplt = NULL; ret->srelgot = NULL; ret->splt = NULL; ret->srelplt = NULL; ret->sdynbss = NULL; ret->srelbss = NULL; ret->tls_ldm_got.refcount = 0; ret->sym_cache.abfd = NULL; return &ret->elf.root; } /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bfd_boolean create_got_section (bfd *dynobj, struct bfd_link_info *info) { struct elf_s390_link_hash_table *htab; if (! _bfd_elf_create_got_section (dynobj, info)) return FALSE; htab = elf_s390_hash_table (info); if (htab == NULL) return FALSE; htab->sgot = bfd_get_section_by_name (dynobj, ".got"); htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); if (!htab->sgot || !htab->sgotplt || !htab->srelgot) abort (); return TRUE; } /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bfd_boolean elf_s390_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) { struct elf_s390_link_hash_table *htab; htab = elf_s390_hash_table (info); if (htab == NULL) return FALSE; if (!htab->sgot && !create_got_section (dynobj, info)) return FALSE; if (!_bfd_elf_create_dynamic_sections (dynobj, info)) return FALSE; htab->splt = bfd_get_section_by_name (dynobj, ".plt"); htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss"); if (!info->shared) htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss"); if (!htab->splt || !htab->srelplt || !htab->sdynbss || (!info->shared && !htab->srelbss)) abort (); return TRUE; } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void elf_s390_copy_indirect_symbol (info, dir, ind) struct bfd_link_info *info; struct elf_link_hash_entry *dir, *ind; { struct elf_s390_link_hash_entry *edir, *eind; edir = (struct elf_s390_link_hash_entry *) dir; eind = (struct elf_s390_link_hash_entry *) ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct elf_s390_dyn_relocs **pp; struct elf_s390_dyn_relocs *p; /* Add reloc counts against the indirect sym to the direct sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) { struct elf_s390_dyn_relocs *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } if (ind->root.type == bfd_link_hash_indirect && dir->got.refcount <= 0) { edir->tls_type = eind->tls_type; eind->tls_type = GOT_UNKNOWN; } if (ELIMINATE_COPY_RELOCS && ind->root.type != bfd_link_hash_indirect && dir->dynamic_adjusted) { /* If called to transfer flags for a weakdef during processing of elf_adjust_dynamic_symbol, don't copy non_got_ref. We clear it ourselves for ELIMINATE_COPY_RELOCS. */ dir->ref_dynamic |= ind->ref_dynamic; dir->ref_regular |= ind->ref_regular; dir->ref_regular_nonweak |= ind->ref_regular_nonweak; dir->needs_plt |= ind->needs_plt; } else _bfd_elf_link_hash_copy_indirect (info, dir, ind); } static int elf_s390_tls_transition (info, r_type, is_local) struct bfd_link_info *info; int r_type; int is_local; { if (info->shared) return r_type; switch (r_type) { case R_390_TLS_GD64: case R_390_TLS_IE64: if (is_local) return R_390_TLS_LE64; return R_390_TLS_IE64; case R_390_TLS_GOTIE64: if (is_local) return R_390_TLS_LE64; return R_390_TLS_GOTIE64; case R_390_TLS_LDM64: return R_390_TLS_LE64; } return r_type; } /* Look through the relocs for a section during the first phase, and allocate space in the global offset table or procedure linkage table. */ static bfd_boolean elf_s390_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { struct elf_s390_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sreloc; bfd_signed_vma *local_got_refcounts; int tls_type, old_tls_type; if (info->relocatable) return TRUE; BFD_ASSERT (is_s390_elf (abfd)); htab = elf_s390_hash_table (info); if (htab == NULL) return FALSE; symtab_hdr = &elf_symtab_hdr (abfd); sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); sreloc = NULL; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { unsigned int r_type; unsigned long r_symndx; struct elf_link_hash_entry *h; r_symndx = ELF64_R_SYM (rel->r_info); if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) { (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd, r_symndx); return FALSE; } if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } /* Create got section and local_got_refcounts array if they are needed. */ r_type = elf_s390_tls_transition (info, ELF64_R_TYPE (rel->r_info), h == NULL); switch (r_type) { case R_390_GOT12: case R_390_GOT16: case R_390_GOT20: case R_390_GOT32: case R_390_GOT64: case R_390_GOTENT: case R_390_GOTPLT12: case R_390_GOTPLT16: case R_390_GOTPLT20: case R_390_GOTPLT32: case R_390_GOTPLT64: case R_390_GOTPLTENT: case R_390_TLS_GD64: case R_390_TLS_GOTIE12: case R_390_TLS_GOTIE20: case R_390_TLS_GOTIE64: case R_390_TLS_IEENT: case R_390_TLS_IE64: case R_390_TLS_LDM64: if (h == NULL && local_got_refcounts == NULL) { bfd_size_type size; size = symtab_hdr->sh_info; size *= (sizeof (bfd_signed_vma) + sizeof(char)); local_got_refcounts = ((bfd_signed_vma *) bfd_zalloc (abfd, size)); if (local_got_refcounts == NULL) return FALSE; elf_local_got_refcounts (abfd) = local_got_refcounts; elf_s390_local_got_tls_type (abfd) = (char *) (local_got_refcounts + symtab_hdr->sh_info); } /* Fall through. */ case R_390_GOTOFF16: case R_390_GOTOFF32: case R_390_GOTOFF64: case R_390_GOTPC: case R_390_GOTPCDBL: if (htab->sgot == NULL) { if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; if (!create_got_section (htab->elf.dynobj, info)) return FALSE; } } switch (r_type) { case R_390_GOTOFF16: case R_390_GOTOFF32: case R_390_GOTOFF64: case R_390_GOTPC: case R_390_GOTPCDBL: /* Got is created, nothing to be done. */ break; case R_390_PLT16DBL: case R_390_PLT32: case R_390_PLT32DBL: case R_390_PLT64: case R_390_PLTOFF16: case R_390_PLTOFF32: case R_390_PLTOFF64: /* This symbol requires a procedure linkage table entry. We actually build the entry in adjust_dynamic_symbol, because this might be a case of linking PIC code which is never referenced by a dynamic object, in which case we don't need to generate a procedure linkage table entry after all. */ /* If this is a local symbol, we resolve it directly without creating a procedure linkage table entry. */ if (h != NULL) { h->needs_plt = 1; h->plt.refcount += 1; } break; case R_390_GOTPLT12: case R_390_GOTPLT16: case R_390_GOTPLT20: case R_390_GOTPLT32: case R_390_GOTPLT64: case R_390_GOTPLTENT: /* This symbol requires either a procedure linkage table entry or an entry in the local got. We actually build the entry in adjust_dynamic_symbol because whether this is really a global reference can change and with it the fact if we have to create a plt entry or a local got entry. To be able to make a once global symbol a local one we have to keep track of the number of gotplt references that exist for this symbol. */ if (h != NULL) { ((struct elf_s390_link_hash_entry *) h)->gotplt_refcount++; h->needs_plt = 1; h->plt.refcount += 1; } else local_got_refcounts[r_symndx] += 1; break; case R_390_TLS_LDM64: htab->tls_ldm_got.refcount += 1; break; case R_390_TLS_IE64: case R_390_TLS_GOTIE12: case R_390_TLS_GOTIE20: case R_390_TLS_GOTIE64: case R_390_TLS_IEENT: if (info->shared) info->flags |= DF_STATIC_TLS; /* Fall through */ case R_390_GOT12: case R_390_GOT16: case R_390_GOT20: case R_390_GOT32: case R_390_GOT64: case R_390_GOTENT: case R_390_TLS_GD64: /* This symbol requires a global offset table entry. */ switch (r_type) { default: case R_390_GOT12: case R_390_GOT16: case R_390_GOT20: case R_390_GOT32: case R_390_GOTENT: tls_type = GOT_NORMAL; break; case R_390_TLS_GD64: tls_type = GOT_TLS_GD; break; case R_390_TLS_IE64: case R_390_TLS_GOTIE64: tls_type = GOT_TLS_IE; break; case R_390_TLS_GOTIE12: case R_390_TLS_GOTIE20: case R_390_TLS_IEENT: tls_type = GOT_TLS_IE_NLT; break; } if (h != NULL) { h->got.refcount += 1; old_tls_type = elf_s390_hash_entry(h)->tls_type; } else { local_got_refcounts[r_symndx] += 1; old_tls_type = elf_s390_local_got_tls_type (abfd) [r_symndx]; } /* If a TLS symbol is accessed using IE at least once, there is no point to use dynamic model for it. */ if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN) { if (old_tls_type == GOT_NORMAL || tls_type == GOT_NORMAL) { (*_bfd_error_handler) (_("%B: `%s' accessed both as normal and thread local symbol"), abfd, h->root.root.string); return FALSE; } if (old_tls_type > tls_type) tls_type = old_tls_type; } if (old_tls_type != tls_type) { if (h != NULL) elf_s390_hash_entry (h)->tls_type = tls_type; else elf_s390_local_got_tls_type (abfd) [r_symndx] = tls_type; } if (r_type != R_390_TLS_IE64) break; /* Fall through */ case R_390_TLS_LE64: if (!info->shared) break; info->flags |= DF_STATIC_TLS; /* Fall through */ case R_390_8: case R_390_16: case R_390_32: case R_390_64: case R_390_PC16: case R_390_PC16DBL: case R_390_PC32: case R_390_PC32DBL: case R_390_PC64: if (h != NULL && !info->shared) { /* If this reloc is in a read-only section, we might need a copy reloc. We can't check reliably at this stage whether the section is read-only, as input sections have not yet been mapped to output sections. Tentatively set the flag for now, and correct in adjust_dynamic_symbol. */ h->non_got_ref = 1; /* We may need a .plt entry if the function this reloc refers to is in a shared lib. */ h->plt.refcount += 1; } /* If we are creating a shared library, and this is a reloc against a global symbol, or a non PC relative reloc against a local symbol, then we need to copy the reloc into the shared library. However, if we are linking with -Bsymbolic, we do not need to copy a reloc against a global symbol which is defined in an object we are including in the link (i.e., DEF_REGULAR is set). At this point we have not seen all the input files, so it is possible that DEF_REGULAR is not set now but will be set later (it is never cleared). In case of a weak definition, DEF_REGULAR may be cleared later by a strong definition in a shared library. We account for that possibility below by storing information in the relocs_copied field of the hash table entry. A similar situation occurs when creating shared libraries and symbol visibility changes render the symbol local. If on the other hand, we are creating an executable, we may need to keep relocations for symbols satisfied by a dynamic library if we manage to avoid copy relocs for the symbol. */ if ((info->shared && (sec->flags & SEC_ALLOC) != 0 && ((ELF64_R_TYPE (rel->r_info) != R_390_PC16 && ELF64_R_TYPE (rel->r_info) != R_390_PC16DBL && ELF64_R_TYPE (rel->r_info) != R_390_PC32 && ELF64_R_TYPE (rel->r_info) != R_390_PC32DBL && ELF64_R_TYPE (rel->r_info) != R_390_PC64) || (h != NULL && (! SYMBOLIC_BIND (info, h) || h->root.type == bfd_link_hash_defweak || !h->def_regular)))) || (ELIMINATE_COPY_RELOCS && !info->shared && (sec->flags & SEC_ALLOC) != 0 && h != NULL && (h->root.type == bfd_link_hash_defweak || !h->def_regular))) { struct elf_s390_dyn_relocs *p; struct elf_s390_dyn_relocs **head; /* We must copy these reloc types into the output file. Create a reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; sreloc = _bfd_elf_make_dynamic_reloc_section (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE); if (sreloc == NULL) return FALSE; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) { head = &((struct elf_s390_link_hash_entry *) h)->dyn_relocs; } else { /* Track dynamic relocs needed for local syms too. We really need local syms available to do this easily. Oh well. */ asection *s; void *vpp; Elf_Internal_Sym *isym; isym = bfd_sym_from_r_symndx (&htab->sym_cache, abfd, r_symndx); if (isym == NULL) return FALSE; s = bfd_section_from_elf_index (abfd, isym->st_shndx); if (s == NULL) s = sec; vpp = &elf_section_data (s)->local_dynrel; head = (struct elf_s390_dyn_relocs **) vpp; } p = *head; if (p == NULL || p->sec != sec) { bfd_size_type amt = sizeof *p; p = ((struct elf_s390_dyn_relocs *) bfd_alloc (htab->elf.dynobj, amt)); if (p == NULL) return FALSE; p->next = *head; *head = p; p->sec = sec; p->count = 0; p->pc_count = 0; } p->count += 1; if (ELF64_R_TYPE (rel->r_info) == R_390_PC16 || ELF64_R_TYPE (rel->r_info) == R_390_PC16DBL || ELF64_R_TYPE (rel->r_info) == R_390_PC32 || ELF64_R_TYPE (rel->r_info) == R_390_PC32DBL || ELF64_R_TYPE (rel->r_info) == R_390_PC64) p->pc_count += 1; } break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_390_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_390_GNU_VTENTRY: BFD_ASSERT (h != NULL); if (h != NULL && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) return FALSE; break; default: break; } } return TRUE; } /* Return the section that should be marked against GC for a given relocation. */ static asection * elf_s390_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) switch (ELF64_R_TYPE (rel->r_info)) { case R_390_GNU_VTINHERIT: case R_390_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } /* Update the got entry reference counts for the section being removed. */ static bfd_boolean elf_s390_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { struct elf_s390_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; if (info->relocatable) return TRUE; htab = elf_s390_hash_table (info); if (htab == NULL) return FALSE; elf_section_data (sec)->local_dynrel = NULL; symtab_hdr = &elf_symtab_hdr (abfd); sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) { unsigned long r_symndx; unsigned int r_type; struct elf_link_hash_entry *h = NULL; r_symndx = ELF64_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { struct elf_s390_link_hash_entry *eh; struct elf_s390_dyn_relocs **pp; struct elf_s390_dyn_relocs *p; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; eh = (struct elf_s390_link_hash_entry *) h; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) if (p->sec == sec) { /* Everything must go for SEC. */ *pp = p->next; break; } } r_type = ELF64_R_TYPE (rel->r_info); r_type = elf_s390_tls_transition (info, r_type, h != NULL); switch (r_type) { case R_390_TLS_LDM64: if (htab->tls_ldm_got.refcount > 0) htab->tls_ldm_got.refcount -= 1; break; case R_390_TLS_GD64: case R_390_TLS_IE64: case R_390_TLS_GOTIE12: case R_390_TLS_GOTIE20: case R_390_TLS_GOTIE64: case R_390_TLS_IEENT: case R_390_GOT12: case R_390_GOT16: case R_390_GOT20: case R_390_GOT32: case R_390_GOT64: case R_390_GOTOFF16: case R_390_GOTOFF32: case R_390_GOTOFF64: case R_390_GOTPC: case R_390_GOTPCDBL: case R_390_GOTENT: if (h != NULL) { if (h->got.refcount > 0) h->got.refcount -= 1; } else if (local_got_refcounts != NULL) { if (local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx] -= 1; } break; case R_390_8: case R_390_12: case R_390_16: case R_390_20: case R_390_32: case R_390_64: case R_390_PC16: case R_390_PC16DBL: case R_390_PC32: case R_390_PC32DBL: case R_390_PC64: if (info->shared) break; /* Fall through */ case R_390_PLT16DBL: case R_390_PLT32: case R_390_PLT32DBL: case R_390_PLT64: case R_390_PLTOFF16: case R_390_PLTOFF32: case R_390_PLTOFF64: if (h != NULL) { if (h->plt.refcount > 0) h->plt.refcount -= 1; } break; case R_390_GOTPLT12: case R_390_GOTPLT16: case R_390_GOTPLT20: case R_390_GOTPLT32: case R_390_GOTPLT64: case R_390_GOTPLTENT: if (h != NULL) { if (h->plt.refcount > 0) { ((struct elf_s390_link_hash_entry *) h)->gotplt_refcount--; h->plt.refcount -= 1; } } else if (local_got_refcounts != NULL) { if (local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx] -= 1; } break; default: break; } } return TRUE; } /* Make sure we emit a GOT entry if the symbol was supposed to have a PLT entry but we found we will not create any. Called when we find we will not have any PLT for this symbol, by for example elf_s390_adjust_dynamic_symbol when we're doing a proper dynamic link, or elf_s390_size_dynamic_sections if no dynamic sections will be created (we're only linking static objects). */ static void elf_s390_adjust_gotplt (h) struct elf_s390_link_hash_entry *h; { if (h->elf.root.type == bfd_link_hash_warning) h = (struct elf_s390_link_hash_entry *) h->elf.root.u.i.link; if (h->gotplt_refcount <= 0) return; /* We simply add the number of gotplt references to the number * of got references for this symbol. */ h->elf.got.refcount += h->gotplt_refcount; h->gotplt_refcount = -1; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean elf_s390_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { struct elf_s390_link_hash_table *htab; asection *s; /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later (although we could actually do it here). */ if (h->type == STT_FUNC || h->needs_plt) { if (h->plt.refcount <= 0 || SYMBOL_CALLS_LOCAL (info, h) || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT && h->root.type == bfd_link_hash_undefweak)) { /* This case can occur if we saw a PLT32 reloc in an input file, but the symbol was never referred to by a dynamic object, or if all references were garbage collected. In such a case, we don't actually need to build a procedure linkage table, and we can just do a PC32 reloc instead. */ h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; elf_s390_adjust_gotplt((struct elf_s390_link_hash_entry *) h); } return TRUE; } else /* It's possible that we incorrectly decided a .plt reloc was needed for an R_390_PC32 reloc to a non-function sym in check_relocs. We can't decide accurately between function and non-function syms in check-relocs; Objects loaded later in the link may change h->type. So fix it now. */ h->plt.offset = (bfd_vma) -1; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) h->non_got_ref = h->u.weakdef->non_got_ref; return TRUE; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return TRUE; /* If there are no references to this symbol that do not use the GOT, we don't need to generate a copy reloc. */ if (!h->non_got_ref) return TRUE; /* If -z nocopyreloc was given, we won't generate them either. */ if (info->nocopyreloc) { h->non_got_ref = 0; return TRUE; } if (ELIMINATE_COPY_RELOCS) { struct elf_s390_link_hash_entry * eh; struct elf_s390_dyn_relocs *p; eh = (struct elf_s390_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) break; } /* If we didn't find any dynamic relocs in read-only sections, then we'll be keeping the dynamic relocs and avoiding the copy reloc. */ if (p == NULL) { h->non_got_ref = 0; return TRUE; } } if (h->size == 0) { (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), h->root.root.string); return TRUE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ htab = elf_s390_hash_table (info); if (htab == NULL) return FALSE; /* We must generate a R_390_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { htab->srelbss->size += sizeof (Elf64_External_Rela); h->needs_copy = 1; } s = htab->sdynbss; return _bfd_elf_adjust_dynamic_copy (h, s); } /* Allocate space in .plt, .got and associated reloc sections for dynamic relocs. */ static bfd_boolean allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf) { struct bfd_link_info *info; struct elf_s390_link_hash_table *htab; struct elf_s390_link_hash_entry *eh; struct elf_s390_dyn_relocs *p; if (h->root.type == bfd_link_hash_indirect) return TRUE; info = (struct bfd_link_info *) inf; htab = elf_s390_hash_table (info); if (htab == NULL) return FALSE; if (htab->elf.dynamic_sections_created && h->plt.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) { asection *s = htab->splt; /* If this is the first .plt entry, make room for the special first entry. */ if (s->size == 0) s->size += PLT_FIRST_ENTRY_SIZE; h->plt.offset = s->size; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (! info->shared && !h->def_regular) { h->root.u.def.section = s; h->root.u.def.value = h->plt.offset; } /* Make room for this entry. */ s->size += PLT_ENTRY_SIZE; /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ htab->sgotplt->size += GOT_ENTRY_SIZE; /* We also need to make an entry in the .rela.plt section. */ htab->srelplt->size += sizeof (Elf64_External_Rela); } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; elf_s390_adjust_gotplt((struct elf_s390_link_hash_entry *) h); } } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; elf_s390_adjust_gotplt((struct elf_s390_link_hash_entry *) h); } /* If R_390_TLS_{IE64,GOTIE64,GOTIE12,IEENT} symbol is now local to the binary, we can optimize a bit. IE64 and GOTIE64 get converted to R_390_TLS_LE64 requiring no TLS entry. For GOTIE12 and IEENT we can save the dynamic TLS relocation. */ if (h->got.refcount > 0 && !info->shared && h->dynindx == -1 && elf_s390_hash_entry(h)->tls_type >= GOT_TLS_IE) { if (elf_s390_hash_entry(h)->tls_type == GOT_TLS_IE_NLT) /* For the GOTIE access without a literal pool entry the offset has to be stored somewhere. The immediate value in the instruction is not bit enough so the value is stored in the got. */ { h->got.offset = htab->sgot->size; htab->sgot->size += GOT_ENTRY_SIZE; } else h->got.offset = (bfd_vma) -1; } else if (h->got.refcount > 0) { asection *s; bfd_boolean dyn; int tls_type = elf_s390_hash_entry(h)->tls_type; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } s = htab->sgot; h->got.offset = s->size; s->size += GOT_ENTRY_SIZE; /* R_390_TLS_GD64 needs 2 consecutive GOT slots. */ if (tls_type == GOT_TLS_GD) s->size += GOT_ENTRY_SIZE; dyn = htab->elf.dynamic_sections_created; /* R_390_TLS_IE64 needs one dynamic relocation, R_390_TLS_GD64 needs one if local symbol and two if global. */ if ((tls_type == GOT_TLS_GD && h->dynindx == -1) || tls_type >= GOT_TLS_IE) htab->srelgot->size += sizeof (Elf64_External_Rela); else if (tls_type == GOT_TLS_GD) htab->srelgot->size += 2 * sizeof (Elf64_External_Rela); else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) htab->srelgot->size += sizeof (Elf64_External_Rela); } else h->got.offset = (bfd_vma) -1; eh = (struct elf_s390_link_hash_entry *) h; if (eh->dyn_relocs == NULL) return TRUE; /* In the shared -Bsymbolic case, discard space allocated for dynamic pc-relative relocs against symbols which turn out to be defined in regular objects. For the normal shared case, discard space for pc-relative relocs that have become local due to symbol visibility changes. */ if (info->shared) { if (SYMBOL_CALLS_LOCAL (info, h)) { struct elf_s390_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } /* Also discard relocs on undefined weak syms with non-default visibility. */ if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak) { if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) eh->dyn_relocs = NULL; /* Make sure undefined weak symbols are output as a dynamic symbol in PIEs. */ else if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } } } else if (ELIMINATE_COPY_RELOCS) { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if (!h->non_got_ref && ((h->def_dynamic && !h->def_regular) || (htab->elf.dynamic_sections_created && (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->dyn_relocs = NULL; keep: ; } /* Finally, allocate space. */ for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *sreloc = elf_section_data (p->sec)->sreloc; sreloc->size += p->count * sizeof (Elf64_External_Rela); } return TRUE; } /* Find any dynamic relocs that apply to read-only sections. */ static bfd_boolean readonly_dynrelocs (h, inf) struct elf_link_hash_entry *h; PTR inf; { struct elf_s390_link_hash_entry *eh; struct elf_s390_dyn_relocs *p; eh = (struct elf_s390_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) { struct bfd_link_info *info = (struct bfd_link_info *) inf; info->flags |= DF_TEXTREL; /* Not an error, just cut short the traversal. */ return FALSE; } } return TRUE; } /* Set the sizes of the dynamic sections. */ static bfd_boolean elf_s390_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { struct elf_s390_link_hash_table *htab; bfd *dynobj; asection *s; bfd_boolean relocs; bfd *ibfd; htab = elf_s390_hash_table (info); if (htab == NULL) return FALSE; dynobj = htab->elf.dynobj; if (dynobj == NULL) abort (); if (htab->elf.dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { s = bfd_get_section_by_name (dynobj, ".interp"); if (s == NULL) abort (); s->size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; char *local_tls_type; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srela; if (! is_s390_elf (ibfd)) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct elf_s390_dyn_relocs *p; for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) { if (!bfd_is_abs_section (p->sec) && bfd_is_abs_section (p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (p->count != 0) { srela = elf_section_data (p->sec)->sreloc; srela->size += p->count * sizeof (Elf64_External_Rela); if ((p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = &elf_symtab_hdr (ibfd); locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; local_tls_type = elf_s390_local_got_tls_type (ibfd); s = htab->sgot; srela = htab->srelgot; for (; local_got < end_local_got; ++local_got, ++local_tls_type) { if (*local_got > 0) { *local_got = s->size; s->size += GOT_ENTRY_SIZE; if (*local_tls_type == GOT_TLS_GD) s->size += GOT_ENTRY_SIZE; if (info->shared) srela->size += sizeof (Elf64_External_Rela); } else *local_got = (bfd_vma) -1; } } if (htab->tls_ldm_got.refcount > 0) { /* Allocate 2 got entries and 1 dynamic reloc for R_390_TLS_LDM64 relocs. */ htab->tls_ldm_got.offset = htab->sgot->size; htab->sgot->size += 2 * GOT_ENTRY_SIZE; htab->srelgot->size += sizeof (Elf64_External_Rela); } else htab->tls_ldm_got.offset = -1; /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info); /* We now have determined the sizes of the various dynamic sections. Allocate memory for them. */ relocs = FALSE; for (s = dynobj->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (s == htab->splt || s == htab->sgot || s == htab->sgotplt || s == htab->sdynbss) { /* Strip this section if we don't need it; see the comment below. */ } else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela")) { if (s->size != 0 && s != htab->srelplt) relocs = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } else { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->size == 0) { /* If we don't need this section, strip it from the output file. This is to handle .rela.bss and .rela.plt. We must create it in create_dynamic_sections, because it must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. We use bfd_zalloc here in case unused entries are not reclaimed before the section's contents are written out. This should not happen, but this way if it does, we get a R_390_NONE reloc instead of garbage. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return FALSE; } if (htab->elf.dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf_s390_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (info->executable) { if (!add_dynamic_entry (DT_DEBUG, 0)) return FALSE; } if (htab->splt->size != 0) { if (!add_dynamic_entry (DT_PLTGOT, 0) || !add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return FALSE; } if (relocs) { if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela))) return FALSE; /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) == 0) elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info); if ((info->flags & DF_TEXTREL) != 0) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } } } #undef add_dynamic_entry return TRUE; } /* Return the base VMA address which should be subtracted from real addresses when resolving @dtpoff relocation. This is PT_TLS segment p_vaddr. */ static bfd_vma dtpoff_base (info) struct bfd_link_info *info; { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; return elf_hash_table (info)->tls_sec->vma; } /* Return the relocation value for @tpoff relocation if STT_TLS virtual address is ADDRESS. */ static bfd_vma tpoff (info, address) struct bfd_link_info *info; bfd_vma address; { struct elf_link_hash_table *htab = elf_hash_table (info); /* If tls_sec is NULL, we should have signalled an error already. */ if (htab->tls_sec == NULL) return 0; return htab->tls_size + htab->tls_sec->vma - address; } /* Complain if TLS instruction relocation is against an invalid instruction. */ static void invalid_tls_insn (input_bfd, input_section, rel) bfd *input_bfd; asection *input_section; Elf_Internal_Rela *rel; { reloc_howto_type *howto; howto = elf_howto_table + ELF64_R_TYPE (rel->r_info); (*_bfd_error_handler) (_("%B(%A+0x%lx): invalid instruction for TLS relocation %s"), input_bfd, input_section, (long) rel->r_offset, howto->name); bfd_set_error (bfd_error_bad_value); } /* Relocate a 390 ELF section. */ static bfd_boolean elf_s390_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { struct elf_s390_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_vma *local_got_offsets; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; BFD_ASSERT (is_s390_elf (input_bfd)); htab = elf_s390_hash_table (info); if (htab == NULL) return FALSE; symtab_hdr = &elf_symtab_hdr (input_bfd); sym_hashes = elf_sym_hashes (input_bfd); local_got_offsets = elf_local_got_offsets (input_bfd); rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { unsigned int r_type; reloc_howto_type *howto; unsigned long r_symndx; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; asection *sec; bfd_vma off; bfd_vma relocation; bfd_boolean unresolved_reloc; bfd_reloc_status_type r; int tls_type; r_type = ELF64_R_TYPE (rel->r_info); if (r_type == (int) R_390_GNU_VTINHERIT || r_type == (int) R_390_GNU_VTENTRY) continue; if (r_type >= (int) R_390_max) { bfd_set_error (bfd_error_bad_value); return FALSE; } howto = elf_howto_table + r_type; r_symndx = ELF64_R_SYM (rel->r_info); h = NULL; sym = NULL; sec = NULL; unresolved_reloc = FALSE; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); } else { bfd_boolean warned ATTRIBUTE_UNUSED; RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned); } if (sec != NULL && elf_discarded_section (sec)) RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, rel, relend, howto, contents); if (info->relocatable) continue; switch (r_type) { case R_390_GOTPLT12: case R_390_GOTPLT16: case R_390_GOTPLT20: case R_390_GOTPLT32: case R_390_GOTPLT64: case R_390_GOTPLTENT: /* There are three cases for a GOTPLT relocation. 1) The relocation is against the jump slot entry of a plt that will get emitted to the output file. 2) The relocation is against the jump slot of a plt entry that has been removed. elf_s390_adjust_gotplt has created a GOT entry as replacement. 3) The relocation is against a local symbol. Cases 2) and 3) are the same as the GOT relocation code so we just have to test for case 1 and fall through for the other two. */ if (h != NULL && h->plt.offset != (bfd_vma) -1) { bfd_vma plt_index; /* Calc. index no. Current offset - size first entry / entry size. */ plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE; /* Offset in GOT is PLT index plus GOT headers(3) times 4, addr & GOT addr. */ relocation = (plt_index + 3) * GOT_ENTRY_SIZE; unresolved_reloc = FALSE; if (r_type == R_390_GOTPLTENT) relocation += htab->sgot->output_section->vma; break; } /* Fall through. */ case R_390_GOT12: case R_390_GOT16: case R_390_GOT20: case R_390_GOT32: case R_390_GOT64: case R_390_GOTENT: /* Relocation is to the entry for this symbol in the global offset table. */ if (htab->sgot == NULL) abort (); if (h != NULL) { bfd_boolean dyn; off = h->got.offset; dyn = htab->elf.dynamic_sections_created; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) || (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) || (ELF_ST_VISIBILITY (h->other) && h->root.type == bfd_link_hash_undefweak)) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally, or the symbol was forced to be local because of a version file. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 2, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rel.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_64 (output_bfd, relocation, htab->sgot->contents + off); h->got.offset |= 1; } } else unresolved_reloc = FALSE; } else { if (local_got_offsets == NULL) abort (); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 8. We use the least significant bit to record whether we have already generated the necessary reloc. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_64 (output_bfd, relocation, htab->sgot->contents + off); if (info->shared) { asection *s; Elf_Internal_Rela outrel; bfd_byte *loc; s = htab->srelgot; if (s == NULL) abort (); outrel.r_offset = (htab->sgot->output_section->vma + htab->sgot->output_offset + off); outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE); outrel.r_addend = relocation; loc = s->contents; loc += s->reloc_count++ * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); } local_got_offsets[r_symndx] |= 1; } } if (off >= (bfd_vma) -2) abort (); relocation = htab->sgot->output_offset + off; /* For @GOTENT the relocation is against the offset between the instruction and the symbols entry in the GOT and not between the start of the GOT and the symbols entry. We add the vma of the GOT to get the correct value. */ if ( r_type == R_390_GOTENT || r_type == R_390_GOTPLTENT) relocation += htab->sgot->output_section->vma; break; case R_390_GOTOFF16: case R_390_GOTOFF32: case R_390_GOTOFF64: /* Relocation is relative to the start of the global offset table. */ /* Note that sgot->output_offset is not involved in this calculation. We always want the start of .got. If we defined _GLOBAL_OFFSET_TABLE in a different way, as is permitted by the ABI, we might have to change this calculation. */ relocation -= htab->sgot->output_section->vma; break; case R_390_GOTPC: case R_390_GOTPCDBL: /* Use global offset table as symbol value. */ relocation = htab->sgot->output_section->vma; unresolved_reloc = FALSE; break; case R_390_PLT16DBL: case R_390_PLT32: case R_390_PLT32DBL: case R_390_PLT64: /* Relocation is to the entry for this symbol in the procedure linkage table. */ /* Resolve a PLT32 reloc against a local symbol directly, without using the procedure linkage table. */ if (h == NULL) break; if (h->plt.offset == (bfd_vma) -1 || htab->splt == NULL) { /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ break; } relocation = (htab->splt->output_section->vma + htab->splt->output_offset + h->plt.offset); unresolved_reloc = FALSE; break; case R_390_PLTOFF16: case R_390_PLTOFF32: case R_390_PLTOFF64: /* Relocation is to the entry for this symbol in the procedure linkage table relative to the start of the GOT. */ /* For local symbols or if we didn't make a PLT entry for this symbol resolve the symbol directly. */ if ( h == NULL || h->plt.offset == (bfd_vma) -1 || htab->splt == NULL) { relocation -= htab->sgot->output_section->vma; break; } relocation = (htab->splt->output_section->vma + htab->splt->output_offset + h->plt.offset - htab->sgot->output_section->vma); unresolved_reloc = FALSE; break; case R_390_8: case R_390_16: case R_390_32: case R_390_64: case R_390_PC16: case R_390_PC16DBL: case R_390_PC32: case R_390_PC32DBL: case R_390_PC64: if ((input_section->flags & SEC_ALLOC) == 0) break; if ((info->shared && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && ((r_type != R_390_PC16 && r_type != R_390_PC16DBL && r_type != R_390_PC32 && r_type != R_390_PC32DBL && r_type != R_390_PC64) || !SYMBOL_CALLS_LOCAL (info, h))) || (ELIMINATE_COPY_RELOCS && !info->shared && h != NULL && h->dynindx != -1 && !h->non_got_ref && ((h->def_dynamic && !h->def_regular) || h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined))) { Elf_Internal_Rela outrel; bfd_boolean skip, relocate; asection *sreloc; bfd_byte *loc; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ skip = FALSE; relocate = FALSE; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1) skip = TRUE; else if (outrel.r_offset == (bfd_vma) -2) skip = TRUE, relocate = TRUE; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else if (h != NULL && h->dynindx != -1 && (r_type == R_390_PC16 || r_type == R_390_PC16DBL || r_type == R_390_PC32 || r_type == R_390_PC32DBL || r_type == R_390_PC64 || !info->shared || !SYMBOLIC_BIND (info, h) || !h->def_regular)) { outrel.r_info = ELF64_R_INFO (h->dynindx, r_type); outrel.r_addend = rel->r_addend; } else { /* This symbol is local, or marked to become local. */ outrel.r_addend = relocation + rel->r_addend; if (r_type == R_390_64) { relocate = TRUE; outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE); } else { long sindx; if (bfd_is_abs_section (sec)) sindx = 0; else if (sec == NULL || sec->owner == NULL) { bfd_set_error(bfd_error_bad_value); return FALSE; } else { asection *osec; osec = sec->output_section; sindx = elf_section_data (osec)->dynindx; if (sindx == 0) { osec = htab->elf.text_index_section; sindx = elf_section_data (osec)->dynindx; } BFD_ASSERT (sindx != 0); /* We are turning this relocation into one against a section symbol, so subtract out the output section's address but not the offset of the input section in the output section. */ outrel.r_addend -= osec->vma; } outrel.r_info = ELF64_R_INFO (sindx, r_type); } } sreloc = elf_section_data (input_section)->sreloc; if (sreloc == NULL) abort (); loc = sreloc->contents; loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); /* If this reloc is against an external symbol, we do not want to fiddle with the addend. Otherwise, we need to include the symbol value so that it becomes an addend for the dynamic reloc. */ if (! relocate) continue; } break; /* Relocations for tls literal pool entries. */ case R_390_TLS_IE64: if (info->shared) { Elf_Internal_Rela outrel; asection *sreloc; bfd_byte *loc; outrel.r_offset = rel->r_offset + input_section->output_section->vma + input_section->output_offset; outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE); sreloc = elf_section_data (input_section)->sreloc; if (sreloc == NULL) abort (); loc = sreloc->contents; loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloc_out (output_bfd, &outrel, loc); } /* Fall through. */ case R_390_TLS_GD64: case R_390_TLS_GOTIE64: r_type = elf_s390_tls_transition (info, r_type, h == NULL); tls_type = GOT_UNKNOWN; if (h == NULL && local_got_offsets) tls_type = elf_s390_local_got_tls_type (input_bfd) [r_symndx]; else if (h != NULL) { tls_type = elf_s390_hash_entry(h)->tls_type; if (!info->shared && h->dynindx == -1 && tls_type >= GOT_TLS_IE) r_type = R_390_TLS_LE64; } if (r_type == R_390_TLS_GD64 && tls_type >= GOT_TLS_IE) r_type = R_390_TLS_IE64; if (r_type == R_390_TLS_LE64) { /* This relocation gets optimized away by the local exec access optimization. */ BFD_ASSERT (! unresolved_reloc); bfd_put_64 (output_bfd, -tpoff (info, relocation), contents + rel->r_offset); continue; } if (htab->sgot == NULL) abort (); if (h != NULL) off = h->got.offset; else { if (local_got_offsets == NULL) abort (); off = local_got_offsets[r_symndx]; } emit_tls_relocs: if ((off & 1) != 0) off &= ~1; else { Elf_Internal_Rela outrel; bfd_byte *loc; int dr_type, indx; if (htab->srelgot == NULL) abort (); outrel.r_offset = (htab->sgot->output_section->vma + htab->sgot->output_offset + off); indx = h && h->dynindx != -1 ? h->dynindx : 0; if (r_type == R_390_TLS_GD64) dr_type = R_390_TLS_DTPMOD; else dr_type = R_390_TLS_TPOFF; if (dr_type == R_390_TLS_TPOFF && indx == 0) outrel.r_addend = relocation - dtpoff_base (info); else outrel.r_addend = 0; outrel.r_info = ELF64_R_INFO (indx, dr_type); loc = htab->srelgot->contents; loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); if (r_type == R_390_TLS_GD64) { if (indx == 0) { BFD_ASSERT (! unresolved_reloc); bfd_put_64 (output_bfd, relocation - dtpoff_base (info), htab->sgot->contents + off + GOT_ENTRY_SIZE); } else { outrel.r_info = ELF64_R_INFO (indx, R_390_TLS_DTPOFF); outrel.r_offset += GOT_ENTRY_SIZE; outrel.r_addend = 0; htab->srelgot->reloc_count++; loc += sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); } } if (h != NULL) h->got.offset |= 1; else local_got_offsets[r_symndx] |= 1; } if (off >= (bfd_vma) -2) abort (); if (r_type == ELF64_R_TYPE (rel->r_info)) { relocation = htab->sgot->output_offset + off; if (r_type == R_390_TLS_IE64 || r_type == R_390_TLS_IEENT) relocation += htab->sgot->output_section->vma; unresolved_reloc = FALSE; } else { bfd_put_64 (output_bfd, htab->sgot->output_offset + off, contents + rel->r_offset); continue; } break; case R_390_TLS_GOTIE12: case R_390_TLS_GOTIE20: case R_390_TLS_IEENT: if (h == NULL) { if (local_got_offsets == NULL) abort(); off = local_got_offsets[r_symndx]; if (info->shared) goto emit_tls_relocs; } else { off = h->got.offset; tls_type = elf_s390_hash_entry(h)->tls_type; if (info->shared || h->dynindx != -1 || tls_type < GOT_TLS_IE) goto emit_tls_relocs; } if (htab->sgot == NULL) abort (); BFD_ASSERT (! unresolved_reloc); bfd_put_64 (output_bfd, -tpoff (info, relocation), htab->sgot->contents + off); relocation = htab->sgot->output_offset + off; if (r_type == R_390_TLS_IEENT) relocation += htab->sgot->output_section->vma; unresolved_reloc = FALSE; break; case R_390_TLS_LDM64: if (! info->shared) /* The literal pool entry this relocation refers to gets ignored by the optimized code of the local exec model. Do nothing and the value will turn out zero. */ continue; if (htab->sgot == NULL) abort (); off = htab->tls_ldm_got.offset; if (off & 1) off &= ~1; else { Elf_Internal_Rela outrel; bfd_byte *loc; if (htab->srelgot == NULL) abort (); outrel.r_offset = (htab->sgot->output_section->vma + htab->sgot->output_offset + off); bfd_put_64 (output_bfd, 0, htab->sgot->contents + off + GOT_ENTRY_SIZE); outrel.r_info = ELF64_R_INFO (0, R_390_TLS_DTPMOD); outrel.r_addend = 0; loc = htab->srelgot->contents; loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); htab->tls_ldm_got.offset |= 1; } relocation = htab->sgot->output_offset + off; unresolved_reloc = FALSE; break; case R_390_TLS_LE64: if (info->shared) { /* Linking a shared library with non-fpic code requires a R_390_TLS_TPOFF relocation. */ Elf_Internal_Rela outrel; asection *sreloc; bfd_byte *loc; int indx; outrel.r_offset = rel->r_offset + input_section->output_section->vma + input_section->output_offset; if (h != NULL && h->dynindx != -1) indx = h->dynindx; else indx = 0; outrel.r_info = ELF64_R_INFO (indx, R_390_TLS_TPOFF); if (indx == 0) outrel.r_addend = relocation - dtpoff_base (info); else outrel.r_addend = 0; sreloc = elf_section_data (input_section)->sreloc; if (sreloc == NULL) abort (); loc = sreloc->contents; loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); } else { BFD_ASSERT (! unresolved_reloc); bfd_put_64 (output_bfd, -tpoff (info, relocation), contents + rel->r_offset); } continue; case R_390_TLS_LDO64: if (info->shared || (input_section->flags & SEC_DEBUGGING)) relocation -= dtpoff_base (info); else /* When converting LDO to LE, we must negate. */ relocation = -tpoff (info, relocation); break; /* Relocations for tls instructions. */ case R_390_TLS_LOAD: case R_390_TLS_GDCALL: case R_390_TLS_LDCALL: tls_type = GOT_UNKNOWN; if (h == NULL && local_got_offsets) tls_type = elf_s390_local_got_tls_type (input_bfd) [r_symndx]; else if (h != NULL) tls_type = elf_s390_hash_entry(h)->tls_type; if (tls_type == GOT_TLS_GD) continue; if (r_type == R_390_TLS_LOAD) { if (!info->shared && (h == NULL || h->dynindx == -1)) { /* IE->LE transition. Four valid cases: lg %rx,(0,%ry) -> sllg %rx,%ry,0 lg %rx,(%ry,0) -> sllg %rx,%ry,0 lg %rx,(%ry,%r12) -> sllg %rx,%ry,0 lg %rx,(%r12,%ry) -> sllg %rx,%ry,0 */ unsigned int insn0, insn1, ry; insn0 = bfd_get_32 (input_bfd, contents + rel->r_offset); insn1 = bfd_get_16 (input_bfd, contents + rel->r_offset + 4); if (insn1 != 0x0004) invalid_tls_insn (input_bfd, input_section, rel); ry = 0; if ((insn0 & 0xff00f000) == 0xe3000000) /* lg %rx,0(%ry,0) -> sllg %rx,%ry,0 */ ry = (insn0 & 0x000f0000); else if ((insn0 & 0xff0f0000) == 0xe3000000) /* lg %rx,0(0,%ry) -> sllg %rx,%ry,0 */ ry = (insn0 & 0x0000f000) << 4; else if ((insn0 & 0xff00f000) == 0xe300c000) /* lg %rx,0(%ry,%r12) -> sllg %rx,%ry,0 */ ry = (insn0 & 0x000f0000); else if ((insn0 & 0xff0f0000) == 0xe30c0000) /* lg %rx,0(%r12,%ry) -> sllg %rx,%ry,0 */ ry = (insn0 & 0x0000f000) << 4; else invalid_tls_insn (input_bfd, input_section, rel); insn0 = 0xeb000000 | (insn0 & 0x00f00000) | ry; insn1 = 0x000d; bfd_put_32 (output_bfd, insn0, contents + rel->r_offset); bfd_put_16 (output_bfd, insn1, contents + rel->r_offset + 4); } } else if (r_type == R_390_TLS_GDCALL) { unsigned int insn0, insn1; insn0 = bfd_get_32 (input_bfd, contents + rel->r_offset); insn1 = bfd_get_16 (input_bfd, contents + rel->r_offset + 4); if ((insn0 & 0xffff0000) != 0xc0e50000) invalid_tls_insn (input_bfd, input_section, rel); if (!info->shared && (h == NULL || h->dynindx == -1)) { /* GD->LE transition. brasl %r14,__tls_get_addr@plt -> brcl 0,. */ insn0 = 0xc0040000; insn1 = 0x0000; } else { /* GD->IE transition. brasl %r14,__tls_get_addr@plt -> lg %r2,0(%r2,%r12) */ insn0 = 0xe322c000; insn1 = 0x0004; } bfd_put_32 (output_bfd, insn0, contents + rel->r_offset); bfd_put_16 (output_bfd, insn1, contents + rel->r_offset + 4); } else if (r_type == R_390_TLS_LDCALL) { if (!info->shared) { unsigned int insn0, insn1; insn0 = bfd_get_32 (input_bfd, contents + rel->r_offset); insn1 = bfd_get_16 (input_bfd, contents + rel->r_offset + 4); if ((insn0 & 0xffff0000) != 0xc0e50000) invalid_tls_insn (input_bfd, input_section, rel); /* LD->LE transition. brasl %r14,__tls_get_addr@plt -> brcl 0,. */ insn0 = 0xc0040000; insn1 = 0x0000; bfd_put_32 (output_bfd, insn0, contents + rel->r_offset); bfd_put_16 (output_bfd, insn1, contents + rel->r_offset + 4); } } continue; default: break; } /* Dynamic relocs are not propagated for SEC_DEBUGGING sections because such sections are not SEC_ALLOC and thus ld.so will not process them. */ if (unresolved_reloc && !((input_section->flags & SEC_DEBUGGING) != 0 && h->def_dynamic) && _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset) != (bfd_vma) -1) (*_bfd_error_handler) (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), input_bfd, input_section, (long) rel->r_offset, howto->name, h->root.root.string); if (r_type == R_390_20 || r_type == R_390_GOT20 || r_type == R_390_GOTPLT20 || r_type == R_390_TLS_GOTIE20) { relocation += rel->r_addend; relocation = (relocation&0xfff) << 8 | (relocation&0xff000) >> 12; r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, 0); } else r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); if (r != bfd_reloc_ok) { const char *name; if (h != NULL) name = h->root.root.string; else { name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (name == NULL) return FALSE; if (*name == '\0') name = bfd_section_name (input_bfd, sec); } if (r == bfd_reloc_overflow) { if (! ((*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return FALSE; } else { (*_bfd_error_handler) (_("%B(%A+0x%lx): reloc against `%s': error %d"), input_bfd, input_section, (long) rel->r_offset, name, (int) r); return FALSE; } } } return TRUE; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean elf_s390_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { struct elf_s390_link_hash_table *htab; htab = elf_s390_hash_table (info); if (htab == NULL) return FALSE; if (h->plt.offset != (bfd_vma) -1) { bfd_vma plt_index; bfd_vma got_offset; Elf_Internal_Rela rela; bfd_byte *loc; /* This symbol has an entry in the procedure linkage table. Set it up. */ if (h->dynindx == -1 || htab->splt == NULL || htab->sgotplt == NULL || htab->srelplt == NULL) abort (); /* Calc. index no. Current offset - size first entry / entry size. */ plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE; /* Offset in GOT is PLT index plus GOT headers(3) times 8, addr & GOT addr. */ got_offset = (plt_index + 3) * GOT_ENTRY_SIZE; /* Fill in the blueprint of a PLT. */ bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD0, htab->splt->contents + h->plt.offset); bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD1, htab->splt->contents + h->plt.offset + 4); bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD2, htab->splt->contents + h->plt.offset + 8); bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD3, htab->splt->contents + h->plt.offset + 12); bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD4, htab->splt->contents + h->plt.offset + 16); bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD5, htab->splt->contents + h->plt.offset + 20); bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD6, htab->splt->contents + h->plt.offset + 24); bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD7, htab->splt->contents + h->plt.offset + 28); /* Fixup the relative address to the GOT entry */ bfd_put_32 (output_bfd, (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + got_offset - (htab->splt->output_section->vma + h->plt.offset))/2, htab->splt->contents + h->plt.offset + 2); /* Fixup the relative branch to PLT 0 */ bfd_put_32 (output_bfd, - (PLT_FIRST_ENTRY_SIZE + (PLT_ENTRY_SIZE * plt_index) + 22)/2, htab->splt->contents + h->plt.offset + 24); /* Fixup offset into symbol table */ bfd_put_32 (output_bfd, plt_index * sizeof (Elf64_External_Rela), htab->splt->contents + h->plt.offset + 28); /* Fill in the entry in the global offset table. Points to instruction after GOT offset. */ bfd_put_64 (output_bfd, (htab->splt->output_section->vma + htab->splt->output_offset + h->plt.offset + 14), htab->sgotplt->contents + got_offset); /* Fill in the entry in the .rela.plt section. */ rela.r_offset = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + got_offset); rela.r_info = ELF64_R_INFO (h->dynindx, R_390_JMP_SLOT); rela.r_addend = 0; loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. This is a clue for the dynamic linker, to make function pointer comparisons work between an application and shared library. */ sym->st_shndx = SHN_UNDEF; } } if (h->got.offset != (bfd_vma) -1 && elf_s390_hash_entry(h)->tls_type != GOT_TLS_GD && elf_s390_hash_entry(h)->tls_type != GOT_TLS_IE && elf_s390_hash_entry(h)->tls_type != GOT_TLS_IE_NLT) { Elf_Internal_Rela rela; bfd_byte *loc; /* This symbol has an entry in the global offset table. Set it up. */ if (htab->sgot == NULL || htab->srelgot == NULL) abort (); rela.r_offset = (htab->sgot->output_section->vma + htab->sgot->output_offset + (h->got.offset &~ (bfd_vma) 1)); /* If this is a static link, or it is a -Bsymbolic link and the symbol is defined locally or was forced to be local because of a version file, we just want to emit a RELATIVE reloc. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) { if (!h->def_regular) return FALSE; BFD_ASSERT((h->got.offset & 1) != 0); rela.r_info = ELF64_R_INFO (0, R_390_RELATIVE); rela.r_addend = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } else { BFD_ASSERT((h->got.offset & 1) == 0); bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgot->contents + h->got.offset); rela.r_info = ELF64_R_INFO (h->dynindx, R_390_GLOB_DAT); rela.r_addend = 0; } loc = htab->srelgot->contents; loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); } if (h->needs_copy) { Elf_Internal_Rela rela; bfd_byte *loc; /* This symbols needs a copy reloc. Set it up. */ if (h->dynindx == -1 || (h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) || htab->srelbss == NULL) abort (); rela.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rela.r_info = ELF64_R_INFO (h->dynindx, R_390_COPY); rela.r_addend = 0; loc = htab->srelbss->contents; loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); } /* Mark some specially defined symbols as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || h == htab->elf.hgot || h == htab->elf.hplt) sym->st_shndx = SHN_ABS; return TRUE; } /* Used to decide how to sort relocs in an optimal manner for the dynamic linker, before writing them out. */ static enum elf_reloc_type_class elf_s390_reloc_type_class (rela) const Elf_Internal_Rela *rela; { switch ((int) ELF64_R_TYPE (rela->r_info)) { case R_390_RELATIVE: return reloc_class_relative; case R_390_JMP_SLOT: return reloc_class_plt; case R_390_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Finish up the dynamic sections. */ static bfd_boolean elf_s390_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { struct elf_s390_link_hash_table *htab; bfd *dynobj; asection *sdyn; htab = elf_s390_hash_table (info); if (htab == NULL) return FALSE; dynobj = htab->elf.dynobj; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (htab->elf.dynamic_sections_created) { Elf64_External_Dyn *dyncon, *dynconend; if (sdyn == NULL || htab->sgot == NULL) abort (); dyncon = (Elf64_External_Dyn *) sdyn->contents; dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; asection *s; bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: continue; case DT_PLTGOT: dyn.d_un.d_ptr = htab->sgot->output_section->vma; break; case DT_JMPREL: dyn.d_un.d_ptr = htab->srelplt->output_section->vma; break; case DT_PLTRELSZ: s = htab->srelplt->output_section; dyn.d_un.d_val = s->size; break; case DT_RELASZ: /* The procedure linkage table relocs (DT_JMPREL) should not be included in the overall relocs (DT_RELA). Therefore, we override the DT_RELASZ entry here to make it not include the JMPREL relocs. Since the linker script arranges for .rela.plt to follow all other relocation sections, we don't have to worry about changing the DT_RELA entry. */ s = htab->srelplt->output_section; dyn.d_un.d_val -= s->size; break; } bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); } /* Fill in the special first entry in the procedure linkage table. */ if (htab->splt && htab->splt->size > 0) { /* fill in blueprint for plt 0 entry */ bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD0, htab->splt->contents ); bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD1, htab->splt->contents +4 ); bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD3, htab->splt->contents +12 ); bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD4, htab->splt->contents +16 ); bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD5, htab->splt->contents +20 ); bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD6, htab->splt->contents + 24); bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD7, htab->splt->contents + 28 ); /* Fixup relative address to start of GOT */ bfd_put_32 (output_bfd, (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset - htab->splt->output_section->vma - 6)/2, htab->splt->contents + 8); } elf_section_data (htab->splt->output_section) ->this_hdr.sh_entsize = PLT_ENTRY_SIZE; } if (htab->sgotplt) { /* Fill in the first three entries in the global offset table. */ if (htab->sgotplt->size > 0) { bfd_put_64 (output_bfd, (sdyn == NULL ? (bfd_vma) 0 : sdyn->output_section->vma + sdyn->output_offset), htab->sgotplt->contents); /* One entry for shared object struct ptr. */ bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8); /* One entry for _dl_runtime_resolve. */ bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 12); } elf_section_data (htab->sgot->output_section) ->this_hdr.sh_entsize = 8; } return TRUE; } /* Return address for Ith PLT stub in section PLT, for relocation REL or (bfd_vma) -1 if it should not be included. */ static bfd_vma elf_s390_plt_sym_val (bfd_vma i, const asection *plt, const arelent *rel ATTRIBUTE_UNUSED) { return plt->vma + PLT_FIRST_ENTRY_SIZE + i * PLT_ENTRY_SIZE; } /* Why was the hash table entry size definition changed from ARCH_SIZE/8 to 4? This breaks the 64 bit dynamic linker and this is the only reason for the s390_elf64_size_info structure. */ const struct elf_size_info s390_elf64_size_info = { sizeof (Elf64_External_Ehdr), sizeof (Elf64_External_Phdr), sizeof (Elf64_External_Shdr), sizeof (Elf64_External_Rel), sizeof (Elf64_External_Rela), sizeof (Elf64_External_Sym), sizeof (Elf64_External_Dyn), sizeof (Elf_External_Note), 8, /* hash-table entry size. */ 1, /* internal relocations per external relocations. */ 64, /* arch_size. */ 3, /* log_file_align. */ ELFCLASS64, EV_CURRENT, bfd_elf64_write_out_phdrs, bfd_elf64_write_shdrs_and_ehdr, bfd_elf64_checksum_contents, bfd_elf64_write_relocs, bfd_elf64_swap_symbol_in, bfd_elf64_swap_symbol_out, bfd_elf64_slurp_reloc_table, bfd_elf64_slurp_symbol_table, bfd_elf64_swap_dyn_in, bfd_elf64_swap_dyn_out, bfd_elf64_swap_reloc_in, bfd_elf64_swap_reloc_out, bfd_elf64_swap_reloca_in, bfd_elf64_swap_reloca_out }; #define TARGET_BIG_SYM bfd_elf64_s390_vec #define TARGET_BIG_NAME "elf64-s390" #define ELF_ARCH bfd_arch_s390 #define ELF_TARGET_ID S390_ELF_DATA #define ELF_MACHINE_CODE EM_S390 #define ELF_MACHINE_ALT1 EM_S390_OLD #define ELF_MAXPAGESIZE 0x1000 #define elf_backend_size_info s390_elf64_size_info #define elf_backend_can_gc_sections 1 #define elf_backend_can_refcount 1 #define elf_backend_want_got_plt 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_plt_sym 0 #define elf_backend_got_header_size 24 #define elf_backend_rela_normal 1 #define elf_info_to_howto elf_s390_info_to_howto #define bfd_elf64_bfd_is_local_label_name elf_s390_is_local_label_name #define bfd_elf64_bfd_link_hash_table_create elf_s390_link_hash_table_create #define bfd_elf64_bfd_reloc_type_lookup elf_s390_reloc_type_lookup #define bfd_elf64_bfd_reloc_name_lookup elf_s390_reloc_name_lookup #define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol #define elf_backend_check_relocs elf_s390_check_relocs #define elf_backend_copy_indirect_symbol elf_s390_copy_indirect_symbol #define elf_backend_create_dynamic_sections elf_s390_create_dynamic_sections #define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections #define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol #define elf_backend_gc_mark_hook elf_s390_gc_mark_hook #define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook #define elf_backend_reloc_type_class elf_s390_reloc_type_class #define elf_backend_relocate_section elf_s390_relocate_section #define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections #define elf_backend_init_index_section _bfd_elf_init_1_index_section #define elf_backend_reloc_type_class elf_s390_reloc_type_class #define elf_backend_plt_sym_val elf_s390_plt_sym_val #define bfd_elf64_mkobject elf_s390_mkobject #define elf_backend_object_p elf_s390_object_p #include "elf64-target.h"
Go to most recent revision | Compare with Previous | Blame | View Log