URL
https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk
Subversion Repositories open8_urisc
[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gas/] [config/] [tc-cris.c] - Rev 85
Go to most recent revision | Compare with Previous | Blame | View Log
/* tc-cris.c -- Assembler code for the CRIS CPU core. Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by Axis Communications AB, Lund, Sweden. Originally written for GAS 1.38.1 by Mikael Asker. Updates, BFDizing, GNUifying and ELF support by Hans-Peter Nilsson. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "as.h" #include "safe-ctype.h" #include "subsegs.h" #include "opcode/cris.h" #include "dwarf2dbg.h" /* Conventions used here: Generally speaking, pointers to binutils types such as "fragS" and "expressionS" get parameter and variable names ending in "P", such as "fragP", to harmonize with the rest of the binutils code. Other pointers get a "p" suffix, such as "bufp". Any function or type-name that could clash with a current or future binutils or GAS function get a "cris_" prefix. */ #define SYNTAX_RELAX_REG_PREFIX "no_register_prefix" #define SYNTAX_ENFORCE_REG_PREFIX "register_prefix" #define SYNTAX_USER_SYM_LEADING_UNDERSCORE "leading_underscore" #define SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE "no_leading_underscore" #define REGISTER_PREFIX_CHAR '$' /* True for expressions where getting X_add_symbol and X_add_number is enough to get the "base" and "offset"; no need to make_expr_symbol. It's not enough to check if X_op_symbol is NULL; that misses unary operations like O_uminus. */ #define SIMPLE_EXPR(EXP) \ ((EXP)->X_op == O_constant || (EXP)->X_op == O_symbol) /* Like in ":GOT", ":GOTOFF" etc. Other ports use '@', but that's in line_separator_chars for CRIS, so we avoid it. */ #define RELOC_SUFFIX_CHAR ':' /* This might be CRIS_INSN_NONE if we're assembling a prefix-insn only. Note that some prefix-insns might be assembled as CRIS_INSN_NORMAL. */ enum cris_insn_kind { CRIS_INSN_NORMAL, CRIS_INSN_NONE, CRIS_INSN_BRANCH, CRIS_INSN_MUL }; /* An instruction will have one of these prefixes. Although the same bit-pattern, we handle BDAP with an immediate expression (eventually quick or [pc+]) different from when we only have register expressions. */ enum prefix_kind { PREFIX_NONE, PREFIX_BDAP_IMM, PREFIX_BDAP, PREFIX_BIAP, PREFIX_DIP, PREFIX_PUSH }; /* The prefix for an instruction. */ struct cris_prefix { enum prefix_kind kind; int base_reg_number; unsigned int opcode; /* There might be an expression to be evaluated, like I in [rN+I]. */ expressionS expr; /* If there's an expression, we might need a relocation. Here's the type of what relocation to start relaxaton with. The relocation is assumed to start immediately after the prefix insn, so we don't provide an offset. */ enum bfd_reloc_code_real reloc; }; /* The description of the instruction being assembled. */ struct cris_instruction { /* If CRIS_INSN_NONE, then this insn is of zero length. */ enum cris_insn_kind insn_type; /* If a special register was mentioned, this is its description, else it is NULL. */ const struct cris_spec_reg *spec_reg; unsigned int opcode; /* An insn may have at most one expression; theoretically there could be another in its prefix (but I don't see how that could happen). */ expressionS expr; /* The expression might need a relocation. Here's one to start relaxation with. */ enum bfd_reloc_code_real reloc; /* The size in bytes of an immediate expression, or zero if nonapplicable. */ int imm_oprnd_size; }; enum cris_archs { arch_cris_unknown, arch_crisv0, arch_crisv3, arch_crisv8, arch_crisv10, arch_cris_any_v0_v10, arch_crisv32, arch_cris_common_v10_v32 }; static enum cris_archs cris_arch_from_string (char **); static int cris_insn_ver_valid_for_arch (enum cris_insn_version_usage, enum cris_archs); static void cris_process_instruction (char *, struct cris_instruction *, struct cris_prefix *); static int get_bwd_size_modifier (char **, int *); static int get_bw_size_modifier (char **, int *); static int get_gen_reg (char **, int *); static int get_spec_reg (char **, const struct cris_spec_reg **); static int get_sup_reg (char **, int *); static int get_autoinc_prefix_or_indir_op (char **, struct cris_prefix *, int *, int *, int *, expressionS *); static int get_3op_or_dip_prefix_op (char **, struct cris_prefix *); static int cris_get_expression (char **, expressionS *); static int get_flags (char **, int *); static void gen_bdap (int, expressionS *); static int branch_disp (int); static void gen_cond_branch_32 (char *, char *, fragS *, symbolS *, symbolS *, long int); static void cris_number_to_imm (char *, long, int, fixS *, segT); static void s_syntax (int); static void s_cris_file (int); static void s_cris_loc (int); static void s_cris_arch (int); static void s_cris_dtpoff (int); /* Get ":GOT", ":GOTOFF", ":PLT" etc. suffixes. */ static void cris_get_reloc_suffix (char **, bfd_reloc_code_real_type *, expressionS *); static unsigned int cris_get_specified_reloc_size (bfd_reloc_code_real_type); /* All the .syntax functions. */ static void cris_force_reg_prefix (void); static void cris_relax_reg_prefix (void); static void cris_sym_leading_underscore (void); static void cris_sym_no_leading_underscore (void); static char *cris_insn_first_word_frag (void); /* Handle to the opcode hash table. */ static struct hash_control *op_hash = NULL; /* If we target cris-axis-linux-gnu (as opposed to generic cris-axis-elf), we default to no underscore and required register-prefixes. The difference is in the default values. */ #ifdef TE_LINUX #define DEFAULT_CRIS_AXIS_LINUX_GNU TRUE #else #define DEFAULT_CRIS_AXIS_LINUX_GNU FALSE #endif /* Whether we demand that registers have a `$' prefix. Default here. */ static bfd_boolean demand_register_prefix = DEFAULT_CRIS_AXIS_LINUX_GNU; /* Whether global user symbols have a leading underscore. Default here. */ static bfd_boolean symbols_have_leading_underscore = !DEFAULT_CRIS_AXIS_LINUX_GNU; /* Whether or not we allow PIC, and expand to PIC-friendly constructs. */ static bfd_boolean pic = FALSE; /* Whether or not we allow TLS suffixes. For the moment, we always do. */ static const bfd_boolean tls = TRUE; /* If we're configured for "cris", default to allow all v0..v10 instructions and register names. */ #ifndef DEFAULT_CRIS_ARCH #define DEFAULT_CRIS_ARCH cris_any_v0_v10 #endif /* No whitespace in the CONCAT2 parameter list. */ static enum cris_archs cris_arch = XCONCAT2 (arch_,DEFAULT_CRIS_ARCH); const pseudo_typeS md_pseudo_table[] = { {"dword", cons, 4}, {"dtpoffd", s_cris_dtpoff, 4}, {"syntax", s_syntax, 0}, {"file", s_cris_file, 0}, {"loc", s_cris_loc, 0}, {"arch", s_cris_arch, 0}, {NULL, 0, 0} }; static int warn_for_branch_expansion = 0; /* Whether to emit error when a MULS/MULU could be located last on a cache-line. */ static int err_for_dangerous_mul_placement = (XCONCAT2 (arch_,DEFAULT_CRIS_ARCH) != arch_crisv32); const char cris_comment_chars[] = ";"; /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output. */ /* Note that input_file.c hand-checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that slash-star will always start a comment. */ const char line_comment_chars[] = "#"; const char line_separator_chars[] = "@"; /* Now all floating point support is shut off. See md_atof. */ const char EXP_CHARS[] = ""; const char FLT_CHARS[] = ""; /* For CRIS, we encode the relax_substateTs (in e.g. fr_substate) as: 2 1 0 ---/ /--+-----------------+-----------------+-----------------+ | what state ? | how long ? | ---/ /--+-----------------+-----------------+-----------------+ The "how long" bits are 00 = byte, 01 = word, 10 = dword (long). Not all lengths are legit for a given value of (what state). Groups for CRIS address relaxing: 1. Bcc (pre-V32) length: byte, word, 10-byte expansion 2. BDAP length: byte, word, dword 3. MULS/MULU Not really a relaxation (no infrastructure to get delay-slots right), just an alignment and placement checker for the v10 multiply/cache-bug. 4. Bcc (V32 and later) length: byte, word, 14-byte expansion 5. Bcc (V10+V32) length: byte, word, error 6. BA (V32) length: byte, word, dword 7. LAPC (V32) length: byte, dword */ #define STATE_COND_BRANCH (1) #define STATE_BASE_PLUS_DISP_PREFIX (2) #define STATE_MUL (3) #define STATE_COND_BRANCH_V32 (4) #define STATE_COND_BRANCH_COMMON (5) #define STATE_ABS_BRANCH_V32 (6) #define STATE_LAPC (7) #define STATE_COND_BRANCH_PIC (8) #define STATE_LENGTH_MASK (3) #define STATE_BYTE (0) #define STATE_WORD (1) #define STATE_DWORD (2) /* Symbol undefined. */ #define STATE_UNDF (3) #define STATE_MAX_LENGTH (3) /* These displacements are relative to the address following the opcode word of the instruction. The first letter is Byte, Word. The 2nd letter is Forward, Backward. */ #define BRANCH_BF ( 254) #define BRANCH_BB (-256) #define BRANCH_BF_V32 ( 252) #define BRANCH_BB_V32 (-258) #define BRANCH_WF (2 + 32767) #define BRANCH_WB (2 + -32768) #define BRANCH_WF_V32 (-2 + 32767) #define BRANCH_WB_V32 (-2 + -32768) #define BDAP_BF ( 127) #define BDAP_BB (-128) #define BDAP_WF ( 32767) #define BDAP_WB (-32768) #define ENCODE_RELAX(what, length) (((what) << 2) + (length)) const relax_typeS md_cris_relax_table[] = { /* Error sentinel (0, 0). */ {1, 1, 0, 0}, /* Unused (0, 1). */ {1, 1, 0, 0}, /* Unused (0, 2). */ {1, 1, 0, 0}, /* Unused (0, 3). */ {1, 1, 0, 0}, /* Bcc o (1, 0). */ {BRANCH_BF, BRANCH_BB, 0, ENCODE_RELAX (1, 1)}, /* Bcc [PC+] (1, 1). */ {BRANCH_WF, BRANCH_WB, 2, ENCODE_RELAX (1, 2)}, /* BEXT/BWF, BA, JUMP (external), JUMP (always), Bnot_cc, JUMP (default) (1, 2). */ {0, 0, 10, 0}, /* Unused (1, 3). */ {1, 1, 0, 0}, /* BDAP o (2, 0). */ {BDAP_BF, BDAP_BB, 0, ENCODE_RELAX (2, 1)}, /* BDAP.[bw] [PC+] (2, 1). */ {BDAP_WF, BDAP_WB, 2, ENCODE_RELAX (2, 2)}, /* BDAP.d [PC+] (2, 2). */ {0, 0, 4, 0}, /* Unused (2, 3). */ {1, 1, 0, 0}, /* MULS/MULU (3, 0). Positions (3, 1..3) are unused. */ {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, /* V32: Bcc o (4, 0). */ {BRANCH_BF_V32, BRANCH_BB_V32, 0, ENCODE_RELAX (4, 1)}, /* V32: Bcc [PC+] (4, 1). */ {BRANCH_WF_V32, BRANCH_WB_V32, 2, ENCODE_RELAX (4, 2)}, /* V32: BA .+12; NOP; BA32 target; NOP; Bcc .-6 (4, 2). */ {0, 0, 12, 0}, /* Unused (4, 3). */ {1, 1, 0, 0}, /* COMMON: Bcc o (5, 0). The offsets are calculated as for v32. Code should contain two nop insns (or four if offset size is large or unknown) after every label. */ {BRANCH_BF_V32, BRANCH_BB_V32, 0, ENCODE_RELAX (5, 1)}, /* COMMON: Bcc [PC+] (5, 1). */ {BRANCH_WF_V32, BRANCH_WB_V32, 2, ENCODE_RELAX (5, 2)}, /* COMMON: FIXME: ???. Treat as error currently. */ {0, 0, 12, 0}, /* Unused (5, 3). */ {1, 1, 0, 0}, /* V32: BA o (6, 0). */ {BRANCH_BF_V32, BRANCH_BB_V32, 0, ENCODE_RELAX (6, 1)}, /* V32: BA.W (6, 1). */ {BRANCH_WF_V32, BRANCH_WB_V32, 2, ENCODE_RELAX (6, 2)}, /* V32: BA.D (6, 2). */ {0, 0, 4, 0}, /* Unused (6, 3). */ {1, 1, 0, 0}, /* LAPC: LAPCQ .+0..15*2,Rn (7, 0). */ {14*2, -1*2, 0, ENCODE_RELAX (7, 2)}, /* Unused (7, 1). While there's a shorter sequence, e.g. LAPCQ + an ADDQ or SUBQ, that would affect flags, so we can't do that as it wouldn't be a proper insn expansion of LAPCQ. This row is associated with a 2-byte expansion, so it's unused rather than the next. */ {1, 1, 0, 0}, /* LAPC: LAPC.D (7, 2). */ {0, 0, 4, 0}, /* Unused (7, 3). */ {1, 1, 0, 0}, /* PIC for pre-v32: Bcc o (8, 0). */ {BRANCH_BF, BRANCH_BB, 0, ENCODE_RELAX (STATE_COND_BRANCH_PIC, 1)}, /* Bcc [PC+] (8, 1). */ {BRANCH_WF, BRANCH_WB, 2, ENCODE_RELAX (STATE_COND_BRANCH_PIC, 2)}, /* 32-bit expansion, PIC (8, 2). */ {0, 0, 12, 0}, /* Unused (8, 3). */ {1, 1, 0, 0} }; #undef BDAP_BF #undef BDAP_BB #undef BDAP_WF #undef BDAP_WB /* Target-specific multicharacter options, not const-declared. */ struct option md_longopts[] = { #define OPTION_NO_US (OPTION_MD_BASE + 0) {"no-underscore", no_argument, NULL, OPTION_NO_US}, #define OPTION_US (OPTION_MD_BASE + 1) {"underscore", no_argument, NULL, OPTION_US}, #define OPTION_PIC (OPTION_US + 1) {"pic", no_argument, NULL, OPTION_PIC}, #define OPTION_MULBUG_ABORT_ON (OPTION_PIC + 1) {"mul-bug-abort", no_argument, NULL, OPTION_MULBUG_ABORT_ON}, #define OPTION_MULBUG_ABORT_OFF (OPTION_MULBUG_ABORT_ON + 1) {"no-mul-bug-abort", no_argument, NULL, OPTION_MULBUG_ABORT_OFF}, #define OPTION_ARCH (OPTION_MULBUG_ABORT_OFF + 1) {"march", required_argument, NULL, OPTION_ARCH}, {NULL, no_argument, NULL, 0} }; /* Not const-declared. */ size_t md_longopts_size = sizeof (md_longopts); const char *md_shortopts = "hHN"; /* At first glance, this may seems wrong and should be 4 (ba + nop); but since a short_jump must skip a *number* of long jumps, it must also be a long jump. Here, we hope to make it a "ba [16bit_offs]" and a "nop" for the delay slot and hope that the jump table at most needs 32767/4=8191 long-jumps. A branch is better than a jump, since it is relative; we will not have a reloc to fix up somewhere. Note that we can't add relocs, because relaxation uses these fixed numbers, and md_create_short_jump is called after relaxation. */ int md_short_jump_size = 6; /* The v32 version has a delay-slot, hence two bytes longer. The pre-v32 PIC version uses a prefixed insn. */ #define cris_any_v0_v10_long_jump_size 6 #define cris_any_v0_v10_long_jump_size_pic 8 #define crisv32_long_jump_size 8 int md_long_jump_size = XCONCAT2 (DEFAULT_CRIS_ARCH,_long_jump_size); /* Report output format. Small changes in output format (like elf variants below) can happen until all options are parsed, but after that, the output format must remain fixed. */ const char * cris_target_format (void) { switch (OUTPUT_FLAVOR) { case bfd_target_aout_flavour: return "a.out-cris"; case bfd_target_elf_flavour: if (symbols_have_leading_underscore) return "elf32-us-cris"; return "elf32-cris"; default: abort (); return NULL; } } /* Return a bfd_mach_cris... value corresponding to the value of cris_arch. */ unsigned int cris_mach (void) { unsigned int retval = 0; switch (cris_arch) { case arch_cris_common_v10_v32: retval = bfd_mach_cris_v10_v32; break; case arch_crisv32: retval = bfd_mach_cris_v32; break; case arch_crisv10: case arch_cris_any_v0_v10: retval = bfd_mach_cris_v0_v10; break; default: BAD_CASE (cris_arch); } return retval; } /* We need a port-specific relaxation function to cope with sym2 - sym1 relative expressions with both symbols in the same segment (but not necessarily in the same frag as this insn), for example: move.d [pc+sym2-(sym1-2)],r10 sym1: The offset can be 8, 16 or 32 bits long. */ long cris_relax_frag (segT seg ATTRIBUTE_UNUSED, fragS *fragP, long stretch ATTRIBUTE_UNUSED) { long growth; offsetT aim = 0; symbolS *symbolP; const relax_typeS *this_type; const relax_typeS *start_type; relax_substateT next_state; relax_substateT this_state; const relax_typeS *table = TC_GENERIC_RELAX_TABLE; /* We only have to cope with frags as prepared by md_estimate_size_before_relax. The dword cases may get here because of the different reasons that they aren't relaxable. */ switch (fragP->fr_subtype) { case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_DWORD): case ENCODE_RELAX (STATE_COND_BRANCH, STATE_DWORD): case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_DWORD): case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_DWORD): case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_DWORD): case ENCODE_RELAX (STATE_LAPC, STATE_DWORD): case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD): /* When we get to these states, the frag won't grow any more. */ return 0; case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD): case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE): if (fragP->fr_symbol == NULL || S_GET_SEGMENT (fragP->fr_symbol) != absolute_section) as_fatal (_("internal inconsistency problem in %s: fr_symbol %lx"), __FUNCTION__, (long) fragP->fr_symbol); symbolP = fragP->fr_symbol; if (symbol_resolved_p (symbolP)) as_fatal (_("internal inconsistency problem in %s: resolved symbol"), __FUNCTION__); aim = S_GET_VALUE (symbolP); break; case ENCODE_RELAX (STATE_MUL, STATE_BYTE): /* Nothing to do here. */ return 0; default: as_fatal (_("internal inconsistency problem in %s: fr_subtype %d"), __FUNCTION__, fragP->fr_subtype); } /* The rest is stolen from relax_frag. There's no obvious way to share the code, but fortunately no requirement to keep in sync as long as fragP->fr_symbol does not have its segment changed. */ this_state = fragP->fr_subtype; start_type = this_type = table + this_state; if (aim < 0) { /* Look backwards. */ for (next_state = this_type->rlx_more; next_state;) if (aim >= this_type->rlx_backward) next_state = 0; else { /* Grow to next state. */ this_state = next_state; this_type = table + this_state; next_state = this_type->rlx_more; } } else { /* Look forwards. */ for (next_state = this_type->rlx_more; next_state;) if (aim <= this_type->rlx_forward) next_state = 0; else { /* Grow to next state. */ this_state = next_state; this_type = table + this_state; next_state = this_type->rlx_more; } } growth = this_type->rlx_length - start_type->rlx_length; if (growth != 0) fragP->fr_subtype = this_state; return growth; } /* Prepare machine-dependent frags for relaxation. Called just before relaxation starts. Any symbol that is now undefined will not become defined. Return the correct fr_subtype in the frag. Return the initial "guess for fr_var" to caller. The guess for fr_var is *actually* the growth beyond fr_fix. Whatever we do to grow fr_fix or fr_var contributes to our returned value. Although it may not be explicit in the frag, pretend fr_var starts with a value. */ int md_estimate_size_before_relax (fragS *fragP, segT segment_type) { int old_fr_fix; symbolS *symbolP = fragP->fr_symbol; #define HANDLE_RELAXABLE(state) \ case ENCODE_RELAX (state, STATE_UNDF): \ if (symbolP != NULL \ && S_GET_SEGMENT (symbolP) == segment_type \ && !S_IS_WEAK (symbolP)) \ /* The symbol lies in the same segment - a relaxable \ case. */ \ fragP->fr_subtype \ = ENCODE_RELAX (state, STATE_BYTE); \ else \ /* Unknown or not the same segment, so not relaxable. */ \ fragP->fr_subtype \ = ENCODE_RELAX (state, STATE_DWORD); \ fragP->fr_var \ = md_cris_relax_table[fragP->fr_subtype].rlx_length; \ break old_fr_fix = fragP->fr_fix; switch (fragP->fr_subtype) { HANDLE_RELAXABLE (STATE_COND_BRANCH); HANDLE_RELAXABLE (STATE_COND_BRANCH_V32); HANDLE_RELAXABLE (STATE_COND_BRANCH_COMMON); HANDLE_RELAXABLE (STATE_COND_BRANCH_PIC); HANDLE_RELAXABLE (STATE_ABS_BRANCH_V32); case ENCODE_RELAX (STATE_LAPC, STATE_UNDF): if (symbolP != NULL && S_GET_SEGMENT (symbolP) == segment_type && !S_IS_WEAK (symbolP)) { /* The symbol lies in the same segment - a relaxable case. Check if we currently have an odd offset; we can't code that into the instruction. Relaxing presumably only cause multiple-of-two changes, so we should only need to adjust for that here. */ bfd_vma target_address = (symbolP ? S_GET_VALUE (symbolP) : 0) + fragP->fr_offset; bfd_vma var_part_offset = fragP->fr_fix; bfd_vma address_of_var_part = fragP->fr_address + var_part_offset; long offset = target_address - (address_of_var_part - 2); fragP->fr_subtype = (offset & 1) ? ENCODE_RELAX (STATE_LAPC, STATE_DWORD) : ENCODE_RELAX (STATE_LAPC, STATE_BYTE); } else /* Unknown or not the same segment, so not relaxable. */ fragP->fr_subtype = ENCODE_RELAX (STATE_LAPC, STATE_DWORD); fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length; break; case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_UNDF): /* Note that we can not do anything sane with relaxing [rX + a_known_symbol_in_text], it will have to be a 32-bit value. We could play tricks with managing a constant pool and make a_known_symbol_in_text a "bdap [pc + offset]" pointing there (like the GOT for ELF shared libraries), but that's no use, it would in general be no shorter or faster code, only more complicated. */ if (S_GET_SEGMENT (symbolP) != absolute_section) { /* Go for dword if not absolute or same segment. */ fragP->fr_subtype = ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD); fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length; } else if (!symbol_resolved_p (fragP->fr_symbol)) { /* The symbol will eventually be completely resolved as an absolute expression, but right now it depends on the result of relaxation and we don't know anything else about the value. We start relaxation with the assumption that it'll fit in a byte. */ fragP->fr_subtype = ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE); fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length; } else { /* Absolute expression. */ long int value; value = (symbolP != NULL ? S_GET_VALUE (symbolP) : 0) + fragP->fr_offset; if (value >= -128 && value <= 127) { /* Byte displacement. */ (fragP->fr_opcode)[0] = value; } else { /* Word or dword displacement. */ int pow2_of_size = 1; char *writep; if (value < -32768 || value > 32767) { /* Outside word range, make it a dword. */ pow2_of_size = 2; } /* Modify the byte-offset BDAP into a word or dword offset BDAP. Or really, a BDAP rX,8bit into a BDAP.[wd] rX,[PC+] followed by a word or dword. */ (fragP->fr_opcode)[0] = BDAP_PC_LOW + pow2_of_size * 16; /* Keep the register number in the highest four bits. */ (fragP->fr_opcode)[1] &= 0xF0; (fragP->fr_opcode)[1] |= BDAP_INCR_HIGH; /* It grew by two or four bytes. */ fragP->fr_fix += 1 << pow2_of_size; writep = fragP->fr_literal + old_fr_fix; md_number_to_chars (writep, value, 1 << pow2_of_size); } frag_wane (fragP); } break; case ENCODE_RELAX (STATE_COND_BRANCH, STATE_BYTE): case ENCODE_RELAX (STATE_COND_BRANCH, STATE_WORD): case ENCODE_RELAX (STATE_COND_BRANCH, STATE_DWORD): case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_BYTE): case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_WORD): case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_DWORD): case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_BYTE): case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_WORD): case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_DWORD): case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_BYTE): case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_WORD): case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_DWORD): case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_BYTE): case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_WORD): case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_DWORD): case ENCODE_RELAX (STATE_LAPC, STATE_BYTE): case ENCODE_RELAX (STATE_LAPC, STATE_DWORD): case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE): case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD): case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD): /* When relaxing a section for the second time, we don't need to do anything except making sure that fr_var is set right. */ fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length; break; case ENCODE_RELAX (STATE_MUL, STATE_BYTE): /* Nothing to do here. */ break; default: BAD_CASE (fragP->fr_subtype); } return fragP->fr_var + (fragP->fr_fix - old_fr_fix); } /* Perform post-processing of machine-dependent frags after relaxation. Called after relaxation is finished. In: Address of frag. fr_type == rs_machine_dependent. fr_subtype is what the address relaxed to. Out: Any fixS:s and constants are set up. The caller will turn the frag into a ".space 0". */ void md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED, fragS *fragP) { /* Pointer to first byte in variable-sized part of the frag. */ char *var_partp; /* Pointer to first opcode byte in frag. */ char *opcodep; /* Used to check integrity of the relaxation. One of 2 = long, 1 = word, or 0 = byte. */ int length_code; /* Size in bytes of variable-sized part of frag. */ int var_part_size = 0; /* This is part of *fragP. It contains all information about addresses and offsets to varying parts. */ symbolS *symbolP; unsigned long var_part_offset; /* Where, in file space, is _var of *fragP? */ unsigned long address_of_var_part = 0; /* Where, in file space, does addr point? */ unsigned long target_address; know (fragP->fr_type == rs_machine_dependent); length_code = fragP->fr_subtype & STATE_LENGTH_MASK; know (length_code >= 0 && length_code < STATE_MAX_LENGTH); var_part_offset = fragP->fr_fix; var_partp = fragP->fr_literal + var_part_offset; opcodep = fragP->fr_opcode; symbolP = fragP->fr_symbol; target_address = (symbolP ? S_GET_VALUE (symbolP) : 0) + fragP->fr_offset; address_of_var_part = fragP->fr_address + var_part_offset; switch (fragP->fr_subtype) { case ENCODE_RELAX (STATE_COND_BRANCH, STATE_BYTE): case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_BYTE): case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_BYTE): case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_BYTE): case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_BYTE): opcodep[0] = branch_disp ((target_address - address_of_var_part)); var_part_size = 0; break; case ENCODE_RELAX (STATE_COND_BRANCH, STATE_WORD): case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_WORD): case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_WORD): case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_WORD): case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_WORD): /* We had a quick immediate branch, now turn it into a word one i.e. a PC autoincrement. */ opcodep[0] = BRANCH_PC_LOW; opcodep[1] &= 0xF0; opcodep[1] |= BRANCH_INCR_HIGH; md_number_to_chars (var_partp, (long) (target_address - (address_of_var_part + (cris_arch == arch_crisv32 || cris_arch == arch_cris_common_v10_v32 ? -2 : 2))), 2); var_part_size = 2; break; case ENCODE_RELAX (STATE_COND_BRANCH, STATE_DWORD): gen_cond_branch_32 (fragP->fr_opcode, var_partp, fragP, fragP->fr_symbol, (symbolS *) NULL, fragP->fr_offset); /* Ten bytes added: a branch, nop and a jump. */ var_part_size = 2 + 2 + 4 + 2; break; case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_DWORD): gen_cond_branch_32 (fragP->fr_opcode, var_partp, fragP, fragP->fr_symbol, (symbolS *) NULL, fragP->fr_offset); /* Twelve bytes added: a branch, nop and a pic-branch-32. */ var_part_size = 2 + 2 + 4 + 2 + 2; break; case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_DWORD): gen_cond_branch_32 (fragP->fr_opcode, var_partp, fragP, fragP->fr_symbol, (symbolS *) NULL, fragP->fr_offset); /* Twelve bytes added: a branch, nop and another branch and nop. */ var_part_size = 2 + 2 + 2 + 4 + 2; break; case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_DWORD): as_bad_where (fragP->fr_file, fragP->fr_line, _("Relaxation to long branches for .arch common_v10_v32\ not implemented")); /* Pretend we have twelve bytes for sake of quelling further errors. */ var_part_size = 2 + 2 + 2 + 4 + 2; break; case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_DWORD): /* We had a quick immediate branch or a word immediate ba. Now turn it into a dword one. */ opcodep[0] = BA_DWORD_OPCODE & 255; opcodep[1] = (BA_DWORD_OPCODE >> 8) & 255; fix_new (fragP, var_partp - fragP->fr_literal, 4, symbolP, fragP->fr_offset + 6, 1, BFD_RELOC_32_PCREL); var_part_size = 4; break; case ENCODE_RELAX (STATE_LAPC, STATE_BYTE): { long offset = target_address - (address_of_var_part - 2); /* This is mostly a sanity check; useful occurrences (if there really are any) should have been caught in md_estimate_size_before_relax. We can (at least theoretically) stumble over invalid code with odd sizes and .p2aligns within the code, so emit an error if that happens. (The generic relaxation machinery is not fit to check this.) */ if (offset & 1) as_bad_where (fragP->fr_file, fragP->fr_line, _("Complicated LAPC target operand is not\ a multiple of two. Use LAPC.D")); /* FIXME: This *is* a sanity check. Remove when done with. */ if (offset > 15*2 || offset < 0) as_fatal (_("Internal error found in md_convert_frag: offset %ld.\ Please report this."), offset); opcodep[0] |= (offset / 2) & 0xf; var_part_size = 0; } break; case ENCODE_RELAX (STATE_LAPC, STATE_DWORD): { md_number_to_chars (opcodep, LAPC_DWORD_OPCODE + (opcodep[1] & 0xf0) * 256, 2); /* Remember that the reloc is against the position *after* the relocated contents, so we need to adjust to the start of the insn. */ fix_new (fragP, var_partp - fragP->fr_literal, 4, fragP->fr_symbol, fragP->fr_offset + 6, 1, BFD_RELOC_32_PCREL); var_part_size = 4; } break; case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE): if (symbolP == NULL) as_fatal (_("internal inconsistency in %s: bdapq no symbol"), __FUNCTION__); opcodep[0] = S_GET_VALUE (symbolP); var_part_size = 0; break; case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD): /* We had a BDAP 8-bit "quick immediate", now turn it into a 16-bit one that uses PC autoincrement. */ opcodep[0] = BDAP_PC_LOW + (1 << 4); opcodep[1] &= 0xF0; opcodep[1] |= BDAP_INCR_HIGH; if (symbolP == NULL) as_fatal (_("internal inconsistency in %s: bdap.w with no symbol"), __FUNCTION__); md_number_to_chars (var_partp, S_GET_VALUE (symbolP), 2); var_part_size = 2; break; case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD): /* We had a BDAP 16-bit "word", change the offset to a dword. */ opcodep[0] = BDAP_PC_LOW + (2 << 4); opcodep[1] &= 0xF0; opcodep[1] |= BDAP_INCR_HIGH; if (fragP->fr_symbol == NULL) md_number_to_chars (var_partp, fragP->fr_offset, 4); else fix_new (fragP, var_partp - fragP->fr_literal, 4, fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32); var_part_size = 4; break; case ENCODE_RELAX (STATE_MUL, STATE_BYTE): /* This is the only time we check position and alignment of the placement-tracking frag. */ if (sec->alignment_power < 2) as_bad_where (fragP->fr_file, fragP->fr_line, _("section alignment must be >= 4 bytes to check MULS/MULU safeness")); else { /* If the address after the MULS/MULU has alignment which is that of the section and may be that of a cache-size of the buggy versions, then the MULS/MULU can be placed badly. */ if ((address_of_var_part & ((1 << sec->alignment_power) - 1) & 31) == 0) as_bad_where (fragP->fr_file, fragP->fr_line, _("dangerous MULS/MULU location; give it higher alignment")); } break; default: BAD_CASE (fragP->fr_subtype); break; } fragP->fr_fix += var_part_size; } /* Generate a short jump around a secondary jump table. Also called from md_create_long_jump, when sufficient. */ void md_create_short_jump (char *storep, addressT from_addr, addressT to_addr, fragS *fragP ATTRIBUTE_UNUSED, symbolS *to_symbol ATTRIBUTE_UNUSED) { long int distance; /* See md_create_long_jump about the comment on the "+ 2". */ long int max_minimal_minus_distance; long int max_minimal_plus_distance; long int max_minus_distance; long int max_plus_distance; int nop_opcode; if (cris_arch == arch_crisv32) { max_minimal_minus_distance = BRANCH_BB_V32 + 2; max_minimal_plus_distance = BRANCH_BF_V32 + 2; max_minus_distance = BRANCH_WB_V32 + 2; max_plus_distance = BRANCH_WF_V32 + 2; nop_opcode = NOP_OPCODE_V32; } else if (cris_arch == arch_cris_common_v10_v32) /* Bail out for compatibility mode. (It seems it can be implemented, perhaps with a 10-byte sequence: "move.d NNNN,$pc/$acr", "jump $acr", "nop"; but doesn't seem worth it at the moment.) */ as_fatal (_("Out-of-range .word offset handling\ is not implemented for .arch common_v10_v32")); else { max_minimal_minus_distance = BRANCH_BB + 2; max_minimal_plus_distance = BRANCH_BF + 2; max_minus_distance = BRANCH_WB + 2; max_plus_distance = BRANCH_WF + 2; nop_opcode = NOP_OPCODE; } distance = to_addr - from_addr; if (max_minimal_minus_distance <= distance && distance <= max_minimal_plus_distance) { /* Create a "short" short jump: "BA distance - 2". */ storep[0] = branch_disp (distance - 2); storep[1] = BA_QUICK_HIGH; /* A nop for the delay slot. */ md_number_to_chars (storep + 2, nop_opcode, 2); /* The extra word should be filled with something sane too. Make it a nop to keep disassembly sane. */ md_number_to_chars (storep + 4, nop_opcode, 2); } else if (max_minus_distance <= distance && distance <= max_plus_distance) { /* Make it a "long" short jump: "BA (PC+)". */ md_number_to_chars (storep, BA_PC_INCR_OPCODE, 2); /* ".WORD distance - 4". */ md_number_to_chars (storep + 2, (long) (distance - 4 - (cris_arch == arch_crisv32 ? -4 : 0)), 2); /* A nop for the delay slot. */ md_number_to_chars (storep + 4, nop_opcode, 2); } else as_bad_where (fragP->fr_file, fragP->fr_line, _(".word case-table handling failed: table too large")); } /* Generate a long jump in a secondary jump table. storep Where to store the jump instruction. from_addr Address of the jump instruction. to_addr Destination address of the jump. fragP Which frag the destination address operand lies in. to_symbol Destination symbol. */ void md_create_long_jump (char *storep, addressT from_addr, addressT to_addr, fragS *fragP, symbolS *to_symbol) { long int distance; /* FIXME: What's that "+ 3"? It comes from the magic numbers that used to be here, it's just translated to the limit macros used in the relax table. But why + 3? */ long int max_short_minus_distance = cris_arch != arch_crisv32 ? BRANCH_WB + 3 : BRANCH_WB_V32 + 3; long int max_short_plus_distance = cris_arch != arch_crisv32 ? BRANCH_WF + 3 : BRANCH_WF_V32 + 3; distance = to_addr - from_addr; if (max_short_minus_distance <= distance && distance <= max_short_plus_distance) /* Then make it a "short" long jump. */ md_create_short_jump (storep, from_addr, to_addr, fragP, to_symbol); else { /* We have a "long" long jump: "JUMP [PC+]". If CRISv32, always make it a BA. Else make it an "MOVE [PC=PC+N],P0" if we're supposed to emit PIC code. */ md_number_to_chars (storep, cris_arch == arch_crisv32 ? BA_DWORD_OPCODE : (pic ? MOVE_PC_INCR_OPCODE_PREFIX : JUMP_PC_INCR_OPCODE), 2); /* Follow with a ".DWORD to_addr", PC-relative for PIC. */ fix_new (fragP, storep + 2 - fragP->fr_literal, 4, to_symbol, cris_arch == arch_crisv32 ? 6 : 0, cris_arch == arch_crisv32 || pic ? 1 : 0, cris_arch == arch_crisv32 || pic ? BFD_RELOC_32_PCREL : BFD_RELOC_32); /* Follow it with a "NOP" for CRISv32. */ if (cris_arch == arch_crisv32) md_number_to_chars (storep + 6, NOP_OPCODE_V32, 2); else if (pic) /* ...and the rest of the move-opcode for pre-v32 PIC. */ md_number_to_chars (storep + 6, MOVE_PC_INCR_OPCODE_SUFFIX, 2); } } /* Allocate space for the first piece of an insn, and mark it as the start of the insn for debug-format use. */ static char * cris_insn_first_word_frag (void) { char *insnp = frag_more (2); /* We need to mark the start of the insn by passing dwarf2_emit_insn the offset from the current fragment position. This must be done after the first fragment is created but before any other fragments (fixed or varying) are created. Note that the offset only corresponds to the "size" of the insn for a fixed-size, non-expanded insn. */ if (OUTPUT_FLAVOR == bfd_target_elf_flavour) dwarf2_emit_insn (2); return insnp; } /* Port-specific assembler initialization. */ void md_begin (void) { const char *hashret = NULL; int i = 0; /* Set up a hash table for the instructions. */ op_hash = hash_new (); if (op_hash == NULL) as_fatal (_("Virtual memory exhausted")); /* Enable use of ".if ..asm.arch.cris.v32" and ".if ..asm.arch.cris.common_v10_v32" and a few others. */ symbol_table_insert (symbol_new ("..asm.arch.cris.v32", absolute_section, (cris_arch == arch_crisv32), &zero_address_frag)); symbol_table_insert (symbol_new ("..asm.arch.cris.v10", absolute_section, (cris_arch == arch_crisv10), &zero_address_frag)); symbol_table_insert (symbol_new ("..asm.arch.cris.common_v10_v32", absolute_section, (cris_arch == arch_cris_common_v10_v32), &zero_address_frag)); symbol_table_insert (symbol_new ("..asm.arch.cris.any_v0_v10", absolute_section, (cris_arch == arch_cris_any_v0_v10), &zero_address_frag)); while (cris_opcodes[i].name != NULL) { const char *name = cris_opcodes[i].name; if (! cris_insn_ver_valid_for_arch (cris_opcodes[i].applicable_version, cris_arch)) { i++; continue; } /* Need to cast to get rid of "const". FIXME: Fix hash_insert instead. */ hashret = hash_insert (op_hash, name, (void *) &cris_opcodes[i]); if (hashret != NULL && *hashret != '\0') as_fatal (_("Can't hash `%s': %s\n"), cris_opcodes[i].name, *hashret == 0 ? _("(unknown reason)") : hashret); do { if (cris_opcodes[i].match & cris_opcodes[i].lose) as_fatal (_("Buggy opcode: `%s' \"%s\"\n"), cris_opcodes[i].name, cris_opcodes[i].args); ++i; } while (cris_opcodes[i].name != NULL && strcmp (cris_opcodes[i].name, name) == 0); } } /* Assemble a source line. */ void md_assemble (char *str) { struct cris_instruction output_instruction; struct cris_prefix prefix; char *opcodep; char *p; know (str); /* Do the low-level grunt - assemble to bits and split up into a prefix and ordinary insn. */ cris_process_instruction (str, &output_instruction, &prefix); /* Handle any prefixes to the instruction. */ switch (prefix.kind) { case PREFIX_NONE: break; /* When the expression is unknown for a BDAP, it can need 0, 2 or 4 extra bytes, so we handle it separately. */ case PREFIX_BDAP_IMM: /* We only do it if the relocation is unspecified, i.e. not a PIC or TLS relocation. */ if (prefix.reloc == BFD_RELOC_NONE) { gen_bdap (prefix.base_reg_number, &prefix.expr); break; } /* Fall through. */ case PREFIX_BDAP: case PREFIX_BIAP: case PREFIX_DIP: opcodep = cris_insn_first_word_frag (); /* Output the prefix opcode. */ md_number_to_chars (opcodep, (long) prefix.opcode, 2); /* Having a specified reloc only happens for DIP and for BDAP with PIC or TLS operands, but it is ok to drop through here for the other prefixes as they can have no relocs specified. */ if (prefix.reloc != BFD_RELOC_NONE) { unsigned int relocsize = (prefix.kind == PREFIX_DIP ? 4 : cris_get_specified_reloc_size (prefix.reloc)); p = frag_more (relocsize); fix_new_exp (frag_now, (p - frag_now->fr_literal), relocsize, &prefix.expr, 0, prefix.reloc); } break; case PREFIX_PUSH: opcodep = cris_insn_first_word_frag (); /* Output the prefix opcode. Being a "push", we add the negative size of the register to "sp". */ if (output_instruction.spec_reg != NULL) { /* Special register. */ opcodep[0] = -output_instruction.spec_reg->reg_size; } else { /* General register. */ opcodep[0] = -4; } opcodep[1] = (REG_SP << 4) + (BDAP_QUICK_OPCODE >> 8); break; default: BAD_CASE (prefix.kind); } /* If we only had a prefix insn, we're done. */ if (output_instruction.insn_type == CRIS_INSN_NONE) return; /* Done with the prefix. Continue with the main instruction. */ if (prefix.kind == PREFIX_NONE) opcodep = cris_insn_first_word_frag (); else opcodep = frag_more (2); /* Output the instruction opcode. */ md_number_to_chars (opcodep, (long) (output_instruction.opcode), 2); /* Output the symbol-dependent instruction stuff. */ if (output_instruction.insn_type == CRIS_INSN_BRANCH) { segT to_seg = absolute_section; int is_undefined = 0; int length_code; if (output_instruction.expr.X_op != O_constant) { to_seg = S_GET_SEGMENT (output_instruction.expr.X_add_symbol); if (to_seg == undefined_section) is_undefined = 1; } if (to_seg == now_seg || is_undefined /* In CRISv32, there *is* a 32-bit absolute branch, so don't emit the 12-byte sequence for known symbols in other segments. */ || (cris_arch == arch_crisv32 && output_instruction.opcode == BA_QUICK_OPCODE)) { /* Handle complex expressions. */ valueT addvalue = (SIMPLE_EXPR (&output_instruction.expr) ? output_instruction.expr.X_add_number : 0); symbolS *sym = (SIMPLE_EXPR (&output_instruction.expr) ? output_instruction.expr.X_add_symbol : make_expr_symbol (&output_instruction.expr)); /* If is_undefined, the expression may still become now_seg. That case is handled by md_estimate_size_before_relax. */ length_code = to_seg == now_seg ? STATE_BYTE : STATE_UNDF; /* Make room for max twelve bytes of variable length for v32 mode or PIC, ten for v10 and older. */ frag_var (rs_machine_dependent, (cris_arch == arch_crisv32 || cris_arch == arch_cris_common_v10_v32 || pic) ? 12 : 10, 0, ENCODE_RELAX (cris_arch == arch_crisv32 ? (output_instruction.opcode == BA_QUICK_OPCODE ? STATE_ABS_BRANCH_V32 : STATE_COND_BRANCH_V32) : (cris_arch == arch_cris_common_v10_v32 ? STATE_COND_BRANCH_COMMON : (pic ? STATE_COND_BRANCH_PIC : STATE_COND_BRANCH)), length_code), sym, addvalue, opcodep); } else { /* We have: to_seg != now_seg && to_seg != undefined_section. This means it is a branch to a known symbol in another section, perhaps an absolute address. Emit a 32-bit branch. */ char *cond_jump = frag_more ((cris_arch == arch_crisv32 || cris_arch == arch_cris_common_v10_v32 || pic) ? 12 : 10); gen_cond_branch_32 (opcodep, cond_jump, frag_now, output_instruction.expr.X_add_symbol, (symbolS *) NULL, output_instruction.expr.X_add_number); } } else if (output_instruction.insn_type == CRIS_INSN_MUL && err_for_dangerous_mul_placement) /* Create a frag which which we track the location of the mul insn (in the last two bytes before the mul-frag). */ frag_variant (rs_machine_dependent, 0, 0, ENCODE_RELAX (STATE_MUL, STATE_BYTE), NULL, 0, opcodep); else { if (output_instruction.imm_oprnd_size > 0) { /* The instruction has an immediate operand. */ enum bfd_reloc_code_real reloc = BFD_RELOC_NONE; switch (output_instruction.imm_oprnd_size) { /* Any byte-size immediate constants are treated as word-size. FIXME: Thus overflow check does not work correctly. */ case 2: /* Note that size-check for the explicit reloc has already been done when we get here. */ if (output_instruction.reloc != BFD_RELOC_NONE) reloc = output_instruction.reloc; else reloc = BFD_RELOC_16; break; case 4: /* Allow a relocation specified in the operand. */ if (output_instruction.reloc != BFD_RELOC_NONE) reloc = output_instruction.reloc; else reloc = BFD_RELOC_32; break; default: BAD_CASE (output_instruction.imm_oprnd_size); } p = frag_more (output_instruction.imm_oprnd_size); fix_new_exp (frag_now, (p - frag_now->fr_literal), output_instruction.imm_oprnd_size, &output_instruction.expr, reloc == BFD_RELOC_32_PCREL || reloc == BFD_RELOC_16_PCREL || reloc == BFD_RELOC_8_PCREL, reloc); } else if (output_instruction.reloc == BFD_RELOC_CRIS_LAPCQ_OFFSET && output_instruction.expr.X_md != 0) { /* Handle complex expressions. */ valueT addvalue = (output_instruction.expr.X_op_symbol != NULL ? 0 : output_instruction.expr.X_add_number); symbolS *sym = (output_instruction.expr.X_op_symbol != NULL ? make_expr_symbol (&output_instruction.expr) : output_instruction.expr.X_add_symbol); /* This is a relaxing construct, so we need a frag_var rather than the fix_new_exp call below. */ frag_var (rs_machine_dependent, 4, 0, ENCODE_RELAX (STATE_LAPC, STATE_UNDF), sym, addvalue, opcodep); } else if (output_instruction.reloc != BFD_RELOC_NONE) { /* An immediate operand that has a relocation and needs to be processed further. */ /* It is important to use fix_new_exp here and everywhere else (and not fix_new), as fix_new_exp can handle "difference expressions" - where the expression contains a difference of two symbols in the same segment. */ fix_new_exp (frag_now, (opcodep - frag_now->fr_literal), 2, &output_instruction.expr, output_instruction.reloc == BFD_RELOC_32_PCREL || output_instruction.reloc == BFD_RELOC_16_PCREL || output_instruction.reloc == BFD_RELOC_8_PCREL || (output_instruction.reloc == BFD_RELOC_CRIS_LAPCQ_OFFSET), output_instruction.reloc); } } } /* Low level text-to-bits assembly. */ static void cris_process_instruction (char *insn_text, struct cris_instruction *out_insnp, struct cris_prefix *prefixp) { char *s; char modified_char = 0; const char *args; struct cris_opcode *instruction; char *operands; int match = 0; int mode; int regno; int size_bits; /* Reset these fields to a harmless state in case we need to return in error. */ prefixp->kind = PREFIX_NONE; prefixp->reloc = BFD_RELOC_NONE; out_insnp->insn_type = CRIS_INSN_NONE; out_insnp->imm_oprnd_size = 0; /* Find the end of the opcode mnemonic. We assume (true in 2.9.1) that the caller has translated the opcode to lower-case, up to the first non-letter. */ for (operands = insn_text; ISLOWER (*operands); ++operands) ; /* Terminate the opcode after letters, but save the character there if it was of significance. */ switch (*operands) { case '\0': break; case '.': /* Put back the modified character later. */ modified_char = *operands; /* Fall through. */ case ' ': /* Consume the character after the mnemonic and replace it with '\0'. */ *operands++ = '\0'; break; default: as_bad (_("Unknown opcode: `%s'"), insn_text); return; } /* Find the instruction. */ instruction = (struct cris_opcode *) hash_find (op_hash, insn_text); if (instruction == NULL) { as_bad (_("Unknown opcode: `%s'"), insn_text); return; } /* Put back the modified character. */ switch (modified_char) { case 0: break; default: *--operands = modified_char; } /* Try to match an opcode table slot. */ for (s = operands;;) { int imm_expr_found; /* Initialize *prefixp, perhaps after being modified for a "near match". */ prefixp->kind = PREFIX_NONE; prefixp->reloc = BFD_RELOC_NONE; /* Initialize *out_insnp. */ memset (out_insnp, 0, sizeof (*out_insnp)); out_insnp->opcode = instruction->match; out_insnp->reloc = BFD_RELOC_NONE; out_insnp->insn_type = CRIS_INSN_NORMAL; out_insnp->imm_oprnd_size = 0; imm_expr_found = 0; /* Build the opcode, checking as we go to make sure that the operands match. */ for (args = instruction->args;; ++args) { switch (*args) { case '\0': /* If we've come to the end of arguments, we're done. */ if (*s == '\0') match = 1; break; case '!': /* Non-matcher character for disassembly. Ignore it here. */ continue; case '[': case ']': case ',': case ' ': /* These must match exactly. */ if (*s++ == *args) continue; break; case 'A': /* "ACR", case-insensitive. Handle a sometimes-mandatory dollar sign as register prefix. */ if (*s == REGISTER_PREFIX_CHAR) s++; else if (demand_register_prefix) break; if ((*s++ != 'a' && s[-1] != 'A') || (*s++ != 'c' && s[-1] != 'C') || (*s++ != 'r' && s[-1] != 'R')) break; continue; case 'B': /* This is not really an operand, but causes a "BDAP -size,SP" prefix to be output, for PUSH instructions. */ prefixp->kind = PREFIX_PUSH; continue; case 'b': /* This letter marks an operand that should not be matched in the assembler. It is a branch with 16-bit displacement. The assembler will create them from the 8-bit flavor when necessary. The assembler does not support the [rN+] operand, as the [r15+] that is generated for 16-bit displacements. */ break; case 'c': /* A 5-bit unsigned immediate in bits <4:0>. */ if (! cris_get_expression (&s, &out_insnp->expr)) break; else { if (out_insnp->expr.X_op == O_constant && (out_insnp->expr.X_add_number < 0 || out_insnp->expr.X_add_number > 31)) as_bad (_("Immediate value not in 5 bit unsigned range: %ld"), out_insnp->expr.X_add_number); out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_5; continue; } case 'C': /* A 4-bit unsigned immediate in bits <3:0>. */ if (! cris_get_expression (&s, &out_insnp->expr)) break; else { if (out_insnp->expr.X_op == O_constant && (out_insnp->expr.X_add_number < 0 || out_insnp->expr.X_add_number > 15)) as_bad (_("Immediate value not in 4 bit unsigned range: %ld"), out_insnp->expr.X_add_number); out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_4; continue; } /* For 'd', check for an optional ".d" or ".D" at the start of the operands, followed by a space character. */ case 'd': if (modified_char == '.' && *s == '.') { if ((s[1] != 'd' && s[1] == 'D') || ! ISSPACE (s[2])) break; s += 2; continue; } continue; case 'D': /* General register in bits <15:12> and <3:0>. */ if (! get_gen_reg (&s, ®no)) break; else { out_insnp->opcode |= regno /* << 0 */; out_insnp->opcode |= regno << 12; continue; } case 'f': /* Flags from the condition code register. */ { int flags = 0; if (! get_flags (&s, &flags)) break; out_insnp->opcode |= ((flags & 0xf0) << 8) | (flags & 0xf); continue; } case 'i': /* A 6-bit signed immediate in bits <5:0>. */ if (! cris_get_expression (&s, &out_insnp->expr)) break; else { if (out_insnp->expr.X_op == O_constant && (out_insnp->expr.X_add_number < -32 || out_insnp->expr.X_add_number > 31)) as_bad (_("Immediate value not in 6 bit range: %ld"), out_insnp->expr.X_add_number); out_insnp->reloc = BFD_RELOC_CRIS_SIGNED_6; continue; } case 'I': /* A 6-bit unsigned immediate in bits <5:0>. */ if (! cris_get_expression (&s, &out_insnp->expr)) break; else { if (out_insnp->expr.X_op == O_constant && (out_insnp->expr.X_add_number < 0 || out_insnp->expr.X_add_number > 63)) as_bad (_("Immediate value not in 6 bit unsigned range: %ld"), out_insnp->expr.X_add_number); out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_6; continue; } case 'M': /* A size modifier, B, W or D, to be put in a bit position suitable for CLEAR instructions (i.e. reflecting a zero register). */ if (! get_bwd_size_modifier (&s, &size_bits)) break; else { switch (size_bits) { case 0: out_insnp->opcode |= 0 << 12; break; case 1: out_insnp->opcode |= 4 << 12; break; case 2: out_insnp->opcode |= 8 << 12; break; } continue; } case 'm': /* A size modifier, B, W or D, to be put in bits <5:4>. */ if (modified_char != '.' || ! get_bwd_size_modifier (&s, &size_bits)) break; else { out_insnp->opcode |= size_bits << 4; continue; } case 'o': /* A branch expression. */ if (! cris_get_expression (&s, &out_insnp->expr)) break; else { out_insnp->insn_type = CRIS_INSN_BRANCH; continue; } case 'Q': /* A 8-bit quick BDAP expression, "expr,R". */ if (! cris_get_expression (&s, &out_insnp->expr)) break; if (*s != ',') break; s++; if (!get_gen_reg (&s, ®no)) break; out_insnp->opcode |= regno << 12; out_insnp->reloc = BFD_RELOC_CRIS_SIGNED_8; continue; case 'O': /* A BDAP expression for any size, "expr,R". */ if (! cris_get_expression (&s, &prefixp->expr)) break; else { if (*s != ',') break; s++; if (!get_gen_reg (&s, &prefixp->base_reg_number)) break; /* Since 'O' is used with an explicit bdap, we have no "real" instruction. */ prefixp->kind = PREFIX_BDAP_IMM; prefixp->opcode = BDAP_QUICK_OPCODE | (prefixp->base_reg_number << 12); out_insnp->insn_type = CRIS_INSN_NONE; continue; } case 'P': /* Special register in bits <15:12>. */ if (! get_spec_reg (&s, &out_insnp->spec_reg)) break; else { /* Use of some special register names come with a specific warning. Note that we have no ".cpu type" pseudo yet, so some of this is just unused framework. */ if (out_insnp->spec_reg->warning) as_warn ("%s", out_insnp->spec_reg->warning); else if (out_insnp->spec_reg->applicable_version == cris_ver_warning) /* Others have a generic warning. */ as_warn (_("Unimplemented register `%s' specified"), out_insnp->spec_reg->name); out_insnp->opcode |= out_insnp->spec_reg->number << 12; continue; } case 'p': /* This character is used in the disassembler to recognize a prefix instruction to fold into the addressing mode for the next instruction. It is ignored here. */ continue; case 'R': /* General register in bits <15:12>. */ if (! get_gen_reg (&s, ®no)) break; else { out_insnp->opcode |= regno << 12; continue; } case 'r': /* General register in bits <3:0>. */ if (! get_gen_reg (&s, ®no)) break; else { out_insnp->opcode |= regno /* << 0 */; continue; } case 'S': /* Source operand in bit <10> and a prefix; a 3-operand prefix. */ if (! get_3op_or_dip_prefix_op (&s, prefixp)) break; else continue; case 's': /* Source operand in bits <10>, <3:0> and optionally a prefix; i.e. an indirect operand or an side-effect prefix (where valid). */ if (! get_autoinc_prefix_or_indir_op (&s, prefixp, &mode, ®no, &imm_expr_found, &out_insnp->expr)) break; else { if (prefixp->kind != PREFIX_NONE) { /* A prefix, so it has the autoincrement bit set. */ out_insnp->opcode |= (AUTOINCR_BIT << 8); } else { /* No prefix. The "mode" variable contains bits like whether or not this is autoincrement mode. */ out_insnp->opcode |= (mode << 10); /* If there was a reloc specifier, then it was attached to the prefix. Note that we can't check that the reloc size matches, since we don't have all the operands yet in all cases. */ if (prefixp->reloc != BFD_RELOC_NONE) out_insnp->reloc = prefixp->reloc; } out_insnp->opcode |= regno /* << 0 */ ; continue; } case 'N': case 'Y': /* Like 's', but immediate operand only. Also do not modify insn. There are no insns where an explicit reloc specifier makes sense. */ if (cris_get_expression (&s, &out_insnp->expr)) { imm_expr_found = 1; continue; } break; case 'n': /* Like 'N', but PC-relative to the start of the insn. There might be a :PLT to request a PLT entry. */ if (cris_get_expression (&s, &out_insnp->expr)) { imm_expr_found = 1; out_insnp->reloc = BFD_RELOC_32_PCREL; /* We have to adjust the expression, because that relocation is to the location *after* the relocation. So add 2 for the insn and 4 for the relocation. */ out_insnp->expr.X_add_number += 6; /* TLS specifiers do not make sense here. */ if (pic && *s == RELOC_SUFFIX_CHAR) cris_get_reloc_suffix (&s, &out_insnp->reloc, &out_insnp->expr); continue; } break; case 'U': /* Maybe 'u', maybe 'n'. Only for LAPC/LAPCQ. */ if (cris_get_expression (&s, &out_insnp->expr)) { out_insnp->reloc = BFD_RELOC_CRIS_LAPCQ_OFFSET; /* Define 1 as relaxing. */ out_insnp->expr.X_md = 1; continue; } break; case 'u': /* Four PC-relative bits in <3:0> representing <4:1>:0 of an offset relative to the beginning of the current insn. */ if (cris_get_expression (&s, &out_insnp->expr)) { out_insnp->reloc = BFD_RELOC_CRIS_LAPCQ_OFFSET; /* Define 0 as non-relaxing. */ out_insnp->expr.X_md = 0; /* We have to adjust the expression, because that relocation is to the location *after* the insn. So add 2 for the insn. */ out_insnp->expr.X_add_number += 2; continue; } break; case 'x': /* Rs.m in bits <15:12> and <5:4>. */ if (! get_gen_reg (&s, ®no) || ! get_bwd_size_modifier (&s, &size_bits)) break; else { out_insnp->opcode |= (regno << 12) | (size_bits << 4); continue; } case 'y': /* Source operand in bits <10>, <3:0> and optionally a prefix; i.e. an indirect operand or an side-effect prefix. The difference to 's' is that this does not allow an "immediate" expression. */ if (! get_autoinc_prefix_or_indir_op (&s, prefixp, &mode, ®no, &imm_expr_found, &out_insnp->expr) || imm_expr_found) break; else { if (prefixp->kind != PREFIX_NONE) { /* A prefix, and those matched here always have side-effects (see 's' case). */ out_insnp->opcode |= (AUTOINCR_BIT << 8); } else { /* No prefix. The "mode" variable contains bits like whether or not this is autoincrement mode. */ out_insnp->opcode |= (mode << 10); } out_insnp->opcode |= regno /* << 0 */; continue; } case 'z': /* Size modifier (B or W) in bit <4>. */ if (! get_bw_size_modifier (&s, &size_bits)) break; else { out_insnp->opcode |= size_bits << 4; continue; } case 'T': if (cris_arch == arch_crisv32 && get_sup_reg (&s, ®no)) { out_insnp->opcode |= regno << 12; continue; } break; default: BAD_CASE (*args); } /* We get here when we fail a match above or we found a complete match. Break out of this loop. */ break; } /* Was it a match or a miss? */ if (match == 0) { /* If it's just that the args don't match, maybe the next item in the table is the same opcode but with matching operands. First skip any invalid ones. */ while (instruction[1].name != NULL && strcmp (instruction->name, instruction[1].name) == 0 && ! cris_insn_ver_valid_for_arch (instruction[1] .applicable_version, cris_arch)) ++instruction; if (instruction[1].name != NULL && strcmp (instruction->name, instruction[1].name) == 0 && cris_insn_ver_valid_for_arch (instruction[1] .applicable_version, cris_arch)) { /* Yep. Restart and try that one instead. */ ++instruction; s = operands; continue; } else { /* We've come to the end of instructions with this opcode, so it must be an error. */ as_bad (_("Illegal operands")); /* As discard_rest_of_line, but without continuing to the next line. */ while (!is_end_of_line[(unsigned char) *input_line_pointer]) input_line_pointer++; return; } } else { /* We have a match. Check if there's anything more to do. */ if (imm_expr_found) { /* There was an immediate mode operand, so we must check that it has an appropriate size. */ switch (instruction->imm_oprnd_size) { default: case SIZE_NONE: /* Shouldn't happen; this one does not have immediate operands with different sizes. */ BAD_CASE (instruction->imm_oprnd_size); break; case SIZE_FIX_32: out_insnp->imm_oprnd_size = 4; break; case SIZE_SPEC_REG: if (cris_arch == arch_crisv32) /* All immediate loads of special registers are 32-bit on CRISv32. */ out_insnp->imm_oprnd_size = 4; else switch (out_insnp->spec_reg->reg_size) { case 1: if (out_insnp->expr.X_op == O_constant && (out_insnp->expr.X_add_number < -128 || out_insnp->expr.X_add_number > 255)) as_bad (_("Immediate value not in 8 bit range: %ld"), out_insnp->expr.X_add_number); /* Fall through. */ case 2: /* FIXME: We need an indicator in the instruction table to pass on, to indicate if we need to check overflow for a signed or unsigned number. */ if (out_insnp->expr.X_op == O_constant && (out_insnp->expr.X_add_number < -32768 || out_insnp->expr.X_add_number > 65535)) as_bad (_("Immediate value not in 16 bit range: %ld"), out_insnp->expr.X_add_number); out_insnp->imm_oprnd_size = 2; break; case 4: out_insnp->imm_oprnd_size = 4; break; default: BAD_CASE (out_insnp->spec_reg->reg_size); } break; case SIZE_FIELD: case SIZE_FIELD_SIGNED: case SIZE_FIELD_UNSIGNED: switch (size_bits) { /* FIXME: Find way to pass un/signedness to caller, and set reloc type instead, postponing this check until cris_number_to_imm. That necessarily corrects the reloc type for the byte case, maybe requiring further changes. */ case 0: if (out_insnp->expr.X_op == O_constant) { if (instruction->imm_oprnd_size == SIZE_FIELD && (out_insnp->expr.X_add_number < -128 || out_insnp->expr.X_add_number > 255)) as_bad (_("Immediate value not in 8 bit range: %ld"), out_insnp->expr.X_add_number); else if (instruction->imm_oprnd_size == SIZE_FIELD_SIGNED && (out_insnp->expr.X_add_number < -128 || out_insnp->expr.X_add_number > 127)) as_bad (_("Immediate value not in 8 bit signed range: %ld"), out_insnp->expr.X_add_number); else if (instruction->imm_oprnd_size == SIZE_FIELD_UNSIGNED && (out_insnp->expr.X_add_number < 0 || out_insnp->expr.X_add_number > 255)) as_bad (_("Immediate value not in 8 bit unsigned range: %ld"), out_insnp->expr.X_add_number); } /* Fall through. */ case 1: if (out_insnp->expr.X_op == O_constant) { if (instruction->imm_oprnd_size == SIZE_FIELD && (out_insnp->expr.X_add_number < -32768 || out_insnp->expr.X_add_number > 65535)) as_bad (_("Immediate value not in 16 bit range: %ld"), out_insnp->expr.X_add_number); else if (instruction->imm_oprnd_size == SIZE_FIELD_SIGNED && (out_insnp->expr.X_add_number < -32768 || out_insnp->expr.X_add_number > 32767)) as_bad (_("Immediate value not in 16 bit signed range: %ld"), out_insnp->expr.X_add_number); else if (instruction->imm_oprnd_size == SIZE_FIELD_UNSIGNED && (out_insnp->expr.X_add_number < 0 || out_insnp->expr.X_add_number > 65535)) as_bad (_("Immediate value not in 16 bit unsigned range: %ld"), out_insnp->expr.X_add_number); } out_insnp->imm_oprnd_size = 2; break; case 2: out_insnp->imm_oprnd_size = 4; break; default: BAD_CASE (out_insnp->spec_reg->reg_size); } } /* If there was a relocation specified for the immediate expression (i.e. it had a PIC or TLS modifier) check that the size of the relocation matches the size specified by the opcode. */ if (out_insnp->reloc != BFD_RELOC_NONE && (cris_get_specified_reloc_size (out_insnp->reloc) != (unsigned int) out_insnp->imm_oprnd_size)) as_bad (out_insnp->reloc == BFD_RELOC_CRIS_32_GD || out_insnp->reloc == BFD_RELOC_CRIS_32_TPREL || out_insnp->reloc == BFD_RELOC_CRIS_16_TPREL || out_insnp->reloc == BFD_RELOC_CRIS_32_IE ? _("TLS relocation size does not match operand size") : _("PIC relocation size does not match operand size")); } else if (instruction->op == cris_muls_op || instruction->op == cris_mulu_op) out_insnp->insn_type = CRIS_INSN_MUL; } break; } } /* Get a B, W, or D size modifier from the string pointed out by *cPP, which must point to a '.' in front of the modifier. On successful return, *cPP is advanced to the character following the size modifier, and is undefined otherwise. cPP Pointer to pointer to string starting with the size modifier. size_bitsp Pointer to variable to contain the size bits on successful return. Return 1 iff a correct size modifier is found, else 0. */ static int get_bwd_size_modifier (char **cPP, int *size_bitsp) { if (**cPP != '.') return 0; else { /* Consume the '.'. */ (*cPP)++; switch (**cPP) { case 'B': case 'b': *size_bitsp = 0; break; case 'W': case 'w': *size_bitsp = 1; break; case 'D': case 'd': *size_bitsp = 2; break; default: return 0; } /* Consume the size letter. */ (*cPP)++; return 1; } } /* Get a B or W size modifier from the string pointed out by *cPP, which must point to a '.' in front of the modifier. On successful return, *cPP is advanced to the character following the size modifier, and is undefined otherwise. cPP Pointer to pointer to string starting with the size modifier. size_bitsp Pointer to variable to contain the size bits on successful return. Return 1 iff a correct size modifier is found, else 0. */ static int get_bw_size_modifier (char **cPP, int *size_bitsp) { if (**cPP != '.') return 0; else { /* Consume the '.'. */ (*cPP)++; switch (**cPP) { case 'B': case 'b': *size_bitsp = 0; break; case 'W': case 'w': *size_bitsp = 1; break; default: return 0; } /* Consume the size letter. */ (*cPP)++; return 1; } } /* Get a general register from the string pointed out by *cPP. The variable *cPP is advanced to the character following the general register name on a successful return, and has its initial position otherwise. cPP Pointer to pointer to string, beginning with a general register name. regnop Pointer to int containing the register number. Return 1 iff a correct general register designator is found, else 0. */ static int get_gen_reg (char **cPP, int *regnop) { char *oldp; oldp = *cPP; /* Handle a sometimes-mandatory dollar sign as register prefix. */ if (**cPP == REGISTER_PREFIX_CHAR) (*cPP)++; else if (demand_register_prefix) return 0; switch (**cPP) { case 'P': case 'p': /* "P" as in "PC"? Consume the "P". */ (*cPP)++; if ((**cPP == 'C' || **cPP == 'c') && ! ISALNUM ((*cPP)[1]) /* Here's a little twist: For v32 and the compatibility mode, we only recognize PC as a register number if there's '+]' after. We don't consume that, but the presence can only be valid after a register in a post-increment context, which is also the only valid context for PC as a register for v32. Not that it's used very often, but saying "MOVE.D [PC+],R5" should remain valid. It's not supported for jump-type insns or other insns with no [Rn+] mode, though. */ && ((cris_arch != arch_crisv32 && cris_arch != arch_cris_common_v10_v32) || ((*cPP)[1] == '+' && (*cPP)[2] == ']'))) { /* It's "PC": consume the "c" and we're done. */ (*cPP)++; *regnop = REG_PC; return 1; } break; /* Like with PC, we recognize ACR, but only if it's *not* followed by '+', and only for v32. */ case 'A': case 'a': if (cris_arch != arch_crisv32 || ((*cPP)[1] != 'c' && (*cPP)[1] != 'C') || ((*cPP)[2] != 'r' && (*cPP)[2] != 'R') || ISALNUM ((*cPP)[3]) || (*cPP)[3] == '+') break; (*cPP) += 3; *regnop = 15; return 1; case 'R': case 'r': /* Hopefully r[0-9] or r1[0-5]. Consume 'R' or 'r'. */ (*cPP)++; if (ISDIGIT (**cPP)) { /* It's r[0-9]. Consume and check the next digit. */ *regnop = **cPP - '0'; (*cPP)++; if (! ISALNUM (**cPP)) { /* No more digits, we're done. */ return 1; } else { /* One more digit. Consume and add. */ *regnop = *regnop * 10 + (**cPP - '0'); /* We need to check for a valid register number; Rn, 0 <= n <= MAX_REG. */ if (*regnop <= MAX_REG) { /* Consume second digit. */ (*cPP)++; return 1; } } } break; case 'S': case 's': /* "S" as in "SP"? Consume the "S". */ (*cPP)++; if (**cPP == 'P' || **cPP == 'p') { /* It's "SP": consume the "p" and we're done. */ (*cPP)++; *regnop = REG_SP; return 1; } break; default: /* Just here to silence compilation warnings. */ ; } /* We get here if we fail. Restore the pointer. */ *cPP = oldp; return 0; } /* Get a special register from the string pointed out by *cPP. The variable *cPP is advanced to the character following the special register name if one is found, and retains its original position otherwise. cPP Pointer to pointer to string starting with a special register name. sregpp Pointer to Pointer to struct spec_reg, where a pointer to the register description will be stored. Return 1 iff a correct special register name is found. */ static int get_spec_reg (char **cPP, const struct cris_spec_reg **sregpp) { char *s1; const char *s2; char *name_begin = *cPP; const struct cris_spec_reg *sregp; /* Handle a sometimes-mandatory dollar sign as register prefix. */ if (*name_begin == REGISTER_PREFIX_CHAR) name_begin++; else if (demand_register_prefix) return 0; /* Loop over all special registers. */ for (sregp = cris_spec_regs; sregp->name != NULL; sregp++) { /* Start over from beginning of the supposed name. */ s1 = name_begin; s2 = sregp->name; while (*s2 != '\0' && TOLOWER (*s1) == *s2) { s1++; s2++; } /* For a match, we must have consumed the name in the table, and we must be outside what could be part of a name. Assume here that a test for alphanumerics is sufficient for a name test. */ if (*s2 == 0 && ! ISALNUM (*s1) && cris_insn_ver_valid_for_arch (sregp->applicable_version, cris_arch)) { /* We have a match. Update the pointer and be done. */ *cPP = s1; *sregpp = sregp; return 1; } } /* If we got here, we did not find any name. */ return 0; } /* Get a support register from the string pointed out by *cPP. The variable *cPP is advanced to the character following the support- register name if one is found, and retains its original position otherwise. cPP Pointer to pointer to string starting with a support-register name. sregpp Pointer to int containing the register number. Return 1 iff a correct support-register name is found. */ static int get_sup_reg (char **cPP, int *regnop) { char *s1; const char *s2; char *name_begin = *cPP; const struct cris_support_reg *sregp; /* Handle a sometimes-mandatory dollar sign as register prefix. */ if (*name_begin == REGISTER_PREFIX_CHAR) name_begin++; else if (demand_register_prefix) return 0; /* Loop over all support-registers. */ for (sregp = cris_support_regs; sregp->name != NULL; sregp++) { /* Start over from beginning of the supposed name. */ s1 = name_begin; s2 = sregp->name; while (*s2 != '\0' && TOLOWER (*s1) == *s2) { s1++; s2++; } /* For a match, we must have consumed the name in the table, and we must be outside what could be part of a name. Assume here that a test for alphanumerics is sufficient for a name test. */ if (*s2 == 0 && ! ISALNUM (*s1)) { /* We have a match. Update the pointer and be done. */ *cPP = s1; *regnop = sregp->number; return 1; } } /* If we got here, we did not find any name. */ return 0; } /* Get an unprefixed or side-effect-prefix operand from the string pointed out by *cPP. The pointer *cPP is advanced to the character following the indirect operand if we have success, else it contains an undefined value. cPP Pointer to pointer to string beginning with the first character of the supposed operand. prefixp Pointer to structure containing an optional instruction prefix. is_autoincp Pointer to int indicating the indirect or autoincrement bits. src_regnop Pointer to int containing the source register number in the instruction. imm_foundp Pointer to an int indicating if an immediate expression is found. imm_exprP Pointer to a structure containing an immediate expression, if success and if *imm_foundp is nonzero. Return 1 iff a correct indirect operand is found. */ static int get_autoinc_prefix_or_indir_op (char **cPP, struct cris_prefix *prefixp, int *is_autoincp, int *src_regnop, int *imm_foundp, expressionS *imm_exprP) { /* Assume there was no immediate mode expression. */ *imm_foundp = 0; if (**cPP == '[') { /* So this operand is one of: Indirect: [rN] Autoincrement: [rN+] Indexed with assign: [rN=rM+rO.S] Offset with assign: [rN=rM+I], [rN=rM+[rO].s], [rN=rM+[rO+].s] Either way, consume the '['. */ (*cPP)++; /* Get the rN register. */ if (! get_gen_reg (cPP, src_regnop)) /* If there was no register, then this cannot match. */ return 0; else { /* We got the register, now check the next character. */ switch (**cPP) { case ']': /* Indirect mode. We're done here. */ prefixp->kind = PREFIX_NONE; *is_autoincp = 0; break; case '+': /* This must be an auto-increment mode, if there's a match. */ prefixp->kind = PREFIX_NONE; *is_autoincp = 1; /* We consume this character and break out to check the closing ']'. */ (*cPP)++; break; case '=': /* This must be indexed with assign, or offset with assign to match. Not supported for crisv32 or in compatibility mode. */ if (cris_arch == arch_crisv32 || cris_arch == arch_cris_common_v10_v32) return 0; (*cPP)++; /* Either way, the next thing must be a register. */ if (! get_gen_reg (cPP, &prefixp->base_reg_number)) /* No register, no match. */ return 0; else { /* We've consumed "[rN=rM", so we must be looking at "+rO.s]" or "+I]", or "-I]", or "+[rO].s]" or "+[rO+].s]". */ if (**cPP == '+') { int index_reg_number; (*cPP)++; if (**cPP == '[') { int size_bits; /* This must be [rx=ry+[rz].s] or [rx=ry+[rz+].s] or no match. We must be looking at rz after consuming the '['. */ (*cPP)++; if (!get_gen_reg (cPP, &index_reg_number)) return 0; prefixp->kind = PREFIX_BDAP; prefixp->opcode = (BDAP_INDIR_OPCODE + (prefixp->base_reg_number << 12) + index_reg_number); if (**cPP == '+') { /* We've seen "[rx=ry+[rz+" here, so now we know that there must be "].s]" left to check. */ (*cPP)++; prefixp->opcode |= AUTOINCR_BIT << 8; } /* If it wasn't autoincrement, we don't need to add anything. */ /* Check the next-to-last ']'. */ if (**cPP != ']') return 0; (*cPP)++; /* Check the ".s" modifier. */ if (! get_bwd_size_modifier (cPP, &size_bits)) return 0; prefixp->opcode |= size_bits << 4; /* Now we got [rx=ry+[rz+].s or [rx=ry+[rz].s. We break out to check the final ']'. */ break; } /* It wasn't an indirection. Check if it's a register. */ else if (get_gen_reg (cPP, &index_reg_number)) { int size_bits; /* Indexed with assign mode: "[rN+rM.S]". */ prefixp->kind = PREFIX_BIAP; prefixp->opcode = (BIAP_OPCODE + (index_reg_number << 12) + prefixp->base_reg_number /* << 0 */); if (! get_bwd_size_modifier (cPP, &size_bits)) /* Size missing, this isn't a match. */ return 0; else { /* Size found, break out to check the final ']'. */ prefixp->opcode |= size_bits << 4; break; } } /* Not a register. Then this must be "[rN+I]". */ else if (cris_get_expression (cPP, &prefixp->expr)) { /* We've got offset with assign mode. Fill in the blanks and break out to match the final ']'. */ prefixp->kind = PREFIX_BDAP_IMM; /* We tentatively put an opcode corresponding to a 32-bit operand here, although it may be relaxed when there's no relocation specifier for the operand. */ prefixp->opcode = (BDAP_INDIR_OPCODE | (prefixp->base_reg_number << 12) | (AUTOINCR_BIT << 8) | (2 << 4) | REG_PC /* << 0 */); /* This can have a PIC suffix, specifying reloc type to use. */ if ((pic || tls) && **cPP == RELOC_SUFFIX_CHAR) { unsigned int relocsize; cris_get_reloc_suffix (cPP, &prefixp->reloc, &prefixp->expr); /* Tweak the size of the immediate operand in the prefix opcode if it isn't what we set. */ relocsize = cris_get_specified_reloc_size (prefixp->reloc); if (relocsize != 4) prefixp->opcode = ((prefixp->opcode & ~(3 << 4)) | ((relocsize >> 1) << 4)); } break; } else /* Neither register nor expression found, so this can't be a match. */ return 0; } /* Not "[rN+" but perhaps "[rN-"? */ else if (**cPP == '-') { /* We must have an offset with assign mode. */ if (! cris_get_expression (cPP, &prefixp->expr)) /* No expression, no match. */ return 0; else { /* We've got offset with assign mode. Fill in the blanks and break out to match the final ']'. Note that we don't allow a relocation suffix for an operand with a minus sign. */ prefixp->kind = PREFIX_BDAP_IMM; break; } } else /* Neither '+' nor '-' after "[rN=rM". Lose. */ return 0; } default: /* Neither ']' nor '+' nor '=' after "[rN". Lose. */ return 0; } } /* When we get here, we have a match and will just check the closing ']'. We can still fail though. */ if (**cPP != ']') return 0; else { /* Don't forget to consume the final ']'. Then return in glory. */ (*cPP)++; return 1; } } /* No indirection. Perhaps a constant? */ else if (cris_get_expression (cPP, imm_exprP)) { /* Expression found, this is immediate mode. */ prefixp->kind = PREFIX_NONE; *is_autoincp = 1; *src_regnop = REG_PC; *imm_foundp = 1; /* This can have a PIC suffix, specifying reloc type to use. The caller must check that the reloc size matches the operand size. */ if ((pic || tls) && **cPP == RELOC_SUFFIX_CHAR) cris_get_reloc_suffix (cPP, &prefixp->reloc, imm_exprP); return 1; } /* No luck today. */ return 0; } /* This function gets an indirect operand in a three-address operand combination from the string pointed out by *cPP. The pointer *cPP is advanced to the character following the indirect operand on success, or has an unspecified value on failure. cPP Pointer to pointer to string beginning with the operand prefixp Pointer to structure containing an instruction prefix Returns 1 iff a correct indirect operand is found. */ static int get_3op_or_dip_prefix_op (char **cPP, struct cris_prefix *prefixp) { int reg_number; if (**cPP != '[') /* We must have a '[' or it's a clean failure. */ return 0; /* Eat the first '['. */ (*cPP)++; if (**cPP == '[') { /* A second '[', so this must be double-indirect mode. */ (*cPP)++; prefixp->kind = PREFIX_DIP; prefixp->opcode = DIP_OPCODE; /* Get the register or fail entirely. */ if (! get_gen_reg (cPP, ®_number)) return 0; else { prefixp->opcode |= reg_number /* << 0 */ ; if (**cPP == '+') { /* Since we found a '+', this must be double-indirect autoincrement mode. */ (*cPP)++; prefixp->opcode |= AUTOINCR_BIT << 8; } /* There's nothing particular to do, if this was a double-indirect *without* autoincrement. */ } /* Check the first ']'. The second one is checked at the end. */ if (**cPP != ']') return 0; /* Eat the first ']', so we'll be looking at a second ']'. */ (*cPP)++; } /* No second '['. Then we should have a register here, making it "[rN". */ else if (get_gen_reg (cPP, &prefixp->base_reg_number)) { /* This must be indexed or offset mode: "[rN+I]" or "[rN+rM.S]" or "[rN+[rM].S]" or "[rN+[rM+].S]". */ if (**cPP == '+') { int index_reg_number; (*cPP)++; if (**cPP == '[') { /* This is "[rx+["... Expect a register next. */ int size_bits; (*cPP)++; if (!get_gen_reg (cPP, &index_reg_number)) return 0; prefixp->kind = PREFIX_BDAP; prefixp->opcode = (BDAP_INDIR_OPCODE + (prefixp->base_reg_number << 12) + index_reg_number); /* We've seen "[rx+[ry", so check if this is autoincrement. */ if (**cPP == '+') { /* Yep, now at "[rx+[ry+". */ (*cPP)++; prefixp->opcode |= AUTOINCR_BIT << 8; } /* If it wasn't autoincrement, we don't need to add anything. */ /* Check a first closing ']': "[rx+[ry]" or "[rx+[ry+]". */ if (**cPP != ']') return 0; (*cPP)++; /* Now expect a size modifier ".S". */ if (! get_bwd_size_modifier (cPP, &size_bits)) return 0; prefixp->opcode |= size_bits << 4; /* Ok, all interesting stuff has been seen: "[rx+[ry+].S" or "[rx+[ry].S". We only need to expect a final ']', which we'll do in a common closing session. */ } /* Seen "[rN+", but not a '[', so check if we have a register. */ else if (get_gen_reg (cPP, &index_reg_number)) { /* This is indexed mode: "[rN+rM.S]" or "[rN+rM.S+]". */ int size_bits; prefixp->kind = PREFIX_BIAP; prefixp->opcode = (BIAP_OPCODE | prefixp->base_reg_number /* << 0 */ | (index_reg_number << 12)); /* Consume the ".S". */ if (! get_bwd_size_modifier (cPP, &size_bits)) /* Missing size, so fail. */ return 0; else /* Size found. Add that piece and drop down to the common checking of the closing ']'. */ prefixp->opcode |= size_bits << 4; } /* Seen "[rN+", but not a '[' or a register, so then it must be a constant "I". As a quality of implementation improvement, we check for a closing ']', like in an erroneous "[rN+]". If we don't, the expression parser will emit a confusing "bad expression" when it sees the ']', probably because it doesn't like seeing no expression. */ else if (**cPP != ']' && cris_get_expression (cPP, &prefixp->expr)) { /* Expression found, so fill in the bits of offset mode and drop down to check the closing ']'. */ prefixp->kind = PREFIX_BDAP_IMM; /* We tentatively put an opcode corresponding to a 32-bit operand here, although it may be relaxed when there's no PIC specifier for the operand. */ prefixp->opcode = (BDAP_INDIR_OPCODE | (prefixp->base_reg_number << 12) | (AUTOINCR_BIT << 8) | (2 << 4) | REG_PC /* << 0 */); /* This can have a PIC suffix, specifying reloc type to use. */ if ((pic || tls) && **cPP == RELOC_SUFFIX_CHAR) { unsigned int relocsize; cris_get_reloc_suffix (cPP, &prefixp->reloc, &prefixp->expr); /* Tweak the size of the immediate operand in the prefix opcode if it isn't what we set. */ relocsize = cris_get_specified_reloc_size (prefixp->reloc); if (relocsize != 4) prefixp->opcode = ((prefixp->opcode & ~(3 << 4)) | ((relocsize >> 1) << 4)); } } else /* Nothing valid here: lose. */ return 0; } /* Seen "[rN" but no '+', so check if it's a '-'. */ else if (**cPP == '-') { /* Yep, we must have offset mode. */ if (! cris_get_expression (cPP, &prefixp->expr)) /* No expression, so we lose. */ return 0; else { /* Expression found to make this offset mode, so fill those bits and drop down to check the closing ']'. Note that we don't allow a PIC suffix for an operand with a minus sign like this. */ prefixp->kind = PREFIX_BDAP_IMM; } } else { /* We've seen "[rN", but not '+' or '-'; rather a ']'. Hmm. Normally this is a simple indirect mode that we shouldn't match, but if we expect ']', then we have a zero offset, so it can be a three-address-operand, like "[rN],rO,rP", thus offset mode. Don't eat the ']', that will be done in the closing ceremony. */ prefixp->expr.X_op = O_constant; prefixp->expr.X_add_number = 0; prefixp->expr.X_add_symbol = NULL; prefixp->expr.X_op_symbol = NULL; prefixp->kind = PREFIX_BDAP_IMM; } } /* A '[', but no second '[', and no register. Check if we have an expression, making this "[I]" for a double-indirect prefix. */ else if (cris_get_expression (cPP, &prefixp->expr)) { /* Expression found, the so called absolute mode for a double-indirect prefix on PC. */ prefixp->kind = PREFIX_DIP; prefixp->opcode = DIP_OPCODE | (AUTOINCR_BIT << 8) | REG_PC; prefixp->reloc = BFD_RELOC_32; /* For :GD and :IE, it makes sense to have TLS specifiers here. */ if ((pic || tls) && **cPP == RELOC_SUFFIX_CHAR) cris_get_reloc_suffix (cPP, &prefixp->reloc, &prefixp->expr); } else /* Neither '[' nor register nor expression. We lose. */ return 0; /* We get here as a closing ceremony to a successful match. We just need to check the closing ']'. */ if (**cPP != ']') /* Oops. Close but no air-polluter. */ return 0; /* Don't forget to consume that ']', before returning in glory. */ (*cPP)++; return 1; } /* Get an expression from the string pointed out by *cPP. The pointer *cPP is advanced to the character following the expression on a success, or retains its original value otherwise. cPP Pointer to pointer to string beginning with the expression. exprP Pointer to structure containing the expression. Return 1 iff a correct expression is found. */ static int cris_get_expression (char **cPP, expressionS *exprP) { char *saved_input_line_pointer; /* The "expression" function expects to find an expression at the global variable input_line_pointer, so we have to save it to give the impression that we don't fiddle with global variables. */ saved_input_line_pointer = input_line_pointer; input_line_pointer = *cPP; /* Avoid a common error, confusing addressing modes. Beware that the call to expression below does not signal that error; it treats [] as parentheses, unless #define NEED_INDEX_OPERATOR in which case it gives them other confusing semantics rather than plain outlawing them, which is what we want. */ if (*input_line_pointer == '[') { input_line_pointer = saved_input_line_pointer; return 0; } expression (exprP); if (exprP->X_op == O_illegal || exprP->X_op == O_absent) { input_line_pointer = saved_input_line_pointer; return 0; } /* Everything seems to be fine, just restore the global input_line_pointer and say we're successful. */ *cPP = input_line_pointer; input_line_pointer = saved_input_line_pointer; return 1; } /* Get a sequence of flag characters from *spp. The pointer *cPP is advanced to the character following the expression. The flag characters are consecutive, no commas or spaces. cPP Pointer to pointer to string beginning with the expression. flagp Pointer to int to return the flags expression. Return 1 iff a correct flags expression is found. */ static int get_flags (char **cPP, int *flagsp) { for (;;) { switch (**cPP) { case 'd': case 'D': if (! cris_insn_ver_valid_for_arch (cris_ver_v0_3, cris_arch)) return 0; *flagsp |= 0x80; break; case 'm': case 'M': if (! cris_insn_ver_valid_for_arch (cris_ver_v8_10, cris_arch)) return 0; *flagsp |= 0x80; break; case 'e': case 'E': if (! cris_insn_ver_valid_for_arch (cris_ver_v0_3, cris_arch)) return 0; *flagsp |= 0x40; break; case 'b': case 'B': if (! cris_insn_ver_valid_for_arch (cris_ver_v8_10, cris_arch)) return 0; *flagsp |= 0x40; break; case 'p': case 'P': if (! cris_insn_ver_valid_for_arch (cris_ver_v32p, cris_arch)) return 0; *flagsp |= 0x80; break; case 'u': case 'U': if (! cris_insn_ver_valid_for_arch (cris_ver_v32p, cris_arch)) return 0; *flagsp |= 0x40; break; case 'i': case 'I': *flagsp |= 0x20; break; case 'x': case 'X': *flagsp |= 0x10; break; case 'n': case 'N': *flagsp |= 0x8; break; case 'z': case 'Z': *flagsp |= 0x4; break; case 'v': case 'V': *flagsp |= 0x2; break; case 'c': case 'C': *flagsp |= 1; break; default: /* We consider this successful if we stop at a comma or whitespace. Anything else, and we consider it a failure. */ if (**cPP != ',' && **cPP != 0 && ! ISSPACE (**cPP)) return 0; else return 1; } /* Don't forget to consume each flag character. */ (*cPP)++; } } /* Generate code and fixes for a BDAP prefix. For v32, this handles ADDOQ because thankfully the opcodes are the same. base_regno Int containing the base register number. exprP Pointer to structure containing the offset expression. */ static void gen_bdap (int base_regno, expressionS *exprP) { unsigned int opcode; char *opcodep; /* Put out the prefix opcode; assume quick immediate mode at first. */ opcode = BDAP_QUICK_OPCODE | (base_regno << 12); opcodep = cris_insn_first_word_frag (); md_number_to_chars (opcodep, opcode, 2); if (exprP->X_op == O_constant) { /* We have an absolute expression that we know the size of right now. */ long int value; int size; value = exprP->X_add_number; if (value < -32768 || value > 32767) /* Outside range for a "word", make it a dword. */ size = 2; else /* Assume "word" size. */ size = 1; /* If this is a signed-byte value, we can fit it into the prefix insn itself. */ if (value >= -128 && value <= 127) opcodep[0] = value; else { /* This is a word or dword displacement, which will be put in a word or dword after the prefix. */ char *p; opcodep[0] = BDAP_PC_LOW + (size << 4); opcodep[1] &= 0xF0; opcodep[1] |= BDAP_INCR_HIGH; p = frag_more (1 << size); md_number_to_chars (p, value, 1 << size); } } else { /* Handle complex expressions. */ valueT addvalue = SIMPLE_EXPR (exprP) ? exprP->X_add_number : 0; symbolS *sym = (SIMPLE_EXPR (exprP) ? exprP->X_add_symbol : make_expr_symbol (exprP)); /* The expression is not defined yet but may become absolute. We make it a relocation to be relaxed. */ frag_var (rs_machine_dependent, 4, 0, ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_UNDF), sym, addvalue, opcodep); } } /* Encode a branch displacement in the range -256..254 into the form used by CRIS conditional branch instructions. offset The displacement value in bytes. */ static int branch_disp (int offset) { int disp; /* Adjust all short branch offsets here. */ if (cris_arch == arch_crisv32 || cris_arch == arch_cris_common_v10_v32) offset += 2; disp = offset & 0xFE; if (offset < 0) disp |= 1; return disp; } /* Generate code and fixes for a 32-bit conditional branch instruction created by "extending" an existing 8-bit branch instruction. opcodep Pointer to the word containing the original 8-bit branch instruction. writep Pointer to "extension area" following the first instruction word. fragP Pointer to the frag containing the instruction. add_symP, Parts of the destination address expression. sub_symP, add_num. */ static void gen_cond_branch_32 (char *opcodep, char *writep, fragS *fragP, symbolS *add_symP, symbolS *sub_symP, long int add_num) { int nop_opcode; int opc_offset; int branch_offset; if (cris_arch == arch_crisv32) { nop_opcode = NOP_OPCODE_V32; opc_offset = 10; branch_offset = -2 - 8; } else if (pic) { nop_opcode = NOP_OPCODE; opc_offset = 10; branch_offset = -2 - 8; } else { nop_opcode = NOP_OPCODE; opc_offset = 8; branch_offset = -2 - 6; } /* We should never get here for compatibility mode. */ if (cris_arch == arch_cris_common_v10_v32) as_fatal (_("Calling gen_cond_branch_32 for .arch common_v10_v32\n")); if (warn_for_branch_expansion) as_warn_where (fragP->fr_file, fragP->fr_line, _("32-bit conditional branch generated")); /* Here, writep points to what will be opcodep + 2. First, we change the actual branch in opcodep[0] and opcodep[1], so that in the final insn, it will look like: opcodep+10: Bcc .-6 This means we don't have to worry about changing the opcode or messing with the delay-slot instruction. So, we move it to last in the "extended" branch, and just change the displacement. Admittedly, it's not the optimal extended construct, but we should get this rarely enough that it shouldn't matter. */ writep[opc_offset] = branch_disp (branch_offset); writep[opc_offset + 1] = opcodep[1]; /* Then, we change the branch to an unconditional branch over the extended part, to the new location of the Bcc: opcodep: BA .+10 opcodep+2: NOP Note that these two writes are to currently different locations, merged later. */ md_number_to_chars (opcodep, BA_QUICK_OPCODE + (cris_arch == arch_crisv32 ? 12 : (pic ? 10 : 8)), 2); md_number_to_chars (writep, nop_opcode, 2); /* Then the extended thing, the 32-bit jump insn. opcodep+4: JUMP [PC+] or, in the PIC case, opcodep+4: MOVE [PC=PC+N],P0. */ md_number_to_chars (writep + 2, cris_arch == arch_crisv32 ? BA_DWORD_OPCODE : (pic ? MOVE_PC_INCR_OPCODE_PREFIX : JUMP_PC_INCR_OPCODE), 2); /* We have to fill in the actual value too. opcodep+6: .DWORD This is most probably an expression, but we can cope with an absolute value too. FIXME: Testcase needed with and without pic. */ if (add_symP == NULL && sub_symP == NULL) { /* An absolute address. */ if (pic || cris_arch == arch_crisv32) fix_new (fragP, writep + 4 - fragP->fr_literal, 4, section_symbol (absolute_section), add_num + (cris_arch == arch_crisv32 ? 6 : 0), 1, BFD_RELOC_32_PCREL); else md_number_to_chars (writep + 4, add_num, 4); } else { if (sub_symP != NULL) as_bad_where (fragP->fr_file, fragP->fr_line, _("Complex expression not supported")); /* Not absolute, we have to make it a frag for later evaluation. */ fix_new (fragP, writep + 4 - fragP->fr_literal, 4, add_symP, add_num + (cris_arch == arch_crisv32 ? 6 : 0), pic || cris_arch == arch_crisv32 ? 1 : 0, pic || cris_arch == arch_crisv32 ? BFD_RELOC_32_PCREL : BFD_RELOC_32); } if (cris_arch == arch_crisv32) /* Follow it with a "NOP" for CRISv32. */ md_number_to_chars (writep + 8, NOP_OPCODE_V32, 2); else if (pic) /* ...and the rest of the move-opcode for pre-v32 PIC. */ md_number_to_chars (writep + 8, MOVE_PC_INCR_OPCODE_SUFFIX, 2); } /* Get the size of an immediate-reloc in bytes. Only valid for specified relocs (TLS, PIC). */ static unsigned int cris_get_specified_reloc_size (bfd_reloc_code_real_type reloc) { return reloc == BFD_RELOC_CRIS_16_GOTPLT || reloc == BFD_RELOC_CRIS_16_GOT || reloc == BFD_RELOC_CRIS_16_GOT_GD || reloc == BFD_RELOC_CRIS_16_DTPREL || reloc == BFD_RELOC_CRIS_16_GOT_TPREL || reloc == BFD_RELOC_CRIS_16_TPREL ? 2 : 4; } /* Store a reloc type at *RELOCP corresponding to the PIC suffix at *CPP. Adjust *EXPRP with any addend found after the PIC suffix. */ static void cris_get_reloc_suffix (char **cPP, bfd_reloc_code_real_type *relocp, expressionS *exprP) { char *s = *cPP; unsigned int i; expressionS const_expr; const struct pic_suffixes_struct { const char *const suffix; unsigned int len; bfd_reloc_code_real_type reloc; bfd_boolean pic_p; bfd_boolean tls_p; } pic_suffixes[] = { #undef PICMAP #define PICMAP(s, r) {s, sizeof (s) - 1, r, TRUE, FALSE} #define PICTLSMAP(s, r) {s, sizeof (s) - 1, r, TRUE, TRUE} #define TLSMAP(s, r) {s, sizeof (s) - 1, r, FALSE, TRUE} /* Keep this in order with longest unambiguous prefix first. */ PICMAP ("GOTPLT16", BFD_RELOC_CRIS_16_GOTPLT), PICMAP ("GOTPLT", BFD_RELOC_CRIS_32_GOTPLT), PICMAP ("PLTG", BFD_RELOC_CRIS_32_PLT_GOTREL), PICMAP ("PLT", BFD_RELOC_CRIS_32_PLT_PCREL), PICMAP ("GOTOFF", BFD_RELOC_CRIS_32_GOTREL), PICMAP ("GOT16", BFD_RELOC_CRIS_16_GOT), PICMAP ("GOT", BFD_RELOC_CRIS_32_GOT), PICTLSMAP ("GDGOTREL16", BFD_RELOC_CRIS_16_GOT_GD), PICTLSMAP ("GDGOTREL", BFD_RELOC_CRIS_32_GOT_GD), TLSMAP ("GD", BFD_RELOC_CRIS_32_GD), PICTLSMAP ("DTPREL16", BFD_RELOC_CRIS_16_DTPREL), PICTLSMAP ("DTPREL", BFD_RELOC_CRIS_32_DTPREL), TLSMAP ("IE", BFD_RELOC_CRIS_32_IE), PICTLSMAP ("TPOFFGOT16", BFD_RELOC_CRIS_16_GOT_TPREL), PICTLSMAP ("TPOFFGOT", BFD_RELOC_CRIS_32_GOT_TPREL), TLSMAP ("TPOFF16", BFD_RELOC_CRIS_16_TPREL), TLSMAP ("TPOFF", BFD_RELOC_CRIS_32_TPREL) }; /* We've already seen the ':', so consume it. */ s++; for (i = 0; i < sizeof (pic_suffixes)/sizeof (pic_suffixes[0]); i++) { if (strncmp (s, pic_suffixes[i].suffix, pic_suffixes[i].len) == 0 && ! is_part_of_name (s[pic_suffixes[i].len]) /* PIC and non-PIC relocations are exclusive. */ && (pic != 0) == (pic_suffixes[i].pic_p != 0) /* But TLS can be active for non-TLS relocations too. */ && (pic_suffixes[i].tls_p == 0 || tls)) { /* We have a match. Consume the suffix and set the relocation type. */ s += pic_suffixes[i].len; /* There can be a constant term appended. If so, we will add it to *EXPRP. */ if (*s == '+' || *s == '-') { if (! cris_get_expression (&s, &const_expr)) /* There was some kind of syntax error. Bail out. */ break; /* Allow complex expressions as the constant part. It still has to be an assembly-time constant or there will be an error emitting the reloc. This makes the PIC qualifiers idempotent; foo:GOTOFF+32 == foo+32:GOTOFF. The former we recognize here; the latter is parsed in the incoming expression. */ exprP->X_add_symbol = make_expr_symbol (exprP); exprP->X_op = O_add; exprP->X_add_number = 0; exprP->X_op_symbol = make_expr_symbol (&const_expr); } *relocp = pic_suffixes[i].reloc; *cPP = s; return; } } /* No match. Don't consume anything; fall back and there will be a syntax error. */ } /* This *could* have been: Turn a string in input_line_pointer into a floating point constant of type TYPE, and store the appropriate bytes in *LITP. The number of LITTLENUMS emitted is stored in *SIZEP. type A character from FLTCHARS that describes what kind of floating-point number is wanted. litp A pointer to an array that the result should be stored in. sizep A pointer to an integer where the size of the result is stored. But we don't support floating point constants in assembly code *at all*, since it's suboptimal and just opens up bug opportunities. GCC emits the bit patterns as hex. All we could do here is to emit what GCC would have done in the first place. *Nobody* writes floating-point code as assembly code, but if they do, they should be able enough to find out the correct bit patterns and use them. */ char * md_atof (int type ATTRIBUTE_UNUSED, char *litp ATTRIBUTE_UNUSED, int *sizep ATTRIBUTE_UNUSED) { /* FIXME: Is this function mentioned in the internals.texi manual? If not, add it. */ return _("Bad call to md_atof () - floating point formats are not supported"); } /* Turn a number as a fixS * into a series of bytes that represents the number on the target machine. The purpose of this procedure is the same as that of md_number_to_chars but this procedure is supposed to handle general bit field fixes and machine-dependent fixups. bufp Pointer to an array where the result should be stored. val The value to store. n The number of bytes in "val" that should be stored. fixP The fix to be applied to the bit field starting at bufp. seg The segment containing this number. */ static void cris_number_to_imm (char *bufp, long val, int n, fixS *fixP, segT seg) { segT sym_seg; know (n <= 4); know (fixP); /* We put the relative "vma" for the other segment for inter-segment relocations in the object data to stay binary "compatible" (with an uninteresting old version) for the relocation. Maybe delete some day. */ if (fixP->fx_addsy && (sym_seg = S_GET_SEGMENT (fixP->fx_addsy)) != seg) val += sym_seg->vma; if (fixP->fx_addsy != NULL || fixP->fx_pcrel) switch (fixP->fx_r_type) { /* These must be fully resolved when getting here. */ case BFD_RELOC_16_PCREL: case BFD_RELOC_8_PCREL: as_bad_where (fixP->fx_file, fixP->fx_line, _("PC-relative relocation must be trivially resolved")); default: ; } /* Only use the computed value for old-arch binaries. For all others, where we're going to output a relocation, put 0 in the code. */ if (cris_arch != arch_cris_any_v0_v10 && (fixP->fx_addsy != NULL || fixP->fx_pcrel)) val = 0; switch (fixP->fx_r_type) { /* Ditto here, we put the addend into the object code as well as the reloc addend. Keep it that way for now, to simplify regression tests on the object file contents. FIXME: Seems uninteresting now that we have a test suite. */ case BFD_RELOC_CRIS_32_GOT_GD: case BFD_RELOC_CRIS_16_GOT_GD: case BFD_RELOC_CRIS_32_GD: case BFD_RELOC_CRIS_32_IE: case BFD_RELOC_CRIS_32_DTPREL: case BFD_RELOC_CRIS_16_DTPREL: case BFD_RELOC_CRIS_32_GOT_TPREL: case BFD_RELOC_CRIS_16_GOT_TPREL: case BFD_RELOC_CRIS_32_TPREL: case BFD_RELOC_CRIS_16_TPREL: #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) if (IS_ELF && fixP->fx_addsy != NULL) S_SET_THREAD_LOCAL (fixP->fx_addsy); #endif /* Fall through. */ case BFD_RELOC_CRIS_16_GOT: case BFD_RELOC_CRIS_32_GOT: case BFD_RELOC_CRIS_32_GOTREL: case BFD_RELOC_CRIS_16_GOTPLT: case BFD_RELOC_CRIS_32_GOTPLT: case BFD_RELOC_CRIS_32_PLT_GOTREL: case BFD_RELOC_CRIS_32_PLT_PCREL: /* We don't want to put in any kind of non-zero bits in the data being relocated for these. */ md_number_to_chars (bufp, 0, n); break; case BFD_RELOC_32_PCREL: /* If this one isn't fully resolved, we don't want to put non-zero in the object. */ if (fixP->fx_addsy != NULL || fixP->fx_pcrel) val = 0; /* Fall through. */ case BFD_RELOC_32: /* No use having warnings here, since most hosts have a 32-bit type for "long" (which will probably change soon, now that I wrote this). */ bufp[3] = (val >> 24) & 0xFF; bufp[2] = (val >> 16) & 0xFF; bufp[1] = (val >> 8) & 0xFF; bufp[0] = val & 0xFF; break; /* FIXME: The 16 and 8-bit cases should have a way to check whether a signed or unsigned (or any signedness) number is accepted. */ case BFD_RELOC_16: case BFD_RELOC_16_PCREL: if (val > 0xffff || val < -32768) as_bad_where (fixP->fx_file, fixP->fx_line, _("Value not in 16 bit range: %ld"), val); bufp[1] = (val >> 8) & 0xFF; bufp[0] = val & 0xFF; break; case BFD_RELOC_CRIS_SIGNED_16: if (val > 32767 || val < -32768) as_bad_where (fixP->fx_file, fixP->fx_line, _("Value not in 16 bit signed range: %ld"), val); bufp[1] = (val >> 8) & 0xFF; bufp[0] = val & 0xFF; break; case BFD_RELOC_8: case BFD_RELOC_8_PCREL: if (val > 255 || val < -128) as_bad_where (fixP->fx_file, fixP->fx_line, _("Value not in 8 bit range: %ld"), val); bufp[0] = val & 0xFF; break; case BFD_RELOC_CRIS_SIGNED_8: if (val > 127 || val < -128) as_bad_where (fixP->fx_file, fixP->fx_line, _("Value not in 8 bit signed range: %ld"), val); bufp[0] = val & 0xFF; break; case BFD_RELOC_CRIS_LAPCQ_OFFSET: /* FIXME: Test-cases for out-of-range values. Probably also need to use as_bad_where. */ case BFD_RELOC_CRIS_UNSIGNED_4: if (val > 15 || val < 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("Value not in 4 bit unsigned range: %ld"), val); bufp[0] |= val & 0x0F; break; case BFD_RELOC_CRIS_UNSIGNED_5: if (val > 31 || val < 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("Value not in 5 bit unsigned range: %ld"), val); bufp[0] |= val & 0x1F; break; case BFD_RELOC_CRIS_SIGNED_6: if (val > 31 || val < -32) as_bad_where (fixP->fx_file, fixP->fx_line, _("Value not in 6 bit range: %ld"), val); bufp[0] |= val & 0x3F; break; case BFD_RELOC_CRIS_UNSIGNED_6: if (val > 63 || val < 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("Value not in 6 bit unsigned range: %ld"), val); bufp[0] |= val & 0x3F; break; case BFD_RELOC_CRIS_BDISP8: bufp[0] = branch_disp (val); break; case BFD_RELOC_NONE: /* May actually happen automatically. For example at broken words, if the word turns out not to be broken. FIXME: When? Which testcase? */ if (! fixP->fx_addsy) md_number_to_chars (bufp, val, n); break; case BFD_RELOC_VTABLE_INHERIT: /* This borrowed from tc-ppc.c on a whim. */ if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy) && !S_IS_WEAK (fixP->fx_addsy)) S_SET_WEAK (fixP->fx_addsy); /* Fall through. */ case BFD_RELOC_VTABLE_ENTRY: fixP->fx_done = 0; break; default: BAD_CASE (fixP->fx_r_type); } } /* Processes machine-dependent command line options. Called once for each option on the command line that the machine-independent part of GAS does not understand. */ int md_parse_option (int arg, char *argp ATTRIBUTE_UNUSED) { switch (arg) { case 'H': case 'h': printf (_("Please use --help to see usage and options for this assembler.\n")); md_show_usage (stdout); exit (EXIT_SUCCESS); case 'N': warn_for_branch_expansion = 1; break; case OPTION_NO_US: demand_register_prefix = TRUE; if (OUTPUT_FLAVOR == bfd_target_aout_flavour) as_bad (_("--no-underscore is invalid with a.out format")); else symbols_have_leading_underscore = FALSE; break; case OPTION_US: demand_register_prefix = FALSE; symbols_have_leading_underscore = TRUE; break; case OPTION_PIC: if (OUTPUT_FLAVOR != bfd_target_elf_flavour) as_bad (_("--pic is invalid for this object format")); pic = TRUE; if (cris_arch != arch_crisv32) md_long_jump_size = cris_any_v0_v10_long_jump_size_pic; else md_long_jump_size = crisv32_long_jump_size; break; case OPTION_ARCH: { char *str = argp; enum cris_archs argarch = cris_arch_from_string (&str); if (argarch == arch_cris_unknown) as_bad (_("invalid <arch> in --march=<arch>: %s"), argp); else cris_arch = argarch; if (argarch == arch_crisv32) { err_for_dangerous_mul_placement = 0; md_long_jump_size = crisv32_long_jump_size; } else { if (pic) md_long_jump_size = cris_any_v0_v10_long_jump_size_pic; else md_long_jump_size = cris_any_v0_v10_long_jump_size; } } break; case OPTION_MULBUG_ABORT_OFF: err_for_dangerous_mul_placement = 0; break; case OPTION_MULBUG_ABORT_ON: err_for_dangerous_mul_placement = 1; break; default: return 0; } return 1; } /* Round up a section size to the appropriate boundary. */ valueT md_section_align (segT segment, valueT size) { /* Round all sects to multiple of 4, except the bss section, which we'll round to word-size. FIXME: Check if this really matters. All sections should be rounded up, and all sections should (optionally) be assumed to be dword-aligned, it's just that there is actual usage of linking to a multiple of two. */ if (OUTPUT_FLAVOR == bfd_target_aout_flavour) { if (segment == bss_section) return (size + 1) & ~1; return (size + 3) & ~3; } else { /* FIXME: Is this wanted? It matches the testsuite, but that's not really a valid reason. */ if (segment == text_section) return (size + 3) & ~3; } return size; } /* Generate a machine-dependent relocation. */ arelent * tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixP) { arelent *relP; bfd_reloc_code_real_type code; switch (fixP->fx_r_type) { case BFD_RELOC_CRIS_SIGNED_8: code = BFD_RELOC_8; break; case BFD_RELOC_CRIS_SIGNED_16: code = BFD_RELOC_16; break; case BFD_RELOC_CRIS_16_GOT: case BFD_RELOC_CRIS_32_GOT: case BFD_RELOC_CRIS_16_GOTPLT: case BFD_RELOC_CRIS_32_GOTPLT: case BFD_RELOC_CRIS_32_GOTREL: case BFD_RELOC_CRIS_32_PLT_GOTREL: case BFD_RELOC_CRIS_32_PLT_PCREL: case BFD_RELOC_32: case BFD_RELOC_32_PCREL: case BFD_RELOC_16: case BFD_RELOC_8: case BFD_RELOC_VTABLE_INHERIT: case BFD_RELOC_VTABLE_ENTRY: case BFD_RELOC_CRIS_UNSIGNED_8: case BFD_RELOC_CRIS_UNSIGNED_16: case BFD_RELOC_CRIS_LAPCQ_OFFSET: case BFD_RELOC_CRIS_32_GOT_GD: case BFD_RELOC_CRIS_16_GOT_GD: case BFD_RELOC_CRIS_32_GD: case BFD_RELOC_CRIS_32_IE: case BFD_RELOC_CRIS_32_DTPREL: case BFD_RELOC_CRIS_16_DTPREL: case BFD_RELOC_CRIS_32_GOT_TPREL: case BFD_RELOC_CRIS_16_GOT_TPREL: case BFD_RELOC_CRIS_32_TPREL: case BFD_RELOC_CRIS_16_TPREL: code = fixP->fx_r_type; break; default: as_bad_where (fixP->fx_file, fixP->fx_line, _("Semantics error. This type of operand can not be relocated, it must be an assembly-time constant")); return 0; } relP = (arelent *) xmalloc (sizeof (arelent)); gas_assert (relP != 0); relP->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); *relP->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy); relP->address = fixP->fx_frag->fr_address + fixP->fx_where; relP->addend = fixP->fx_offset; /* This is the standard place for KLUDGEs to work around bugs in bfd_install_relocation (first such note in the documentation appears with binutils-2.8). That function bfd_install_relocation does the wrong thing with putting stuff into the addend of a reloc (it should stay out) for a weak symbol. The really bad thing is that it adds the "segment-relative offset" of the symbol into the reloc. In this case, the reloc should instead be relative to the symbol with no other offset than the assembly code shows; and since the symbol is weak, any local definition should be ignored until link time (or thereafter). To wit: weaksym+42 should be weaksym+42 in the reloc, not weaksym+(offset_from_segment_of_local_weaksym_definition) To "work around" this, we subtract the segment-relative offset of "known" weak symbols. This evens out the extra offset. That happens for a.out but not for ELF, since for ELF, bfd_install_relocation uses the "special function" field of the howto, and does not execute the code that needs to be undone. */ if (OUTPUT_FLAVOR == bfd_target_aout_flavour && fixP->fx_addsy && S_IS_WEAK (fixP->fx_addsy) && ! bfd_is_und_section (S_GET_SEGMENT (fixP->fx_addsy))) { relP->addend -= S_GET_VALUE (fixP->fx_addsy); } relP->howto = bfd_reloc_type_lookup (stdoutput, code); if (! relP->howto) { const char *name; name = S_GET_NAME (fixP->fx_addsy); if (name == NULL) name = _("<unknown>"); as_fatal (_("Cannot generate relocation type for symbol %s, code %s"), name, bfd_get_reloc_code_name (code)); } return relP; } /* Machine-dependent usage-output. */ void md_show_usage (FILE *stream) { /* The messages are formatted to line up with the generic options. */ fprintf (stream, _("CRIS-specific options:\n")); fprintf (stream, "%s", _(" -h, -H Don't execute, print this help text. Deprecated.\n")); fprintf (stream, "%s", _(" -N Warn when branches are expanded to jumps.\n")); fprintf (stream, "%s", _(" --underscore User symbols are normally prepended with underscore.\n")); fprintf (stream, "%s", _(" Registers will not need any prefix.\n")); fprintf (stream, "%s", _(" --no-underscore User symbols do not have any prefix.\n")); fprintf (stream, "%s", _(" Registers will require a `$'-prefix.\n")); #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) fprintf (stream, "%s", _(" --pic Enable generation of position-independent code.\n")); #endif fprintf (stream, "%s", _(" --march=<arch> Generate code for <arch>. Valid choices for <arch>\n\ are v0_v10, v10, v32 and common_v10_v32.\n")); } /* Apply a fixS (fixup of an instruction or data that we didn't have enough info to complete immediately) to the data in a frag. */ void md_apply_fix (fixS *fixP, valueT *valP, segT seg) { /* This assignment truncates upper bits if valueT is 64 bits (as with --enable-64-bit-bfd), which is fine here, though we cast to avoid any compiler warnings. */ long val = (long) *valP; char *buf = fixP->fx_where + fixP->fx_frag->fr_literal; if (fixP->fx_addsy == 0 && !fixP->fx_pcrel) fixP->fx_done = 1; if (fixP->fx_bit_fixP || fixP->fx_im_disp != 0) { as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid relocation")); fixP->fx_done = 1; } else { /* We can't actually support subtracting a symbol. */ if (fixP->fx_subsy != (symbolS *) NULL) as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex")); /* This operand-type is scaled. */ if (fixP->fx_r_type == BFD_RELOC_CRIS_LAPCQ_OFFSET) val /= 2; cris_number_to_imm (buf, val, fixP->fx_size, fixP, seg); } } /* All relocations are relative to the location just after the fixup; the address of the fixup plus its size. */ long md_pcrel_from (fixS *fixP) { valueT addr = fixP->fx_where + fixP->fx_frag->fr_address; /* FIXME: We get here only at the end of assembly, when X in ".-X" is still unknown. Since we don't have pc-relative relocations in a.out, this is invalid. What to do if anything for a.out, is to add pc-relative relocations everywhere including the elinux program loader. For ELF, allow straight-forward PC-relative relocations, which are always relative to the location after the relocation. */ if (OUTPUT_FLAVOR != bfd_target_elf_flavour || (fixP->fx_r_type != BFD_RELOC_8_PCREL && fixP->fx_r_type != BFD_RELOC_16_PCREL && fixP->fx_r_type != BFD_RELOC_32_PCREL && fixP->fx_r_type != BFD_RELOC_CRIS_LAPCQ_OFFSET)) as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid pc-relative relocation")); return fixP->fx_size + addr; } /* We have no need to give defaults for symbol-values. */ symbolS * md_undefined_symbol (char *name ATTRIBUTE_UNUSED) { return 0; } /* If this function returns non-zero, it prevents the relocation against symbol(s) in the FIXP from being replaced with relocations against section symbols, and guarantees that a relocation will be emitted even when the value can be resolved locally. */ int md_cris_force_relocation (struct fix *fixp) { switch (fixp->fx_r_type) { case BFD_RELOC_CRIS_16_GOT: case BFD_RELOC_CRIS_32_GOT: case BFD_RELOC_CRIS_16_GOTPLT: case BFD_RELOC_CRIS_32_GOTPLT: case BFD_RELOC_CRIS_32_GOTREL: case BFD_RELOC_CRIS_32_PLT_GOTREL: case BFD_RELOC_CRIS_32_PLT_PCREL: return 1; default: ; } return generic_force_reloc (fixp); } /* Check and emit error if broken-word handling has failed to fix up a case-table. This is called from write.c, after doing everything it knows about how to handle broken words. */ void tc_cris_check_adjusted_broken_word (offsetT new_offset, struct broken_word *brokwP) { if (new_offset > 32767 || new_offset < -32768) /* We really want a genuine error, not a warning, so make it one. */ as_bad_where (brokwP->frag->fr_file, brokwP->frag->fr_line, _("Adjusted signed .word (%ld) overflows: `switch'-statement too large."), (long) new_offset); } /* Make a leading REGISTER_PREFIX_CHAR mandatory for all registers. */ static void cris_force_reg_prefix (void) { demand_register_prefix = TRUE; } /* Do not demand a leading REGISTER_PREFIX_CHAR for all registers. */ static void cris_relax_reg_prefix (void) { demand_register_prefix = FALSE; } /* Adjust for having a leading '_' on all user symbols. */ static void cris_sym_leading_underscore (void) { /* We can't really do anything more than assert that what the program thinks symbol starts with agrees with the command-line options, since the bfd is already created. */ if (!symbols_have_leading_underscore) as_bad (_(".syntax %s requires command-line option `--underscore'"), SYNTAX_USER_SYM_LEADING_UNDERSCORE); } /* Adjust for not having any particular prefix on user symbols. */ static void cris_sym_no_leading_underscore (void) { if (symbols_have_leading_underscore) as_bad (_(".syntax %s requires command-line option `--no-underscore'"), SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE); } /* Handle the .syntax pseudo, which takes an argument that decides what syntax the assembly code has. */ static void s_syntax (int ignore ATTRIBUTE_UNUSED) { static const struct syntaxes { const char *const operand; void (*fn) (void); } syntax_table[] = {{SYNTAX_ENFORCE_REG_PREFIX, cris_force_reg_prefix}, {SYNTAX_RELAX_REG_PREFIX, cris_relax_reg_prefix}, {SYNTAX_USER_SYM_LEADING_UNDERSCORE, cris_sym_leading_underscore}, {SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE, cris_sym_no_leading_underscore}}; const struct syntaxes *sp; for (sp = syntax_table; sp < syntax_table + sizeof (syntax_table) / sizeof (syntax_table[0]); sp++) { if (strncmp (input_line_pointer, sp->operand, strlen (sp->operand)) == 0) { (sp->fn) (); input_line_pointer += strlen (sp->operand); demand_empty_rest_of_line (); return; } } as_bad (_("Unknown .syntax operand")); } /* Wrapper for dwarf2_directive_file to emit error if this is seen when not emitting ELF. */ static void s_cris_file (int dummy) { if (OUTPUT_FLAVOR != bfd_target_elf_flavour) as_bad (_("Pseudodirective .file is only valid when generating ELF")); else dwarf2_directive_file (dummy); } /* Wrapper for dwarf2_directive_loc to emit error if this is seen when not emitting ELF. */ static void s_cris_loc (int dummy) { if (OUTPUT_FLAVOR != bfd_target_elf_flavour) as_bad (_("Pseudodirective .loc is only valid when generating ELF")); else dwarf2_directive_loc (dummy); } /* Worker for .dtpoffd: generate a R_CRIS_32_DTPREL reloc, as for expr:DTPREL but for use in debug info. */ static void s_cris_dtpoff (int bytes) { expressionS ex; char *p; if (bytes != 4) as_fatal (_("internal inconsistency problem: %s called for %d bytes"), __FUNCTION__, bytes); expression (&ex); p = frag_more (bytes); md_number_to_chars (p, 0, bytes); fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, BFD_RELOC_CRIS_32_DTPREL); demand_empty_rest_of_line (); } /* Translate a <arch> string (as common to --march=<arch> and .arch <arch>) into an enum. If the string *STR is recognized, *STR is updated to point to the end of the string. If the string is not recognized, arch_cris_unknown is returned. */ static enum cris_archs cris_arch_from_string (char **str) { static const struct cris_arch_struct { const char *const name; enum cris_archs arch; } arch_table[] = /* Keep in order longest-first for choices where one is a prefix of another. */ {{"v0_v10", arch_cris_any_v0_v10}, {"v10", arch_crisv10}, {"v32", arch_crisv32}, {"common_v10_v32", arch_cris_common_v10_v32}}; const struct cris_arch_struct *ap; for (ap = arch_table; ap < arch_table + sizeof (arch_table) / sizeof (arch_table[0]); ap++) { int len = strlen (ap->name); if (strncmp (*str, ap->name, len) == 0 && (str[0][len] == 0 || ISSPACE (str[0][len]))) { *str += strlen (ap->name); return ap->arch; } } return arch_cris_unknown; } /* Return nonzero if architecture version ARCH matches version range in IVER. */ static int cris_insn_ver_valid_for_arch (enum cris_insn_version_usage iver, enum cris_archs arch) { switch (arch) { case arch_cris_any_v0_v10: return (iver == cris_ver_version_all || iver == cris_ver_warning || iver == cris_ver_v0_3 || iver == cris_ver_v3p || iver == cris_ver_v0_10 || iver == cris_ver_sim_v0_10 || iver == cris_ver_v3_10 || iver == cris_ver_v8 || iver == cris_ver_v8p || iver == cris_ver_v8_10 || iver == cris_ver_v10 || iver == cris_ver_v10p); case arch_crisv32: return (iver == cris_ver_version_all || iver == cris_ver_v3p || iver == cris_ver_v8p || iver == cris_ver_v10p || iver == cris_ver_v32p); case arch_cris_common_v10_v32: return (iver == cris_ver_version_all || iver == cris_ver_v3p || iver == cris_ver_v8p || iver == cris_ver_v10p); case arch_crisv0: return (iver == cris_ver_version_all || iver == cris_ver_v0_3 || iver == cris_ver_v0_10 || iver == cris_ver_sim_v0_10); case arch_crisv3: return (iver == cris_ver_version_all || iver == cris_ver_v0_3 || iver == cris_ver_v3p || iver == cris_ver_v0_10 || iver == cris_ver_sim_v0_10 || iver == cris_ver_v3_10); case arch_crisv8: return (iver == cris_ver_version_all || iver == cris_ver_v3p || iver == cris_ver_v0_10 || iver == cris_ver_sim_v0_10 || iver == cris_ver_v3_10 || iver == cris_ver_v8 || iver == cris_ver_v8p || iver == cris_ver_v8_10); case arch_crisv10: return (iver == cris_ver_version_all || iver == cris_ver_v3p || iver == cris_ver_v0_10 || iver == cris_ver_sim_v0_10 || iver == cris_ver_v3_10 || iver == cris_ver_v8p || iver == cris_ver_v8_10 || iver == cris_ver_v10 || iver == cris_ver_v10p); default: BAD_CASE (arch); } } /* Assert that the .arch ARCHCHOICE1 is compatible with the specified or default --march=<ARCHCHOICE2> option. */ static void s_cris_arch (int dummy ATTRIBUTE_UNUSED) { /* Right now we take the easy route and check for sameness. It's not obvious that allowing e.g. --march=v32 and .arch common_v0_v32 would be more useful than confusing, implementation-wise and user-wise. */ char *str = input_line_pointer; enum cris_archs arch = cris_arch_from_string (&str); if (arch == arch_cris_unknown) { as_bad (_("unknown operand to .arch")); /* For this one, str does not reflect the end of the operand, since there was no matching arch. Skip it manually; skip things that can be part of a word (a name). */ while (is_part_of_name (*str)) str++; } else if (arch != cris_arch) as_bad (_(".arch <arch> requires a matching --march=... option")); input_line_pointer = str; demand_empty_rest_of_line (); return; } /* * Local variables: * eval: (c-set-style "gnu") * indent-tabs-mode: t * End: */
Go to most recent revision | Compare with Previous | Blame | View Log