URL
https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk
Subversion Repositories open8_urisc
[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gprof/] [cg_arcs.c] - Rev 158
Go to most recent revision | Compare with Previous | Blame | View Log
/* * Copyright (c) 1983, 1993, 2001 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "gprof.h" #include "libiberty.h" #include "search_list.h" #include "source.h" #include "symtab.h" #include "call_graph.h" #include "cg_arcs.h" #include "cg_dfn.h" #include "cg_print.h" #include "utils.h" #include "sym_ids.h" static int cmp_topo (const PTR, const PTR); static void propagate_time (Sym *); static void cycle_time (void); static void cycle_link (void); static void inherit_flags (Sym *); static void propagate_flags (Sym **); static int cmp_total (const PTR, const PTR); Sym *cycle_header; unsigned int num_cycles; Arc **arcs; unsigned int numarcs; /* * Return TRUE iff PARENT has an arc to covers the address * range covered by CHILD. */ Arc * arc_lookup (Sym *parent, Sym *child) { Arc *arc; if (!parent || !child) { printf ("[arc_lookup] parent == 0 || child == 0\n"); return 0; } DBG (LOOKUPDEBUG, printf ("[arc_lookup] parent %s child %s\n", parent->name, child->name)); for (arc = parent->cg.children; arc; arc = arc->next_child) { DBG (LOOKUPDEBUG, printf ("[arc_lookup]\t parent %s child %s\n", arc->parent->name, arc->child->name)); if (child->addr >= arc->child->addr && child->end_addr <= arc->child->end_addr) { return arc; } } return 0; } /* * Add (or just increment) an arc: */ void arc_add (Sym *parent, Sym *child, unsigned long count) { static unsigned int maxarcs = 0; Arc *arc, **newarcs; DBG (TALLYDEBUG, printf ("[arc_add] %lu arcs from %s to %s\n", count, parent->name, child->name)); arc = arc_lookup (parent, child); if (arc) { /* * A hit: just increment the count. */ DBG (TALLYDEBUG, printf ("[tally] hit %lu += %lu\n", arc->count, count)); arc->count += count; return; } arc = (Arc *) xmalloc (sizeof (*arc)); memset (arc, 0, sizeof (*arc)); arc->parent = parent; arc->child = child; arc->count = count; /* If this isn't an arc for a recursive call to parent, then add it to the array of arcs. */ if (parent != child) { /* If we've exhausted space in our current array, get a new one and copy the contents. We might want to throttle the doubling factor one day. */ if (numarcs == maxarcs) { /* Determine how much space we want to allocate. */ if (maxarcs == 0) maxarcs = 1; maxarcs *= 2; /* Allocate the new array. */ newarcs = (Arc **)xmalloc(sizeof (Arc *) * maxarcs); /* Copy the old array's contents into the new array. */ memcpy (newarcs, arcs, numarcs * sizeof (Arc *)); /* Free up the old array. */ free (arcs); /* And make the new array be the current array. */ arcs = newarcs; } /* Place this arc in the arc array. */ arcs[numarcs++] = arc; } /* prepend this child to the children of this parent: */ arc->next_child = parent->cg.children; parent->cg.children = arc; /* prepend this parent to the parents of this child: */ arc->next_parent = child->cg.parents; child->cg.parents = arc; } static int cmp_topo (const PTR lp, const PTR rp) { const Sym *left = *(const Sym **) lp; const Sym *right = *(const Sym **) rp; return left->cg.top_order - right->cg.top_order; } static void propagate_time (Sym *parent) { Arc *arc; Sym *child; double share, prop_share; if (parent->cg.prop.fract == 0.0) { return; } /* gather time from children of this parent: */ for (arc = parent->cg.children; arc; arc = arc->next_child) { child = arc->child; if (arc->count == 0 || child == parent || child->cg.prop.fract == 0) { continue; } if (child->cg.cyc.head != child) { if (parent->cg.cyc.num == child->cg.cyc.num) { continue; } if (parent->cg.top_order <= child->cg.top_order) { fprintf (stderr, "[propagate] toporder botches\n"); } child = child->cg.cyc.head; } else { if (parent->cg.top_order <= child->cg.top_order) { fprintf (stderr, "[propagate] toporder botches\n"); continue; } } if (child->ncalls == 0) { continue; } /* distribute time for this arc: */ arc->time = child->hist.time * (((double) arc->count) / ((double) child->ncalls)); arc->child_time = child->cg.child_time * (((double) arc->count) / ((double) child->ncalls)); share = arc->time + arc->child_time; parent->cg.child_time += share; /* (1 - cg.prop.fract) gets lost along the way: */ prop_share = parent->cg.prop.fract * share; /* fix things for printing: */ parent->cg.prop.child += prop_share; arc->time *= parent->cg.prop.fract; arc->child_time *= parent->cg.prop.fract; /* add this share to the parent's cycle header, if any: */ if (parent->cg.cyc.head != parent) { parent->cg.cyc.head->cg.child_time += share; parent->cg.cyc.head->cg.prop.child += prop_share; } DBG (PROPDEBUG, printf ("[prop_time] child \t"); print_name (child); printf (" with %f %f %lu/%lu\n", child->hist.time, child->cg.child_time, arc->count, child->ncalls); printf ("[prop_time] parent\t"); print_name (parent); printf ("\n[prop_time] share %f\n", share)); } } /* * Compute the time of a cycle as the sum of the times of all * its members. */ static void cycle_time () { Sym *member, *cyc; for (cyc = &cycle_header[1]; cyc <= &cycle_header[num_cycles]; ++cyc) { for (member = cyc->cg.cyc.next; member; member = member->cg.cyc.next) { if (member->cg.prop.fract == 0.0) { /* * All members have the same propfraction except those * that were excluded with -E. */ continue; } cyc->hist.time += member->hist.time; } cyc->cg.prop.self = cyc->cg.prop.fract * cyc->hist.time; } } static void cycle_link () { Sym *sym, *cyc, *member; Arc *arc; int num; /* count the number of cycles, and initialize the cycle lists: */ num_cycles = 0; for (sym = symtab.base; sym < symtab.limit; ++sym) { /* this is how you find unattached cycles: */ if (sym->cg.cyc.head == sym && sym->cg.cyc.next) { ++num_cycles; } } /* * cycle_header is indexed by cycle number: i.e. it is origin 1, * not origin 0. */ cycle_header = (Sym *) xmalloc ((num_cycles + 1) * sizeof (Sym)); /* * Now link cycles to true cycle-heads, number them, accumulate * the data for the cycle. */ num = 0; cyc = cycle_header; for (sym = symtab.base; sym < symtab.limit; ++sym) { if (!(sym->cg.cyc.head == sym && sym->cg.cyc.next != 0)) { continue; } ++num; ++cyc; sym_init (cyc); cyc->cg.print_flag = TRUE; /* should this be printed? */ cyc->cg.top_order = DFN_NAN; /* graph call chain top-sort order */ cyc->cg.cyc.num = num; /* internal number of cycle on */ cyc->cg.cyc.head = cyc; /* pointer to head of cycle */ cyc->cg.cyc.next = sym; /* pointer to next member of cycle */ DBG (CYCLEDEBUG, printf ("[cycle_link] "); print_name (sym); printf (" is the head of cycle %d\n", num)); /* link members to cycle header: */ for (member = sym; member; member = member->cg.cyc.next) { member->cg.cyc.num = num; member->cg.cyc.head = cyc; } /* * Count calls from outside the cycle and those among cycle * members: */ for (member = sym; member; member = member->cg.cyc.next) { for (arc = member->cg.parents; arc; arc = arc->next_parent) { if (arc->parent == member) { continue; } if (arc->parent->cg.cyc.num == num) { cyc->cg.self_calls += arc->count; } else { cyc->ncalls += arc->count; } } } } } /* * Check if any parent of this child (or outside parents of this * cycle) have their print flags on and set the print flag of the * child (cycle) appropriately. Similarly, deal with propagation * fractions from parents. */ static void inherit_flags (Sym *child) { Sym *head, *parent, *member; Arc *arc; head = child->cg.cyc.head; if (child == head) { /* just a regular child, check its parents: */ child->cg.print_flag = FALSE; child->cg.prop.fract = 0.0; for (arc = child->cg.parents; arc; arc = arc->next_parent) { parent = arc->parent; if (child == parent) { continue; } child->cg.print_flag |= parent->cg.print_flag; /* * If the child was never actually called (e.g., this arc * is static (and all others are, too)) no time propagates * along this arc. */ if (child->ncalls != 0) { child->cg.prop.fract += parent->cg.prop.fract * (((double) arc->count) / ((double) child->ncalls)); } } } else { /* * Its a member of a cycle, look at all parents from outside * the cycle. */ head->cg.print_flag = FALSE; head->cg.prop.fract = 0.0; for (member = head->cg.cyc.next; member; member = member->cg.cyc.next) { for (arc = member->cg.parents; arc; arc = arc->next_parent) { if (arc->parent->cg.cyc.head == head) { continue; } parent = arc->parent; head->cg.print_flag |= parent->cg.print_flag; /* * If the cycle was never actually called (e.g. this * arc is static (and all others are, too)) no time * propagates along this arc. */ if (head->ncalls != 0) { head->cg.prop.fract += parent->cg.prop.fract * (((double) arc->count) / ((double) head->ncalls)); } } } for (member = head; member; member = member->cg.cyc.next) { member->cg.print_flag = head->cg.print_flag; member->cg.prop.fract = head->cg.prop.fract; } } } /* * In one top-to-bottom pass over the topologically sorted symbols * propagate: * cg.print_flag as the union of parents' print_flags * propfraction as the sum of fractional parents' propfractions * and while we're here, sum time for functions. */ static void propagate_flags (Sym **symbols) { int sym_index; Sym *old_head, *child; old_head = 0; for (sym_index = symtab.len - 1; sym_index >= 0; --sym_index) { child = symbols[sym_index]; /* * If we haven't done this function or cycle, inherit things * from parent. This way, we are linear in the number of arcs * since we do all members of a cycle (and the cycle itself) * as we hit the first member of the cycle. */ if (child->cg.cyc.head != old_head) { old_head = child->cg.cyc.head; inherit_flags (child); } DBG (PROPDEBUG, printf ("[prop_flags] "); print_name (child); printf ("inherits print-flag %d and prop-fract %f\n", child->cg.print_flag, child->cg.prop.fract)); if (!child->cg.print_flag) { /* * Printflag is off. It gets turned on by being in the * INCL_GRAPH table, or there being an empty INCL_GRAPH * table and not being in the EXCL_GRAPH table. */ if (sym_lookup (&syms[INCL_GRAPH], child->addr) || (syms[INCL_GRAPH].len == 0 && !sym_lookup (&syms[EXCL_GRAPH], child->addr))) { child->cg.print_flag = TRUE; } } else { /* * This function has printing parents: maybe someone wants * to shut it up by putting it in the EXCL_GRAPH table. * (But favor INCL_GRAPH over EXCL_GRAPH.) */ if (!sym_lookup (&syms[INCL_GRAPH], child->addr) && sym_lookup (&syms[EXCL_GRAPH], child->addr)) { child->cg.print_flag = FALSE; } } if (child->cg.prop.fract == 0.0) { /* * No parents to pass time to. Collect time from children * if its in the INCL_TIME table, or there is an empty * INCL_TIME table and its not in the EXCL_TIME table. */ if (sym_lookup (&syms[INCL_TIME], child->addr) || (syms[INCL_TIME].len == 0 && !sym_lookup (&syms[EXCL_TIME], child->addr))) { child->cg.prop.fract = 1.0; } } else { /* * It has parents to pass time to, but maybe someone wants * to shut it up by puttting it in the EXCL_TIME table. * (But favor being in INCL_TIME tabe over being in * EXCL_TIME table.) */ if (!sym_lookup (&syms[INCL_TIME], child->addr) && sym_lookup (&syms[EXCL_TIME], child->addr)) { child->cg.prop.fract = 0.0; } } child->cg.prop.self = child->hist.time * child->cg.prop.fract; print_time += child->cg.prop.self; DBG (PROPDEBUG, printf ("[prop_flags] "); print_name (child); printf (" ends up with printflag %d and prop-fract %f\n", child->cg.print_flag, child->cg.prop.fract); printf ("[prop_flags] time %f propself %f print_time %f\n", child->hist.time, child->cg.prop.self, print_time)); } } /* * Compare by decreasing propagated time. If times are equal, but one * is a cycle header, say that's first (e.g. less, i.e. -1). If one's * name doesn't have an underscore and the other does, say that one is * first. All else being equal, compare by names. */ static int cmp_total (const PTR lp, const PTR rp) { const Sym *left = *(const Sym **) lp; const Sym *right = *(const Sym **) rp; double diff; diff = (left->cg.prop.self + left->cg.prop.child) - (right->cg.prop.self + right->cg.prop.child); if (diff < 0.0) { return 1; } if (diff > 0.0) { return -1; } if (!left->name && left->cg.cyc.num != 0) { return -1; } if (!right->name && right->cg.cyc.num != 0) { return 1; } if (!left->name) { return -1; } if (!right->name) { return 1; } if (left->name[0] != '_' && right->name[0] == '_') { return -1; } if (left->name[0] == '_' && right->name[0] != '_') { return 1; } if (left->ncalls > right->ncalls) { return -1; } if (left->ncalls < right->ncalls) { return 1; } return strcmp (left->name, right->name); } /* Topologically sort the graph (collapsing cycles), and propagates time bottom up and flags top down. */ Sym ** cg_assemble (void) { Sym *parent, **time_sorted_syms, **top_sorted_syms; unsigned int sym_index; Arc *arc; /* Initialize various things: Zero out child times. Count self-recursive calls. Indicate that nothing is on cycles. */ for (parent = symtab.base; parent < symtab.limit; parent++) { parent->cg.child_time = 0.0; arc = arc_lookup (parent, parent); if (arc && parent == arc->child) { parent->ncalls -= arc->count; parent->cg.self_calls = arc->count; } else { parent->cg.self_calls = 0; } parent->cg.prop.fract = 0.0; parent->cg.prop.self = 0.0; parent->cg.prop.child = 0.0; parent->cg.print_flag = FALSE; parent->cg.top_order = DFN_NAN; parent->cg.cyc.num = 0; parent->cg.cyc.head = parent; parent->cg.cyc.next = 0; if (ignore_direct_calls) find_call (parent, parent->addr, (parent + 1)->addr); } /* Topologically order things. If any node is unnumbered, number it and any of its descendents. */ for (parent = symtab.base; parent < symtab.limit; parent++) { if (parent->cg.top_order == DFN_NAN) cg_dfn (parent); } /* Link together nodes on the same cycle. */ cycle_link (); /* Sort the symbol table in reverse topological order. */ top_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *)); for (sym_index = 0; sym_index < symtab.len; ++sym_index) top_sorted_syms[sym_index] = &symtab.base[sym_index]; qsort (top_sorted_syms, symtab.len, sizeof (Sym *), cmp_topo); DBG (DFNDEBUG, printf ("[cg_assemble] topological sort listing\n"); for (sym_index = 0; sym_index < symtab.len; ++sym_index) { printf ("[cg_assemble] "); printf ("%d:", top_sorted_syms[sym_index]->cg.top_order); print_name (top_sorted_syms[sym_index]); printf ("\n"); } ); /* Starting from the topological top, propagate print flags to children. also, calculate propagation fractions. this happens before time propagation since time propagation uses the fractions. */ propagate_flags (top_sorted_syms); /* Starting from the topological bottom, propogate children times up to parents. */ cycle_time (); for (sym_index = 0; sym_index < symtab.len; ++sym_index) propagate_time (top_sorted_syms[sym_index]); free (top_sorted_syms); /* Now, sort by CG.PROP.SELF + CG.PROP.CHILD. Sorting both the regular function names and cycle headers. */ time_sorted_syms = (Sym **) xmalloc ((symtab.len + num_cycles) * sizeof (Sym *)); for (sym_index = 0; sym_index < symtab.len; sym_index++) time_sorted_syms[sym_index] = &symtab.base[sym_index]; for (sym_index = 1; sym_index <= num_cycles; sym_index++) time_sorted_syms[symtab.len + sym_index - 1] = &cycle_header[sym_index]; qsort (time_sorted_syms, symtab.len + num_cycles, sizeof (Sym *), cmp_total); for (sym_index = 0; sym_index < symtab.len + num_cycles; sym_index++) time_sorted_syms[sym_index]->cg.index = sym_index + 1; return time_sorted_syms; }
Go to most recent revision | Compare with Previous | Blame | View Log