URL
https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk
Subversion Repositories open8_urisc
[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [opcodes/] [arc-dis.c] - Rev 198
Go to most recent revision | Compare with Previous | Blame | View Log
/* Instruction printing code for the ARC. Copyright 1994, 1995, 1997, 1998, 2000, 2001, 2002, 2005, 2007, 2009, 2010, 2012 Free Software Foundation, Inc. Contributed by Doug Evans (dje@cygnus.com). This file is part of libopcodes. This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "ansidecl.h" #include "libiberty.h" #include "dis-asm.h" #include "opcode/arc.h" #include "elf-bfd.h" #include "elf/arc.h" #include <string.h> #include "opintl.h" #include <stdarg.h> #include "arc-dis.h" #include "arc-ext.h" #ifndef dbg #define dbg (0) #endif /* Classification of the opcodes for the decoder to print the instructions. */ typedef enum { CLASS_A4_ARITH, CLASS_A4_OP3_GENERAL, CLASS_A4_FLAG, /* All branches other than JC. */ CLASS_A4_BRANCH, CLASS_A4_JC , /* All loads other than immediate indexed loads. */ CLASS_A4_LD0, CLASS_A4_LD1, CLASS_A4_ST, CLASS_A4_SR, /* All single operand instructions. */ CLASS_A4_OP3_SUBOPC3F, CLASS_A4_LR } a4_decoding_class; #define BIT(word,n) ((word) & (1 << n)) #define BITS(word,s,e) (((word) >> s) & ((1 << (e + 1 - s)) - 1)) #define OPCODE(word) (BITS ((word), 27, 31)) #define FIELDA(word) (BITS ((word), 21, 26)) #define FIELDB(word) (BITS ((word), 15, 20)) #define FIELDC(word) (BITS ((word), 9, 14)) /* FIELD D is signed. */ #define FIELDD(word) ((BITS ((word), 0, 8) ^ 0x100) - 0x100) #define PUT_NEXT_WORD_IN(a) \ do \ { \ if (is_limm == 1 && !NEXT_WORD (1)) \ mwerror (state, _("Illegal limm reference in last instruction!\n")); \ a = state->words[1]; \ } \ while (0) #define CHECK_FLAG_COND_NULLIFY() \ do \ { \ if (is_shimm == 0) \ { \ flag = BIT (state->words[0], 8); \ state->nullifyMode = BITS (state->words[0], 5, 6); \ cond = BITS (state->words[0], 0, 4); \ } \ } \ while (0) #define CHECK_COND() \ do \ { \ if (is_shimm == 0) \ cond = BITS (state->words[0], 0, 4); \ } \ while (0) #define CHECK_FIELD(field) \ do \ { \ if (field == 62) \ { \ is_limm++; \ field##isReg = 0; \ PUT_NEXT_WORD_IN (field); \ limm_value = field; \ } \ else if (field > 60) \ { \ field##isReg = 0; \ is_shimm++; \ flag = (field == 61); \ field = FIELDD (state->words[0]); \ } \ } \ while (0) #define CHECK_FIELD_A() \ do \ { \ fieldA = FIELDA (state->words[0]); \ if (fieldA > 60) \ { \ fieldAisReg = 0; \ fieldA = 0; \ } \ } \ while (0) #define CHECK_FIELD_B() \ do \ { \ fieldB = FIELDB (state->words[0]); \ CHECK_FIELD (fieldB); \ } \ while (0) #define CHECK_FIELD_C() \ do \ { \ fieldC = FIELDC (state->words[0]); \ CHECK_FIELD (fieldC); \ } \ while (0) #define IS_SMALL(x) (((field##x) < 256) && ((field##x) > -257)) #define IS_REG(x) (field##x##isReg) #define WRITE_FORMAT_LB_Rx_RB(x) WRITE_FORMAT (x, "[","]","","") #define WRITE_FORMAT_x_COMMA_LB(x) WRITE_FORMAT (x, "",",[","",",[") #define WRITE_FORMAT_COMMA_x_RB(x) WRITE_FORMAT (x, ",","]",",","]") #define WRITE_FORMAT_x_RB(x) WRITE_FORMAT (x, "","]","","]") #define WRITE_FORMAT_COMMA_x(x) WRITE_FORMAT (x, ",","",",","") #define WRITE_FORMAT_x_COMMA(x) WRITE_FORMAT (x, "",",","",",") #define WRITE_FORMAT_x(x) WRITE_FORMAT (x, "","","","") #define WRITE_FORMAT(x,cb1,ca1,cb,ca) strcat (formatString, \ (IS_REG (x) ? cb1"%r"ca1 : \ usesAuxReg ? cb"%a"ca : \ IS_SMALL (x) ? cb"%d"ca : cb"%h"ca)) #define WRITE_FORMAT_RB() strcat (formatString, "]") #define WRITE_COMMENT(str) (state->comm[state->commNum++] = (str)) #define WRITE_NOP_COMMENT() if (!fieldAisReg && !flag) WRITE_COMMENT ("nop"); #define NEXT_WORD(x) (offset += 4, state->words[x]) #define add_target(x) (state->targets[state->tcnt++] = (x)) static char comment_prefix[] = "\t; "; static const char * core_reg_name (struct arcDisState * state, int val) { if (state->coreRegName) return (*state->coreRegName)(state->_this, val); return 0; } static const char * aux_reg_name (struct arcDisState * state, int val) { if (state->auxRegName) return (*state->auxRegName)(state->_this, val); return 0; } static const char * cond_code_name (struct arcDisState * state, int val) { if (state->condCodeName) return (*state->condCodeName)(state->_this, val); return 0; } static const char * instruction_name (struct arcDisState * state, int op1, int op2, int * flags) { if (state->instName) return (*state->instName)(state->_this, op1, op2, flags); return 0; } static void mwerror (struct arcDisState * state, const char * msg) { if (state->err != 0) (*state->err)(state->_this, (msg)); } static const char * post_address (struct arcDisState * state, int addr) { static char id[3 * ARRAY_SIZE (state->addresses)]; int j, i = state->acnt; if (i < ((int) ARRAY_SIZE (state->addresses))) { state->addresses[i] = addr; ++state->acnt; j = i*3; id[j+0] = '@'; id[j+1] = '0'+i; id[j+2] = 0; return id + j; } return ""; } static void arc_sprintf (struct arcDisState *state, char *buf, const char *format, ...) { char *bp; const char *p; int size, leading_zero, regMap[2]; va_list ap; va_start (ap, format); bp = buf; *bp = 0; p = format; regMap[0] = 0; regMap[1] = 0; while (1) switch (*p++) { case 0: goto DOCOMM; /* (return) */ default: *bp++ = p[-1]; break; case '%': size = 0; leading_zero = 0; RETRY: ; switch (*p++) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { /* size. */ size = p[-1] - '0'; if (size == 0) leading_zero = 1; /* e.g. %08x */ while (*p >= '0' && *p <= '9') { size = size * 10 + *p - '0'; p++; } goto RETRY; } #define inc_bp() bp = bp + strlen (bp) case 'h': { unsigned u = va_arg (ap, int); /* Hex. We can change the format to 0x%08x in one place, here, if we wish. We add underscores for easy reading. */ if (u > 65536) sprintf (bp, "0x%x_%04x", u >> 16, u & 0xffff); else sprintf (bp, "0x%x", u); inc_bp (); } break; case 'X': case 'x': { int val = va_arg (ap, int); if (size != 0) if (leading_zero) sprintf (bp, "%0*x", size, val); else sprintf (bp, "%*x", size, val); else sprintf (bp, "%x", val); inc_bp (); } break; case 'd': { int val = va_arg (ap, int); if (size != 0) sprintf (bp, "%*d", size, val); else sprintf (bp, "%d", val); inc_bp (); } break; case 'r': { /* Register. */ int val = va_arg (ap, int); #define REG2NAME(num, name) case num: sprintf (bp, ""name); \ regMap[(num < 32) ? 0 : 1] |= 1 << (num - ((num < 32) ? 0 : 32)); break; switch (val) { REG2NAME (26, "gp"); REG2NAME (27, "fp"); REG2NAME (28, "sp"); REG2NAME (29, "ilink1"); REG2NAME (30, "ilink2"); REG2NAME (31, "blink"); REG2NAME (60, "lp_count"); default: { const char * ext; ext = core_reg_name (state, val); if (ext) sprintf (bp, "%s", ext); else sprintf (bp,"r%d",val); } break; } inc_bp (); } break; case 'a': { /* Aux Register. */ int val = va_arg (ap, int); #define AUXREG2NAME(num, name) case num: sprintf (bp,name); break; switch (val) { AUXREG2NAME (0x0, "status"); AUXREG2NAME (0x1, "semaphore"); AUXREG2NAME (0x2, "lp_start"); AUXREG2NAME (0x3, "lp_end"); AUXREG2NAME (0x4, "identity"); AUXREG2NAME (0x5, "debug"); default: { const char *ext; ext = aux_reg_name (state, val); if (ext) sprintf (bp, "%s", ext); else arc_sprintf (state, bp, "%h", val); } break; } inc_bp (); } break; case 's': { sprintf (bp, "%s", va_arg (ap, char *)); inc_bp (); } break; default: fprintf (stderr, "?? format %c\n", p[-1]); break; } } DOCOMM: *bp = 0; va_end (ap); } static void write_comments_(struct arcDisState * state, int shimm, int is_limm, long limm_value) { if (state->commentBuffer != 0) { int i; if (is_limm) { const char *name = post_address (state, limm_value + shimm); if (*name != 0) WRITE_COMMENT (name); } for (i = 0; i < state->commNum; i++) { if (i == 0) strcpy (state->commentBuffer, comment_prefix); else strcat (state->commentBuffer, ", "); strncat (state->commentBuffer, state->comm[i], sizeof (state->commentBuffer)); } } } #define write_comments2(x) write_comments_ (state, x, is_limm, limm_value) #define write_comments() write_comments2 (0) static const char *condName[] = { /* 0..15. */ "" , "z" , "nz" , "p" , "n" , "c" , "nc" , "v" , "nv" , "gt" , "ge" , "lt" , "le" , "hi" , "ls" , "pnz" }; static void write_instr_name_(struct arcDisState * state, const char * instrName, int cond, int condCodeIsPartOfName, int flag, int signExtend, int addrWriteBack, int directMem) { strcpy (state->instrBuffer, instrName); if (cond > 0) { const char *cc = 0; if (!condCodeIsPartOfName) strcat (state->instrBuffer, "."); if (cond < 16) cc = condName[cond]; else cc = cond_code_name (state, cond); if (!cc) cc = "???"; strcat (state->instrBuffer, cc); } if (flag) strcat (state->instrBuffer, ".f"); switch (state->nullifyMode) { case BR_exec_always: strcat (state->instrBuffer, ".d"); break; case BR_exec_when_jump: strcat (state->instrBuffer, ".jd"); break; } if (signExtend) strcat (state->instrBuffer, ".x"); if (addrWriteBack) strcat (state->instrBuffer, ".a"); if (directMem) strcat (state->instrBuffer, ".di"); } #define write_instr_name() \ do \ { \ write_instr_name_(state, instrName,cond, condCodeIsPartOfName, \ flag, signExtend, addrWriteBack, directMem); \ formatString[0] = '\0'; \ } \ while (0) enum { op_LD0 = 0, op_LD1 = 1, op_ST = 2, op_3 = 3, op_BC = 4, op_BLC = 5, op_LPC = 6, op_JC = 7, op_ADD = 8, op_ADC = 9, op_SUB = 10, op_SBC = 11, op_AND = 12, op_OR = 13, op_BIC = 14, op_XOR = 15 }; extern disassemble_info tm_print_insn_info; static int dsmOneArcInst (bfd_vma addr, struct arcDisState * state) { int condCodeIsPartOfName = 0; a4_decoding_class decodingClass; const char * instrName; int repeatsOp = 0; int fieldAisReg = 1; int fieldBisReg = 1; int fieldCisReg = 1; int fieldA; int fieldB; int fieldC = 0; int flag = 0; int cond = 0; int is_shimm = 0; int is_limm = 0; long limm_value = 0; int signExtend = 0; int addrWriteBack = 0; int directMem = 0; int is_linked = 0; int offset = 0; int usesAuxReg = 0; int flags; int ignoreFirstOpd; char formatString[60]; state->instructionLen = 4; state->nullifyMode = BR_exec_when_no_jump; state->opWidth = 12; state->isBranch = 0; state->_mem_load = 0; state->_ea_present = 0; state->_load_len = 0; state->ea_reg1 = no_reg; state->ea_reg2 = no_reg; state->_offset = 0; if (! NEXT_WORD (0)) return 0; state->_opcode = OPCODE (state->words[0]); instrName = 0; decodingClass = CLASS_A4_ARITH; /* default! */ repeatsOp = 0; condCodeIsPartOfName=0; state->commNum = 0; state->tcnt = 0; state->acnt = 0; state->flow = noflow; ignoreFirstOpd = 0; if (state->commentBuffer) state->commentBuffer[0] = '\0'; switch (state->_opcode) { case op_LD0: switch (BITS (state->words[0],1,2)) { case 0: instrName = "ld"; state->_load_len = 4; break; case 1: instrName = "ldb"; state->_load_len = 1; break; case 2: instrName = "ldw"; state->_load_len = 2; break; default: instrName = "??? (0[3])"; state->flow = invalid_instr; break; } decodingClass = CLASS_A4_LD0; break; case op_LD1: if (BIT (state->words[0],13)) { instrName = "lr"; decodingClass = CLASS_A4_LR; } else { switch (BITS (state->words[0], 10, 11)) { case 0: instrName = "ld"; state->_load_len = 4; break; case 1: instrName = "ldb"; state->_load_len = 1; break; case 2: instrName = "ldw"; state->_load_len = 2; break; default: instrName = "??? (1[3])"; state->flow = invalid_instr; break; } decodingClass = CLASS_A4_LD1; } break; case op_ST: if (BIT (state->words[0], 25)) { instrName = "sr"; decodingClass = CLASS_A4_SR; } else { switch (BITS (state->words[0], 22, 23)) { case 0: instrName = "st"; break; case 1: instrName = "stb"; break; case 2: instrName = "stw"; break; default: instrName = "??? (2[3])"; state->flow = invalid_instr; break; } decodingClass = CLASS_A4_ST; } break; case op_3: decodingClass = CLASS_A4_OP3_GENERAL; /* default for opcode 3... */ switch (FIELDC (state->words[0])) { case 0: instrName = "flag"; decodingClass = CLASS_A4_FLAG; break; case 1: instrName = "asr"; break; case 2: instrName = "lsr"; break; case 3: instrName = "ror"; break; case 4: instrName = "rrc"; break; case 5: instrName = "sexb"; break; case 6: instrName = "sexw"; break; case 7: instrName = "extb"; break; case 8: instrName = "extw"; break; case 0x3f: { decodingClass = CLASS_A4_OP3_SUBOPC3F; switch (FIELDD (state->words[0])) { case 0: instrName = "brk"; break; case 1: instrName = "sleep"; break; case 2: instrName = "swi"; break; default: instrName = "???"; state->flow=invalid_instr; break; } } break; /* ARC Extension Library Instructions NOTE: We assume that extension codes are these instrs. */ default: instrName = instruction_name (state, state->_opcode, FIELDC (state->words[0]), &flags); if (!instrName) { instrName = "???"; state->flow = invalid_instr; } if (flags & IGNORE_FIRST_OPD) ignoreFirstOpd = 1; break; } break; case op_BC: instrName = "b"; case op_BLC: if (!instrName) instrName = "bl"; case op_LPC: if (!instrName) instrName = "lp"; case op_JC: if (!instrName) { if (BITS (state->words[0],9,9)) { instrName = "jl"; is_linked = 1; } else { instrName = "j"; is_linked = 0; } } condCodeIsPartOfName = 1; decodingClass = ((state->_opcode == op_JC) ? CLASS_A4_JC : CLASS_A4_BRANCH ); state->isBranch = 1; break; case op_ADD: case op_ADC: case op_AND: repeatsOp = (FIELDC (state->words[0]) == FIELDB (state->words[0])); switch (state->_opcode) { case op_ADD: instrName = (repeatsOp ? "asl" : "add"); break; case op_ADC: instrName = (repeatsOp ? "rlc" : "adc"); break; case op_AND: instrName = (repeatsOp ? "mov" : "and"); break; } break; case op_SUB: instrName = "sub"; break; case op_SBC: instrName = "sbc"; break; case op_OR: instrName = "or"; break; case op_BIC: instrName = "bic"; break; case op_XOR: if (state->words[0] == 0x7fffffff) { /* NOP encoded as xor -1, -1, -1. */ instrName = "nop"; decodingClass = CLASS_A4_OP3_SUBOPC3F; } else instrName = "xor"; break; default: instrName = instruction_name (state,state->_opcode,0,&flags); /* if (instrName) printf("FLAGS=0x%x\n", flags); */ if (!instrName) { instrName = "???"; state->flow=invalid_instr; } if (flags & IGNORE_FIRST_OPD) ignoreFirstOpd = 1; break; } fieldAisReg = fieldBisReg = fieldCisReg = 1; /* Assume regs for now. */ flag = cond = is_shimm = is_limm = 0; state->nullifyMode = BR_exec_when_no_jump; /* 0 */ signExtend = addrWriteBack = directMem = 0; usesAuxReg = 0; switch (decodingClass) { case CLASS_A4_ARITH: CHECK_FIELD_A (); CHECK_FIELD_B (); if (!repeatsOp) CHECK_FIELD_C (); CHECK_FLAG_COND_NULLIFY (); write_instr_name (); if (!ignoreFirstOpd) { WRITE_FORMAT_x (A); WRITE_FORMAT_COMMA_x (B); if (!repeatsOp) WRITE_FORMAT_COMMA_x (C); WRITE_NOP_COMMENT (); arc_sprintf (state, state->operandBuffer, formatString, fieldA, fieldB, fieldC); } else { WRITE_FORMAT_x (B); if (!repeatsOp) WRITE_FORMAT_COMMA_x (C); arc_sprintf (state, state->operandBuffer, formatString, fieldB, fieldC); } write_comments (); break; case CLASS_A4_OP3_GENERAL: CHECK_FIELD_A (); CHECK_FIELD_B (); CHECK_FLAG_COND_NULLIFY (); write_instr_name (); if (!ignoreFirstOpd) { WRITE_FORMAT_x (A); WRITE_FORMAT_COMMA_x (B); WRITE_NOP_COMMENT (); arc_sprintf (state, state->operandBuffer, formatString, fieldA, fieldB); } else { WRITE_FORMAT_x (B); arc_sprintf (state, state->operandBuffer, formatString, fieldB); } write_comments (); break; case CLASS_A4_FLAG: CHECK_FIELD_B (); CHECK_FLAG_COND_NULLIFY (); flag = 0; /* This is the FLAG instruction -- it's redundant. */ write_instr_name (); WRITE_FORMAT_x (B); arc_sprintf (state, state->operandBuffer, formatString, fieldB); write_comments (); break; case CLASS_A4_BRANCH: fieldA = BITS (state->words[0],7,26) << 2; fieldA = (fieldA << 10) >> 10; /* Make it signed. */ fieldA += addr + 4; CHECK_FLAG_COND_NULLIFY (); flag = 0; write_instr_name (); /* This address could be a label we know. Convert it. */ if (state->_opcode != op_LPC /* LP */) { add_target (fieldA); /* For debugger. */ state->flow = state->_opcode == op_BLC /* BL */ ? direct_call : direct_jump; /* indirect calls are achieved by "lr blink,[status]; lr dest<- func addr; j [dest]" */ } strcat (formatString, "%s"); /* Address/label name. */ arc_sprintf (state, state->operandBuffer, formatString, post_address (state, fieldA)); write_comments (); break; case CLASS_A4_JC: /* For op_JC -- jump to address specified. Also covers jump and link--bit 9 of the instr. word selects whether linked, thus "is_linked" is set above. */ fieldA = 0; CHECK_FIELD_B (); CHECK_FLAG_COND_NULLIFY (); if (!fieldBisReg) { fieldAisReg = 0; fieldA = (fieldB >> 25) & 0x7F; /* Flags. */ fieldB = (fieldB & 0xFFFFFF) << 2; state->flow = is_linked ? direct_call : direct_jump; add_target (fieldB); /* Screwy JLcc requires .jd mode to execute correctly but we pretend it is .nd (no delay slot). */ if (is_linked && state->nullifyMode == BR_exec_when_jump) state->nullifyMode = BR_exec_when_no_jump; } else { state->flow = is_linked ? indirect_call : indirect_jump; /* We should also treat this as indirect call if NOT linked but the preceding instruction was a "lr blink,[status]" and we have a delay slot with "add blink,blink,2". For now we can't detect such. */ state->register_for_indirect_jump = fieldB; } write_instr_name (); strcat (formatString, IS_REG (B) ? "[%r]" : "%s"); /* Address/label name. */ if (fieldA != 0) { fieldAisReg = 0; WRITE_FORMAT_COMMA_x (A); } if (IS_REG (B)) arc_sprintf (state, state->operandBuffer, formatString, fieldB, fieldA); else arc_sprintf (state, state->operandBuffer, formatString, post_address (state, fieldB), fieldA); write_comments (); break; case CLASS_A4_LD0: /* LD instruction. B and C can be regs, or one (both?) can be limm. */ CHECK_FIELD_A (); CHECK_FIELD_B (); CHECK_FIELD_C (); if (dbg) printf ("5:b reg %d %d c reg %d %d \n", fieldBisReg,fieldB,fieldCisReg,fieldC); state->_offset = 0; state->_ea_present = 1; if (fieldBisReg) state->ea_reg1 = fieldB; else state->_offset += fieldB; if (fieldCisReg) state->ea_reg2 = fieldC; else state->_offset += fieldC; state->_mem_load = 1; directMem = BIT (state->words[0], 5); addrWriteBack = BIT (state->words[0], 3); signExtend = BIT (state->words[0], 0); write_instr_name (); WRITE_FORMAT_x_COMMA_LB(A); if (fieldBisReg || fieldB != 0) WRITE_FORMAT_x_COMMA (B); else fieldB = fieldC; WRITE_FORMAT_x_RB (C); arc_sprintf (state, state->operandBuffer, formatString, fieldA, fieldB, fieldC); write_comments (); break; case CLASS_A4_LD1: /* LD instruction. */ CHECK_FIELD_B (); CHECK_FIELD_A (); fieldC = FIELDD (state->words[0]); if (dbg) printf ("6:b reg %d %d c 0x%x \n", fieldBisReg, fieldB, fieldC); state->_ea_present = 1; state->_offset = fieldC; state->_mem_load = 1; if (fieldBisReg) state->ea_reg1 = fieldB; /* Field B is either a shimm (same as fieldC) or limm (different!) Say ea is not present, so only one of us will do the name lookup. */ else state->_offset += fieldB, state->_ea_present = 0; directMem = BIT (state->words[0],14); addrWriteBack = BIT (state->words[0],12); signExtend = BIT (state->words[0],9); write_instr_name (); WRITE_FORMAT_x_COMMA_LB (A); if (!fieldBisReg) { fieldB = state->_offset; WRITE_FORMAT_x_RB (B); } else { WRITE_FORMAT_x (B); if (fieldC != 0 && !BIT (state->words[0],13)) { fieldCisReg = 0; WRITE_FORMAT_COMMA_x_RB (C); } else WRITE_FORMAT_RB (); } arc_sprintf (state, state->operandBuffer, formatString, fieldA, fieldB, fieldC); write_comments (); break; case CLASS_A4_ST: /* ST instruction. */ CHECK_FIELD_B(); CHECK_FIELD_C(); fieldA = FIELDD(state->words[0]); /* shimm */ /* [B,A offset] */ if (dbg) printf("7:b reg %d %x off %x\n", fieldBisReg,fieldB,fieldA); state->_ea_present = 1; state->_offset = fieldA; if (fieldBisReg) state->ea_reg1 = fieldB; /* Field B is either a shimm (same as fieldA) or limm (different!) Say ea is not present, so only one of us will do the name lookup. (for is_limm we do the name translation here). */ else state->_offset += fieldB, state->_ea_present = 0; directMem = BIT (state->words[0], 26); addrWriteBack = BIT (state->words[0], 24); write_instr_name (); WRITE_FORMAT_x_COMMA_LB(C); if (!fieldBisReg) { fieldB = state->_offset; WRITE_FORMAT_x_RB (B); } else { WRITE_FORMAT_x (B); if (fieldBisReg && fieldA != 0) { fieldAisReg = 0; WRITE_FORMAT_COMMA_x_RB(A); } else WRITE_FORMAT_RB(); } arc_sprintf (state, state->operandBuffer, formatString, fieldC, fieldB, fieldA); write_comments2 (fieldA); break; case CLASS_A4_SR: /* SR instruction */ CHECK_FIELD_B(); CHECK_FIELD_C(); write_instr_name (); WRITE_FORMAT_x_COMMA_LB(C); /* Try to print B as an aux reg if it is not a core reg. */ usesAuxReg = 1; WRITE_FORMAT_x (B); WRITE_FORMAT_RB (); arc_sprintf (state, state->operandBuffer, formatString, fieldC, fieldB); write_comments (); break; case CLASS_A4_OP3_SUBOPC3F: write_instr_name (); state->operandBuffer[0] = '\0'; break; case CLASS_A4_LR: /* LR instruction */ CHECK_FIELD_A (); CHECK_FIELD_B (); write_instr_name (); WRITE_FORMAT_x_COMMA_LB (A); /* Try to print B as an aux reg if it is not a core reg. */ usesAuxReg = 1; WRITE_FORMAT_x (B); WRITE_FORMAT_RB (); arc_sprintf (state, state->operandBuffer, formatString, fieldA, fieldB); write_comments (); break; default: mwerror (state, "Bad decoding class in ARC disassembler"); break; } state->_cond = cond; return state->instructionLen = offset; } /* Returns the name the user specified core extension register. */ static const char * _coreRegName(void * arg ATTRIBUTE_UNUSED, int regval) { return arcExtMap_coreRegName (regval); } /* Returns the name the user specified AUX extension register. */ static const char * _auxRegName(void *_this ATTRIBUTE_UNUSED, int regval) { return arcExtMap_auxRegName(regval); } /* Returns the name the user specified condition code name. */ static const char * _condCodeName(void *_this ATTRIBUTE_UNUSED, int regval) { return arcExtMap_condCodeName(regval); } /* Returns the name the user specified extension instruction. */ static const char * _instName (void *_this ATTRIBUTE_UNUSED, int majop, int minop, int *flags) { return arcExtMap_instName(majop, minop, flags); } /* Decode an instruction returning the size of the instruction in bytes or zero if unrecognized. */ static int decodeInstr (bfd_vma address, /* Address of this instruction. */ disassemble_info * info) { int status; bfd_byte buffer[4]; struct arcDisState s; /* ARC Disassembler state. */ void *stream = info->stream; /* Output stream. */ fprintf_ftype func = info->fprintf_func; memset (&s, 0, sizeof(struct arcDisState)); /* read first instruction */ status = (*info->read_memory_func) (address, buffer, 4, info); if (status != 0) { (*info->memory_error_func) (status, address, info); return 0; } if (info->endian == BFD_ENDIAN_LITTLE) s.words[0] = bfd_getl32(buffer); else s.words[0] = bfd_getb32(buffer); /* Always read second word in case of limm. */ /* We ignore the result since last insn may not have a limm. */ status = (*info->read_memory_func) (address + 4, buffer, 4, info); if (info->endian == BFD_ENDIAN_LITTLE) s.words[1] = bfd_getl32(buffer); else s.words[1] = bfd_getb32(buffer); s._this = &s; s.coreRegName = _coreRegName; s.auxRegName = _auxRegName; s.condCodeName = _condCodeName; s.instName = _instName; /* Disassemble. */ dsmOneArcInst (address, & s); /* Display the disassembly instruction. */ (*func) (stream, "%08lx ", s.words[0]); (*func) (stream, " "); (*func) (stream, "%-10s ", s.instrBuffer); if (__TRANSLATION_REQUIRED (s)) { bfd_vma addr = s.addresses[s.operandBuffer[1] - '0']; (*info->print_address_func) ((bfd_vma) addr, info); (*func) (stream, "\n"); } else (*func) (stream, "%s",s.operandBuffer); return s.instructionLen; } /* Return the print_insn function to use. Side effect: load (possibly empty) extension section */ disassembler_ftype arc_get_disassembler (void *ptr) { if (ptr) build_ARC_extmap ((struct bfd *) ptr); return decodeInstr; }
Go to most recent revision | Compare with Previous | Blame | View Log