URL
https://opencores.org/ocsvn/openarty/openarty/trunk
Subversion Repositories openarty
[/] [openarty/] [trunk/] [rtl/] [cpu/] [cpuops.v] - Rev 49
Go to most recent revision | Compare with Previous | Blame | View Log
/////////////////////////////////////////////////////////////////////////// // // Filename: cpuops.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: This supports the instruction set reordering of operations // created by the second generation instruction set, as well as // the new operations of POPC (population count) and BREV (bit reversal). // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // /////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // /////////////////////////////////////////////////////////////////////////// // `include "cpudefs.v" // module cpuops(i_clk,i_rst, i_ce, i_op, i_a, i_b, o_c, o_f, o_valid, o_busy); parameter IMPLEMENT_MPY = `OPT_MULTIPLY; input i_clk, i_rst, i_ce; input [3:0] i_op; input [31:0] i_a, i_b; output reg [31:0] o_c; output wire [3:0] o_f; output reg o_valid; output wire o_busy; // Rotate-left pre-logic wire [63:0] w_rol_tmp; assign w_rol_tmp = { i_a, i_a } << i_b[4:0]; wire [31:0] w_rol_result; assign w_rol_result = w_rol_tmp[63:32]; // Won't set flags // Shift register pre-logic wire [32:0] w_lsr_result, w_asr_result, w_lsl_result; wire signed [32:0] w_pre_asr_input, w_pre_asr_shifted; assign w_pre_asr_input = { i_a, 1'b0 }; assign w_pre_asr_shifted = w_pre_asr_input >>> i_b[4:0]; assign w_asr_result = (|i_b[31:5])? {(33){i_a[31]}} : w_pre_asr_shifted;// ASR assign w_lsr_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00 :((i_b[5])?{32'h0,i_a[31]} : ( { i_a, 1'b0 } >> (i_b[4:0]) ));// LSR assign w_lsl_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00 :((i_b[5])?{i_a[0], 32'h0} : ({1'b0, i_a } << i_b[4:0])); // LSL // Bit reversal pre-logic wire [31:0] w_brev_result; genvar k; generate for(k=0; k<32; k=k+1) begin : bit_reversal_cpuop assign w_brev_result[k] = i_b[31-k]; end endgenerate // Popcount pre-logic wire [31:0] w_popc_result; assign w_popc_result[5:0]= ({5'h0,i_b[ 0]}+{5'h0,i_b[ 1]}+{5'h0,i_b[ 2]}+{5'h0,i_b[ 3]}) +({5'h0,i_b[ 4]}+{5'h0,i_b[ 5]}+{5'h0,i_b[ 6]}+{5'h0,i_b[ 7]}) +({5'h0,i_b[ 8]}+{5'h0,i_b[ 9]}+{5'h0,i_b[10]}+{5'h0,i_b[11]}) +({5'h0,i_b[12]}+{5'h0,i_b[13]}+{5'h0,i_b[14]}+{5'h0,i_b[15]}) +({5'h0,i_b[16]}+{5'h0,i_b[17]}+{5'h0,i_b[18]}+{5'h0,i_b[19]}) +({5'h0,i_b[20]}+{5'h0,i_b[21]}+{5'h0,i_b[22]}+{5'h0,i_b[23]}) +({5'h0,i_b[24]}+{5'h0,i_b[25]}+{5'h0,i_b[26]}+{5'h0,i_b[27]}) +({5'h0,i_b[28]}+{5'h0,i_b[29]}+{5'h0,i_b[30]}+{5'h0,i_b[31]}); assign w_popc_result[31:6] = 26'h00; // Prelogic for our flags registers wire z, n, v; reg c, pre_sign, set_ovfl; always @(posedge i_clk) if (i_ce) // 1 LUT set_ovfl =(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP ||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD ||(i_op == 4'h6) // LSL ||(i_op == 4'h5)); // LSR wire [63:0] mpy_result; // Where we dump the multiply result reg mpyhi; // Return the high half of the multiply wire mpybusy; // The multiply is busy if true wire mpydone; // True if we'll be valid on the next clock; // A 4-way multiplexer can be done in one 6-LUT. // A 16-way multiplexer can therefore be done in 4x 6-LUT's with // the Xilinx multiplexer fabric that follows. // Given that we wish to apply this multiplexer approach to 33-bits, // this will cost a minimum of 132 6-LUTs. wire this_is_a_multiply_op; assign this_is_a_multiply_op = (i_ce)&&((i_op[3:1]==3'h5)||(i_op[3:0]==4'h8)); generate if (IMPLEMENT_MPY == 0) begin // No multiply support. assign mpy_result = 63'h00; end else if (IMPLEMENT_MPY == 1) begin // Our single clock option (no extra clocks) wire signed [63:0] w_mpy_a_input, w_mpy_b_input; assign w_mpy_a_input = {{(32){(i_a[31])&(i_op[0])}},i_a[31:0]}; assign w_mpy_b_input = {{(32){(i_b[31])&(i_op[0])}},i_b[31:0]}; assign mpy_result = w_mpy_a_input * w_mpy_b_input; assign mpybusy = 1'b0; assign mpydone = 1'b0; always @(*) mpyhi = 1'b0; // Not needed end else if (IMPLEMENT_MPY == 2) begin // Our two clock option (ALU must pause for 1 clock) reg signed [63:0] r_mpy_a_input, r_mpy_b_input; always @(posedge i_clk) begin r_mpy_a_input <={{(32){(i_a[31])&(i_op[0])}},i_a[31:0]}; r_mpy_b_input <={{(32){(i_b[31])&(i_op[0])}},i_b[31:0]}; end assign mpy_result = r_mpy_a_input * r_mpy_b_input; assign mpybusy = 1'b0; initial mpypipe = 1'b0; reg mpypipe; always @(posedge i_clk) if (i_rst) mpypipe <= 1'b0; else mpypipe <= (this_is_a_multiply_op); assign mpydone = mpypipe; // this_is_a_multiply_op; always @(posedge i_clk) if (this_is_a_multiply_op) mpyhi = i_op[1]; end else if (IMPLEMENT_MPY == 3) begin // Our three clock option (ALU pauses for 2 clocks) reg signed [63:0] r_smpy_result; reg [63:0] r_umpy_result; reg signed [31:0] r_mpy_a_input, r_mpy_b_input; reg [1:0] mpypipe; reg [1:0] r_sgn; initial mpypipe = 2'b0; always @(posedge i_clk) if (i_rst) mpypipe <= 2'b0; else mpypipe <= { mpypipe[0], this_is_a_multiply_op }; // First clock always @(posedge i_clk) begin r_mpy_a_input <= i_a[31:0]; r_mpy_b_input <= i_b[31:0]; r_sgn <= { r_sgn[0], i_op[0] }; end // Second clock `ifdef VERILATOR wire signed [63:0] s_mpy_a_input, s_mpy_b_input; wire [63:0] u_mpy_a_input, u_mpy_b_input; assign s_mpy_a_input = {{(32){r_mpy_a_input[31]}},r_mpy_a_input}; assign s_mpy_b_input = {{(32){r_mpy_b_input[31]}},r_mpy_b_input}; assign u_mpy_a_input = {32'h00,r_mpy_a_input}; assign u_mpy_b_input = {32'h00,r_mpy_b_input}; always @(posedge i_clk) r_smpy_result = s_mpy_a_input * s_mpy_b_input; always @(posedge i_clk) r_umpy_result = u_mpy_a_input * u_mpy_b_input; `else wire [31:0] u_mpy_a_input, u_mpy_b_input; assign u_mpy_a_input = r_mpy_a_input; assign u_mpy_b_input = r_mpy_b_input; always @(posedge i_clk) r_smpy_result = r_mpy_a_input * r_mpy_b_input; always @(posedge i_clk) r_umpy_result = u_mpy_a_input * u_mpy_b_input; `endif always @(posedge i_clk) if (this_is_a_multiply_op) mpyhi = i_op[1]; assign mpybusy = mpypipe[0]; assign mpy_result = (r_sgn[1])?r_smpy_result:r_umpy_result; assign mpydone = mpypipe[1]; // Results are then set on the third clock end else // if (IMPLEMENT_MPY <= 4) begin // The three clock option reg [63:0] r_mpy_result; reg [31:0] r_mpy_a_input, r_mpy_b_input; reg r_mpy_signed; reg [2:0] mpypipe; // First clock, latch in the inputs always @(posedge i_clk) begin // mpypipe indicates we have a multiply in the // pipeline. In this case, the multiply // pipeline is a two stage pipeline, so we need // two bits in the pipe. if (i_rst) mpypipe <= 3'h0; else begin mpypipe[0] <= this_is_a_multiply_op; mpypipe[1] <= mpypipe[0]; mpypipe[2] <= mpypipe[1]; end if (i_op[0]) // i.e. if signed multiply begin r_mpy_a_input <= {(~i_a[31]),i_a[30:0]}; r_mpy_b_input <= {(~i_b[31]),i_b[30:0]}; end else begin r_mpy_a_input <= i_a[31:0]; r_mpy_b_input <= i_b[31:0]; end // The signed bit really only matters in the // case of 64 bit multiply. We'll keep track // of it, though, and pretend in all other // cases. r_mpy_signed <= i_op[0]; if (this_is_a_multiply_op) mpyhi = i_op[1]; end assign mpybusy = |mpypipe[1:0]; assign mpydone = mpypipe[2]; // Second clock, do the multiplies, get the "partial // products". Here, we break our input up into two // halves, // // A = (2^16 ah + al) // B = (2^16 bh + bl) // // and use these to compute partial products. // // AB = (2^32 ah*bh + 2^16 (ah*bl + al*bh) + (al*bl) // // Since we're following the FOIL algorithm to get here, // we'll name these partial products according to FOIL. // // The trick is what happens if A or B is signed. In // those cases, the real value of A will not be given by // A = (2^16 ah + al) // but rather // A = (2^16 ah[31^] + al) - 2^31 // (where we have flipped the sign bit of A) // and so ... // // AB= (2^16 ah + al - 2^31) * (2^16 bh + bl - 2^31) // = 2^32(ah*bh) // +2^16 (ah*bl+al*bh) // +(al*bl) // - 2^31 (2^16 bh+bl + 2^16 ah+al) // - 2^62 // = 2^32(ah*bh) // +2^16 (ah*bl+al*bh) // +(al*bl) // - 2^31 (2^16 bh+bl + 2^16 ah+al + 2^31) // reg [31:0] pp_f, pp_l; // F and L from FOIL reg [32:0] pp_oi; // The O and I from FOIL reg [32:0] pp_s; always @(posedge i_clk) begin pp_f<=r_mpy_a_input[31:16]*r_mpy_b_input[31:16]; pp_oi<=r_mpy_a_input[31:16]*r_mpy_b_input[15: 0] + r_mpy_a_input[15: 0]*r_mpy_b_input[31:16]; pp_l<=r_mpy_a_input[15: 0]*r_mpy_b_input[15: 0]; // And a special one for the sign if (r_mpy_signed) pp_s <= 32'h8000_0000-( r_mpy_a_input[31:0] + r_mpy_b_input[31:0]); else pp_s <= 33'h0; end // Third clock, add the results and produce a product always @(posedge i_clk) begin r_mpy_result[15:0] <= pp_l[15:0]; r_mpy_result[63:16] <= { 32'h00, pp_l[31:16] } + { 15'h00, pp_oi } + { pp_s, 15'h00 } + { pp_f, 16'h00 }; end assign mpy_result = r_mpy_result; // Fourth clock -- results are clocked into writeback end endgenerate // All possible multiply results have been determined // // The master ALU case statement // always @(posedge i_clk) if (i_ce) begin pre_sign <= (i_a[31]); c <= 1'b0; casez(i_op) 4'b0000:{c,o_c } <= {1'b0,i_a}-{1'b0,i_b};// CMP/SUB 4'b0001: o_c <= i_a & i_b; // BTST/And 4'b0010:{c,o_c } <= i_a + i_b; // Add 4'b0011: o_c <= i_a | i_b; // Or 4'b0100: o_c <= i_a ^ i_b; // Xor 4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR 4'b0110:{c,o_c } <= w_lsl_result[32:0]; // LSL 4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR 4'b1000: o_c <= mpy_result[31:0]; // MPY 4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO 4'b1010: o_c <= mpy_result[63:32]; // MPYHU 4'b1011: o_c <= mpy_result[63:32]; // MPYHS 4'b1100: o_c <= w_brev_result; // BREV 4'b1101: o_c <= w_popc_result; // POPC 4'b1110: o_c <= w_rol_result; // ROL default: o_c <= i_b; // MOV, LDI endcase end else // if (mpydone) o_c <= (mpyhi)?mpy_result[63:32]:mpy_result[31:0]; reg r_busy; initial r_busy = 1'b0; always @(posedge i_clk) if (i_rst) r_busy <= 1'b0; else r_busy <= ((IMPLEMENT_MPY > 1) &&(this_is_a_multiply_op))||mpybusy; assign o_busy = (r_busy); // ||((IMPLEMENT_MPY>1)&&(this_is_a_multiply_op)); assign z = (o_c == 32'h0000); assign n = (o_c[31]); assign v = (set_ovfl)&&(pre_sign != o_c[31]); assign o_f = { v, n, c, z }; initial o_valid = 1'b0; always @(posedge i_clk) if (i_rst) o_valid <= 1'b0; else if (IMPLEMENT_MPY <= 1) o_valid <= (i_ce); else o_valid <=((i_ce)&&(!this_is_a_multiply_op))||(mpydone); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log