URL
https://opencores.org/ocsvn/openarty/openarty/trunk
Subversion Repositories openarty
[/] [openarty/] [trunk/] [rtl/] [cpu/] [zipcpuhs.v] - Rev 33
Go to most recent revision | Compare with Previous | Blame | View Log
/////////////////////////////////////////////////////////////////////////////// // // Filename: zipcpuhs.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: This is the top level module holding the core of the Zip CPU // together. The Zip CPU is designed to be as simple as possible. // (actual implementation aside ...) The instruction set is about as // RISC as you can get, there are only 26 instruction types supported, not // including the floating point instruction set. Please see the // accompanying spec.pdf file for a description of these instructions. // // All instructions are 32-bits wide. All bus accesses, both address and // data, are 32-bits over a wishbone bus. // // // This version of the ZipCPU has been modified for "high speed" operation. // By that I mean, it has been modified so that it can handle a high speed // system clock. The nominal five stage pipeline has therefore been // broken into nine pieces, as outlined below: // // 1. Prefetch, returns the instruction from memory. // // 2. Instruction Decode: triplet instructions, VLIW upper half, // VLIW lower half, and normal instructions // // 3. Instruction Decode: Select among the four types of // instructions // // 4. Read Operand B // // 5. Read Operand A, add the immediate offset to Operand B // // 6. 16 ALU operations // // 7. Select among ALU results // // 8. Select from ALU, Memory, Divide, FPU results // // 9. Write-back Results // // Further information about the ZipCPU may be found in the spec.pdf file. // (The documentation within this file is likely to become out of date // and out of sync with the spec.pdf, so look to the spec.pdf for // accurate and up to date information.) // // // A note about pipelining. The approach used to accommodate pipelining // in this implementation assumes that if will be impossible to tell if // a particular stage will stall until the logic for that stage completes. // There is no time, therefore, for the stall logic to ripple from the // end of the pipeline to the beginning. At best, it can ripple from // one stage to the next. Stall logic, therefore, is latched in a // FLIP-FLOP, rather than done in a combinatorial fashion. Hopefully, // you'll have a copy of the stall logic slides. If not, here's the // outline of how stalls will be done: // // assign (n)_slp = // stall logic for location n, based upon the prior // // stages info // assign (n)_slc = // stall logic for location n, based upon a copy of // // what was in the prior stage // // // // We'll shorten _valid to _v, _stall to _s, _copy to _c // always @(posedge i_clk) // if ((i_rst)||(clear_pipeline) // (n)_v = 0; // else if (!(n)_stall) // (n)_v = ( (n-1)_v && (!(n)_slp) ); // else // (n)_v = ( !(n)_slc ); // // always @(posedge i_clk) // if ((i_rst)||(clear_pipeline) // (n)_s = 1'b0; // else if (!(n)_s) // (n)_s = ((n-1)_v) && ( (n)_slp || (n+1)_s ); // else // (n)_s = ( (n)_slc || (n+1)_s ); // // always @(posedge i_clk) // if ((n)_s) // (n)_data = PROCESS[(n)_c]; // // Can't chnge copy if not stalled // else // (n)_data = PROCESS[(n-1)_data]; // (n)_c <= (n-1)_data; // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // /////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // /////////////////////////////////////////////////////////////////////////////// // // We can either pipeline our fetches, or issue one fetch at a time. Pipelined // fetches are more complicated and therefore use more FPGA resources, while // single fetches will cause the CPU to stall for about 5 stalls each // instruction cycle, effectively reducing the instruction count per clock to // about 0.2. However, the area cost may be worth it. Consider: // // Slice LUTs ZipSystem ZipCPU // Single Fetching 2521 1734 // Pipelined fetching 2796 2046 // // // `define CPU_CC_REG 4'he `define CPU_PC_REG 4'hf `define CPU_CLRCACHE_BIT 14 // Floating point error flag, set on error `define CPU_PHASE_BIT 13 // Floating point error flag, set on error `define CPU_FPUERR_BIT 12 // Floating point error flag, set on error `define CPU_DIVERR_BIT 11 // Divide error flag, set on divide by zero `define CPU_BUSERR_BIT 10 // Bus error flag, set on error `define CPU_TRAP_BIT 9 // User TRAP has taken place `define CPU_ILL_BIT 8 // Illegal instruction `define CPU_BREAK_BIT 7 `define CPU_STEP_BIT 6 // Will step one or two (VLIW) instructions `define CPU_GIE_BIT 5 `define CPU_SLEEP_BIT 4 // Compile time defines // `include "cpudefs.v" // // module zipcpuhs(i_clk, i_rst, i_interrupt, // Debug interface i_halt, i_clear_pf_cache, i_dbg_reg, i_dbg_we, i_dbg_data, o_dbg_stall, o_dbg_reg, o_dbg_cc, o_break, // CPU interface to the wishbone bus o_wb_gbl_cyc, o_wb_gbl_stb, o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we, o_wb_addr, o_wb_data, i_wb_ack, i_wb_stall, i_wb_data, i_wb_err, // Accounting/CPU usage interface o_op_stall, o_pf_stall, o_i_count `ifdef DEBUG_SCOPE , o_debug `endif ); parameter RESET_ADDRESS=32'h0100000, ADDRESS_WIDTH=24, LGICACHE=6; `ifdef OPT_MULTIPLY parameter IMPLEMENT_MPY = `OPT_MULTIPLY; `else parameter IMPLEMENT_MPY = 0; `endif `ifdef OPT_DIVIDE parameter IMPLEMENT_DIVIDE = 1; `else parameter IMPLEMENT_DIVIDE = 0; `endif `ifdef OPT_IMPLEMENT_FPU parameter IMPLEMENT_FPU = 1, `else parameter IMPLEMENT_FPU = 0, `endif IMPLEMENT_LOCK=1; `ifdef OPT_EARLY_BRANCHING parameter EARLY_BRANCHING = 1; `else parameter EARLY_BRANCHING = 0; `endif parameter AW=ADDRESS_WIDTH; input i_clk, i_rst, i_interrupt; // Debug interface -- inputs input i_halt, i_clear_pf_cache; input [4:0] i_dbg_reg; input i_dbg_we; input [31:0] i_dbg_data; // Debug interface -- outputs output wire o_dbg_stall; output reg [31:0] o_dbg_reg; output reg [3:0] o_dbg_cc; output wire o_break; // Wishbone interface -- outputs output wire o_wb_gbl_cyc, o_wb_gbl_stb; output wire o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we; output wire [(AW-1):0] o_wb_addr; output wire [31:0] o_wb_data; // Wishbone interface -- inputs input i_wb_ack, i_wb_stall; input [31:0] i_wb_data; input i_wb_err; // Accounting outputs ... to help us count stalls and usage output wire o_op_stall; output wire o_pf_stall; output wire o_i_count; // `ifdef DEBUG_SCOPE output reg [31:0] o_debug; `endif // Registers // // The distributed RAM style comment is necessary on the // SPARTAN6 with XST to prevent XST from oversimplifying the register // set and in the process ruining everything else. It basically // optimizes logic away, to where it no longer works. The logic // as described herein will work, this just makes sure XST implements // that logic. // (* ram_style = "distributed" *) reg [31:0] regset [0:31]; // Condition codes // (BUS, TRAP,ILL,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z reg [3:0] flags, iflags; wire [14:0] w_uflags, w_iflags; reg trap, break_en, step, gie, sleep, r_halted, break_pending; wire w_clear_icache; `ifdef OPT_ILLEGAL_INSTRUCTION reg ill_err_u, ill_err_i; `else wire ill_err_u, ill_err_i; `endif reg ubreak; reg ibus_err_flag, ubus_err_flag; wire idiv_err_flag, udiv_err_flag; wire ifpu_err_flag, ufpu_err_flag; wire ihalt_phase, uhalt_phase; // The master chip enable wire master_ce; // // // PIPELINE STAGE #1 :: Prefetch // Variable declarations // reg [(AW-1):0] pf_pc; reg new_pc; wire clear_pipeline; assign clear_pipeline = new_pc; wire dcd_stalled; wire pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall, pf_err; wire [(AW-1):0] pf_addr; wire [31:0] pf_data; wire [31:0] instruction; wire [(AW-1):0] instruction_pc; wire pf_v, instruction_gie, pf_illegal; // // // PIPELINE STAGE #2 :: Instruction Decode // Variable declarations // // wire op_stall, dcd_ce, dcd_phase; wire [3:0] dcdOp; wire [4:0] dcd_iA, dcd_iB, dcd_iR; wire dcdA_cc, dcdB_cc, dcdA_pc, dcdB_pc, dcdR_cc, dcdR_pc; wire [3:0] dcdF; wire dcd_wR, dcd_rA, dcd_rB, dcdALU, dcdM, dcdDV, dcdFP, dcdF_wr, dcd_gie, dcd_break, dcd_lock, dcd_pipe, dcd_ljmp; reg [1:0] r_dcdvalid; wire dcd_v; wire [(AW-1):0] dcd_pc; wire [31:0] dcd_I; wire dcd_zI; // true if dcdI == 0 wire dcdA_stall, dcdB_stall, dcdF_stall; wire dcd_illegal; wire dcd_early_branch; wire [(AW-1):0] dcd_branch_pc; // // // PIPELINE STAGE #3a :: Read Operands // Variable declarations // // // // Now, let's read our operands reg opa_v, opa_DV, opa_FP, opa_ALU, opa_M, opa_rA, opa_rB; reg [4:0] alu_reg; reg [3:0] opa_opn; reg [4:0] opa_R, opa_iA; reg [31:0] r_opa_B; reg [(AW-1):0] opa_pc; wire [31:0] opA_nowait, opa_Bnowait, opa_A, opa_B, opa_I; reg opa_wR, opa_ccR, opa_wF, opa_gie; wire [13:0] opa_Fl; reg [5:0] r_opa_F; wire [7:0] opa_F; wire opa_ce, opa_phase, opa_pipe; // Some pipeline control wires reg opa_A_alu, opa_A_mem; reg opa_B_alu, opa_B_mem; reg opa_illegal; reg opa_break; reg opa_lock; // // // PIPELINE STAGE #3b :: Read Operands // Variable declarations // // // // Now, let's read our operands reg [3:0] opb_opn; reg opb_v, opb_v_mem, opb_v_alu; reg opb_v_div, opb_v_fpu; reg [4:0] opb_R; reg [31:0] r_opb_A, r_opb_B; reg [(AW-1):0] opb_pc; wire [31:0] opb_A_nowait, opb_B_nowait, opb_A, opb_B; reg opb_wR, opb_ccR, opb_wF, opb_gie; wire [13:0] opb_Fl; reg [5:0] r_opb_F; wire [7:0] opb_F; wire opb_ce, opb_phase, opb_pipe; // Some pipeline control wires reg opb_A_alu, opb_A_mem; reg opb_B_alu, opb_B_mem; reg opb_illegal; reg opb_break; reg opb_lock; // // // PIPELINE STAGE #4 :: ALU / Memory / Divide // Variable declarations // // reg stage_busy; reg [(AW-1):0] alu_pc; reg r_alu_pc_v, mem_pc_v; wire alu_pc_v; wire alu_phase; wire alu_ce, alu_stall; wire [31:0] alu_result; wire [3:0] alu_flags; wire alu_v, alu_busy; wire set_cond; reg alu_wr, alF_wr, alu_gie; wire alu_illegal_op; wire alu_illegal; wire mem_ce, mem_stalled; wire mem_pipe_stalled; wire mem_v, mem_ack, mem_stall, mem_err, bus_err, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we; wire [4:0] mem_wreg; wire mem_busy, mem_rdbusy; wire [(AW-1):0] mem_addr; wire [31:0] mem_data, mem_result; wire div_ce, div_error, div_busy, div_v; wire [31:0] div_result; wire [3:0] div_flags; assign div_ce = (master_ce)&&(~clear_pipeline)&&(opb_v_div) &&(~stage_busy)&&(set_cond); wire fpu_ce, fpu_error, fpu_busy, fpu_v; wire [31:0] fpu_result; wire [3:0] fpu_flags; assign fpu_ce = (master_ce)&&(~clear_pipeline)&&(opb_v_fpu) &&(~stage_busy)&&(set_cond); // // // PIPELINE STAGE #5 :: Write-back // Variable declarations // wire wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc; wire [4:0] wr_reg_id; wire [31:0] wr_gpreg_vl, wr_spreg_vl; wire w_switch_to_interrupt, w_release_from_interrupt; reg [(AW-1):0] upc, ipc; // // MASTER: clock enable. // assign master_ce = (~i_halt)&&(~o_break)&&(~sleep); // // PIPELINE STAGE #1 :: Prefetch // Calculate stall conditions // // These are calculated externally, within the prefetch module. // // // PIPELINE STAGE #2 :: Instruction Decode // Calculate stall conditions assign dcd_ce = ((~dcd_v)||(~dcd_stalled))&&(~clear_pipeline); assign dcd_stalled = (dcd_v)&&(opa_stall); // // PIPELINE STAGE #3 :: Read Operands // Calculate stall conditions wire op_lock_stall; assign opa_stall_slp = ( // Likewise for B, also includes logic // regarding immediate offset (register must // be in register file if we need to add to // an immediate) (((dcdB_rd)&&(~dcd_zI)) &&((opa_v)&&(opb_R == dcdB) ||(mem_rdbusy) ||((div_busy)&&(div_R == dcdB)) ||((fpu_busy)&&(fpu_R == dcdB)) ||((alua_v)&&(alua_R==dcdB)) ||((alub_v)&&(alub_R==dcdB)) ||((alu_busy)) &&( // 1. ((~dcd_zI)&&( ((opb_R == dcdB)&&(opb_wR)) ||((mem_rdbusy)&&(~dcd_pipe)) )) // 2. ||((opF_wr)&&(dcdB_cc)) ))) // Or if we need to wait on flags to work on the // CC register ||(((~dcdF[3]) ||((dcd_rA)&&(dcdA_cc)) ||((dcd_rB)&&(dcdB_cc))) &&(opb_v)&&(opb_ccR)) ); // // PIPELINE STAGE #4 :: ALU / Memory // Calculate stall conditions // // 1. Basic stall is if the previous stage is valid and the next is // busy. // 2. Also stall if the prior stage is valid and the master clock enable // is de-selected // 3. Stall if someone on the other end is writing the CC register, // since we don't know if it'll put us to sleep or not. // 4. Last case: Stall if we would otherwise move a break instruction // through the ALU. Break instructions are not allowed through // the ALU. assign alu_stall_clp = (~master_ce); assign alu_stall_cls = (~master_ce); always @(posedge i_clk) stage_busy <= (alu_ce)||(mem_ce)||(fpu_ce)||(div_ce) ||(alu_busy)||(mem_rdbusy)||(fpu_busy)||(div_busy); assign stage_ce = (~div_busy)&&(~alu_busy)&&(~mem_rdbusy)&&(~fpu_busy); // // // Note: if you change the conditions for mem_ce, you must also change // alu_pc_v. // assign mem_ce = (master_ce)&&(opb_v_mem)&&(~mem_stalled) &&(~clear_pipeline); assign mem_stall_clp = (~master_ce)||(alu_busy)||(div_busy)||(fpu_busy) ||(wr_write_pc)||(wr_write_cc) ||((opb_v_mem)&&( (mem_pipe_stalled) ||((~opb_pipe)&&(mem_busy)))); assign mem_stall_cls = (~master_ce)||(alu_busy)||(div_busy)||(fpu_busy) ||(wr_write_pc)||(wr_write_cc) ||((cp_opb_v_mem)&&( (mem_pipe_stalled) ||((~cp_opb_pipe)&&(mem_busy)))); // // // PIPELINE STAGE #1 :: Prefetch // // fastcache #(LGICACHE, ADDRESS_WIDTH) pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(~clear_pipeline)), i_clear_pf_cache, // dcd_pc, ~dcd_stalled, ((dcd_early_branch)&&(~clear_pipeline)) ? dcd_branch_pc:pf_pc, instruction, instruction_pc, pf_v, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data, pf_illegal); assign instruction_gie = gie; // // The ifastdec decoder takes two clocks to decode an instruction. // Therefore, to determine if a decoded instruction is valid, we // need to wait two clocks from pf_v. Hence, we dump this into // a pipeline below. // initial r_dcdvalid = 2'b00; always @(posedge i_clk) if ((i_rst)||(clear_pipeline)||(w_clear_icache)) r_dcdvalid <= 2'b00; else if (dcd_ce) r_dcdvalid <= { r_dcdvalid[0], pf_v }; else if (opa_ce) r_dcdvalid <= 1'b0; assign dcd_v = r_dcdvalid[1]; ifastdec #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE, IMPLEMENT_FPU) instruction_decoder(i_clk, (i_rst)||(clear_pipeline), dcd_ce, dcd_stalled, instruction, instruction_gie, instruction_pc, pf_v, pf_illegal, dcd_phase, dcd_illegal, dcd_pc, dcd_gie, { dcd_Rcc, dcd_Rpc, dcd_iR }, { dcd_Acc, dcd_Apc, dcd_iA }, { dcd_Bcc, dcd_Bpc, dcd_iB }, dcd_I, dcd_zI, dcd_F, dcd_wF, dcdOp, dcdALU, dcdM, dcdDV, dcdFP, dcd_break, dcd_lock, dcd_wR,dcd_rA, dcd_rB, dcd_early_branch, dcd_branch_pc, dcd_ljmp, dcd_pipe); // // // PIPELINE STAGE #3 :: Read Operands (Registers) // // reg opa_pipe; initial opa_pipe = 1'b0; // To be a pipeable operation, there must be // two valid adjacent instructions // Both must be memory instructions // Both must be writes, or both must be reads // Both operations must be to the same identical address, // or at least a single (one) increment above that address // // However ... we need to know this before this clock, hence this is // calculated in the instruction decoder. always @(posedge i_clk) if (!opa_stall) begin opa_v <= dcdvalid&&(~opa_stall_slp); opa_stall <= (dcdvalid)&&(opa_stall_slp); opa_pipe <= dcd_pipe; opa_wR <= dcd_wR; { opa_Acc, opa_Apc, opa_iA, opa_rA } <= { dcd_Acc, dcd_Apc, dcd_iA, dcd_rA }; { opa_Bcc, opa_Bpc, opa_iB, opa_rB } <= { dcd_Bcc, dcd_Bpc, dcd_iB, dcd_rB }; // Register A if (dcd_Apc) opa_vA <= (dcd_iA[4]==dcd_gie) ? dcd_pc : (dcd_iA)?upc : ipc; else if (dcd_Acc) opa_vA <= (dcd_iA[4])?user_flags_reg : supervisor_flags_reg; else opa_vA <= regset[dcd_iA]; // Register B if (!dcd_rB) opa_vB <= 32'h00; else if (dcd_Bpc) opa_vB <= (dcd_iB[4]==dcd_gie) ? dcd_pc : (dcd_iB)?upc : ipc; else if (dcd_Bcc) opa_vB <= (dcd_iB[4])?user_flags_reg : supervisor_flags_reg; else opa_vB <= regset[dcd_iB]; // Copy cp_opa_pc <= dcd_pc; cp_opa_gie <= dcd_gie; cp_opa_pipe <= dcd_pipe; { cp_opa_Rcc, cp_opa_Rpc, cp_opa_iR } <= { dcd_Rcc, dcd_Rpc, dcd_iR }; { cp_opa_Acc, cp_opa_Apc, cp_opa_iA } <= { dcd_Acc, dcd_Apc, dcd_iA }; { cp_opa_Bcc, cp_opa_Bpc, cp_opa_iB } <= { dcd_Bcc, dcd_Bpc, dcd_iB }; end else begin opa_v <= (~opa_stall_slc); opa_stall <= (opa_stall_slc); opa_pipe <= cp_opa_pipe; // Register A if (cp_opa_Apc) opa_vA <= (cp_opa_iA[4]==cp_opa_gie) ? cp_opa_pc : (cp_opa_iA)?upc : ipc; else if (dcd_Acc) opa_vA <= (cp_opa_iA[4])?user_flags_reg : supervisor_flags_reg; else opa_vA <= regset[cp_opa_iA]; // Register B if (!cp_opa_rB) opa_vB <= 32'h00; else if (cp_opa_Bpc) opa_vB <= (cp_opa_iB[4]==cp_opa_gie) ? cp_opa_pc : (cp_opa_iB)?upc : ipc; else if (cp_opa_Bcc) opa_vB <= (cp_opa_iB[4])?user_flags_reg : supervisor_flags_reg; else opa_vB <= regset[cp_opa_iB]; end wire [8:0] w_cpu_info; assign w_cpu_info = { `ifdef OPT_ILLEGAL_INSTRUCTION 1'b1, `else 1'b0, `endif 1'b1, `ifdef OPT_DIVIDE 1'b1, `else 1'b0, `endif `ifdef OPT_IMPLEMENT_FPU 1'b1, `else 1'b0, `endif 1'b1, 1'b1, `ifdef OPT_EARLY_BRANCHING 1'b1, `else 1'b0, `endif 1'b1, `ifdef OPT_VLIW 1'b1 `else 1'b0 `endif }; always @(posedge i_clk) if (opa_ce) begin if ((wr_reg_ce)&&(wr_reg_id == dcd_iA)) r_opA <= wr_gpreg_vl; else if (dcdA_pc) r_opA <= w_pcA_v; else if (dcdA_cc) r_opA <= { w_cpu_info, w_opA[22:15], (dcd_iA[4])?w_uflags:w_iflags }; else r_opA <= w_opA; end else if ((wr_reg_ce)&&(wr_reg_id == opa_iA)&&(opa_rA)) r_opA <= wr_gpreg_vl; wire [31:0] w_opBnI, w_pcB_v; generate if (AW < 32) assign w_pcB_v = {{(32-AW){1'b0}}, (dcdB[4] == dcd_gie)?dcd_pc:upc }; else assign w_pcB_v = (dcdB[4] == dcd_gie)?dcd_pc:upc; endgenerate always @(posedge i_clk) if (opa_ce) begin opa_B <= (~dcdB_rd) ? 32'h00 : (((wr_reg_ce)&&(wr_reg_id == dcdB)) ? wr_gpreg_vl : ((dcdB_pc) ? w_pcB_v : ((dcdB_cc) ? { w_cpu_info, w_opB[22:14], // w_opB[31:14], (dcdB[4])?w_uflags:w_iflags} : w_opB))); opa_I <= dcd_I; end // // B-Inflight // // We cannot read the B register if it is "in-flight", that is if the // result register of any previous instruction still needs to be written. // // reg [31:0] opa_b_inflight; // always @(posedge i_clk) // if ((i_reset)||(clear_pipeline)) // opa_b_inflight <= 32'h00; // else begin // if (wr_reg_ce) // opa_b_inflight[wr_reg_id] <= 1'b0; // if (opb_ce) // opa_b_inflight[opa_Rid] <= 1'b1; // end // // always @(posedge i_clk) // if (opa_b_invalid) // opa_b_invalid <= opa_b_inflight[opa_A]; // else // opa_b_invalid <= opa_b_inflight[dcd_iA]; // always @(posedge i_clk) if (opb_ce) opb_B <= opa_B + opa_I; else if ((wr_reg_ce)&&(opa_Bid == wr_reg_id)&&(opa_Brd)) opb_B <= wr_gpreg_vl; always @(posedge i_clk) if (opa_ce) opa_F <= dcdF; always @(posedge i_clk) if (opb_ce) begin case(opa_F[2:0]) 3'h0: r_opb_F <= 6'h00; // Always // These were remapped as part of the new instruction // set in order to make certain that the low order // two bits contained the most commonly used // conditions: Always, LT, Z, and NZ. 3'h1: r_opb_F <= 6'h24; // LT 3'h2: r_opb_F <= 6'h11; // Z 3'h3: r_opb_F <= 6'h10; // NE 3'h4: r_opb_F <= 6'h30; // GT (!N&!Z) 3'h5: r_opb_F <= 6'h20; // GE (!N) 3'h6: r_opb_F <= 6'h02; // C 3'h7: r_opb_F <= 6'h08; // V endcase end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value } assign opb_F = { r_opb_F[3], r_opb_F[5], r_opb_F[1], r_opb_F[4:0] }; wire w_opa_v; always @(posedge i_clk) if (i_rst) opa_v <= 1'b0; else if (opa_ce) opa_v <= ((dcd_v)||(dcd_illegal))&&(~clear_pipeline); always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) begin opa_v <= 1'b0; end else if (opa_ce) begin opa_v <=(dcd_v); opa_M <= (dcd_v)&&(opa_M )&&(~opa_illegal); opa_DV <= (dcd_v)&&(opa_DV )&&(~opa_illegal); opa_FP <= (dcd_v)&&(opa_FP )&&(~opa_illegal); end else if (opb_ce) opa_v <= 1'b0; initial opb_v = 1'b0; initial opb_v_alu = 1'b0; initial opb_v_mem = 1'b0; initial opb_v_div = 1'b0; initial opb_v_fpu = 1'b0; always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) begin opb_v <= 1'b0; opb_v_alu <= 1'b0; opb_v_mem <= 1'b0; opb_v_div <= 1'b0; opb_v_fpu <= 1'b0; end else if (opb_ce) begin // Do we have a valid instruction? // The decoder may vote to stall one of its // instructions based upon something we currently // have in our queue. This instruction must then // move forward, and get a stall cycle inserted. // Hence, the test on dcd_stalled here. If we must // wait until our operands are valid, then we aren't // valid yet until then. opb_v <= (opa_v); opb_v_alu <=(opa_v)&&((opa_ALU)||(opa_illegal)); opb_v_mem <= (opa_v)&&(opa_M )&&(~opa_illegal); opb_v_div <= (opa_v)&&(opa_DV )&&(~opa_illegal); opb_v_fpu <= (opa_v)&&(opa_FP )&&(~opa_illegal); end else if ((clear_pipeline)||(stage_ce)) begin opb_v <= 1'b0; opb_v_alu <= 1'b0; opb_v_mem <= 1'b0; opb_v_div <= 1'b0; opb_v_fpu <= 1'b0; end initial op_break = 1'b0; always @(posedge i_clk) if (i_rst) opb_break <= 1'b0; else if (opb_ce) opb_break <= (opa_break)&&((break_en)||(~opa_gie)); else if ((clear_pipeline)||(~opb_v)) opb_break <= 1'b0; reg r_op_lock, r_op_lock_stall; initial r_op_lock_stall = 1'b0; always @(posedge i_clk) if (i_rst) r_op_lock_stall <= 1'b0; else r_op_lock_stall <= (~opb_v)||(~opb_lock) ||(~opa_v)||(~dcd_v)||(~pf_v); assign op_lock_stall = r_op_lock_stall; initial opa_lock = 1'b0; always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) opa_lock <= 1'b0; else if (opa_ce) opa_lock <= (dcd_lock)&&(~clear_pipeline); initial opb_lock = 1'b0; always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) opb_lock <= 1'b0; else if (opb_ce) opb_lock <= (opb_lock)&&(~clear_pipeline); initial opa_illegal = 1'b0; always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) opa_illegal <= 1'b0; else if(opa_ce) opa_illegal <=(dcd_illegal); initial opb_illegal = 1'b0; always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) opb_illegal <= 1'b0; else if(opb_ce) opb_illegal <=(opa_illegal); always @(posedge i_clk) if (opa_ce) begin opa_wF <= (dcdF_wr)&&((~dcdR_cc)||(~dcd_wR)) &&(~dcd_early_branch)&&(~dcd_illegal); opa_wR <= (dcd_wR)&&(~dcd_early_branch)&&(~dcd_illegal); end always @(posedge i_clk) if (opb_ce) begin opb_wF <= opa_wF; opb_wR <= opa_wR; end always @(posedge i_clk) if (opa_ce) begin opa_opn <= dcdOp; // Which ALU operation? opa_R <= dcd_iR; opa_ccR <= (dcdR_cc)&&(dcd_wR)&&(dcd_iR[4]==dcd_gie); opa_gie <= dcd_gie; // opa_pc <= dcd_v; opa_rA <= dcd_; opa_rB <= dcd_; end always @(posedge i_clk) if (opb_ce) begin opb_opn <= opa_opn; opb_R <= opa_R; opb_ccR <= opa_ccR; opb_gie <= opa_gie; // opb_pc <= opa_pc; end assign opb_Fl = (opb_gie)?(w_uflags):(w_iflags); always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) opa_phase <= 1'b0; else if (opa_ce) opa_phase <= dcd_phase; always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) opb_phase <= 1'b0; else if (opb_ce) opb_phase <= opa_phase; assign opA = r_opA; assign dcdA_stall = (dcd_rA) // &&(dcdvalid) is checked for elsewhere &&((opa_v)||(mem_rdbusy) ||(div_busy)||(fpu_busy)) &&((opF_wr)&&(dcdA_cc)); assign dcdB_stall = (dcdB_rd) &&((opa_v)||(mem_rdbusy) ||(div_busy)||(fpu_busy)||(alu_busy)) &&( // 1. ((~dcd_zI)&&( ((opb_R == dcdB)&&(opb_wR)) ||((mem_rdbusy)&&(~dcd_pipe)) )) // 2. ||((opF_wr)&&(dcdB_cc)) ); assign dcdF_stall = ((~dcdF[3]) ||((dcd_rA)&&(dcdA_cc)) ||((dcd_rB)&&(dcdB_cc))) &&(opb_v)&&(opb_ccR); // // // PIPELINE STAGE #4 :: Apply Instruction // // fastops fastalu(i_clk, i_rst, alu_ce, (opb_v_alu), opb_opn, opb_A, opb_B, alu_result, alu_flags, alu_v, alu_illegal_op, alu_busy); div thedivide(i_clk, (i_rst)||(clear_pipeline), div_ce, opb_opn[0], opb_A, opb_B, div_busy, div_v, div_error, div_result, div_flags); generate if (IMPLEMENT_FPU != 0) begin // // sfpu thefpu(i_clk, i_rst, fpu_ce, // opA, opB, fpu_busy, fpu_v, fpu_err, fpu_result, // fpu_flags); // assign fpu_error = 1'b0; // Must only be true if fpu_v assign fpu_busy = 1'b0; assign fpu_v = 1'b0; assign fpu_result= 32'h00; assign fpu_flags = 4'h0; end else begin assign fpu_error = 1'b0; assign fpu_busy = 1'b0; assign fpu_v = 1'b0; assign fpu_result= 32'h00; assign fpu_flags = 4'h0; end endgenerate assign set_cond = ((opb_F[7:4]&opb_Fl[3:0])==opb_F[3:0]); initial alF_wr = 1'b0; initial alu_wr = 1'b0; always @(posedge i_clk) if (i_rst) begin alu_wr <= 1'b0; alF_wr <= 1'b0; end else if (alu_ce) begin // alu_reg <= opR; alu_wr <= (opb_wR)&&(set_cond); alF_wr <= (opb_wF)&&(set_cond); end else if (~alu_busy) begin // These are strobe signals, so clear them if not // set for any particular clock alu_wr <= (i_halt)&&(i_dbg_we); alF_wr <= 1'b0; end initial alu_phase = 1'b0; always @(posedge i_clk) if (i_rst) alu_phase <= 1'b0; else if ((adf_ce_unconditional)||(mem_ce)) alu_phase <= opb_phase; always @(posedge i_clk) if (adf_ce_unconditional) alu_reg <= opb_R; else if ((i_halt)&&(i_dbg_we)) alu_reg <= i_dbg_reg; // // DEBUG Register write access starts here // reg dbgv; initial dbgv = 1'b0; always @(posedge i_clk) dbgv <= (~i_rst)&&(i_halt)&&(i_dbg_we)&&(r_halted); reg [31:0] dbg_val; always @(posedge i_clk) dbg_val <= i_dbg_data; always @(posedge i_clk) if (stage_ce) alu_gie <= op_gie; always @(posedge i_clk) if (stage_ce) alu_pc <= opb_pc; initial alu_illegal = 0; always @(posedge i_clk) if (clear_pipeline) alu_illegal <= 1'b0; else if (stage_ce) alu_illegal <= opb_illegal; initial r_alu_pc_v = 1'b0; initial mem_pc_v = 1'b0; always @(posedge i_clk) if (i_rst) r_alu_pc_v <= 1'b0; else if (adf_ce_unconditional)//Includes&&(~alu_clear_pipeline) r_alu_pc_v <= 1'b1; else if (((~alu_busy)&&(~div_busy)&&(~fpu_busy))||(clear_pipeline)) r_alu_pc_v <= 1'b0; assign alu_pc_v = (r_alu_pc_v)&&((~alu_busy)&&(~div_busy)&&(~fpu_busy)); always @(posedge i_clk) if (i_rst) mem_pc_v <= 1'b0; else mem_pc_v <= (mem_ce); wire bus_lock; reg [1:0] r_bus_lock; initial r_bus_lock = 2'b00; always @(posedge i_clk) if (i_rst) r_bus_lock <= 2'b00; else if ((opb_ce)&&(opb_lock)) r_bus_lock <= 2'b11; else if ((|r_bus_lock)&&((~opb_v_mem)||(~opb_ce))) r_bus_lock <= r_bus_lock + 2'b11; // r_bus_lock -= 1 assign bus_lock = |r_bus_lock; pipemem #(AW,IMPLEMENT_LOCK) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock, (opb_opn[0]), opb_B, opb_A, opb_R, mem_busy, mem_pipe_stalled, mem_v, bus_err, mem_wreg, mem_result, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err, i_wb_data); assign mem_rdbusy = ((mem_busy)&&(~mem_we)); // Either the prefetch or the instruction gets the memory bus, but // never both. wbdblpriarb #(32,AW) pformem(i_clk, i_rst, // Memory access to the arbiter, priority position mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err, // Prefetch access to the arbiter pf_cyc, 1'b0, pf_stb, 1'b0, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, // Common wires, in and out, of the arbiter o_wb_gbl_cyc, o_wb_lcl_cyc, o_wb_gbl_stb, o_wb_lcl_stb, o_wb_we, o_wb_addr, o_wb_data, i_wb_ack, i_wb_stall, i_wb_err); // // // // // // // // // PIPELINE STAGE #5 :: Write-back results // // // Unlike previous versions of the writeback routine(s), this version // requires that everything be registered and clocked as soon as it is // valid. So, let's start by clocking in our results. reg [4:0] r_wr_reg; reg [31:0] r_wr_val; reg r_wr_ce, r_wr_err; // 1. Will we need to write a register? always @(posedge i_clk) r_wr_ce <= (dbgv)||(mem_v) ||((~clear_pipeline)&&(~alu_illegal) &&(((alu_wr)&&(alu_v)) ||(div_v)||(fpu_v))); assign wr_reg_ce = r_wr_ce; // 2. Did the ALU/MEM/DIV/FPU stage produce an error of any type? // a. Illegal instruction // b. Division by zero // c. Floating point error // d. Bus Error // these will be causes for an interrupt on the next clock after this // one. always @(posedge i_clk) r_wr_err <= ((div_v)&&(div_error)) ||((fpu_v)&&(fpu_error)) ||((alu_pc_v)&&(alu_illegal)) ||(bus_err); reg r_wr_illegal; always @(posedge i_clk) r_wr_illegal <= (alu_pc_v)&&(alu_illegal); // Which register shall be written? // Note that the alu_reg is the register to write on a divide or // FPU operation. always @(posedge i_clk) r_wr_reg <= (alu_wr|div_v|fpu_v)?alu_reg:mem_wreg; assign wr_reg_id = r_wr_reg; // Are we writing to the CC register? assign wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG); assign wr_write_scc = (wr_reg_id[4:0] == {1'b0, `CPU_CC_REG}); assign wr_write_ucc = (wr_reg_id[4:0] == {1'b1, `CPU_CC_REG}); // Are we writing to the PC? assign wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG); // What value to write? always @(posedge i_clk) r_wr_val <= ((mem_v) ? mem_result :((div_v|fpu_v)) ? ((div_v) ? div_result:fpu_result) :((dbgv) ? dbg_val : alu_result)); assign wr_gpreg_vl = r_wr_val; assign wr_spreg_vl = r_wr_val; // Do we write back our flags? reg r_wr_flags_ce; initial r_wr_flags_ce = 1'b0; always @(posedge i_clk) r_wr_flags_ce <= ((alF_wr)||(div_v)||(fpu_v)) &&(~clear_pipeline)&&(~alu_illegal); assign wr_flags_ce = r_wr_flags_ce; reg [3:0] r_wr_newflags; always @(posedge i_clk) if (div_v) r_wr_newflags <= div_flags; else if (fpu_v) r_wr_newflags <= fpu_flags; else // if (alu_v) r_wr_newflags <= alu_flags; reg r_wr_gie; always @(posedge i_clk) r_wr_gie <= (~dbgv)&&(alu_gie); reg r_wr_pc_v; initial r_wr_pc_v = 1'b0; always @(posedge i_clk) r_wr_pc_v <= ((alu_pc_v)&&(~clear_pipeline)) ||(mem_pc_v); reg [(AW-1):0] r_wr_pc; always @(posedge i_clk) r_wr_pc <= alu_pc; // (alu_pc_v)?alu_pc : mem_pc; //// // // // Write back, second clock // // //// always @(posedge i_clk) if (wr_reg_ce) regset[wr_reg_id] <= wr_gpreg_vl; assign w_uflags = { uhalt_phase, ufpu_err_flag, udiv_err_flag, ubus_err_flag, trap, ill_err_u, 1'b0, step, 1'b1, sleep, ((wr_flags_ce)&&(alu_gie))?r_wr_newflags:flags }; assign w_iflags = { ihalt_phase, ifpu_err_flag, idiv_err_flag, ibus_err_flag, trap, ill_err_i, break_en, 1'b0, 1'b0, sleep, ((wr_flags_ce)&&(~alu_gie))?r_wr_newflags:iflags }; // What value to write? always @(posedge i_clk) // If explicitly writing the register itself if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_cc)) flags <= wr_gpreg_vl[3:0]; // Otherwise if we're setting the flags from an ALU operation else if ((wr_flags_ce)&&(alu_gie)) flags <= r_wr_newflags; always @(posedge i_clk) if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc)) iflags <= wr_gpreg_vl[3:0]; else if ((wr_flags_ce)&&(~alu_gie)) iflags <= r_wr_newflags; // The 'break' enable bit. This bit can only be set from supervisor // mode. It control what the CPU does upon encountering a break // instruction. // // The goal, upon encountering a break is that the CPU should stop and // not execute the break instruction, choosing instead to enter into // either interrupt mode or halt first. // if ((break_en) AND (break_instruction)) // user mode or not // HALT CPU // else if (break_instruction) // only in user mode // set an interrupt flag, set the user break bit, // go to supervisor mode, allow supervisor to step the CPU. // Upon a CPU halt, any break condition will be reset. The // external debugger will then need to deal with whatever // condition has taken place. initial break_en = 1'b0; always @(posedge i_clk) if ((i_rst)||(i_halt)) break_en <= 1'b0; else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc)) break_en <= wr_spreg_vl[`CPU_BREAK_BIT]; reg pipe_busy; initial pipe_busy <= 1'b0; always @(posedge i_clk) pipe_busy <= ((mem_ce)||(alu_ce)||(div_ce)||(fpu_ce)) ||((alu_busy)||(mem_busy)||(div_busy)||(fpu_busy)); // pending_break <= ((break_en)||(~op_gie))&&(op_break) assign o_break = ((op_break)&&(~pipe_busy)&&(~clear_pipeline)) ||((~r_wr_gie)&&(r_wr_err)); // The GIE register. Only interrupts can disable the interrupt register reg slow_interrupt, fast_interrupt; initial slow_interrupt = 1'b0; // The key difference between a fast interrupt and a slow interrupt // is that a fast interrupt requires the pipeline to be cleared, // whereas a slow interrupt does not. always @(posedge i_clk) slow_interrupt <= (gie)&&( (i_interrupt) // If we encounter a break instruction, if the break // enable isn't set. This is slow because pre // ALU logic will prevent the break from moving forward. ||((op_break)&&(~break_en))); initial fast_interrupt = 1'b0; always @(posedge i_clk) // 12 inputs fast_interrupt <= ((gie)||(alu_gie))&&( ((r_wr_pc_v)&&(step)&&(~alu_phase)&&(~bus_lock)) // Or ... if we encountered some form of error in our // instruction ... ||(r_wr_err) // Or if we write to the CC register. ||((wr_reg_ce)&&(~wr_spreg_vl[`CPU_GIE_BIT]) &&(wr_reg_id[4])&&(wr_write_cc))); assign w_switch_to_interrupt = fast_interrupt; assign w_release_from_interrupt = (~gie)&&(~i_interrupt) // Then if we write the CC register &&(((wr_reg_ce)&&(~r_wr_gie)&&(wr_spreg_vl[`CPU_GIE_BIT]) &&(~wr_reg_id[4])&&(wr_write_cc)) ); always @(posedge i_clk) if (i_rst) gie <= 1'b0; else if ((fast_interrupt)||(slow_interrupt)) gie <= 1'b0; else if (w_release_from_interrupt) gie <= 1'b1; initial trap = 1'b0; always @(posedge i_clk) if (i_rst) trap <= 1'b0; else if (w_release_from_interrupt) trap <= 1'b0; else if ((r_wr_gie)&&(wr_reg_ce)&&(wr_write_cc) &&(~wr_spreg_vl[`CPU_GIE_BIT])) // &&(wr_reg_id[4]) implied trap <= 1'b1; else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_reg_id[4])) trap <= wr_spreg_vl[`CPU_TRAP_BIT]; // The sleep register. Setting the sleep register causes the CPU to // sleep until the next interrupt. Setting the sleep register within // interrupt mode causes the processor to halt until a reset. This is // a panic/fault halt. The trick is that you cannot be allowed to // set the sleep bit and switch to supervisor mode in the same // instruction: users are not allowed to halt the CPU. always @(posedge i_clk) if ((i_rst)||(slow_interrupt)) sleep <= 1'b0; else if ((wr_reg_ce)&&(wr_write_cc)&&(~r_wr_gie)) // In supervisor mode, we have no protections. The // supervisor can set the sleep bit however he wants. // Well ... not quite. Switching to user mode and // sleep mode shouold only be possible if the interrupt // flag isn't set. // Thus: if (i_interrupt)&&(wr_spreg_vl[GIE]) // don't set the sleep bit // otherwise however it would o.w. be set sleep <= (wr_spreg_vl[`CPU_SLEEP_BIT]) &&((~i_interrupt)||(~wr_spreg_vl[`CPU_GIE_BIT])); else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_spreg_vl[`CPU_GIE_BIT])) // In user mode, however, you can only set the sleep // mode while remaining in user mode. You can't switch // to sleep mode *and* supervisor mode at the same // time, lest you halt the CPU. sleep <= wr_spreg_vl[`CPU_SLEEP_BIT]; always @(posedge i_clk) if ((i_rst)||(fast_interrupt)) step <= 1'b0; else if ((wr_reg_ce)&&(~alu_gie)&&(wr_reg_id[4])&&(wr_write_cc)) step <= wr_spreg_vl[`CPU_STEP_BIT]; else if (((alu_pc_v)||(mem_pc_v))&&(step)&&(gie)) step <= 1'b0; initial ill_err_i = 1'b0; always @(posedge i_clk) if (i_rst) ill_err_i <= 1'b0; // Only the debug interface can clear this bit else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) &&(~wr_spreg_vl[`CPU_ILL_BIT])) ill_err_i <= 1'b0; else if ((r_wr_illegal)&&(~r_wr_gie)) ill_err_i <= 1'b1; initial ill_err_u = 1'b0; always @(posedge i_clk) // The bit is automatically cleared on release from interrupt // or reset if ((i_rst)||(w_release_from_interrupt)) ill_err_u <= 1'b0; // If the supervisor writes to this register, clearing the // bit, then clear it else if ((~r_wr_gie) &&(wr_reg_ce)&&(~wr_spreg_vl[`CPU_ILL_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) ill_err_u <= 1'b0; else if ((r_wr_gie)&&(r_wr_illegal)) ill_err_u <= 1'b1; // Supervisor/interrupt bus error flag -- this will crash the CPU if // ever set. initial ibus_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) ibus_err_flag <= 1'b0; else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) &&(~wr_spreg_vl[`CPU_BUSERR_BIT])) ibus_err_flag <= 1'b0; else if ((bus_err)&&(~alu_gie)) ibus_err_flag <= 1'b1; // User bus error flag -- if ever set, it will cause an interrupt to // supervisor mode. initial ubus_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) ubus_err_flag <= 1'b0; else if (w_release_from_interrupt) ubus_err_flag <= 1'b0; else if (((~alu_gie)||(dbgv))&&(wr_reg_ce) &&(~wr_spreg_vl[`CPU_BUSERR_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) ubus_err_flag <= 1'b0; else if ((bus_err)&&(alu_gie)) ubus_err_flag <= 1'b1; reg r_idiv_err_flag, r_udiv_err_flag; // Supervisor/interrupt divide (by zero) error flag -- this will // crash the CPU if ever set. This bit is thus available for us // to be able to tell if/why the CPU crashed. initial r_idiv_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) r_idiv_err_flag <= 1'b0; else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) &&(~wr_spreg_vl[`CPU_DIVERR_BIT])) r_idiv_err_flag <= 1'b0; else if ((div_error)&&(div_v)&&(~r_wr_gie)) r_idiv_err_flag <= 1'b1; // User divide (by zero) error flag -- if ever set, it will // cause a sudden switch interrupt to supervisor mode. initial r_udiv_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) r_udiv_err_flag <= 1'b0; else if (w_release_from_interrupt) r_udiv_err_flag <= 1'b0; else if (((~r_wr_gie)||(dbgv))&&(wr_reg_ce) &&(~wr_spreg_vl[`CPU_DIVERR_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) r_udiv_err_flag <= 1'b0; else if ((div_error)&&(r_wr_gie)&&(div_v)) r_udiv_err_flag <= 1'b1; assign idiv_err_flag = r_idiv_err_flag; assign udiv_err_flag = r_udiv_err_flag; generate if (IMPLEMENT_FPU !=0) begin // Supervisor/interrupt floating point error flag -- this will // crash the CPU if ever set. reg r_ifpu_err_flag, r_ufpu_err_flag; initial r_ifpu_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) r_ifpu_err_flag <= 1'b0; else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) &&(~wr_spreg_vl[`CPU_FPUERR_BIT])) r_ifpu_err_flag <= 1'b0; else if ((fpu_error)&&(fpu_v)&&(~r_wr_gie)) r_ifpu_err_flag <= 1'b1; // User floating point error flag -- if ever set, it will cause // a sudden switch interrupt to supervisor mode. initial r_ufpu_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) r_ufpu_err_flag <= 1'b0; else if (w_release_from_interrupt) r_ufpu_err_flag <= 1'b0; else if (((~r_wr_gie)||(dbgv))&&(wr_reg_ce) &&(~wr_spreg_vl[`CPU_FPUERR_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) r_ufpu_err_flag <= 1'b0; else if ((fpu_error)&&(r_wr_gie)&&(fpu_v)) r_ufpu_err_flag <= 1'b1; assign ifpu_err_flag = r_ifpu_err_flag; assign ufpu_err_flag = r_ufpu_err_flag; end else begin assign ifpu_err_flag = 1'b0; assign ufpu_err_flag = 1'b0; end endgenerate `ifdef OPT_VLIW reg r_ihalt_phase, r_uhalt_phase; initial r_ihalt_phase = 0; initial r_uhalt_phase = 0; always @(posedge i_clk) if (i_rst) r_ihalt_phase <= 1'b0; else if ((~alu_gie)&&(alu_pc_v)&&(~clear_pipeline)) r_ihalt_phase <= alu_phase; always @(posedge i_clk) if (r_wr_gie) r_uhalt_phase <= alu_phase; else if (w_release_from_interrupt) r_uhalt_phase <= 1'b0; assign ihalt_phase = r_ihalt_phase; assign uhalt_phase = r_uhalt_phase; `else assign ihalt_phase = 1'b0; assign uhalt_phase = 1'b0; `endif // // Write backs to the PC register, and general increments of it // We support two: upc and ipc. If the instruction is normal, // we increment upc, if interrupt level we increment ipc. If // the instruction writes the PC, we write whichever PC is appropriate. // // Do we need to all our partial results from the pipeline? // What happens when the pipeline has gie and ~gie instructions within // it? Do we clear both? What if a gie instruction tries to clear // a non-gie instruction? always @(posedge i_clk) if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc)) upc <= wr_spreg_vl[(AW-1):0]; else if ((r_wr_gie)&& (((alu_pc_v)&&(~clear_pipeline)) ||(mem_pc_v))) upc <= alu_pc; always @(posedge i_clk) if (i_rst) ipc <= RESET_ADDRESS; else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_pc)) ipc <= wr_spreg_vl[(AW-1):0]; else if ((~r_wr_gie)&& (((alu_pc_v)&&(~clear_pipeline)) ||(mem_pc_v))) ipc <= alu_pc; always @(posedge i_clk) if (i_rst) pf_pc <= RESET_ADDRESS; else if ((w_switch_to_interrupt)||((~gie)&&(w_clear_icache))) pf_pc <= ipc; else if ((w_release_from_interrupt)||((gie)&&(w_clear_icache))) pf_pc <= upc; else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) pf_pc <= wr_spreg_vl[(AW-1):0]; `ifdef OPT_PIPELINED else if ((dcd_early_branch)&&(~clear_pipeline)) pf_pc <= dcd_branch_pc + 1; else if ((new_pc)||((~dcd_stalled)&&(pf_v))) pf_pc <= pf_pc + {{(AW-1){1'b0}},1'b1}; `else else if ((alu_gie==gie)&&( ((alu_pc_v)&&(~clear_pipeline)) ||(mem_pc_v))) pf_pc <= alu_pc; `endif initial new_pc = 1'b1; always @(posedge i_clk) if ((i_rst)||(i_clear_pf_cache)) new_pc <= 1'b1; else if (w_switch_to_interrupt) new_pc <= 1'b1; else if (w_release_from_interrupt) new_pc <= 1'b1; else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) new_pc <= 1'b1; else new_pc <= 1'b0; `ifdef OPT_PIPELINED reg r_clear_icache; initial r_clear_icache = 1'b1; always @(posedge i_clk) if ((i_rst)||(i_clear_pf_cache)) r_clear_icache <= 1'b1; else if ((wr_reg_ce)&&(wr_write_scc)) r_clear_icache <= wr_spreg_vl[`CPU_CLRCACHE_BIT]; else r_clear_icache <= 1'b0; assign w_clear_icache = r_clear_icache; `else assign w_clear_icache = 1'b0; `endif // // The debug interface generate if (AW<32) begin always @(posedge i_clk) begin o_dbg_reg <= regset[i_dbg_reg]; if (i_dbg_reg[3:0] == `CPU_PC_REG) o_dbg_reg <= {{(32-AW){1'b0}},(i_dbg_reg[4])?upc:ipc}; else if (i_dbg_reg[3:0] == `CPU_CC_REG) begin o_dbg_reg[14:0] <= (i_dbg_reg[4])?w_uflags:w_iflags; o_dbg_reg[31:23] <= w_cpu_info; o_dbg_reg[`CPU_GIE_BIT] <= gie; end end end else begin always @(posedge i_clk) begin o_dbg_reg <= regset[i_dbg_reg]; if (i_dbg_reg[3:0] == `CPU_PC_REG) o_dbg_reg <= (i_dbg_reg[4])?upc:ipc; else if (i_dbg_reg[3:0] == `CPU_CC_REG) begin o_dbg_reg[14:0] <= (i_dbg_reg[4])?w_uflags:w_iflags; o_dbg_reg[31:23] <= w_cpu_info; o_dbg_reg[`CPU_GIE_BIT] <= gie; end end end endgenerate always @(posedge i_clk) o_dbg_cc <= { o_break, bus_err, gie, sleep }; always @(posedge i_clk) r_halted <= (i_halt)&&( // To be halted, any long lasting instruction must // be completed. (~pf_cyc)&&(~mem_busy)&&(~alu_busy) &&(~div_busy)&&(~fpu_busy) // Operations must either be valid, or illegal &&((opb_v)||(i_rst)||(dcd_illegal)) // Decode stage must be either valid, in reset, or ill &&((dcdvalid)||(i_rst)||(pf_illegal))); assign o_dbg_stall = ~r_halted; // // // Produce accounting outputs: Account for any CPU stalls, so we can // later evaluate how well we are doing. // // assign o_op_stall = (master_ce)&&(op_stall); assign o_pf_stall = (master_ce)&&(~pf_v); assign o_i_count = (alu_pc_v)&&(~clear_pipeline); `ifdef DEBUG_SCOPE always @(posedge i_clk) o_debug <= { /* o_break, i_wb_err, pf_pc[1:0], flags, pf_v, dcdvalid, opvalid, alu_v, mem_v, op_ce, alu_ce, mem_ce, // master_ce, opvalid_alu, opvalid_mem, // alu_stall, mem_busy, op_pipe, mem_pipe_stalled, mem_we, // ((opvalid_alu)&&(alu_stall)) // ||((opvalid_mem)&&(~op_pipe)&&(mem_busy)) // ||((opvalid_mem)&&( op_pipe)&&(mem_pipe_stalled))); // opA[23:20], opA[3:0], gie, sleep, wr_reg_ce, wr_gpreg_vl[4:0] */ /* i_rst, master_ce, (new_pc), ((dcd_early_branch)&&(dcdvalid)), pf_v, pf_illegal, op_ce, dcd_ce, dcdvalid, dcd_stalled, pf_cyc, pf_stb, pf_we, pf_ack, pf_stall, pf_err, pf_pc[7:0], pf_addr[7:0] */ i_wb_err, gie, alu_illegal, (new_pc)||((dcd_early_branch)&&(~clear_pipeline)), mem_busy, (mem_busy)?{ (o_wb_gbl_stb|o_wb_lcl_stb), o_wb_we, o_wb_addr[8:0] } : { instruction[31:21] }, pf_v, (pf_v) ? alu_pc[14:0] :{ pf_cyc, pf_stb, pf_pc[12:0] } /* i_wb_err, gie, new_pc, dcd_early_branch, // 4 pf_v, pf_cyc, pf_stb, instruction_pc[0], // 4 instruction[30:27], // 4 dcd_gie, mem_busy, o_wb_gbl_cyc, o_wb_gbl_stb, // 4 dcdvalid, ((dcd_early_branch)&&(~clear_pipeline)) // 15 ? dcd_branch_pc[14:0]:pf_pc[14:0] */ }; `endif endmodule
Go to most recent revision | Compare with Previous | Blame | View Log