URL
https://opencores.org/ocsvn/openarty/openarty/trunk
Subversion Repositories openarty
[/] [openarty/] [trunk/] [rtl/] [cpu/] [zipsystem.v] - Rev 42
Go to most recent revision | Compare with Previous | Blame | View Log
/////////////////////////////////////////////////////////////////////////// // // Filename: zipsystem.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: This portion of the ZIP CPU implements a number of soft // peripherals to the CPU nearby its CORE. The functionality // sits on the data bus, and does not include any true // external hardware peripherals. The peripherals included here // include: // // // Local interrupt controller--for any/all of the interrupts generated // here. This would include a pin for interrupts generated // elsewhere, so this interrupt controller could be a master // handling all interrupts. My interrupt controller would work // for this purpose. // // The ZIP-CPU supports only one interrupt because, as I understand // modern systems (Linux), they tend to send all interrupts to the // same interrupt vector anyway. Hence, that's what we do here. // // Bus Error interrupts -- generates an interrupt any time the wishbone // bus produces an error on a given access, for whatever purpose // also records the address on the bus at the time of the error. // // Trap instructions // Writing to this "register" will always create an interrupt. // After the interrupt, this register may be read to see what // value had been written to it. // // Bit reverse register ... ? // // (Potentially an eventual floating point co-processor ...) // // Real-time clock // // Interval timer(s) (Count down from fixed value, and either stop on // zero, or issue an interrupt and restart automatically on zero) // These can be implemented as watchdog timers if desired--the // only difference is that a watchdog timer's interrupt feeds the // reset line instead of the processor interrupt line. // // Watch-dog timer: this is the same as an interval timer, only it's // interrupt/time-out line is wired to the reset line instead of // the interrupt line of the CPU. // // ROM Memory map // Set a register to control this map, and a DMA will begin to // fill this memory from a slower FLASH. Once filled, accesses // will be from this memory instead of // // // Doing some market comparison, let's look at what peripherals a TI // MSP430 might offer: MSP's may have I2C ports, SPI, UART, DMA, ADC, // Comparators, 16,32-bit timers, 16x16 or 32x32 timers, AES, BSL, // brown-out-reset(s), real-time-clocks, temperature sensors, USB ports, // Spi-Bi-Wire, UART Boot-strap Loader (BSL), programmable digital I/O, // watchdog-timers, // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // /////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // /////////////////////////////////////////////////////////////////////////// // `include "cpudefs.v" // // While I hate adding delays to any bus access, this next delay is required // to make timing close in my Basys-3 design. `define DELAY_DBG_BUS // On my previous version, I needed to add a delay to access the external // bus. Activate the define below and that delay will be put back into place. // This particular version no longer needs the delay in order to run at // 100 MHz. Timing indicates I may even run this at 250 MHz without the // delay too, so we're doing better. To get rid of this, I placed the logic // determining whether or not I was accessing the local system bus one clock // earlier, or into the memops.v file. This also required my wishbone bus // arbiter to maintain the bus selection as well, so that got updated ... // you get the picture. But, the bottom line is that I no longer need this // delay. // // `define DELAY_EXT_BUS // Required no longer! // // // If space is tight, you might not wish to have your performance and // accounting counters, so let's make those optional here // Without this flag, Slice LUT count is 3315 (ZipSystem),2432 (ZipCPU) // When including counters, // Slice LUTs ZipSystem ZipCPU // With Counters 3315 2432 // Without Counters 2796 2046 // // Now, where am I placing all of my peripherals? `define PERIPHBASE 32'hc0000000 `define INTCTRL 5'h0 // `define WATCHDOG 5'h1 // Interrupt generates reset signal `define BUSWATCHDOG 5'h2 // Sets IVEC[0] `define CTRINT 5'h3 // Sets IVEC[5] `define TIMER_A 5'h4 // Sets IVEC[4] `define TIMER_B 5'h5 // Sets IVEC[3] `define TIMER_C 5'h6 // Sets IVEC[2] `define JIFFIES 5'h7 // Sets IVEC[1] `ifdef INCLUDE_ACCOUNTING_COUNTERS `define MSTR_TASK_CTR 5'h08 `define MSTR_MSTL_CTR 5'h09 `define MSTR_PSTL_CTR 5'h0a `define MSTR_INST_CTR 5'h0b `define USER_TASK_CTR 5'h0c `define USER_MSTL_CTR 5'h0d `define USER_PSTL_CTR 5'h0e `define USER_INST_CTR 5'h0f `endif // Although I have a hole at 5'h2, the DMA controller requires four wishbone // addresses, therefore we place it by itself and expand our address bus // width here by another bit. `define DMAC 5'h10 // `define RTC_CLOCK 32'hc0000008 // A global something // `define BITREV 32'hc0000003 // // DBGCTRL // 10 HALT // 9 HALT(ED) // 8 STEP (W=1 steps, and returns to halted) // 7 INTERRUPT-FLAG // 6 RESET_FLAG // ADDRESS: // 5 PERIPHERAL-BIT // [4:0] REGISTER-ADDR // DBGDATA // read/writes internal registers // // // module zipsystem(i_clk, i_rst, // Wishbone master interface from the CPU o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data, i_wb_ack, i_wb_stall, i_wb_data, i_wb_err, // Incoming interrupts i_ext_int, // Our one outgoing interrupt o_ext_int, // Wishbone slave interface for debugging purposes i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data, o_dbg_ack, o_dbg_stall, o_dbg_data `ifdef DEBUG_SCOPE , o_cpu_debug `endif ); parameter RESET_ADDRESS=24'h0100000, ADDRESS_WIDTH=24, LGICACHE=10, START_HALTED=1, EXTERNAL_INTERRUPTS=1, `ifdef OPT_MULTIPLY IMPLEMENT_MPY = `OPT_MULTIPLY, `else IMPLEMENT_MPY = 0, `endif `ifdef OPT_DIVIDE IMPLEMENT_DIVIDE=1, `else IMPLEMENT_DIVIDE=0, `endif `ifdef OPT_IMPLEMENT_FPU IMPLEMENT_FPU=1, `else IMPLEMENT_FPU=0, `endif IMPLEMENT_LOCK=1, HIGHSPEED_CPU=0, // Derived parameters AW=ADDRESS_WIDTH; input i_clk, i_rst; // Wishbone master output wire o_wb_cyc, o_wb_stb, o_wb_we; output wire [(AW-1):0] o_wb_addr; output wire [31:0] o_wb_data; input i_wb_ack, i_wb_stall; input [31:0] i_wb_data; input i_wb_err; // Incoming interrupts input [(EXTERNAL_INTERRUPTS-1):0] i_ext_int; // Outgoing interrupt output wire o_ext_int; // Wishbone slave input i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr; input [31:0] i_dbg_data; output wire o_dbg_ack; output wire o_dbg_stall; output wire [31:0] o_dbg_data; // `ifdef DEBUG_SCOPE output wire [31:0] o_cpu_debug; `endif wire [31:0] ext_idata; // Handle our interrupt vector generation/coordination wire [14:0] main_int_vector, alt_int_vector; wire ctri_int, tma_int, tmb_int, tmc_int, jif_int, dmac_int; wire mtc_int, moc_int, mpc_int, mic_int, utc_int, uoc_int, upc_int, uic_int; generate if (EXTERNAL_INTERRUPTS < 9) assign main_int_vector = { {(9-EXTERNAL_INTERRUPTS){1'b0}}, i_ext_int, ctri_int, tma_int, tmb_int, tmc_int, jif_int, dmac_int }; else assign main_int_vector = { i_ext_int[8:0], ctri_int, tma_int, tmb_int, tmc_int, jif_int, dmac_int }; endgenerate generate if (EXTERNAL_INTERRUPTS <= 9) `ifdef INCLUDE_ACCOUNTING_COUNTERS assign alt_int_vector = { 7'h00, mtc_int, moc_int, mpc_int, mic_int, utc_int, uoc_int, upc_int, uic_int }; `else assign alt_int_vector = { 15'h00 }; `endif else `ifdef INCLUDE_ACCOUNTING_COUNTERS assign alt_int_vector = { {(7-(EXTERNAL_INTERRUPTS-9)){1'b0}}, i_ext_int[(EXTERNAL_INTERRUPTS-1):9], mtc_int, moc_int, mpc_int, mic_int, utc_int, uoc_int, upc_int, uic_int }; `else assign alt_int_vector = { {(15-(EXTERNAL_INTERRUPTS-9)){1'b0}}, i_ext_int[(EXTERNAL_INTERRUPTS-1):9] }; `endif endgenerate // Delay the debug port by one clock, to meet timing requirements wire dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_stall; wire [31:0] dbg_idata, dbg_odata; reg dbg_ack; `ifdef DELAY_DBG_BUS wire dbg_err, no_dbg_err; assign dbg_err = 1'b0; busdelay #(1,32) wbdelay(i_clk, i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data, o_dbg_ack, o_dbg_stall, o_dbg_data, no_dbg_err, dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_idata, dbg_ack, dbg_stall, dbg_odata, dbg_err); `else assign dbg_cyc = i_dbg_cyc; assign dbg_stb = i_dbg_stb; assign dbg_we = i_dbg_we; assign dbg_addr = i_dbg_addr; assign dbg_idata = i_dbg_data; assign o_dbg_ack = dbg_ack; assign o_dbg_stall = dbg_stall; assign o_dbg_data = dbg_odata; `endif // // // wire sys_cyc, sys_stb, sys_we; wire [4:0] sys_addr; wire [(AW-1):0] cpu_addr; wire [31:0] sys_data; wire sys_ack, sys_stall; // // The external debug interface // // We offer only a limited interface here, requiring a pre-register // write to set the local address. This interface allows access to // the Zip System on a debug basis only, and not to the rest of the // wishbone bus. Further, to access these registers, the control // register must first be accessed to both stop the CPU and to // set the following address in question. Hence all accesses require // two accesses: write the address to the control register (and halt // the CPU if not halted), then read/write the data from the data // register. // wire cpu_break, dbg_cmd_write; reg cmd_reset, cmd_halt, cmd_step, cmd_clear_pf_cache; reg [5:0] cmd_addr; wire [3:0] cpu_dbg_cc; assign dbg_cmd_write = (dbg_cyc)&&(dbg_stb)&&(dbg_we)&&(~dbg_addr); // initial cmd_reset = 1'b1; always @(posedge i_clk) cmd_reset <= ((dbg_cmd_write)&&(dbg_idata[6])); // initial cmd_halt = START_HALTED; always @(posedge i_clk) if (i_rst) cmd_halt <= (START_HALTED == 1)? 1'b1 : 1'b0; else if (dbg_cmd_write) cmd_halt <= ((dbg_idata[10])||(dbg_idata[8])); else if ((cmd_step)||(cpu_break)) cmd_halt <= 1'b1; initial cmd_clear_pf_cache = 1'b0; always @(posedge i_clk) cmd_clear_pf_cache = (~i_rst)&&(dbg_cmd_write) &&((dbg_idata[11])||(dbg_idata[6])); // initial cmd_step = 1'b0; always @(posedge i_clk) cmd_step <= (dbg_cmd_write)&&(dbg_idata[8]); // always @(posedge i_clk) if (dbg_cmd_write) cmd_addr <= dbg_idata[5:0]; wire cpu_reset; assign cpu_reset = (cmd_reset)||(wdt_reset)||(i_rst); wire cpu_halt, cpu_dbg_stall; assign cpu_halt = (i_rst)||((cmd_halt)&&(~cmd_step)); wire [31:0] pic_data; wire [31:0] cmd_data; // Values: // 0x0003f -> cmd_addr mask // 0x00040 -> reset // 0x00080 -> PIC interrrupt pending // 0x00100 -> cmd_step // 0x00200 -> cmd_stall // 0x00400 -> cmd_halt // 0x00800 -> cmd_clear_pf_cache // 0x01000 -> cc.sleep // 0x02000 -> cc.gie // 0x04000 -> External (PIC) interrupt line is high // Other external interrupts follow generate if (EXTERNAL_INTERRUPTS < 16) assign cmd_data = { {(16-EXTERNAL_INTERRUPTS){1'b0}}, i_ext_int, cpu_dbg_cc, // 4 bits 1'b0, cmd_halt, (~cpu_dbg_stall), 1'b0, pic_data[15], cpu_reset, cmd_addr }; else assign cmd_data = { i_ext_int[15:0], cpu_dbg_cc, 1'b0, cmd_halt, (~cpu_dbg_stall), 1'b0, pic_data[15], cpu_reset, cmd_addr }; endgenerate wire cpu_gie; assign cpu_gie = cpu_dbg_cc[1]; // // The WATCHDOG Timer // wire wdt_ack, wdt_stall, wdt_reset; wire [31:0] wdt_data; ziptimer #(32,31,0) watchdog(i_clk, cpu_reset, ~cmd_halt, sys_cyc, ((sys_stb)&&(sys_addr == `WATCHDOG)), sys_we, sys_data, wdt_ack, wdt_stall, wdt_data, wdt_reset); // // Position two, a second watchdog timer--this time for the wishbone // bus, in order to tell/find wishbone bus lockups. In its current // configuration, it cannot be configured and all bus accesses must // take less than the number written to this register. // reg wdbus_ack; reg [(AW-1):0] r_wdbus_data; wire [31:0] wdbus_data; wire [14:0] wdbus_ignored_data; wire reset_wdbus_timer, wdbus_int; assign reset_wdbus_timer = ((o_wb_cyc)&&((o_wb_stb)||(i_wb_ack))); wbwatchdog #(14) watchbus(i_clk,(cpu_reset)||(reset_wdbus_timer), o_wb_cyc, 14'h2000, wdbus_int); initial r_wdbus_data = 0; always @(posedge i_clk) if ((wdbus_int)||(cpu_ext_err)) r_wdbus_data = o_wb_addr; assign wdbus_data = { {(32-AW){1'b0}}, r_wdbus_data }; initial wdbus_ack = 1'b0; always @(posedge i_clk) wdbus_ack <= ((sys_cyc)&&(sys_stb)&&(sys_addr == 5'h02)); // Counters -- for performance measurement and accounting // // Here's the stuff we'll be counting .... // wire cpu_op_stall, cpu_pf_stall, cpu_i_count; `ifdef INCLUDE_ACCOUNTING_COUNTERS // // The master counters will, in general, not be reset. They'll be used // for an overall counter. // // Master task counter wire mtc_ack, mtc_stall; wire [31:0] mtc_data; zipcounter mtask_ctr(i_clk, (~cpu_halt), sys_cyc, (sys_stb)&&(sys_addr == `MSTR_TASK_CTR), sys_we, sys_data, mtc_ack, mtc_stall, mtc_data, mtc_int); // Master Operand Stall counter wire moc_ack, moc_stall; wire [31:0] moc_data; zipcounter mmstall_ctr(i_clk,(cpu_op_stall), sys_cyc, (sys_stb)&&(sys_addr == `MSTR_MSTL_CTR), sys_we, sys_data, moc_ack, moc_stall, moc_data, moc_int); // Master PreFetch-Stall counter wire mpc_ack, mpc_stall; wire [31:0] mpc_data; zipcounter mpstall_ctr(i_clk,(cpu_pf_stall), sys_cyc, (sys_stb)&&(sys_addr == `MSTR_PSTL_CTR), sys_we, sys_data, mpc_ack, mpc_stall, mpc_data, mpc_int); // Master Instruction counter wire mic_ack, mic_stall; wire [31:0] mic_data; zipcounter mins_ctr(i_clk,(cpu_i_count), sys_cyc, (sys_stb)&&(sys_addr == `MSTR_INST_CTR), sys_we, sys_data, mic_ack, mic_stall, mic_data, mic_int); // // The user counters are different from those of the master. They will // be reset any time a task is given control of the CPU. // // User task counter wire utc_ack, utc_stall; wire [31:0] utc_data; zipcounter utask_ctr(i_clk,(~cpu_halt)&&(cpu_gie), sys_cyc, (sys_stb)&&(sys_addr == `USER_TASK_CTR), sys_we, sys_data, utc_ack, utc_stall, utc_data, utc_int); // User Op-Stall counter wire uoc_ack, uoc_stall; wire [31:0] uoc_data; zipcounter umstall_ctr(i_clk,(cpu_op_stall)&&(cpu_gie), sys_cyc, (sys_stb)&&(sys_addr == `USER_MSTL_CTR), sys_we, sys_data, uoc_ack, uoc_stall, uoc_data, uoc_int); // User PreFetch-Stall counter wire upc_ack, upc_stall; wire [31:0] upc_data; zipcounter upstall_ctr(i_clk,(cpu_pf_stall)&&(cpu_gie), sys_cyc, (sys_stb)&&(sys_addr == `USER_PSTL_CTR), sys_we, sys_data, upc_ack, upc_stall, upc_data, upc_int); // User instruction counter wire uic_ack, uic_stall; wire [31:0] uic_data; zipcounter uins_ctr(i_clk,(cpu_i_count)&&(cpu_gie), sys_cyc, (sys_stb)&&(sys_addr == `USER_INST_CTR), sys_we, sys_data, uic_ack, uic_stall, uic_data, uic_int); // A little bit of pre-cleanup (actr = accounting counters) wire actr_ack, actr_stall; wire [31:0] actr_data; assign actr_ack = ((mtc_ack | moc_ack | mpc_ack | mic_ack) |(utc_ack | uoc_ack | upc_ack | uic_ack)); assign actr_stall = ((mtc_stall | moc_stall | mpc_stall | mic_stall) |(utc_stall | uoc_stall | upc_stall|uic_stall)); assign actr_data = ((mtc_ack) ? mtc_data : ((moc_ack) ? moc_data : ((mpc_ack) ? mpc_data : ((mic_ack) ? mic_data : ((utc_ack) ? utc_data : ((uoc_ack) ? uoc_data : ((upc_ack) ? upc_data : uic_data))))))); `else // INCLUDE_ACCOUNTING_COUNTERS reg actr_ack; wire actr_stall; wire [31:0] actr_data; assign actr_stall = 1'b0; assign actr_data = 32'h0000; assign mtc_int = 1'b0; assign moc_int = 1'b0; assign mpc_int = 1'b0; assign mic_int = 1'b0; assign utc_int = 1'b0; assign uoc_int = 1'b0; assign upc_int = 1'b0; assign uic_int = 1'b0; always @(posedge i_clk) actr_ack <= (sys_stb)&&(sys_addr[4:3] == 2'b01); `endif // INCLUDE_ACCOUNTING_COUNTERS // // The DMA Controller // wire dmac_stb, dc_err; wire [31:0] dmac_data; wire dmac_ack, dmac_stall; wire dc_cyc, dc_stb, dc_we, dc_ack, dc_stall; wire [31:0] dc_data; wire [(AW-1):0] dc_addr; wire cpu_gbl_cyc; assign dmac_stb = (sys_stb)&&(sys_addr[4]); `ifdef INCLUDE_DMA_CONTROLLER wbdmac #(AW) dma_controller(i_clk, cpu_reset, sys_cyc, dmac_stb, sys_we, sys_addr[1:0], sys_data, dmac_ack, dmac_stall, dmac_data, // Need the outgoing DMAC wishbone bus dc_cyc, dc_stb, dc_we, dc_addr, dc_data, dc_ack, dc_stall, ext_idata, dc_err, // External device interrupts { 1'b0, alt_int_vector, 1'b0, main_int_vector[14:1], 1'b0 }, // DMAC interrupt, for upon completion dmac_int); `else reg r_dmac_ack; always @(posedge i_clk) r_dmac_ack <= (sys_cyc)&&(dmac_stb); assign dmac_ack = r_dmac_ack; assign dmac_data = 32'h000; assign dmac_stall = 1'b0; assign dc_cyc = 1'b0; assign dc_stb = 1'b0; assign dc_we = 1'b0; assign dc_addr = { (AW) {1'b0} }; assign dc_data = 32'h00; assign dmac_int = 1'b0; `endif wire ctri_sel, ctri_stall; reg ctri_ack; wire [31:0] ctri_data; assign ctri_sel = (sys_stb)&&(sys_addr == `CTRINT); always @(posedge i_clk) ctri_ack <= ctri_sel; assign ctri_stall = 1'b0; `ifdef INCLUDE_ACCOUNTING_COUNTERS // // Counter Interrupt controller // generate if (EXTERNAL_INTERRUPTS <= 9) begin icontrol #(8) ctri(i_clk, cpu_reset, (ctri_sel), sys_data, ctri_data, alt_int_vector[7:0], ctri_int); end else begin icontrol #(8+(EXTERNAL_INTERRUPTS-9)) ctri(i_clk, cpu_reset, (ctri_sel), sys_data, ctri_data, alt_int_vector[(EXTERNAL_INTERRUPTS-2):0], ctri_int); end endgenerate `else // INCLUDE_ACCOUNTING_COUNTERS generate if (EXTERNAL_INTERRUPTS <= 9) begin assign ctri_stall = 1'b0; assign ctri_data = 32'h0000; assign ctri_int = 1'b0; end else begin icontrol #(EXTERNAL_INTERRUPTS-9) ctri(i_clk, cpu_reset, (ctri_sel), sys_data, ctri_data, alt_int_vector[(EXTERNAL_INTERRUPTS-10):0], ctri_int); end endgenerate `endif // INCLUDE_ACCOUNTING_COUNTERS // // Timer A // wire tma_ack, tma_stall; wire [31:0] tma_data; ziptimer timer_a(i_clk, cpu_reset, ~cmd_halt, sys_cyc, (sys_stb)&&(sys_addr == `TIMER_A), sys_we, sys_data, tma_ack, tma_stall, tma_data, tma_int); // // Timer B // wire tmb_ack, tmb_stall; wire [31:0] tmb_data; ziptimer timer_b(i_clk, cpu_reset, ~cmd_halt, sys_cyc, (sys_stb)&&(sys_addr == `TIMER_B), sys_we, sys_data, tmb_ack, tmb_stall, tmb_data, tmb_int); // // Timer C // wire tmc_ack, tmc_stall; wire [31:0] tmc_data; ziptimer timer_c(i_clk, cpu_reset, ~cmd_halt, sys_cyc, (sys_stb)&&(sys_addr == `TIMER_C), sys_we, sys_data, tmc_ack, tmc_stall, tmc_data, tmc_int); // // JIFFIES // wire jif_ack, jif_stall; wire [31:0] jif_data; zipjiffies jiffies(i_clk, ~cmd_halt, sys_cyc, (sys_stb)&&(sys_addr == `JIFFIES), sys_we, sys_data, jif_ack, jif_stall, jif_data, jif_int); // // The programmable interrupt controller peripheral // wire pic_interrupt; generate if (EXTERNAL_INTERRUPTS < 9) begin icontrol #(6+EXTERNAL_INTERRUPTS) pic(i_clk, cpu_reset, (sys_cyc)&&(sys_stb)&&(sys_we) &&(sys_addr==`INTCTRL), sys_data, pic_data, main_int_vector[(6+EXTERNAL_INTERRUPTS-1):0], pic_interrupt); end else begin icontrol #(15) pic(i_clk, cpu_reset, (sys_cyc)&&(sys_stb)&&(sys_we) &&(sys_addr==`INTCTRL), sys_data, pic_data, main_int_vector[14:0], pic_interrupt); end endgenerate wire pic_stall; assign pic_stall = 1'b0; reg pic_ack; always @(posedge i_clk) pic_ack <= (sys_stb)&&(sys_addr == `INTCTRL); // // The CPU itself // wire cpu_gbl_stb, cpu_lcl_cyc, cpu_lcl_stb, cpu_we, cpu_dbg_we; wire [31:0] cpu_data, wb_data; wire cpu_ack, cpu_stall, cpu_err; wire [31:0] cpu_dbg_data; assign cpu_dbg_we = ((dbg_cyc)&&(dbg_stb)&&(~cmd_addr[5]) &&(dbg_we)&&(dbg_addr)); generate if (HIGHSPEED_CPU==0) begin zipcpu #( .RESET_ADDRESS(RESET_ADDRESS), .ADDRESS_WIDTH(ADDRESS_WIDTH), .LGICACHE(LGICACHE), .IMPLEMENT_MPY(IMPLEMENT_MPY), .IMPLEMENT_DIVIDE(IMPLEMENT_DIVIDE), .IMPLEMENT_FPU(IMPLEMENT_FPU), .IMPLEMENT_LOCK(IMPLEMENT_LOCK) ) thecpu(i_clk, cpu_reset, pic_interrupt, cpu_halt, cmd_clear_pf_cache, cmd_addr[4:0], cpu_dbg_we, dbg_idata, cpu_dbg_stall, cpu_dbg_data, cpu_dbg_cc, cpu_break, cpu_gbl_cyc, cpu_gbl_stb, cpu_lcl_cyc, cpu_lcl_stb, cpu_we, cpu_addr, cpu_data, cpu_ack, cpu_stall, wb_data, cpu_err, cpu_op_stall, cpu_pf_stall, cpu_i_count `ifdef DEBUG_SCOPE , o_cpu_debug `endif ); end else begin zipcpu #( .RESET_ADDRESS(RESET_ADDRESS), .ADDRESS_WIDTH(ADDRESS_WIDTH), .LGICACHE(LGICACHE), .IMPLEMENT_MPY(IMPLEMENT_MPY), .IMPLEMENT_DIVIDE(IMPLEMENT_DIVIDE), .IMPLEMENT_FPU(IMPLEMENT_FPU), .IMPLEMENT_LOCK(IMPLEMENT_LOCK) ) thecpu(i_clk, cpu_reset, pic_interrupt, cpu_halt, cmd_clear_pf_cache, cmd_addr[4:0], cpu_dbg_we, dbg_idata, cpu_dbg_stall, cpu_dbg_data, cpu_dbg_cc, cpu_break, cpu_gbl_cyc, cpu_gbl_stb, cpu_lcl_cyc, cpu_lcl_stb, cpu_we, cpu_addr, cpu_data, cpu_ack, cpu_stall, wb_data, cpu_err, cpu_op_stall, cpu_pf_stall, cpu_i_count `ifdef DEBUG_SCOPE , o_cpu_debug `endif ); end endgenerate // Now, arbitrate the bus ... first for the local peripherals // For the debugger to have access to the local system bus, the // following must be true: // (dbg_cyc) The debugger must request the bus // (~cpu_lcl_cyc) The CPU cannot be using it (CPU gets priority) // (dbg_addr) The debugger must be requesting its data // register, not just the control register // and one of two other things. Either // ((cpu_halt)&&(~cpu_dbg_stall)) the CPU is completely halted, // or // (~cmd_addr[5]) we are trying to read a CPU register // while in motion. Let the user beware that, // by not waiting for the CPU to fully halt, // his results may not be what he expects. // wire sys_dbg_cyc = ((dbg_cyc)&&(~cpu_lcl_cyc)&&(dbg_addr)) &&(((cpu_halt)&&(~cpu_dbg_stall)) ||(~cmd_addr[5])); assign sys_cyc = (cpu_lcl_cyc)||(sys_dbg_cyc); assign sys_stb = (cpu_lcl_cyc) ? (cpu_lcl_stb) : ((dbg_stb)&&(dbg_addr)&&(cmd_addr[5])); assign sys_we = (cpu_lcl_cyc) ? cpu_we : dbg_we; assign sys_addr= (cpu_lcl_cyc) ? cpu_addr[4:0] : cmd_addr[4:0]; assign sys_data= (cpu_lcl_cyc) ? cpu_data : dbg_idata; // Return debug response values assign dbg_odata = (~dbg_addr)?cmd_data :((~cmd_addr[5])?cpu_dbg_data : wb_data); initial dbg_ack = 1'b0; always @(posedge i_clk) dbg_ack <= (dbg_cyc)&&(dbg_stb)&&(~dbg_stall); assign dbg_stall=(dbg_cyc)&&((~sys_dbg_cyc)||(sys_stall))&&(dbg_addr); // Now for the external wishbone bus // Need to arbitrate between the flash cache and the CPU // The way this works, though, the CPU will stall once the flash // cache gets access to the bus--the CPU will be stuck until the // flash cache is finished with the bus. wire ext_cyc, ext_stb, ext_we, ext_err; wire cpu_ext_ack, cpu_ext_stall, ext_ack, ext_stall, cpu_ext_err; wire [(AW-1):0] ext_addr; wire [31:0] ext_odata; wbpriarbiter #(32,AW) dmacvcpu(i_clk, cpu_gbl_cyc, cpu_gbl_stb, cpu_we, cpu_addr, cpu_data, cpu_ext_ack, cpu_ext_stall, cpu_ext_err, dc_cyc, dc_stb, dc_we, dc_addr, dc_data, dc_ack, dc_stall, dc_err, ext_cyc, ext_stb, ext_we, ext_addr, ext_odata, ext_ack, ext_stall, ext_err); `ifdef DELAY_EXT_BUS busdelay #(AW,32) extbus(i_clk, ext_cyc, ext_stb, ext_we, ext_addr, ext_odata, ext_ack, ext_stall, ext_idata, ext_err, o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data, i_wb_ack, i_wb_stall, i_wb_data, (i_wb_err)||(wdbus_int)); `else assign o_wb_cyc = ext_cyc; assign o_wb_stb = ext_stb; assign o_wb_we = ext_we; assign o_wb_addr = ext_addr; assign o_wb_data = ext_odata; assign ext_ack = i_wb_ack; assign ext_stall = i_wb_stall; assign ext_idata = i_wb_data; assign ext_err = (i_wb_err)||(wdbus_int); `endif wire tmr_ack; assign tmr_ack = (tma_ack|tmb_ack|tmc_ack|jif_ack); wire [31:0] tmr_data; assign tmr_data = (tma_ack)?tma_data :(tmb_ack ? tmb_data :(tmc_ack ? tmc_data :jif_data)); assign wb_data = (tmr_ack|wdt_ack)?((tmr_ack)?tmr_data:wdt_data) :((actr_ack|dmac_ack)?((actr_ack)?actr_data:dmac_data) :((pic_ack|ctri_ack)?((pic_ack)?pic_data:ctri_data) :((wdbus_ack)?wdbus_data:(ext_idata)))); assign sys_stall = (tma_stall | tmb_stall | tmc_stall | jif_stall | wdt_stall | ctri_stall | actr_stall | pic_stall | dmac_stall); // Always 1'b0! assign cpu_stall = (sys_stall)|(cpu_ext_stall); assign sys_ack = (tmr_ack|wdt_ack|ctri_ack|actr_ack|pic_ack|dmac_ack|wdbus_ack); assign cpu_ack = (sys_ack)||(cpu_ext_ack); assign cpu_err = (cpu_ext_err)&&(cpu_gbl_cyc); assign o_ext_int = (cmd_halt) && (~cpu_stall); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log