URL
https://opencores.org/ocsvn/openarty/openarty/trunk
Subversion Repositories openarty
[/] [openarty/] [trunk/] [rtl/] [fastio.v] - Rev 43
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: fastio.v // // Project: OpenArty, an entirely open SoC based upon the Arty platform // // Purpose: // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `include "builddate.v" // module fastio(i_clk, // Board level I/O i_sw, i_btn, o_led, o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3, // Board level PMod I/O i_aux_rx, o_aux_tx, o_aux_cts, i_gps_rx, o_gps_tx, `ifdef USE_GPIO i_gpio, o_gpio, `endif // Wishbone control i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data, o_wb_ack, o_wb_stall, o_wb_data, // Cross-board I/O i_rtc_ppd, i_buserr, i_gps_sub, i_gps_step, i_other_ints, o_bus_int, o_board_ints); parameter AUXUART_SETUP = 30'd1736, // 115200 baud from 200MHz clk GPSUART_SETUP = 30'd20833, // 9600 baud from 200MHz clk EXTRACLOCK = 1, // Do we need an extra clock to process? NGPI=0, NGPO=0; // Number of GPIO in and out wires input i_clk; // Board level I/O input [3:0] i_sw; input [3:0] i_btn; output wire [3:0] o_led; output reg [2:0] o_clr_led0; output reg [2:0] o_clr_led1; output reg [2:0] o_clr_led2; output reg [2:0] o_clr_led3; // Board level PMod I/O // // Auxilliary UART I/O input i_aux_rx; output wire o_aux_tx, o_aux_cts; // // GPS UART I/O input i_gps_rx; output wire o_gps_tx; // `ifdef USE_GPIO // GPIO input [(NGPI-1):0] i_gpio; output reg [(NGPO-1):0] o_gpio; `endif // // Wishbone inputs input i_wb_cyc, i_wb_stb, i_wb_we; input [4:0] i_wb_addr; input [31:0] i_wb_data; // Wishbone outputs output reg o_wb_ack; output wire o_wb_stall; output reg [31:0] o_wb_data; // A strobe at midnight, to keep the calendar on "time" input i_rtc_ppd; // Address of the last bus error input [31:0] i_buserr; // The current time, as produced by the GPS tracking processor input [31:0] i_gps_sub, i_gps_step; // // Interrupts -- both the output bus interrupt, as well as those // internally generated interrupts which may be used elsewhere // in the design input wire [8:0] i_other_ints; output wire o_bus_int; output wire [6:0] o_board_ints; // Button and switch interrupts wire [31:0] w_wb_data; wire [4:0] w_wb_addr; wire w_wb_stb; generate if (EXTRACLOCK == 0) begin assign w_wb_data = i_wb_data; assign w_wb_addr = i_wb_addr; assign w_wb_stb = (i_wb_stb)&&(i_wb_we); end else begin reg last_wb_stb; reg [4:0] last_wb_addr; reg [31:0] last_wb_data; initial last_wb_stb = 1'b0; always @(posedge i_clk) begin last_wb_addr <= i_wb_addr; last_wb_data <= i_wb_data; last_wb_stb <= (i_wb_stb)&&(i_wb_we); end assign w_wb_data = last_wb_data; assign w_wb_addr = last_wb_addr; assign w_wb_stb = last_wb_stb; end endgenerate wire [31:0] pic_data; reg sw_int, btn_int; wire pps_int, rtc_int, netrx_int, nettx_int, auxrx_int, auxtx_int, gpio_int, flash_int, scop_int, gpsrx_int, gpstx_int, sd_int, oled_int, zip_int; assign { zip_int, oled_int, rtc_int, sd_int, nettx_int, netrx_int, scop_int, flash_int, pps_int } = i_other_ints; // // The BUS Interrupt controller // icontrol #(15) buspic(i_clk, 1'b0, (w_wb_stb)&&(w_wb_addr==5'h1), i_wb_data, pic_data, { zip_int, oled_int, sd_int, gpsrx_int, scop_int, flash_int, gpio_int, auxtx_int, auxrx_int, nettx_int, netrx_int, rtc_int, pps_int, sw_int, btn_int }, o_bus_int); // // PWR Count // // A 32-bit counter that starts at power up and never resets. It's a // read only counter if you will. reg [31:0] pwr_counter; initial pwr_counter = 32'h00; always @(posedge i_clk) if (pwr_counter[31]) pwr_counter[30:0] <= pwr_counter[30:0] + 31'h001; else pwr_counter[31:0] <= pwr_counter[31:0] + 31'h001; // // BTNSW // // The button and switch control register wire [31:0] w_btnsw; reg [3:0] r_sw, swcfg, swnow, swlast; reg [3:0] r_btn, btncfg, btnnow, btnlast, btnstate; initial btn_int = 1'b0; initial sw_int = 1'b0; always @(posedge i_clk) begin r_sw <= i_sw; swnow <= r_sw; swlast<= swnow; sw_int <= |((swnow^swlast)|swcfg); if ((w_wb_stb)&&(w_wb_addr == 5'h4)) swcfg <= ((w_wb_data[3:0])&(w_wb_data[11:8])) |((~w_wb_data[3:0])&(swcfg)); r_btn <= i_btn; btnnow <= r_btn; btn_int <= |(btnnow&btncfg); if ((w_wb_stb)&&(w_wb_addr == 5'h4)) begin btncfg <= ((w_wb_data[7:4])&(w_wb_data[15:12])) |((~w_wb_data[7:4])&(btncfg)); btnstate<= (btnnow)|((btnstate)&(~w_wb_data[7:4])); end else btnstate <= (btnstate)|(btnnow); end assign w_btnsw = { 8'h00, btnnow, 4'h0, btncfg, swcfg, btnstate, swnow }; // // LEDCTRL // reg [3:0] r_leds; wire [31:0] w_ledreg; initial r_leds = 4'h0; always @(posedge i_clk) if ((w_wb_stb)&&(w_wb_addr == 5'h5)) r_leds <= ((w_wb_data[7:4])&(w_wb_data[3:0])) |((~w_wb_data[7:4])&(r_leds)); assign o_led = r_leds; assign w_ledreg = { 28'h0, r_leds }; // // GPIO // // Not used (yet), but this interface should allow us to control up to // 16 GPIO inputs, and another 16 GPIO outputs. The interrupt trips // when any of the inputs changes. (Sorry, which input isn't (yet) // selectable.) // wire [31:0] gpio_data; `ifdef USE_GPIO wbgpio #(NIN, NOUT) gpioi(i_clk, w_wb_cyc, (w_wb_stb)&&(w_wb_addr == 5'hd), 1'b1, w_wb_data, gpio_data, i_gpio, o_gpio, gpio_int); `else assign gpio_data = 32'h00; assign gpio_int = 1'b0; `endif // // AUX (UART) SETUP // // Set us up for 4Mbaud, 8 data bits, no stop bits. reg [29:0] aux_setup; initial aux_setup = AUXUART_SETUP; always @(posedge i_clk) if ((w_wb_stb)&&(w_wb_addr == 5'h6)) aux_setup[29:0] <= w_wb_data[29:0]; // // GPSSETUP // // Set us up for 9600 kbaud, 8 data bits, no stop bits. reg [29:0] gps_setup; initial gps_setup = GPSUART_SETUP; always @(posedge i_clk) if ((w_wb_stb)&&(w_wb_addr == 5'h7)) gps_setup[29:0] <= w_wb_data[29:0]; // // CLR LEDs // // CLR LED 0 wire [31:0] w_clr_led0; reg [8:0] r_clr_led0_r, r_clr_led0_g, r_clr_led0_b; initial r_clr_led0_r = 9'h003; // Color LED on the far right initial r_clr_led0_g = 9'h000; initial r_clr_led0_b = 9'h000; always @(posedge i_clk) if ((w_wb_stb)&&(w_wb_addr == 5'h8)) begin r_clr_led0_r <= { w_wb_data[26], w_wb_data[23:16] }; r_clr_led0_g <= { w_wb_data[25], w_wb_data[15: 8] }; r_clr_led0_b <= { w_wb_data[24], w_wb_data[ 7: 0] }; end assign w_clr_led0 = { 5'h0, r_clr_led0_r[8], r_clr_led0_g[8], r_clr_led0_b[8], r_clr_led0_r[7:0], r_clr_led0_g[7:0], r_clr_led0_b[7:0] }; always @(posedge i_clk) o_clr_led0 <= { (pwr_counter[8:0] < r_clr_led0_r), (pwr_counter[8:0] < r_clr_led0_g), (pwr_counter[8:0] < r_clr_led0_b) }; // CLR LED 1 wire [31:0] w_clr_led1; reg [8:0] r_clr_led1_r, r_clr_led1_g, r_clr_led1_b; initial r_clr_led1_r = 9'h007; initial r_clr_led1_g = 9'h000; initial r_clr_led1_b = 9'h000; always @(posedge i_clk) if ((w_wb_stb)&&(w_wb_addr == 5'h9)) begin r_clr_led1_r <= { w_wb_data[26], w_wb_data[23:16] }; r_clr_led1_g <= { w_wb_data[25], w_wb_data[15: 8] }; r_clr_led1_b <= { w_wb_data[24], w_wb_data[ 7: 0] }; end assign w_clr_led1 = { 5'h0, r_clr_led1_r[8], r_clr_led1_g[8], r_clr_led1_b[8], r_clr_led1_r[7:0], r_clr_led1_g[7:0], r_clr_led1_b[7:0] }; always @(posedge i_clk) o_clr_led1 <= { (pwr_counter[8:0] < r_clr_led1_r), (pwr_counter[8:0] < r_clr_led1_g), (pwr_counter[8:0] < r_clr_led1_b) }; // CLR LED 0 wire [31:0] w_clr_led2; reg [8:0] r_clr_led2_r, r_clr_led2_g, r_clr_led2_b; initial r_clr_led2_r = 9'h00f; initial r_clr_led2_g = 9'h000; initial r_clr_led2_b = 9'h000; always @(posedge i_clk) if ((w_wb_stb)&&(w_wb_addr == 5'ha)) begin r_clr_led2_r <= { w_wb_data[26], w_wb_data[23:16] }; r_clr_led2_g <= { w_wb_data[25], w_wb_data[15: 8] }; r_clr_led2_b <= { w_wb_data[24], w_wb_data[ 7: 0] }; end assign w_clr_led2 = { 5'h0, r_clr_led2_r[8], r_clr_led2_g[8], r_clr_led2_b[8], r_clr_led2_r[7:0], r_clr_led2_g[7:0], r_clr_led2_b[7:0] }; always @(posedge i_clk) o_clr_led2 <= { (pwr_counter[8:0] < r_clr_led2_r), (pwr_counter[8:0] < r_clr_led2_g), (pwr_counter[8:0] < r_clr_led2_b) }; // CLR LED 3 wire [31:0] w_clr_led3; reg [8:0] r_clr_led3_r, r_clr_led3_g, r_clr_led3_b; initial r_clr_led3_r = 9'h01f; // LED is on far left initial r_clr_led3_g = 9'h000; initial r_clr_led3_b = 9'h000; always @(posedge i_clk) if ((w_wb_stb)&&(w_wb_addr == 5'hb)) begin r_clr_led3_r <= { w_wb_data[26], w_wb_data[23:16] }; r_clr_led3_g <= { w_wb_data[25], w_wb_data[15: 8] }; r_clr_led3_b <= { w_wb_data[24], w_wb_data[ 7: 0] }; end assign w_clr_led3 = { 5'h0, r_clr_led3_r[8], r_clr_led3_g[8], r_clr_led3_b[8], r_clr_led3_r[7:0], r_clr_led3_g[7:0], r_clr_led3_b[7:0] }; always @(posedge i_clk) o_clr_led3 <= { (pwr_counter[8:0] < r_clr_led3_r), (pwr_counter[8:0] < r_clr_led3_g), (pwr_counter[8:0] < r_clr_led3_b) }; // // The Calendar DATE // wire [31:0] date_data; `define GET_DATE `ifdef GET_DATE wire date_ack, date_stall; rtcdate thedate(i_clk, i_rtc_ppd, i_wb_cyc, w_wb_stb, (w_wb_addr==5'hc), w_wb_data, date_ack, date_stall, date_data); `else assign date_data = 32'h20160000; `endif ////// // // The auxilliary UART // ////// // // First the Auxilliary UART receiver // wire auxrx_stb, auxrx_break, auxrx_perr, auxrx_ferr, auxck_uart; wire [7:0] rx_data_aux_port; rxuart auxrx(i_clk, 1'b0, aux_setup, i_aux_rx, auxrx_stb, rx_data_aux_port, auxrx_break, auxrx_perr, auxrx_ferr, auxck_uart); wire [31:0] auxrx_data; reg [11:0] r_auxrx_data; always @(posedge i_clk) if (auxrx_stb) begin r_auxrx_data[11] <= auxrx_break; r_auxrx_data[10] <= auxrx_ferr; r_auxrx_data[ 9] <= auxrx_perr; r_auxrx_data[7:0]<= rx_data_aux_port; end always @(posedge i_clk) if(((i_wb_stb)&&(~i_wb_we)&&(i_wb_addr == 5'h0e))||(auxrx_stb)) r_auxrx_data[8] <= !auxrx_stb; assign o_aux_cts = auxrx_stb; assign auxrx_data = { 20'h00, r_auxrx_data }; assign auxrx_int = !r_auxrx_data[8]; // // Then the auxilliary UART transmitter // wire auxtx_busy; reg [7:0] r_auxtx_data; reg r_auxtx_stb, r_auxtx_break; wire [31:0] auxtx_data; txuart auxtx(i_clk, 1'b0, aux_setup, r_auxtx_break, r_auxtx_stb, r_auxtx_data, o_aux_tx, auxtx_busy); always @(posedge i_clk) if ((w_wb_stb)&&(w_wb_addr == 5'h0f)) begin r_auxtx_stb <= (!r_auxtx_break)&&(!w_wb_data[9]); r_auxtx_data <= w_wb_data[7:0]; r_auxtx_break<= w_wb_data[9]; end else if (~auxtx_busy) begin r_auxtx_stb <= 1'b0; r_auxtx_data <= 8'h0; end assign auxtx_data = { 20'h00, 1'b0, o_aux_tx, r_auxtx_break, auxtx_busy, r_auxtx_data }; assign auxtx_int = ~auxtx_busy; ////// // // The GPS UART // ////// // First the receiver wire gpsrx_stb, gpsrx_break, gpsrx_perr, gpsrx_ferr, gpsck_uart; wire [7:0] rx_data_gps_port; rxuart gpsrx(i_clk, 1'b0, gps_setup, i_gps_rx, gpsrx_stb, rx_data_gps_port, gpsrx_break, gpsrx_perr, gpsrx_ferr, gpsck_uart); wire [31:0] gpsrx_data; reg [11:0] r_gpsrx_data; always @(posedge i_clk) if (gpsrx_stb) begin r_gpsrx_data[11] <= gpsrx_break; r_gpsrx_data[10] <= gpsrx_ferr; r_gpsrx_data[ 9] <= gpsrx_perr; r_gpsrx_data[7:0]<= rx_data_gps_port; end always @(posedge i_clk) if(((i_wb_stb)&&(~i_wb_we)&&(i_wb_addr == 5'h10))||(gpsrx_stb)) r_gpsrx_data[8] <= !gpsrx_stb; assign gpsrx_data = { 20'h00, r_gpsrx_data }; assign gpsrx_int = !r_gpsrx_data[8]; // Then the transmitter reg r_gpstx_break, r_gpstx_stb; reg [7:0] r_gpstx_data; wire gpstx_busy; wire [31:0] gpstx_data; txuart gpstx(i_clk, 1'b0, gps_setup, r_gpstx_break, r_gpstx_stb, r_gpstx_data, o_gps_tx, gpstx_busy); always @(posedge i_clk) if ((w_wb_stb)&&(w_wb_addr == 5'h11)) begin r_gpstx_stb <= 1'b1; r_gpstx_data <= w_wb_data[7:0]; r_gpstx_break<= w_wb_data[9]; end else if (~gpstx_busy) begin r_gpstx_stb <= 1'b0; r_gpstx_data <= 8'h0; end assign gpstx_data = { 20'h00, gpsck_uart, o_gps_tx, r_gpstx_break, gpstx_busy, r_gpstx_data }; assign gpstx_int = !gpstx_busy; always @(posedge i_clk) case(i_wb_addr) 5'h00: o_wb_data <= `DATESTAMP; 5'h01: o_wb_data <= pic_data; 5'h02: o_wb_data <= i_buserr; 5'h03: o_wb_data <= pwr_counter; 5'h04: o_wb_data <= w_btnsw; 5'h05: o_wb_data <= w_ledreg; 5'h06: o_wb_data <= { 2'b00, aux_setup }; 5'h07: o_wb_data <= { 2'b00, gps_setup }; 5'h08: o_wb_data <= w_clr_led0; 5'h09: o_wb_data <= w_clr_led1; 5'h0a: o_wb_data <= w_clr_led2; 5'h0b: o_wb_data <= w_clr_led3; 5'h0c: o_wb_data <= date_data; 5'h0d: o_wb_data <= gpio_data; 5'h0e: o_wb_data <= auxrx_data; 5'h0f: o_wb_data <= auxtx_data; 5'h10: o_wb_data <= gpsrx_data; 5'h11: o_wb_data <= gpstx_data; // 5'h12: o_wb_data <= i_gps_secs; 5'h13: o_wb_data <= i_gps_sub; 5'h14: o_wb_data <= i_gps_step; // 5'hf: UART_SETUP // 4'h6: GPIO // ?? : GPS-UARTRX // ?? : GPS-UARTTX default: o_wb_data <= 32'h00; endcase assign o_wb_stall = 1'b0; always @(posedge i_clk) o_wb_ack <= (i_wb_stb); assign o_board_ints = { gpio_int, auxrx_int, auxtx_int, gpsrx_int, gpstx_int, sw_int, btn_int }; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log