URL
https://opencores.org/ocsvn/openarty/openarty/trunk
Subversion Repositories openarty
[/] [openarty/] [trunk/] [rtl/] [fastmaster.v] - Rev 17
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: fastmaster.v // // Project: OpenArty, an entirely open SoC based upon the Arty platform // // Purpose: On other projects, this file would be called the "bus // interconnect". This module connects all the devices on the // Wishbone bus within this project together. It is created by hand, not // automatically. // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `define NO_ZIP_WBU_DELAY // `define ZIPCPU `ifdef ZIPCPU `define ZIP_SYSTEM `ifndef ZIP_SYSTEM `define ZIP_BONES `endif // ZIP_SYSTEM `endif // ZipCPU // // `define SDCARD_ACCESS `define ETHERNET_ACCESS `ifndef VERILATOR `define ICAPE_ACCESS `endif `define FLASH_ACCESS // `define SDRAM_ACCESS `define GPS_CLOCK // UART_ACCESS and GPS_UART have both been placed within fastio // `define UART_ACCESS // `define GPS_UART `define RTC_ACCESS `define OLEDRGB_ACCESS // `ifdef FLASH_ACCESS `define FLASH_SCOPE // Position zero `else `ifdef ZIPCPU // `define CPU_SCOPE // Position zero `endif `endif // `define GPS_SCOPE // Position one `ifdef ICAPE_ACCESS `define CFG_SCOPE // Position one `endif `ifdef SDRAM_ACCESS // `define SDRAM_SCOPE // Position two `endif // `define ENET_SCOPE // // module fastmaster(i_clk, i_rst, // CNC i_rx_stb, i_rx_data, o_tx_stb, o_tx_data, i_tx_busy, // Boad I/O i_sw, i_btn, o_led, o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3, // PMod I/O i_aux_rx, o_aux_tx, o_aux_cts, i_gps_rx, o_gps_tx, // The Quad SPI Flash o_qspi_cs_n, o_qspi_sck, o_qspi_dat, i_qspi_dat, o_qspi_mod, // The DDR3 SDRAM o_ddr_reset_n, o_ddr_cke, o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n, o_ddr_dqs, o_ddr_dm, o_ddr_odt, o_ddr_bus_oe, o_ddr_addr, o_ddr_ba, o_ddr_data, i_ddr_data, // The SD Card o_sd_sck, o_sd_cmd, o_sd_data, i_sd_cmd, i_sd_data, i_sd_detect, // Ethernet control (MDIO) lines o_mdclk, o_mdio, o_mdwe, i_mdio, // OLED Control interface (roughly SPI) o_oled_sck, o_oled_cs_n, o_oled_mosi, o_oled_dcn, o_oled_reset_n, o_oled_vccen, o_oled_pmoden, // The GPS PMod i_gps_pps, i_gps_3df ); parameter ZA=24, ZIPINTS=13; input i_clk, i_rst; // The bus commander, via an external uart port input i_rx_stb; input [7:0] i_rx_data; output wire o_tx_stb; output wire [7:0] o_tx_data; input i_tx_busy; // I/O to/from board level devices input [3:0] i_sw; // 16 switch bus input [3:0] i_btn; // 5 Buttons output wire [3:0] o_led; // 16 wide LED's output wire [2:0] o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3; // PMod UARTs input i_aux_rx; output wire o_aux_tx, o_aux_cts; input i_gps_rx; output wire o_gps_tx; // Quad-SPI flash control output wire o_qspi_cs_n, o_qspi_sck; output wire [3:0] o_qspi_dat; input [3:0] i_qspi_dat; output wire [1:0] o_qspi_mod; // DDR3 RAM controller output wire o_ddr_reset_n, o_ddr_cke, o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n,o_ddr_we_n; output wire o_ddr_dqs; output wire o_ddr_dm, o_ddr_odt, o_ddr_bus_oe; output wire [13:0] o_ddr_addr; output wire [2:0] o_ddr_ba; output wire [31:0] o_ddr_data; input [31:0] i_ddr_data; // The SD Card output wire o_sd_sck; output wire o_sd_cmd; output wire [3:0] o_sd_data; input i_sd_cmd; input [3:0] i_sd_data; input i_sd_detect; // Ethernet control (MDIO) output wire o_mdclk, o_mdio, o_mdwe; input i_mdio; // OLEDRGB interface output wire o_oled_sck, o_oled_cs_n, o_oled_mosi, o_oled_dcn, o_oled_reset_n, o_oled_vccen, o_oled_pmoden; // GPS PMod (GPS UART above) input i_gps_pps; input i_gps_3df; // // // Master wishbone wires // // wire wb_cyc, wb_stb, wb_we, wb_stall, wb_err; wire [31:0] wb_data, wb_addr; reg wb_ack; reg [31:0] wb_idata; // Interrupts wire gpio_int, oled_int, flash_int, scop_int; wire enet_tx_int, enet_rx_int, sdcard_int, rtc_int, rtc_pps, auxrx_int, auxtx_int, gpsrx_int, sw_int, btn_int; // // // First BUS master source: The UART // // wire [31:0] dwb_idata; // Wires going to devices wire wbu_cyc, wbu_stb, wbu_we; wire [31:0] wbu_addr, wbu_data; // and then coming from devices wire wbu_ack, wbu_stall, wbu_err; wire [31:0] wbu_idata; // And then headed back home wire w_interrupt; // Oh, and the debug control for the ZIP CPU wire wbu_zip_sel, zip_dbg_ack, zip_dbg_stall; wire [31:0] zip_dbg_data; wbubus genbus(i_clk, i_rx_stb, i_rx_data, wbu_cyc, wbu_stb, wbu_we, wbu_addr, wbu_data, (wbu_zip_sel)?zip_dbg_ack:wbu_ack, (wbu_zip_sel)?zip_dbg_stall:wbu_stall, wbu_err, (wbu_zip_sel)?zip_dbg_data:wbu_idata, w_interrupt, o_tx_stb, o_tx_data, i_tx_busy); // assign o_dbg = (wbu_ack)&&(wbu_cyc); wire zip_cpu_int; // True if the CPU suddenly halts `ifdef ZIPCPU // Are we trying to access the ZipCPU? Such accesses must be special, // because they must succeed regardless of whether or not the ZipCPU // is on the bus. Hence, we trap them here. assign wbu_zip_sel = (wbu_addr[27]); // // // Second BUS master source: The ZipCPU // // wire zip_cyc, zip_stb, zip_we; wire [(ZA-1):0] w_zip_addr; wire [31:0] zip_data, zip_scope_data; // and then coming from devices wire zip_ack, zip_stall, zip_err; `ifdef ZIP_SYSTEM wire [(ZIPINTS-1):0] zip_interrupt_vec = { // Lazy(ier) interrupts oled_int, gpio_int, rtc_int, scop_int, flash_int, sw_int, btn_int, // Fast interrupts sdcard_int, auxtx_int, auxrx_int, enet_tx_int, enet_rx_int, gpsrx_int, rtc_pps }; zipsystem #( .RESET_ADDRESS(24'h08000), .ADDRESS_WIDTH(ZA), .LGICACHE(10), .START_HALTED(1), .EXTERNAL_INTERRUPTS(ZIPINTS), .HIGHSPEED_CPU(1)) zippy(i_clk, i_rst, // Zippys wishbone interface zip_cyc, zip_stb, zip_we, w_zip_addr, zip_data, zip_ack, zip_stall, dwb_idata, zip_err, zip_interrupt_vec, zip_cpu_int, // Debug wishbone interface ((wbu_cyc)&&(wbu_zip_sel)), ((wbu_stb)&&(wbu_zip_sel)),wbu_we, wbu_addr[0], wbu_data, zip_dbg_ack, zip_dbg_stall, zip_dbg_data `ifdef CPU_DEBUG , zip_scope_data `endif ); `else // ZIP_SYSTEM wire w_zip_cpu_int_ignored; zipbones #( .RESET_ADDRESS(24'h08000), .ADDRESS_WIDTH(ZA), .LGICACHE(10), .START_HALTED(1), .HIGHSPEED_CPU(1)) zippy(i_clk, i_rst, // Zippys wishbone interface zip_cyc, zip_stb, zip_we, w_zip_addr, zip_data, zip_ack, zip_stall, dwb_idata, zip_err, w_interrupt, w_zip_cpu_int_ignored, // Debug wishbone interface ((wbu_cyc)&&(wbu_zip_sel)), ((wbu_stb)&&(wbu_zip_sel)),wbu_we, wbu_addr[0], wbu_data, zip_dbg_ack, zip_dbg_stall, zip_dbg_data `ifdef CPU_DEBUG , zip_scope_data `endif ); assign zip_cpu_int = 1'b0; `endif // ZIP_SYSTEM v ZIP_BONES wire [31:0] zip_addr; generate if (ZA < 32) assign zip_addr = { {(32-ZA){1'b0}}, w_zip_addr}; else assign zip_addr = w_zip_addr; endgenerate // // // And an arbiter to decide who gets to access the bus // // wire dwb_we, dwb_stb, dwb_cyc, dwb_ack, dwb_stall, dwb_err; wire [31:0] dwb_addr, dwb_odata; wbpriarbiter #(32,32) wbu_zip_arbiter(i_clk, // The ZIP CPU Master -- Gets the priority slot zip_cyc, zip_stb, zip_we, zip_addr, zip_data, zip_ack, zip_stall, zip_err, // The UART interface Master (wbu_cyc)&&(~wbu_zip_sel), (wbu_stb)&&(~wbu_zip_sel), wbu_we, wbu_addr, wbu_data, wbu_ack, wbu_stall, wbu_err, // Common bus returns dwb_cyc, dwb_stb, dwb_we, dwb_addr, dwb_odata, dwb_ack, dwb_stall, dwb_err); // // // And because the ZIP CPU and the Arbiter create an unacceptable // delay, we fail timing. So we add in a delay cycle ... // // assign wbu_idata = dwb_idata; busdelay wbu_zip_delay(i_clk, dwb_cyc, dwb_stb, dwb_we, dwb_addr, dwb_odata, dwb_ack, dwb_stall, dwb_idata, dwb_err, wb_cyc, wb_stb, wb_we, wb_addr, wb_data, wb_ack, wb_stall, wb_idata, wb_err); `else // ZIPCPU assign zip_cpu_int = 1'b0; // No CPU here to halt assign wbu_zip_sel = 1'b0; // If there's no ZipCPU, there's no need for a Zip/WB-Uart bus delay. // We can go directly from the WB-Uart master bus to the master bus // itself. assign wb_cyc = wbu_cyc; assign wb_stb = wbu_stb; assign wb_we = wbu_we; assign wb_addr = wbu_addr; assign wb_data = wbu_data; assign wbu_idata = wb_idata; assign wbu_ack = wb_ack; assign wbu_stall = wb_stall; assign wbu_err = wb_err; // The CPU never halts if it doesn't exist, so set this interrupt to // zero. assign zip_cpu_int= 1'b0; `endif // ZIPCPU // // Peripheral select lines. // // These lines will be true during any wishbone cycle whose address // line selects the given I/O peripheral. The none_sel and many_sel // lines are used to detect problems, such as when no device is // selected or many devices are selected. Such problems will lead to // bus errors (below). // wire io_sel, scop_sel, netb_sel, flctl_sel, rtc_sel, sdcard_sel, netp_sel, oled_sel, gps_sel, mio_sel, cfg_sel, mem_sel, flash_sel, ram_sel, none_sel, many_sel; wire [4:0] skipaddr; assign skipaddr = { wb_addr[26], wb_addr[22], wb_addr[15], wb_addr[11], ~wb_addr[8] }; assign ram_sel = (skipaddr[4]); assign flash_sel = (skipaddr[4:3]==2'b01); assign mem_sel = (skipaddr[4:2]==3'b001); assign netb_sel = (skipaddr[4:1]==4'b0001); assign io_sel = (~|skipaddr)&&(wb_addr[7:5]==3'b000); assign scop_sel = (~|skipaddr)&&(wb_addr[7:3]==5'b00100); assign rtc_sel = (~|skipaddr)&&(wb_addr[7:2]==6'b001010); assign sdcard_sel= (~|skipaddr)&&(wb_addr[7:2]==6'b001011); assign netp_sel = (~|skipaddr)&&(wb_addr[7:2]==6'b001101); assign oled_sel = (~|skipaddr)&&(wb_addr[7:2]==6'b001110); assign gps_sel = (~|skipaddr)&&( (wb_addr[7:2]==6'b001100) || (wb_addr[7:3]==5'b01000)); assign mio_sel = (~|skipaddr)&&(wb_addr[7:5]==3'b101); assign flctl_sel = (~|skipaddr)&&(wb_addr[7:5]==3'b110); assign cfg_sel = (~|skipaddr)&&(wb_addr[7:5]==3'b111); wire skiperr; assign skiperr = (|wb_addr[31:27]) ||(~skipaddr[4])&&(|wb_addr[25:23]) ||(skipaddr[4:3]==2'b00)&&(|wb_addr[21:16]) ||(skipaddr[4:2]==3'b000)&&(|wb_addr[14:12]) ||(skipaddr[4:1]==4'b0000)&&(|wb_addr[10:9]); // // Peripheral acknowledgement lines // // These are only a touch more confusing, since the flash device will // ACK for both flctl_sel (the control line select), as well as the // flash_sel (the memory line select). Hence we have one fewer ack // line. wire io_ack, oled_ack, rtc_ack, sdcard_ack, netp_ack, gps_ack, mio_ack, cfg_ack, netb_ack, mem_ack, flash_ack, ram_ack; reg many_ack, slow_many_ack; reg slow_ack, scop_ack; wire [5:0] ack_list; assign ack_list = { ram_ack, flash_ack, mem_ack, netb_ack, netp_ack, slow_ack }; initial many_ack = 1'b0; always @(posedge i_clk) many_ack <= ((ack_list != 6'h20) &&(ack_list != 6'h10) &&(ack_list != 6'h8) &&(ack_list != 6'h4) &&(ack_list != 6'h2) &&(ack_list != 6'h1) &&(ack_list != 6'h0)); /* assign many_ack = ( { 2'h0, ram_ack} +{2'h0, flash_ack } +{2'h0, mem_ack } +{2'h0, netb_ack } +{2'h0, slow_ack } > 3'h1 ); */ wire [7:0] slow_ack_list; assign slow_ack_list = { cfg_ack, mio_ack, gps_ack, sdcard_ack, rtc_ack, scop_ack, oled_ack, io_ack }; initial slow_many_ack = 1'b0; always @(posedge i_clk) slow_many_ack <= ((slow_ack_list != 8'h80) &&(slow_ack_list != 8'h40) &&(slow_ack_list != 8'h20) &&(slow_ack_list != 8'h10) &&(slow_ack_list != 8'h08) &&(slow_ack_list != 8'h04) &&(slow_ack_list != 8'h02) &&(slow_ack_list != 8'h01) &&(slow_ack_list != 8'h00)); always @(posedge i_clk) wb_ack <= (wb_cyc)&&(|ack_list); always @(posedge i_clk) slow_ack <= (wb_cyc)&&(|slow_ack_list); // // Peripheral data lines // wire [31:0] io_data, oled_data, rtc_data, sdcard_data, netp_data, gps_data, mio_data, cfg_data, netb_data, mem_data, flash_data, ram_data; reg [31:0] slow_data, scop_data; // 4 control lines, 5x32 data lines ... always @(posedge i_clk) if ((ram_ack)||(flash_ack)) wb_idata <= (ram_ack)?ram_data:flash_data; else if ((mem_ack)||(netb_ack)) wb_idata <= (mem_ack)?mem_data:netb_data; else wb_idata <= (netp_ack)?netp_data: slow_data; // 7 control lines, 8x32 data lines always @(posedge i_clk) if ((cfg_ack)||(mio_ack)) slow_data <= (cfg_ack) ? cfg_data : mio_data; else if ((sdcard_ack)||(rtc_ack)) slow_data <= (sdcard_ack)?sdcard_data : rtc_data; else if ((scop_ack)|(oled_ack)) slow_data <= (scop_ack)?scop_data:oled_data; else slow_data <= (gps_ack) ? gps_data : io_data; // // Peripheral stall lines // // As per the wishbone spec, these cannot be clocked or delayed. They // *must* be done via combinatorial logic. // wire io_stall, scop_stall, oled_stall, rtc_stall, sdcard_stall, netp_stall, gps_stall, mio_stall, cfg_stall, netb_stall, mem_stall, flash_stall, ram_stall, many_stall; assign wb_stall = (wb_cyc)&&( ((io_sel)&&(io_stall)) // Never stalls ||((scop_sel)&&(scop_stall)) // Never stalls ||((rtc_sel)&&(rtc_stall)) // Never stalls ||((sdcard_sel)&&(sdcard_stall))// Never stalls ||((netp_sel)&&(netp_stall)) ||((gps_sel)&&(gps_stall)) //(maybe? never stalls?) ||((oled_sel)&&(oled_stall)) // Never stalls ||((mio_sel)&&(mio_stall)) ||((cfg_sel)&&(cfg_stall)) ||((netb_sel)&&(netb_stall)) // Never stalls ||((mem_sel)&&(mem_stall)) // Never stalls ||((flash_sel|flctl_sel)&&(flash_stall)) ||((ram_sel)&&(ram_stall))); // // Bus Error calculation(s) // // Selecting nothing is only an error if the strobe line is high as well // as the cycle line. However, this is captured within the wb_err // logic itself, so we can ignore it for a line or two. assign none_sel = ( //(skiperr)|| (~|{ io_sel, scop_sel, flctl_sel, rtc_sel, sdcard_sel, netp_sel, gps_sel, oled_sel, mio_sel, cfg_sel, netb_sel, mem_sel, flash_sel,ram_sel })); // // Selecting multiple devices at once is a design flaw that should // never happen. Hence, if this logic won't build, we won't include // it. Still, having this logic in place has saved my tush more than // once. // reg [31:0] sel_addr; always @(posedge i_clk) sel_addr <= wb_addr; reg many_sel_a, many_sel_b, single_sel_a, single_sel_b, last_stb; always @(posedge i_clk) begin last_stb <= wb_stb; single_sel_a <= (wb_stb)&&((ram_sel)|(flash_sel) |(mem_sel)|(netb_sel)|(cfg_sel)); many_sel_a <= 1'b0; if ((ram_sel)&&((flash_sel)||(mem_sel)||(netb_sel)||cfg_sel)) many_sel_a <= 1'b1; else if ((flash_sel)&&((mem_sel)||(netb_sel)||cfg_sel)) many_sel_a <= 1'b1; else if ((mem_sel)&&((netb_sel)||cfg_sel)) many_sel_a <= 1'b1; else if ((netb_sel)&&(cfg_sel)) many_sel_a <= 1'b1; single_sel_b <= (wb_stb)&&((mio_sel)||(gps_sel)||(netp_sel) ||(sdcard_sel)||(rtc_sel)||(flctl_sel) ||(oled_sel)||(scop_sel)||(io_sel)); many_sel_b <= 1'b0; if ((mio_sel)&&((gps_sel)||(netp_sel)||(sdcard_sel)||(rtc_sel) ||(flctl_sel)||(scop_sel)||(oled_sel)||(io_sel))) many_sel_b <= 1'b1; else if ((gps_sel)&&((netp_sel)||(sdcard_sel)||(rtc_sel) ||(flctl_sel)||(scop_sel)||(oled_sel)||(io_sel))) many_sel_b <= 1'b1; else if ((netp_sel)&&((sdcard_sel)||(rtc_sel) ||(flctl_sel)||(scop_sel)||(oled_sel)||(io_sel))) many_sel_b <= 1'b1; else if ((sdcard_sel)&&((rtc_sel) ||(flctl_sel)||(scop_sel)||(oled_sel)||(io_sel))) many_sel_b <= 1'b1; else if ((rtc_sel)&&((flctl_sel)||(scop_sel)||(oled_sel)||(io_sel))) many_sel_b <= 1'b1; else if ((flctl_sel)&&((scop_sel)||(oled_sel)||(io_sel))) many_sel_b <= 1'b1; else if ((scop_sel)&&((oled_sel)||(io_sel))) many_sel_b <= 1'b1; else if ((oled_sel)&&(io_sel)) many_sel_b <= 1'b1; end wire sel_err; // 5 inputs assign sel_err = ( (last_stb)&&(~single_sel_a)&&(~single_sel_b)) ||((single_sel_a)&&(single_sel_b)) ||((single_sel_a)&&(many_sel_a)) ||((single_sel_b)&&(many_sel_b)); assign wb_err = (wb_cyc)&&(sel_err || many_ack || slow_many_ack); // Finally, if we ever encounter a bus error, knowing the address of // the error will be important to figuring out how to fix it. Hence, // we grab it here. Be aware, however, that this might not truly be // the address that caused an error: in the case of none_sel it will // be, but if many_ack or slow_many_ack are true then we might just be // looking at an address on the bus that was nearby the one requested. reg [31:0] bus_err_addr; initial bus_err_addr = 32'h00; always @(posedge i_clk) if (wb_err) bus_err_addr <= sel_addr; // // I/O peripheral // // The I/O processor, herein called an fastio. This is a unique // set of peripherals--these are all of the peripherals that can answer // in a single clock--or, rather, they are the peripherals that can // answer the bus before their clock. Hence, the fastio simply consists // of a mux that selects between various peripheral responses. Further, // these peripherals are not allowed to stall the bus. // // There is no option for turning these off--they will always be on. wire [8:0] master_ints; assign master_ints = { zip_cpu_int, oled_int, rtc_int, sdcard_int, enet_tx_int, enet_rx_int, scop_int, flash_int, rtc_pps }; wire [5:0] board_ints; wire [3:0] w_led; wire rtc_ppd; fastio #( .AUXUART_SETUP(30'd1736), // 115200 Baud, 8N1 .GPSUART_SETUP(30'd20833) // 9600 Baud, 8N1 ) runio(i_clk, i_sw, i_btn, w_led, o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3, i_aux_rx, o_aux_tx, o_aux_cts, i_gps_rx, o_gps_tx, wb_cyc, (io_sel)&&(wb_stb), wb_we, wb_addr[4:0], wb_data, io_ack, io_stall, io_data, rtc_ppd, bus_err_addr, master_ints, w_interrupt, board_ints); assign { gpio_int, auxrx_int, auxtx_int, gpsrx_int, sw_int, btn_int } = board_ints; /* reg [25:0] dbg_counter_err, dbg_counter_cyc, dbg_counter_sel, dbg_counter_many; // assign wb_err = (wb_cyc)&&(sel_err || many_ack || slow_many_ack); always @(posedge i_clk) if (wbu_cyc) dbg_counter_cyc <= 0; else if (!dbg_counter_cyc[25]) dbg_counter_cyc <= dbg_counter_cyc+26'h1; always @(posedge i_clk) if (wbu_err) dbg_counter_err <= 0; else if (!dbg_counter_err[25]) dbg_counter_err <= dbg_counter_err+26'h1; always @(posedge i_clk) if ((wb_cyc)&&(sel_err)) dbg_counter_sel <= 0; else if (!dbg_counter_sel[25]) dbg_counter_sel <= dbg_counter_sel+26'h1; always @(posedge i_clk) if ((wb_cyc)&&(many_ack)) dbg_counter_many <= 0; else if (!dbg_counter_many[25]) dbg_counter_many <= dbg_counter_many+26'h1; assign o_led = { (!dbg_counter_many[25])|w_led[3], (!dbg_counter_sel[25])|w_led[2], (!dbg_counter_cyc[25])|w_led[1], (!dbg_counter_err[25])|w_led[0] }; */ reg [25:0] dbg_counter_sdram; always @(posedge i_clk) if ((ram_sel)&&(wb_stb)) dbg_counter_sdram <= 0; else if (wb_stb) dbg_counter_sdram[25] <= 1'b1; else if (!dbg_counter_sdram[25]) dbg_counter_sdram <= dbg_counter_sdram+26'h1; assign o_led = { w_led[3:1], w_led[0] | (!dbg_counter_sdram[25]) }; // // // Real Time Clock (RTC) device level access // // wire gps_tracking, ck_pps; wire [63:0] gps_step; `ifdef RTC_ACCESS rtcgps #(32'h15798f) // 2^48 / 200MHz thertc(i_clk, wb_cyc, (wb_stb)&&(rtc_sel), wb_we, wb_addr[1:0], wb_data, rtc_data, rtc_int, rtc_ppd, gps_tracking, ck_pps, gps_step[47:16], rtc_pps); `else assign rtc_data = 32'h00; assign rtc_int = 1'b0; assign rtc_pps = 1'b0; assign rtc_ppd = 1'b0; `endif reg r_rtc_ack; initial r_rtc_ack = 1'b0; always @(posedge i_clk) r_rtc_ack <= (wb_stb)&&(rtc_sel); assign rtc_ack = r_rtc_ack; assign rtc_stall = 1'b0; // // // SDCard device level access // // `ifdef SDCARD_ACCESS wire [31:0] sd_dbg; // SPI mapping wire w_sd_cs_n, w_sd_mosi, w_sd_miso; sdspi sdctrl(i_clk, wb_cyc, (wb_stb)&&(sdcard_sel), wb_we, wb_addr[1:0], wb_data, sdcard_ack, sdcard_stall, sdcard_data, w_sd_cs_n, o_sd_sck, w_sd_mosi, w_sd_miso, sdcard_int, 1'b1, sd_dbg); assign w_sd_miso = i_sd_data[0]; assign o_sd_data = { w_sd_cs_n, 3'b111 }; assign o_sd_cmd = w_sd_mosi; `else reg r_sdcard_ack; always @(posedge i_clk) r_sdcard_ack <= (wb_stb)&&(sdcard_sel); assign sdcard_ack = r_sdcard_ack; assign sdcard_data = 32'h00; assign sdcard_stall= 1'b0; assign sdcard_int = 1'b0; `endif // // // OLEDrgb device control // // `ifdef OLEDRGB_ACCESS wboled rgbctrl(i_clk, wb_cyc, (wb_stb)&&(oled_sel), wb_we, wb_addr[1:0], wb_data, oled_ack, oled_stall, oled_data, o_oled_sck, o_oled_cs_n, o_oled_mosi, o_oled_dcn, { o_oled_reset_n, o_oled_vccen, o_oled_pmoden }, oled_int); `else assign o_oled_cs_n = 1'b1; assign o_oled_sck = 1'b1; assign o_oled_mosi = 1'b1; assign o_oled_dcn = 1'b1; assign o_oled_reset_n = 1'b0; assign o_oled_vccen = 1'b0; assign o_oled_pmoden = 1'b0; reg r_oled_ack; always @(posedge i_clk) r_oled_ack <= (wb_stb)&&(oled_sel); assign oled_ack = r_oled_ack; assign oled_data = 32'h00; assign oled_stall= 1'b0; assign oled_int = 1'b0; `endif // // // GPS CLOCK CONTROLS, BOTH THE TEST BENCH AND THE CLOCK ITSELF // // wire [63:0] gps_now, gps_err; wire [31:0] gck_data, gtb_data; wire gck_ack, gck_stall, gtb_ack, gtb_stall; `ifdef GPS_CLOCK // // GPS CLOCK SCHOOL TESTING // wire gps_pps, tb_pps, gps_locked; wire [1:0] gps_dbg_tick; gpsclock_tb ppscktb(i_clk, ck_pps, tb_pps, (wb_stb)&&(gps_sel)&&(wb_addr[3]), wb_we, wb_addr[2:0], wb_data, gtb_ack, gtb_stall, gtb_data, gps_err, gps_now, gps_step); `ifdef GPSTB assign gps_pps = tb_pps; // Let the truth come from our test bench `else assign gps_pps = i_gps_pps; `endif wire gps_led; // // GPS CLOCK CONTROL // gpsclock ppsck(i_clk, 1'b0, gps_pps, ck_pps, gps_led, (wb_stb)&&(gps_sel)&&(~wb_addr[3]), wb_we, wb_addr[1:0], wb_data, gck_ack, gck_stall, gck_data, gps_tracking, gps_now, gps_step, gps_err, gps_locked, gps_dbg_tick); `else assign gps_err = 64'h0; assign gps_now = 64'h0; assign gck_data = 32'h0; assign gtb_data = 32'h0; assign gtb_stall = 1'b0; assign gck_stall = 1'b0; assign ck_pps = 1'b0; assign gps_tracking = 1'b0; // Appropriate step for a 200MHz clock assign gps_step = { 16'h00, 32'h015798e, 16'h00 }; reg r_gck_ack; always @(posedge i_clk) r_gck_ack <= (wb_stb)&&(gps_sel); assign gck_ack = r_gck_ack; assign gtb_ack = r_gck_ack; `endif assign gps_ack = (gck_ack | gtb_ack); assign gps_stall = (gck_stall | gtb_stall); assign gps_data = (gck_ack) ? gck_data : gtb_data; // // ETHERNET DEVICE ACCESS // `ifdef ETHERNET_ACCESS reg r_mio_ack, r_netb_ack, r_netp_ack; always @(posedge i_clk) r_mio_ack <= (wb_stb)&&(mio_sel); always @(posedge i_clk) r_netp_ack <= (wb_stb)&&(netp_sel); assign mio_ack = r_mio_ack; assign netp_ack = r_netp_ack; assign mio_data = 32'h00; assign netp_data = 32'h00; assign mio_stall = 1'b0; assign netp_stall= 1'b0; assign enet_rx_int = 1'b0; assign enet_tx_int = 1'b0; enetctrl #(3) mdio(i_clk, i_rst, wb_cyc, (wb_stb)&&(netb_sel), wb_we, wb_addr[4:0], wb_data[15:0], netb_ack, netb_stall, netb_data, o_mdclk, o_mdio, i_mdio, o_mdwe); `else reg r_mio_ack, r_netb_ack, r_netp_ack; always @(posedge i_clk) r_mio_ack <= (wb_stb)&&(mio_sel); always @(posedge i_clk) r_netp_ack <= (wb_stb)&&(netp_sel); assign mio_ack = r_mio_ack; assign netp_ack = r_netp_ack; assign mio_data = 32'h00; assign netp_data = 32'h00; assign mio_stall = 1'b0; assign netp_stall= 1'b0; assign enet_rx_int = 1'b0; assign enet_tx_int = 1'b0; // // 2kW memory, 1kW for each of transmit and receive. (Max pkt length // is 512W, so this allows for two 512W in memory.) Since we don't // really have ethernet without ETHERNET_ACCESS defined, this just // consumes resources for us so we have an idea of what might be // available when we do have ETHERNET_ACCESS defined. // memdev #(11) enet_buffers(i_clk, wb_cyc, (wb_stb)&&(netb_sel), wb_we, wb_addr[10:0], wb_data, netb_ack, netb_stall, netb_data); assign o_mdclk = 1'b1; assign o_mdio = 1'b1; assign o_mdwe = 1'b1; `endif // // MULTIBOOT/ICAPE2 CONFIGURATION ACCESS // `ifdef ICAPE_ACCESS wire [31:0] cfg_debug; wbicapetwo fpga_cfg(i_clk, wb_cyc,(cfg_sel)&&(wb_stb), wb_we, wb_addr[4:0], wb_data, cfg_ack, cfg_stall, cfg_data, cfg_debug); `else reg r_cfg_ack; always @(posedge i_clk) r_cfg_ack <= (cfg_sel)&&(wb_stb); assign cfg_ack = r_cfg_ack; assign cfg_stall = 1'b0; assign cfg_data = 32'h00; `endif // // RAM MEMORY ACCESS // // There is no option to turn this off--this RAM must always be // present in the design. memdev #(15) // 32kW, or 128kB, 15 address lines blkram(i_clk, wb_cyc, (wb_stb)&&(mem_sel), wb_we, wb_addr[14:0], wb_data, mem_ack, mem_stall, mem_data); // // FLASH MEMORY ACCESS // `ifdef FLASH_ACCESS `ifdef FLASH_SCOPE wire [31:0] flash_debug; `endif wire w_ignore_cmd_accepted; eqspiflash flashmem(i_clk, i_rst, wb_cyc,(wb_stb)&&(flash_sel),(wb_stb)&&(flctl_sel),wb_we, wb_addr[21:0], wb_data, flash_ack, flash_stall, flash_data, o_qspi_sck, o_qspi_cs_n, o_qspi_mod, o_qspi_dat, i_qspi_dat, flash_int, w_ignore_cmd_accepted `ifdef FLASH_SCOPE , flash_debug `endif ); `else assign o_qspi_sck = 1'b1; assign o_qspi_cs_n= 1'b1; assign o_qspi_mod = 2'b01; assign o_qspi_dat = 4'h0; assign flash_data = 32'h00; assign flash_stall = 1'b0; assign flash_int = 1'b0; reg r_flash_ack; always @(posedge i_clk) r_flash_ack <= (wb_stb)&&(flash_sel); assign flash_ack = r_flash_ack; `endif // // // DDR3-SDRAM // // `ifdef SDRAM_ACCESS wbddrsdram #(13,13'd1520) rami(i_clk, i_rst, wb_cyc, (wb_stb)&&(ram_sel), wb_we, wb_addr[25:0], wb_data, ram_ack, ram_stall, ram_data, o_ddr_reset_n, o_ddr_cke, o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n, o_ddr_dqs, o_ddr_dm, o_ddr_odt, o_ddr_bus_oe, o_ddr_addr, o_ddr_ba, o_ddr_data, i_ddr_data); `else assign ram_data = 32'h00; assign ram_stall = 1'b0; reg r_ram_ack; always @(posedge i_clk) r_ram_ack <= (wb_stb)&&(ram_sel); assign ram_ack = r_ram_ack; // And idle the DDR3 SDRAM assign o_ddr_reset_n = 1'b0; // Leave the SDRAM in reset assign o_ddr_cke = 1'b0; // Disable the SDRAM clock // DQS assign o_ddr_dqs = 1'b0; // Leave DQS pins in high impedence // DDR3 control wires (not enabled if CKE=0) assign o_ddr_cs_n = 1'b1; // Deselect command assign o_ddr_ras_n = 1'b1; assign o_ddr_cas_n = 1'b1; assign o_ddr_we_n = 1'b1; // (Unused) data wires assign o_ddr_addr = 14'h00; assign o_ddr_ba = 3'h0; assign o_ddr_data = 32'h00; `endif // // // WISHBONE SCOPES // // // // wire [31:0] scop_a_data; wire scop_a_ack, scop_a_stall, scop_a_interrupt; `ifdef CPU_SCOPE wire [31:0] scop_cpu_data; wire scop_cpu_ack, scop_cpu_stall, scop_cpu_interrupt; wire scop_cpu_trigger; // assign scop_cpu_trigger = zip_scope_data[30]; assign scop_cpu_trigger = (wb_stb)&&(mem_sel)&&(~wb_we) &&(wb_err)||(zip_scope_data[31]); wbscope #(5'd13) cpuscope(i_clk, 1'b1,(scop_cpu_trigger), zip_scope_data, // Wishbone interface i_clk, wb_cyc, ((wb_stb)&&(scop_sel)&&(wb_addr[2:1]==2'b00)), wb_we, wb_addr[0], wb_data, scop_cpu_ack, scop_cpu_stall, scop_cpu_data, scop_cpu_interrupt); assign scop_a_data = scop_cpu_data; assign scop_a_ack = scop_cpu_ack; assign scop_a_stall = scop_cpu_stall; assign scop_a_interrupt = scop_cpu_interrupt; `else `ifdef FLASH_SCOPE wire [31:0] scop_flash_data; wire scop_flash_ack, scop_flash_stall, scop_flash_interrupt; wire scop_flash_trigger; // assign scop_cpu_trigger = zip_scope_data[30]; assign scop_flash_trigger = (wb_stb)&&((flash_sel)||(flctl_sel)); wbscope #(5'd13) flashscope(i_clk, 1'b1, (scop_flash_trigger), flash_debug, // Wishbone interface i_clk, wb_cyc, ((wb_stb)&&(scop_sel)&&(wb_addr[2:1]==2'b00)), wb_we, wb_addr[0], wb_data, scop_flash_ack, scop_flash_stall, scop_flash_data, scop_flash_interrupt); assign scop_a_data = scop_flash_data; assign scop_a_ack = scop_flash_ack; assign scop_a_stall = scop_flash_stall; assign scop_a_interrupt = scop_flash_interrupt; `else reg r_scop_a_ack; always @(posedge i_clk) r_scop_a_ack <= (wb_stb)&&(scop_sel)&&(wb_addr[2:1] == 2'b00); assign scop_a_data = 32'h00; assign scop_a_ack = r_scop_a_ack; assign scop_a_stall = 1'b0; assign scop_a_interrupt = 1'b0; `endif `endif wire [31:0] scop_b_data; wire scop_b_ack, scop_b_stall, scop_b_interrupt; `ifdef GPS_SCOPE reg [18:0] r_gps_debug; wire [31:0] scop_gps_data; wire scop_gps_ack, scop_gps_stall, scop_gps_interrupt; always @(posedge i_clk) r_gps_debug <= { gps_dbg_tick, gps_tracking, gps_locked, gpu_data[7:0], // (wb_cyc)&&(wb_stb)&&(io_sel), (wb_stb)&&(io_sel)&&(wb_addr[4:3]==2'b11)&&(wb_we), (wb_stb)&&(gps_sel)&&(wb_addr[3:2]==2'b01), gpu_int, i_gps_rx, rtc_pps, ck_pps, i_gps_pps }; wbscopc #(5'd13,19,32,1) gpsscope(i_clk, 1'b1, ck_pps, r_gps_debug, // Wishbone interface i_clk, wb_cyc, ((wb_stb)&&(scop_sel)&&(wb_addr[2:1]==2'b01)), wb_we, wb_addr[0], wb_data, scop_gps_ack, scop_gps_stall, scop_gps_data, scop_gps_interrupt); assign scop_b_ack = scop_gps_ack; assign scop_b_stall = scop_gps_stall; assign scop_b_data = scop_gps_data; assign scop_b_interrupt = scop_gps_interrupt; `else `ifdef CFG_SCOPE wire [31:0] scop_cfg_data; wire scop_cfg_ack, scop_cfg_stall, scop_cfg_interrupt; wire [31:0] cfg_debug_2; assign cfg_debug_2 = { wb_ack, cfg_debug[30:17], slow_ack, slow_data[7:0], wb_data[7:0] }; wbscope #(5'd8,32,1) cfgscope(i_clk, 1'b1, (cfg_sel)&&(wb_stb), cfg_debug_2, // Wishbone interface i_clk, wb_cyc, ((wb_stb)&&(scop_sel)&&(wb_addr[2:1]==2'b01)), wb_we, wb_addr[0], wb_data, scop_cfg_ack, scop_cfg_stall, scop_cfg_data, scop_cfg_interrupt); assign scop_b_data = scop_cfg_data; assign scop_b_stall = scop_cfg_stall; assign scop_b_ack = scop_cfg_ack; assign scop_b_interrupt = scop_cfg_interrupt; `else assign scop_b_data = 32'h00; assign scop_b_stall = 1'b0; assign scop_b_interrupt = 1'b0; reg r_scop_b_ack; always @(posedge i_clk) r_scop_b_ack <= (wb_stb)&&(scop_sel)&&(wb_addr[2:1] == 2'b01); assign scop_b_ack = r_scop_b_ack; `endif `endif // // SCOPE C // wire [31:0] scop_c_data; wire scop_c_ack, scop_c_stall, scop_c_interrupt; // `ifdef SDRAM_SCOPE wire [31:0] scop_sdram_data; wire scop_sdram_ack, scop_sdram_stall, scop_sdram_interrupt; wire sdram_trigger; wire [31:0] sdram_debug; assign sdram_trigger = (ram_sel)&&(wb_stb); assign sdram_debug= { o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n, (wb_stb)&&(ram_sel), wb_we, ram_stall, ram_ack, o_ddr_dqs, o_ddr_dm, o_ddr_bus_oe, o_ddr_addr[10], o_ddr_addr[3], o_ddr_data[5:0], i_ddr_data[5:0], 8'h00 }; wbscope #(5'd12,32,1) ramscope(i_clk, 1'b1, sdram_trigger, sdram_debug, // Wishbone interface i_clk, wb_cyc, ((wb_stb)&&(scop_sel)&&(wb_addr[2:1]==2'b10)), wb_we, wb_addr[0], wb_data, scop_sdram_ack, scop_sdram_stall, scop_sdram_data, scop_sdram_interrupt); assign scop_c_ack = scop_sdram_ack; assign scop_c_stall = scop_sdram_stall; assign scop_c_data = scop_sdram_data; assign scop_c_interrupt = scop_sdram_interrupt; `else assign scop_c_data = 32'h00; assign scop_c_stall = 1'b0; assign scop_c_interrupt = 1'b0; reg r_scop_c_ack; always @(posedge i_clk) r_scop_c_ack <= (wb_stb)&&(scop_sel)&&(wb_addr[2:1] == 2'b10); assign scop_c_ack = r_scop_c_ack; `endif // // SCOPE D // wire [31:0] scop_d_data; wire scop_d_ack, scop_d_stall, scop_d_interrupt; // //`else assign scop_d_data = 32'h00; assign scop_d_stall = 1'b0; assign scop_d_interrupt = 1'b0; reg r_scop_d_ack; always @(posedge i_clk) r_scop_d_ack <= (wb_stb)&&(scop_sel)&&(wb_addr[2:1] == 2'b11); assign scop_d_ack = r_scop_d_ack; //`endif reg all_scope_interrupts; always @(posedge i_clk) all_scope_interrupts <= (scop_a_interrupt) || (scop_b_interrupt) || (scop_c_interrupt) || (scop_d_interrupt); assign scop_int = all_scope_interrupts; // Scopes don't stall, so this line is more formality than anything // else. assign scop_stall = ((wb_addr[2:1]==2'b0)?scop_a_stall : ((wb_addr[2:1]==2'b01)?scop_b_stall : ((wb_addr[2:1]==2'b11)?scop_c_stall : scop_d_stall))); // Will always be 1'b0; initial scop_ack = 1'b0; always @(posedge i_clk) scop_ack <= scop_a_ack | scop_b_ack | scop_c_ack | scop_d_ack; always @(posedge i_clk) if (scop_a_ack) scop_data <= scop_a_data; else if (scop_b_ack) scop_data <= scop_b_data; else if (scop_c_ack) scop_data <= scop_c_data; else // if (scop_d_ack) scop_data <= scop_d_data; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log