URL
https://opencores.org/ocsvn/openarty/openarty/trunk
Subversion Repositories openarty
[/] [openarty/] [trunk/] [rtl/] [lloled.v] - Rev 34
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: lloled.v // // Project: OpenArty, an entirely open SoC based upon the Arty platform // // Purpose: This is a low-level SPI output (not input) controller // designed to command interactions between an upper level // controller and a PModOLEDrgb. As a result, this is a one-bit // (traditional, not quad) SPI controller, it has no MISO input bits, // and it also controls a DCN bits (output data at active high, vs // output control at active low). // // This particular implementation was taken from a low-level QSPI // controller. For those who wish to compare, the low-level QSPI // controller is very similar to the low-level EQSPI controller that is // also a part of the OpenArty project. // // Interfacing with the controller works as follows: If the controller // is idle, set the values you wish to send and strobe the i_wr bit. // Once the last bit has been committed to the interface, but before it // closes the connection by setting CS_N high, it will check the i_wr bit // again. If that bit is high, the busy bit will be dropped for one // cycle, new data will be accepted, and the controller will continue // with the new(er) data as though it was still part of the last // transmission (without lowering cs_n). // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// `define OLED_IDLE 3'h0 `define OLED_START 3'h1 `define OLED_BITS 3'h2 `define OLED_READY 3'h3 `define OLED_STOP 3'h4 `define OLED_STOP_B 3'h5 `define OLED_STOP_C 3'h6 // Modes `define OLED_MOD_SPI 2'b00 `define OLED_MOD_QOUT 2'b10 `define OLED_MOD_QIN 2'b11 module lloled(i_clk, // Module interface i_wr, i_dbit, i_word, i_len, o_busy, // OLED interface o_sck, o_cs_n, o_mosi, o_dbit); parameter CTRBITS = 8; input i_clk; // Chip interface // Can send info // i_wr = 1, // i_word = { 1'b0, 32'info to send }, // i_len = # of bytes in word-1 input i_wr, i_dbit; input [31:0] i_word; input [1:0] i_len; // 0=>8bits, 1=>16 bits, 2=>24 bits, 3=>32 bits output reg o_busy; // Interface with the OLED lines output reg o_sck, o_cs_n, o_mosi, o_dbit; // Timing: // // Tick Clk BSY/WR CS_n BIT/MO STATE // 0 1 0/0 1 - // 1 1 0/1 1 - // 2 1 1/0 0 - OLED_START // 3 0 1/0 0 - OLED_START // 4 0 1/0 0 0 OLED_BITS // 5 1 1/0 0 0 OLED_BITS // 6 0 1/0 0 1 OLED_BITS // 7 1 1/0 0 1 OLED_BITS // 8 0 1/0 0 2 OLED_BITS // 9 1 1/0 0 2 OLED_BITS // 10 0 1/0 0 3 OLED_BITS // 11 1 1/0 0 3 OLED_BITS // 12 0 1/0 0 4 OLED_BITS // 13 1 1/0 0 4 OLED_BITS // 14 0 1/0 0 5 OLED_BITS // 15 1 1/0 0 5 OLED_BITS // 16 0 1/0 0 6 OLED_BITS // 17 1 1/1 0 6 OLED_BITS // 18 0 1/1 0 7 OLED_READY // 19 1 0/1 0 7 OLED_READY // 20 0 1/0/V 0 8 OLED_BITS // 21 1 1/0 0 8 OLED_BITS // 22 0 1/0 0 9 OLED_BITS // 23 1 1/0 0 9 OLED_BITS // 24 0 1/0 0 10 OLED_BITS // 25 1 1/0 0 10 OLED_BITS // 26 0 1/0 0 11 OLED_BITS // 27 1 1/0 0 11 OLED_BITS // 28 0 1/0 0 12 OLED_BITS // 29 1 1/0 0 12 OLED_BITS // 30 0 1/0 0 13 OLED_BITS // 31 1 1/0 0 13 OLED_BITS // 32 0 1/0 0 14 OLED_BITS // 33 1 1/0 0 14 OLED_BITS // 34 0 1/0 0 15 OLED_READY // 35 1 1/0 0 15 OLED_READY // 36 1 1/0/V 0 - OLED_STOP // 37 1 1/0 0 - OLED_STOPB // 38 1 1/0 1 - OLED_IDLE // 39 1 0/0 1 - reg [5:0] spi_len; reg [31:0] r_word; reg [2:0] state; initial state = `OLED_IDLE; initial o_sck = 1'b1; initial o_cs_n = 1'b1; initial o_mosi = 1'b0; initial o_busy = 1'b0; reg [(CTRBITS-1):0] counter; reg last_counter, pre_last_counter; always @(posedge i_clk) // Clock cycle time > 150 ns > 300 ticks last_counter <= (counter == {{(CTRBITS-1){1'b0}},1'b1}); always @(posedge i_clk) pre_last_counter <= (counter == {{(CTRBITS-2){1'b0}},2'b10}); always @(posedge i_clk) if (state == `OLED_IDLE) counter <= {(CTRBITS){1'b1}}; else counter <= counter + {(CTRBITS){1'b1}}; always @(posedge i_clk) if ((state == `OLED_IDLE)&&(o_sck)) begin o_cs_n <= 1'b1; o_busy <= 1'b0; r_word <= i_word; spi_len<= { 1'b0, i_len, 3'b000 } + 6'h8; o_sck <= 1'b1; o_dbit <= i_dbit; if (i_wr) begin state <= `OLED_START; o_cs_n <= 1'b0; o_busy <= 1'b1; end end else if (state == `OLED_START) begin // We come in here with sck high, stay here 'til sck is low o_sck <= 1'b0; if (o_sck == 1'b0) begin state <= `OLED_BITS; spi_len<= spi_len - 6'h1; r_word <= { r_word[30:0], 1'b0 }; end o_cs_n <= 1'b0; o_busy <= 1'b1; o_mosi <= r_word[31]; end else if (~last_counter) begin o_busy <= (!pre_last_counter)||(!o_sck) ||(state != `OLED_READY)||(~i_wr); end else if (~o_sck) begin o_sck <= 1'b1; o_busy <= 1'b1; end else if (state == `OLED_BITS) begin // Should enter into here with at least a spi_len // of one, perhaps more o_sck <= 1'b0; o_busy <= 1'b1; o_mosi <= r_word[31]; r_word <= { r_word[30:0], 1'b0 }; spi_len <= spi_len - 6'h1; if (spi_len == 6'h1) state <= `OLED_READY; end else if (state == `OLED_READY) begin o_cs_n <= 1'b0; o_busy <= 1'b1; // This is the state on the last clock (both low and // high clocks) of the data. Data is valid during // this state. Here we chose to either STOP or // continue and transmit more. o_sck <= 1'b0; if((~o_busy)&&(i_wr))// Acknowledge a new request begin state <= `OLED_BITS; o_busy <= 1'b1; o_sck <= 1'b0; // Set up the first bits on the bus o_mosi <= i_word[31]; r_word <= { i_word[30:0], 1'b0 }; spi_len<= { 1'b0, i_len, 3'b111 }; // Read a bit upon any transition end else begin o_sck <= 1'b1; state <= `OLED_STOP; o_busy <= 1'b1; end end else if (state == `OLED_STOP) begin o_sck <= 1'b1; // Stop the clock o_busy <= 1'b1; // Still busy till port is clear state <= `OLED_STOP_B; end else if (state == `OLED_STOP_B) begin o_cs_n <= 1'b1; // Deselect CS o_sck <= 1'b1; // Do I need this???? // spi_len <= 3; // Minimum CS high time before next cmd state <= `OLED_STOP_C; o_mosi <= 1'b1; o_busy <= 1'b1; end else // if (state == `OLED_STOP_C) begin // Keep us in idle for at least a full clock period. o_cs_n <= 1'b1; // Deselect CS o_sck <= 1'b1; // Do I need this???? // spi_len <= 3; // Minimum CS high time before next cmd state <= `OLED_IDLE; o_mosi <= 1'b1; o_busy <= 1'b1; end /* */ endmodule