URL
https://opencores.org/ocsvn/openarty/openarty/trunk
Subversion Repositories openarty
[/] [openarty/] [trunk/] [rtl/] [wbddrsdram.v] - Rev 24
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: wbddrsdram.v // // Project: A wishbone controlled DDR3 SDRAM memory controller. // Used in: OpenArty, an entirely open SoC based upon the Arty platform // // Purpose: To control a DDR3-1333 (9-9-9) memory from a wishbone bus. // In our particular implementation, there will be two command // clocks (2.5 ns) per FPGA clock (i_clk) at 5 ns, and 64-bits transferred // per FPGA clock. However, since the memory is focused around 128-bit // word transfers, attempts to transfer other than adjacent 64-bit words // will (of necessity) suffer stalls. Please see the documentation for // more details of how this controller works. // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // // Possible commands to the DDR3 memory. These consist of settings for the // bits: o_wb_cs_n, o_wb_ras_n, o_wb_cas_n, and o_wb_we_n, respectively. `define DDR_MRSET 4'b0000 `define DDR_REFRESH 4'b0001 `define DDR_PRECHARGE 4'b0010 `define DDR_ACTIVATE 4'b0011 `define DDR_WRITE 4'b0100 `define DDR_READ 4'b0101 `define DDR_ZQS 4'b0110 `define DDR_NOOP 4'b0111 //`define DDR_DESELECT 4'b1??? // // In this controller, 24-bit commands tend to be passed around. These // 'commands' are bit fields. Here we specify the bits associated with // the bit fields. `define DDR_RSTDONE 24 // End the reset sequence? `define DDR_RSTTIMER 23 // Does this reset command take multiple clocks? `define DDR_RSTBIT 22 // Value to place on reset_n `define DDR_CKEBIT 21 // Should this reset command set CKE? // // Refresh command bit fields `define DDR_NEEDREFRESH 23 `define DDR_RFTIMER 22 `define DDR_RFBEGIN 21 // `define DDR_CMDLEN 21 `define DDR_CSBIT 20 `define DDR_RASBIT 19 `define DDR_CASBIT 18 `define DDR_WEBIT 17 `define DDR_NOPTIMER 16 // Steal this from BA bits `define DDR_BABITS 3 // BABITS are really from 18:16, they are 3 bits `define DDR_ADDR_BITS 14 // // module wbddrsdram(i_clk, i_reset, // Wishbone inputs i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data, i_wb_sel, // Wishbone outputs o_wb_ack, o_wb_stall, o_wb_data, // Memory command wires o_ddr_reset_n, o_ddr_cke, o_ddr_bus_oe, o_ddr_cmd_a, o_ddr_cmd_b, // And the data wires to go with them .... o_ddr_data, i_ddr_data); // These parameters are not really meant for adjusting from the // top level. These are more internal variables, recorded here // so that things can be automatically adjusted without much // problem. parameter CKRP = 3; parameter BUSNOW = 4, BUSREG = BUSNOW-1; // The commands (above) include (in this order): // o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n, // o_ddr_dqs, o_ddr_dm, o_ddr_odt input i_clk, // *MUST* be at 200 MHz for this to work i_reset; // Wishbone inputs input i_wb_cyc, i_wb_stb, i_wb_we; input [24:0] i_wb_addr; // Identifies a 64-bit word of interest input [63:0] i_wb_data; input [7:0] i_wb_sel; // Wishbone responses/outputs output reg o_wb_ack, o_wb_stall; output reg [63:0] o_wb_data; // DDR memory command wires output reg o_ddr_reset_n, o_ddr_cke, o_ddr_bus_oe; // CMDs are: // 4 bits of CS, RAS, CAS, WE // 3 bits of bank // 14 bits of Address // 1 bit of DQS (strobe active, or not) // 4 bits of mask (one per byte) // 1 bit of ODT // ---- // 27 bits total output wire [26:0] o_ddr_cmd_a, o_ddr_cmd_b; output reg [63:0] o_ddr_data; input [63:0] i_ddr_data; ////////// // // // Reset Logic // // ////////// // // // Reset logic should be simple, and is given as follows: // note that it depends upon a ROM memory, reset_mem, and an address into that // memory: reset_address. Each memory location provides either a "command" to // the DDR3 SDRAM, or a timer to wait until the next command. Further, the // timer commands indicate whether or not the command during the timer is to // be set to idle, or whether the command is instead left as it was. reg reset_override, reset_ztimer, maintenance_override; reg [4:0] reset_address; reg [(`DDR_CMDLEN-1):0] reset_cmd, cmd_a, cmd_b, refresh_cmd, maintenance_cmd; reg [24:0] reset_instruction; reg [16:0] reset_timer; initial reset_override = 1'b1; initial reset_address = 5'h0; always @(posedge i_clk) if (i_reset) begin reset_override <= 1'b1; reset_cmd <= { `DDR_NOOP, reset_instruction[16:0]}; end else if (reset_ztimer) begin if (reset_instruction[`DDR_RSTDONE]) reset_override <= 1'b0; reset_cmd <= reset_instruction[20:0]; end initial reset_ztimer = 1'b0; // Is the timer zero? initial reset_timer = 17'h02; always @(posedge i_clk) if (i_reset) begin reset_ztimer <= 1'b0; reset_timer <= 17'd2; end else if (!reset_ztimer) begin reset_ztimer <= (reset_timer == 17'h01); reset_timer <= reset_timer - 17'h01; end else if (reset_instruction[`DDR_RSTTIMER]) begin reset_ztimer <= 1'b0; reset_timer <= reset_instruction[16:0]; end wire [16:0] w_ckXPR, w_ckRFC_first; wire [13:0] w_MR0, w_MR1, w_MR2; assign w_MR0 = 14'h0420; assign w_MR1 = 14'h0044; assign w_MR2 = 14'h0040; assign w_ckXPR = 17'd68; // Table 68, p186 assign w_ckRFC_first = 17'd30; // i.e. 64 nCK, or ckREFI always @(posedge i_clk) // DONE, TIMER, RESET, CKE, if (i_reset) reset_instruction <= { 4'h4, `DDR_NOOP, 17'd40_000 }; else if (reset_ztimer) case(reset_address) // RSTDONE, TIMER, CKE, ?? // 1. Reset asserted (active low) for 200 us. (@200MHz) 5'h0: reset_instruction <= { 4'h4, `DDR_NOOP, 17'd40_000 }; // 2. Reset de-asserted, wait 500 us before asserting CKE 5'h1: reset_instruction <= { 4'h6, `DDR_NOOP, 17'd100_000 }; // 3. Assert CKE, wait minimum of Reset CKE Exit time 5'h2: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckXPR }; // 4. Set MR2. (4 nCK, no TIMER, but needs a NOOP cycle) 5'h3: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h2, w_MR2 }; 5'h4: reset_instruction <= { 4'h3, `DDR_NOOP, 17'h00 }; // 5. Set MR1. (4 nCK, no TIMER, but needs a NOOP cycle) 5'h5: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h1, w_MR1 }; 5'h6: reset_instruction <= { 4'h3, `DDR_NOOP, 17'h00 }; // 6. Set MR0 5'h7: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h0, w_MR0 }; // 7. Wait 12 clocks 5'h8: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd10 }; // 8. Issue a ZQCL command to start ZQ calibration, A10 is high 5'h9: reset_instruction <= { 4'h3, `DDR_ZQS, 6'h0, 1'b1, 10'h0}; //11.Wait for both tDLLK and tZQinit completed, both are // 512 cks. Of course, since every one of these commands takes // two clocks, we wait for half as many clocks (minus two for // our timer logic) 5'ha: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd254 }; // 12. Precharge all command 5'hb: reset_instruction <= { 4'h3, `DDR_PRECHARGE, 6'h0, 1'b1, 10'h0 }; // 13. Wait for the precharge to complete. A count of one, // will have us waiting (1+2)*2 or 6 clocks, so we should be // good here. 5'hc: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd1 }; // 14. A single Auto Refresh commands 5'hd: reset_instruction <= { 4'h3, `DDR_REFRESH, 17'h00 }; // 15. Wait for the auto refresh to complete 5'he: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckRFC_first }; default: reset_instruction <={4'hb, `DDR_NOOP, 17'd00_000 }; endcase initial reset_address = 5'h0; always @(posedge i_clk) if (i_reset) reset_address <= 5'h1; else if ((reset_ztimer)&&(reset_override)) reset_address <= reset_address + 5'h1; ////////// // // // Refresh Logic // // ////////// // // // // Okay, let's investigate when we need to do a refresh. Our plan will be to // do a single refreshes every tREFI seconds. We will not push off refreshes, // nor pull them in--for simplicity. tREFI = 7.8us, but it is a parameter // in the number of clocks. In our case, 7.8us / 5ns = 1560 clocks (not nCK!) // // Note that 160ns are needed between refresh commands (JEDEC, p172), or // 32 clocks @200MHz. After this time, no more refreshes will be needed for // (1560-32) clocks (@ 200 MHz). // // This logic is very similar to the refresh logic, both use a memory as a // script. // reg need_refresh; reg refresh_ztimer; reg [16:0] refresh_counter; reg [2:0] refresh_addr; reg [23:0] refresh_instruction; always @(posedge i_clk) if (reset_override) refresh_addr <= 3'hf; else if (refresh_ztimer) refresh_addr <= refresh_addr + 3'h1; else if (refresh_instruction[`DDR_RFBEGIN]) refresh_addr <= 3'h0; always @(posedge i_clk) if (reset_override) begin refresh_ztimer <= 1'b1; refresh_counter <= 17'd0; end else if (!refresh_ztimer) begin refresh_ztimer <= (refresh_counter == 17'h1); refresh_counter <= (refresh_counter - 17'h1); end else if (refresh_instruction[`DDR_RFTIMER]) begin refresh_ztimer <= 1'b0; refresh_counter <= refresh_instruction[16:0]; end wire [16:0] w_ckREFI; assign w_ckREFI = 17'd1560; // == 6240/4 wire [16:0] w_ckREFI_left, w_ckRFC_nxt, w_wait_for_idle, w_precharge_to_refresh; // We need to wait for the bus to become idle from whatever state // it is in. The difficult time for this measurement is assuming // a write was just given. In that case, we need to wait for the // write to complete, and then to wait an additional tWR (write // recovery time) or 6 nCK clocks from the end of the write. This // works out to seven idle bus cycles from the time of the write // command, or a count of 5 (7-2). assign w_wait_for_idle = 17'd5; // assign w_precharge_to_refresh = 17'd1; // = 3-2 assign w_ckREFI_left[16:0] = 17'd1560 // The full interval -17'd32 // Min what we've already waited -w_wait_for_idle -w_precharge_to_refresh-17'd12; assign w_ckRFC_nxt[16:0] = 17'd32-17'd2; always @(posedge i_clk) if (refresh_ztimer) case(refresh_addr)//NEED-REFRESH, HAVE-TIMER, BEGIN(start-over) // First, a number of clocks needing no refresh 3'h0: refresh_instruction <= { 3'h2, `DDR_NOOP, w_ckREFI_left }; // Then, we take command of the bus and wait for it to be // guaranteed idle 3'h1: refresh_instruction <= { 3'h6, `DDR_NOOP, w_wait_for_idle }; // Once the bus is idle, all commands complete, and a minimum // recovery time given, we can issue a precharge all command 3'h2: refresh_instruction <= { 3'h4, `DDR_PRECHARGE, 17'h0400 }; // Now we need to wait tRP = 3 clocks (6 nCK) 3'h3: refresh_instruction <= { 3'h6, `DDR_NOOP, w_precharge_to_refresh }; 3'h4: refresh_instruction <= { 3'h4, `DDR_REFRESH, 17'h00 }; 3'h5: refresh_instruction <= { 3'h6, `DDR_NOOP, w_ckRFC_nxt }; default: refresh_instruction <= { 3'h1, `DDR_NOOP, 17'h00 }; endcase // Note that we don't need to check if (reset_override) here since // refresh_ztimer will always be true if (reset_override)--in other // words, it will be true for many, many, clocks--enough for this // logic to settle out. always @(posedge i_clk) if (refresh_ztimer) refresh_cmd <= refresh_instruction[20:0]; always @(posedge i_clk) if (refresh_ztimer) need_refresh <= refresh_instruction[`DDR_NEEDREFRESH]; /* input i_clk, i_reset; // Wishbone inputs input i_wb_cyc, i_wb_stb, i_wb_we; input [25:0] i_wb_addr; input [31:0] i_wb_data; // Wishbone outputs output reg o_wb_ack; output reg o_wb_stall; output reg [31:0] o_wb_data; // DDR3 RAM Controller output reg o_ddr_reset_n, o_ddr_cke; // Control outputs output wire o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n,o_ddr_we_n; // DQS outputs:set to 3'b010 when data is active, 3'b100 (i.e. 2'bzz) ow output wire o_ddr_dqs; output reg o_ddr_odt; output wire o_ddr_bus_oe; // Address outputs output wire [13:0] o_ddr_addr; output wire [2:0] o_ddr_ba; // And the data inputs and outputs output reg [31:0] o_ddr_data; input [31:0] i_ddr_data; */ reg [1:0] drive_dqs; // Our chosen timing doesn't require any more resolution than one // bus clock for ODT. (Of course, this really isn't necessary, since // we aren't using ODT as per the MRx registers ... but we keep it // around in case we change our minds later.) reg ddr_odt; reg [7:0] ddr_dm; // The pending transaction reg [63:0] r_data; reg r_pending, r_we; reg [24:0] r_addr; reg [13:0] r_row; reg [2:0] r_bank; reg [9:0] r_col; reg r_sub; reg [7:0] r_sel; // The pending transaction, one further into the pipeline. This is // the stage where the read/write command is actually given to the // interface if we haven't stalled. reg [63:0] s_data; reg s_pending, s_we; // , s_match; reg [24:0] s_addr; reg [13:0] s_row, s_nxt_row; reg [2:0] s_bank, s_nxt_bank; reg [9:0] s_col; reg s_sub; reg [7:0] s_sel; // Can the pending transaction be satisfied with the current (ongoing) // transaction? reg m_move, m_match, m_pending, m_we; reg [24:0] m_addr; reg [13:0] m_row; reg [2:0] m_bank; reg [9:0] m_col; reg [1:0] m_sub; // Can we preload the next bank? reg [13:0] r_nxt_row; reg [2:0] r_nxt_bank; reg need_close_bank, need_close_this_bank, last_close_bank, maybe_close_next_bank, last_maybe_close, need_open_bank, last_open_bank, maybe_open_next_bank, last_maybe_open, valid_bank; reg [(`DDR_CMDLEN-1):0] close_bank_cmd, activate_bank_cmd, maybe_close_cmd, maybe_open_cmd, rw_cmd; reg rw_sub; reg rw_we; wire w_this_closing_bank, w_this_opening_bank, w_this_maybe_close, w_this_maybe_open, w_this_rw_move; reg last_closing_bank, last_opening_bank; wire w_need_close_this_bank, w_need_open_bank, w_r_valid, w_s_valid, w_s_match; ////////// // // // Open Banks // // ////////// // // // // Let's keep track of any open banks. There are 8 of them to keep track of. // // A precharge requires 3 clocks at 200MHz to complete. // An activate also requires 3 clocks at 200MHz to complete. // Precharges are not allowed until the maximum of: // 2 clocks (200 MHz) after a read command // 8 clocks after a write command // // wire w_precharge_all; reg [CKRP:0] bank_status [0:7]; reg [13:0] bank_address [0:7]; reg [3:0] bank_wr_ck [0:7]; // tWTR reg bank_wr_ckzro [0:7]; // tWTR reg [7:0] bank_open; reg [7:0] bank_closed; wire [3:0] write_recycle_clocks; assign write_recycle_clocks = 4'h8; initial bank_open = 0; initial bank_closed = 8'hff; always @(posedge i_clk) begin bank_status[0] <= { bank_status[0][(CKRP-1):0], bank_status[0][0] }; bank_status[1] <= { bank_status[1][(CKRP-1):0], bank_status[1][0] }; bank_status[2] <= { bank_status[2][(CKRP-1):0], bank_status[2][0] }; bank_status[3] <= { bank_status[3][(CKRP-1):0], bank_status[3][0] }; bank_status[4] <= { bank_status[4][(CKRP-1):0], bank_status[4][0] }; bank_status[5] <= { bank_status[5][(CKRP-1):0], bank_status[5][0] }; bank_status[6] <= { bank_status[6][(CKRP-1):0], bank_status[6][0] }; bank_status[7] <= { bank_status[7][(CKRP-1):0], bank_status[7][0] }; bank_wr_ck[0] <= (|bank_wr_ck[0])?(bank_wr_ck[0]-4'h1):4'h0; bank_wr_ck[1] <= (|bank_wr_ck[1])?(bank_wr_ck[1]-4'h1):4'h0; bank_wr_ck[2] <= (|bank_wr_ck[2])?(bank_wr_ck[2]-4'h1):4'h0; bank_wr_ck[3] <= (|bank_wr_ck[3])?(bank_wr_ck[3]-4'h1):4'h0; bank_wr_ck[4] <= (|bank_wr_ck[4])?(bank_wr_ck[4]-4'h1):4'h0; bank_wr_ck[5] <= (|bank_wr_ck[5])?(bank_wr_ck[5]-4'h1):4'h0; bank_wr_ck[6] <= (|bank_wr_ck[6])?(bank_wr_ck[6]-4'h1):4'h0; bank_wr_ck[7] <= (|bank_wr_ck[7])?(bank_wr_ck[7]-4'h1):4'h0; bank_wr_ckzro[0] <= (bank_wr_ck[0][3:1]==3'b00); bank_wr_ckzro[1] <= (bank_wr_ck[1][3:1]==3'b00); bank_wr_ckzro[2] <= (bank_wr_ck[2][3:1]==3'b00); bank_wr_ckzro[3] <= (bank_wr_ck[3][3:1]==3'b00); bank_wr_ckzro[4] <= (bank_wr_ck[4][3:1]==3'b00); bank_wr_ckzro[5] <= (bank_wr_ck[5][3:1]==3'b00); bank_wr_ckzro[6] <= (bank_wr_ck[6][3:1]==3'b00); bank_wr_ckzro[7] <= (bank_wr_ck[7][3:1]==3'b00); bank_open[0] <= (bank_status[0][(CKRP-2):0] =={(CKRP-1){1'b1}}); bank_open[1] <= (bank_status[1][(CKRP-2):0] =={(CKRP-1){1'b1}}); bank_open[2] <= (bank_status[2][(CKRP-2):0] =={(CKRP-1){1'b1}}); bank_open[3] <= (bank_status[3][(CKRP-2):0] =={(CKRP-1){1'b1}}); bank_open[4] <= (bank_status[4][(CKRP-2):0] =={(CKRP-1){1'b1}}); bank_open[5] <= (bank_status[5][(CKRP-2):0] =={(CKRP-1){1'b1}}); bank_open[6] <= (bank_status[6][(CKRP-2):0] =={(CKRP-1){1'b1}}); bank_open[7] <= (bank_status[7][(CKRP-2):0] =={(CKRP-1){1'b1}}); bank_closed[0] <= (bank_status[0][(CKRP-3):0] == 0); bank_closed[1] <= (bank_status[1][(CKRP-3):0] == 0); bank_closed[2] <= (bank_status[2][(CKRP-3):0] == 0); bank_closed[3] <= (bank_status[3][(CKRP-3):0] == 0); bank_closed[4] <= (bank_status[4][(CKRP-3):0] == 0); bank_closed[5] <= (bank_status[5][(CKRP-3):0] == 0); bank_closed[6] <= (bank_status[6][(CKRP-3):0] == 0); bank_closed[7] <= (bank_status[7][(CKRP-3):0] == 0); if (w_this_rw_move) bank_wr_ck[rw_cmd[16:14]] <= (rw_cmd[`DDR_WEBIT])? 4'h0 : write_recycle_clocks; if (maintenance_override) begin bank_status[0][0] <= 1'b0; bank_status[1][0] <= 1'b0; bank_status[2][0] <= 1'b0; bank_status[3][0] <= 1'b0; bank_status[4][0] <= 1'b0; bank_status[5][0] <= 1'b0; bank_status[6][0] <= 1'b0; bank_status[7][0] <= 1'b0; bank_open <= 0; bank_closed <= 8'hff; end else if (need_close_bank) begin bank_status[close_bank_cmd[16:14]] <= { bank_status[close_bank_cmd[16:14]][(CKRP-1):0], 1'b0 }; bank_open[close_bank_cmd[16:14]] <= 1'b0; end else if (need_open_bank) begin bank_status[activate_bank_cmd[16:14]] <= { bank_status[activate_bank_cmd[16:14]][(CKRP-1):0], 1'b1 }; bank_closed[activate_bank_cmd[16:14]] <= 1'b0; end else if (valid_bank) ; // Read/write command was issued. This neither opens // nor closes any banks, and hence it needs no logic // here else if (maybe_close_next_bank) begin bank_status[maybe_close_cmd[16:14]] <= { bank_status[maybe_close_cmd[16:14]][(CKRP-1):0], 1'b0 }; bank_open[maybe_close_cmd[16:14]] <= 1'b0; end else if (maybe_open_next_bank) begin bank_status[maybe_open_cmd[16:14]] <= { bank_status[maybe_open_cmd[16:14]][(CKRP-1):0], 1'b1 }; bank_closed[maybe_open_cmd[16:14]] <= 1'b0; end end always @(posedge i_clk) if (w_this_opening_bank) bank_address[activate_bank_cmd[16:14]] <= activate_bank_cmd[13:0]; else if (w_this_maybe_open) bank_address[maybe_open_cmd[16:14]] <= maybe_open_cmd[13:0]; ////////// // // // Data BUS information // // ////////// // // // Our purpose here is to keep track of when the data bus will be // active. This is separate from the FIFO which will contain the // data to be placed on the bus (when so placed), in that this is // a group of shift registers--every position has a location in time, // and time always moves forward. The FIFO, on the other hand, only // moves forward when data moves onto the bus. // // reg [BUSNOW:0] bus_active, bus_read, bus_new, bus_ack; reg [BUSNOW:0] bus_subaddr, bus_odt; initial bus_active = 0; initial bus_ack = 0; always @(posedge i_clk) begin bus_active[BUSNOW:0] <= { bus_active[(BUSNOW-1):0], 1'b0 }; // Drive the d-bus? bus_read[BUSNOW:0] <= { bus_read[(BUSNOW-1):0], 1'b0 }; // Is this a new command? i.e., the start of a transaction? bus_new[BUSNOW:0] <= { bus_new[(BUSNOW-1):0], 1'b0 }; bus_odt[BUSNOW:0] <= { bus_odt[(BUSNOW-1):0], 1'b0 }; // Will this position on the bus get a wishbone acknowledgement? bus_ack[BUSNOW:0] <= { bus_ack[(BUSNOW-1):0], 1'b0 }; // bus_subaddr[BUSNOW:0] <= { bus_subaddr[(BUSNOW-1):0], 1'b1 }; if (w_this_rw_move) begin bus_active[1:0]<= 2'h3; // Data transfers in two clocks bus_subaddr[1] <= 1'h0; bus_new[{ 2'b0, rw_sub }] <= 1'b1; bus_ack[1:0] <= 2'h0; bus_ack[{ 2'b0, rw_sub }] <= 1'b1; bus_read[1:0] <= (rw_we)? 2'h0:2'h3; bus_odt[3:0]<= (rw_we)? 4'he:4'h0; // Data transfers in 2 clks end else if ((s_pending)&&(!pipe_stall)) begin if (bus_subaddr[1] == s_sub) bus_ack[2] <= 1'b1; if (bus_subaddr[0] == s_sub) bus_ack[1] <= 1'b1; end end // Need to set o_wb_dqs high one clock prior to any read. always @(posedge i_clk) begin drive_dqs[1] <= (bus_active[(BUSREG)]) &&(!bus_read[(BUSREG)]); drive_dqs[0] <= (bus_active[BUSREG:(BUSREG-1)] != 2'b00) &&(bus_read[BUSREG:(BUSREG-1)] == 2'b00); end // // // Now, let's see, can we issue a read command? // // reg pre_valid; always @(posedge i_clk) if ((refresh_ztimer)&&(refresh_instruction[`DDR_NEEDREFRESH])) pre_valid <= 1'b0; else if (need_refresh) pre_valid <= 1'b0; else pre_valid <= 1'b1; assign w_r_valid = (pre_valid)&&(r_pending) &&(bank_status[r_bank][(CKRP-2)]) &&(bank_address[r_bank]==r_row) &&((r_we)||(bank_wr_ckzro[r_bank])); assign w_s_valid = (pre_valid)&&(s_pending) &&(bank_status[s_bank][(CKRP-2)]) &&(bank_address[s_bank]==s_row) &&((s_we)||(bank_wr_ckzro[s_bank])); assign w_s_match = (s_pending)&&(r_pending)&&(r_we == s_we) &&(r_row == s_row)&&(r_bank == s_bank) &&(r_col == s_col) &&(r_sub)&&(!s_sub); reg pipe_stall; always @(posedge i_clk) begin r_pending <= (i_wb_stb)&&(~o_wb_stall) ||(r_pending)&&(pipe_stall); if (~pipe_stall) s_pending <= r_pending; if (~pipe_stall) begin pipe_stall <= (r_pending)&&(((!w_r_valid)||(valid_bank))&&(!w_s_match)); o_wb_stall <= (r_pending)&&(((!w_r_valid)||(valid_bank))&&(!w_s_match)); end else begin // if (pipe_stall) pipe_stall <= (s_pending)&&((!w_s_valid)||(valid_bank)); o_wb_stall <= (s_pending)&&((!w_s_valid)||(valid_bank)); end if (need_refresh) o_wb_stall <= 1'b1; if (~pipe_stall) begin r_we <= i_wb_we; r_addr <= i_wb_addr; r_data <= i_wb_data; r_row <= i_wb_addr[24:11]; // 14 bits row address r_bank <= i_wb_addr[10:8]; r_col <= { i_wb_addr[7:1], 3'b000 }; // 10 bits Caddr r_sub <= i_wb_addr[0]; // Select which 64-bit word r_sel <= i_wb_sel; // i_wb_addr[0] is the 8-bit byte selector of 16-bits (ignored) // i_wb_addr[1] is the 16-bit half-word selector of 32-bits (ignored) // i_wb_addr[2] is the 32-bit word selector of 64-bits (ignored) // i_wb_addr[3] is the 64-bit long word selector of 128-bits // pre-emptive work r_nxt_row <= (i_wb_addr[10:8]==3'h7) ? (i_wb_addr[24:11]+14'h1) : i_wb_addr[24:11]; r_nxt_bank <= i_wb_addr[10:8]+3'h1; end if (~pipe_stall) begin // Moving one down the pipeline s_we <= r_we; s_addr <= r_addr; s_data <= r_data; s_row <= r_row; s_bank <= r_bank; s_col <= r_col; s_sub <= r_sub; s_sel <= (r_we)?(~r_sel):8'h00; // pre-emptive work s_nxt_row <= r_nxt_row; s_nxt_bank <= r_nxt_bank; end end assign w_need_close_this_bank = (r_pending) &&(bank_open[r_bank]) &&(bank_wr_ckzro[r_bank]) &&(r_row != bank_address[r_bank]) ||(pipe_stall)&&(s_pending)&&(bank_open[s_bank]) &&(s_row != bank_address[s_bank]); assign w_need_open_bank = (r_pending)&&(bank_closed[r_bank]) ||(pipe_stall)&&(s_pending)&&(bank_closed[s_bank]); always @(posedge i_clk) begin need_close_bank <= (w_need_close_this_bank) &&(!need_open_bank) &&(!need_close_bank) &&(!w_this_closing_bank); maybe_close_next_bank <= (s_pending) &&(bank_open[s_nxt_bank]) &&(bank_wr_ckzro[s_nxt_bank]) &&(s_nxt_row != bank_address[s_nxt_bank]) &&(!w_this_maybe_close)&&(!last_maybe_close); close_bank_cmd <= { `DDR_PRECHARGE, r_bank, r_row[13:11], 1'b0, r_row[9:0] }; maybe_close_cmd <= { `DDR_PRECHARGE, r_nxt_bank, r_nxt_row[13:11], 1'b0, r_nxt_row[9:0] }; need_open_bank <= (w_need_open_bank) &&(!w_this_opening_bank); last_open_bank <= (w_this_opening_bank); maybe_open_next_bank <= (s_pending) &&(!need_close_bank) &&(!need_open_bank) &&(bank_closed[s_nxt_bank]) &&(!w_this_maybe_open); // &&(!last_maybe_open); activate_bank_cmd<= { `DDR_ACTIVATE, r_bank, r_row[13:0] }; maybe_open_cmd <= { `DDR_ACTIVATE,r_nxt_bank, r_nxt_row[13:0] }; valid_bank <= ((w_r_valid)||((pipe_stall)&&(w_s_valid))) // &&(!last_valid_bank)&&(!r_move) &&(!w_this_rw_move); if ((s_pending)&&(pipe_stall)) rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= (s_we)?`DDR_WRITE:`DDR_READ; else if (r_pending) rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= (r_we)?`DDR_WRITE:`DDR_READ; else rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= `DDR_NOOP; if ((s_pending)&&(pipe_stall)) rw_cmd[`DDR_WEBIT-1:0] <= { s_bank, 3'h0, 1'b0, s_col }; else rw_cmd[`DDR_WEBIT-1:0] <= { r_bank, 3'h0, 1'b0, r_col }; if ((s_pending)&&(pipe_stall)) rw_sub <= 1'b1 - s_sub; else rw_sub <= 1'b1 - r_sub; if ((s_pending)&&(pipe_stall)) rw_we <= s_we; else rw_we <= r_we; end // // // Okay, let's look at the last assignment in our chain. It should look // something like: always @(posedge i_clk) if (i_reset) o_ddr_reset_n <= 1'b0; else if (reset_ztimer) o_ddr_reset_n <= reset_instruction[`DDR_RSTBIT]; always @(posedge i_clk) if (i_reset) o_ddr_cke <= 1'b0; else if (reset_ztimer) o_ddr_cke <= reset_instruction[`DDR_CKEBIT]; always @(posedge i_clk) if (i_reset) maintenance_override <= 1'b1; else maintenance_override <= (reset_override)||(need_refresh); initial maintenance_cmd = { `DDR_NOOP, 17'h00 }; always @(posedge i_clk) if (i_reset) maintenance_cmd <= { `DDR_NOOP, 17'h00 }; else maintenance_cmd <= (reset_override)?reset_cmd:refresh_cmd; assign w_this_closing_bank = (!maintenance_override) &&(need_close_bank); assign w_this_opening_bank = (!maintenance_override) &&(!need_close_bank)&&(need_open_bank); assign w_this_rw_move = (!maintenance_override) &&(!need_close_bank)&&(!need_open_bank) &&(valid_bank); assign w_this_maybe_close = (!maintenance_override) &&(!need_close_bank)&&(!need_open_bank) &&(!valid_bank) &&(maybe_close_next_bank); assign w_this_maybe_open = (!maintenance_override) &&(!need_close_bank)&&(!need_open_bank) &&(!valid_bank) &&(!maybe_close_next_bank) &&(maybe_open_next_bank); always @(posedge i_clk) begin last_opening_bank <= 1'b0; last_closing_bank <= 1'b0; last_maybe_open <= 1'b0; last_maybe_close <= 1'b0; cmd_a <= { `DDR_NOOP, 17'h00 }; cmd_b <= { `DDR_NOOP, rw_cmd[(`DDR_WEBIT-1):0] }; if (maintenance_override) begin // Command from either reset or refresh logic cmd_a <= maintenance_cmd; // cmd_b <= { `DDR_NOOP, ... end else if (need_close_bank) begin cmd_a <= close_bank_cmd; // cmd_b <= { `DDR_NOOP, ...} last_closing_bank <= 1'b1; end else if (need_open_bank) begin cmd_a <= activate_bank_cmd; // cmd_b <={`DDR_NOOP, ...} last_opening_bank <= 1'b1; end else if (valid_bank) begin cmd_a <= {(rw_cmd[(`DDR_WEBIT)])?`DDR_READ:`DDR_NOOP, rw_cmd[(`DDR_WEBIT-1):0] }; cmd_b <= {(rw_cmd[(`DDR_WEBIT)])?`DDR_NOOP:`DDR_WRITE, rw_cmd[(`DDR_WEBIT-1):0] }; end else if (maybe_close_next_bank) begin cmd_a <= maybe_close_cmd; // cmd_b <= {`DDR_NOOP, ... } last_maybe_close <= 1'b1; end else if (maybe_open_next_bank) begin cmd_a <= maybe_open_cmd; // cmd_b <= {`DDR_NOOP, ... } last_maybe_open <= 1'b1; end else cmd_a <= { `DDR_NOOP, rw_cmd[(`DDR_WEBIT-1):0] }; end `define LGFIFOLN 4 `define FIFOLEN 16 reg [(`LGFIFOLN-1):0] bus_fifo_head, bus_fifo_tail; reg [63:0] bus_fifo_data [0:(`FIFOLEN-1)]; reg [7:0] bus_fifo_sel [0:(`FIFOLEN-1)]; reg bus_fifo_sub [0:(`FIFOLEN-1)]; reg bus_fifo_new [0:(`FIFOLEN-1)]; reg pre_ack; // The bus R/W FIFO wire w_bus_fifo_read_next_transaction; assign w_bus_fifo_read_next_transaction = (bus_ack[BUSREG]); always @(posedge i_clk) begin pre_ack <= 1'b0; if (reset_override) begin bus_fifo_head <= {(`LGFIFOLN){1'b0}}; bus_fifo_tail <= {(`LGFIFOLN){1'b0}}; end else begin if ((s_pending)&&(!pipe_stall)) bus_fifo_head <= bus_fifo_head + 1'b1; if (w_bus_fifo_read_next_transaction) begin bus_fifo_tail <= bus_fifo_tail + 1'b1; pre_ack <= 1'b1; end end bus_fifo_data[bus_fifo_head] <= s_data; bus_fifo_sub[bus_fifo_head] <= s_sub; bus_fifo_new[bus_fifo_head] <= w_this_rw_move; bus_fifo_sel[bus_fifo_head] <= s_sel; end always @(posedge i_clk) o_ddr_data <= bus_fifo_data[bus_fifo_tail]; always @(posedge i_clk) ddr_dm <= (bus_ack[BUSREG])? bus_fifo_sel[bus_fifo_tail] : ((!bus_read[BUSREG])? 8'hff: 8'h00); always @(posedge i_clk) o_ddr_bus_oe <= (bus_active[BUSREG])&&(!bus_read[BUSREG]); // First, or left, command assign o_ddr_cmd_a = { cmd_a, drive_dqs[1], ddr_dm[7:4], ddr_odt }; // Second, or right, command of two assign o_ddr_cmd_b = { cmd_b, drive_dqs[0], ddr_dm[3:0], ddr_odt }; assign w_precharge_all = (cmd_a[`DDR_CSBIT:`DDR_WEBIT]==`DDR_PRECHARGE) &&(cmd_a[10]); // ODT must be in high impedence while reset_n=0, then it can be set // to low or high. As per spec, ODT = 0 during reads always @(posedge i_clk) ddr_odt <= bus_odt[BUSREG]; always @(posedge i_clk) o_wb_ack <= pre_ack; always @(posedge i_clk) o_wb_data <= i_ddr_data; endmodule