URL
https://opencores.org/ocsvn/openarty/openarty/trunk
Subversion Repositories openarty
[/] [openarty/] [trunk/] [rtl/] [wbm2axisp.v] - Rev 32
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: wbm2axisp.v // // Project: Pipelined Wishbone to AXI converter // // Purpose: The B4 Wishbone SPEC allows transactions at a speed as fast as // one per clock. The AXI bus allows transactions at a speed of // one read and one write transaction per clock. These capabilities work // by allowing requests to take place prior to responses, such that the // requests might go out at once per clock and take several clocks, and // the responses may start coming back several clocks later. In other // words, both protocols allow multiple transactions to be "in flight" at // the same time. Current wishbone to AXI converters, however, handle only // one transaction at a time: initiating the transaction, and then waiting // for the transaction to complete before initiating the next. // // The purpose of this core is to maintain the speed of both busses, while // transiting from the Wishbone (as master) to the AXI bus (as slave) and // back again. // // Since the AXI bus allows transactions to be reordered, whereas the // wishbone does not, this core can be configured to reorder return // transactions as well. // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // module wbm2axisp #( parameter C_AXI_ID_WIDTH = 6, // The AXI id width used for R&W // This is an int between 1-16 parameter C_AXI_DATA_WIDTH = 128,// Width of the AXI R&W data parameter C_AXI_ADDR_WIDTH = 28, // AXI Address width parameter DW = 32, // Wishbone data width parameter AW = 26, // Wishbone address width parameter STRICT_ORDER = 0 // Reorder, or not? 0 -> Reorder ) ( input i_clk, // System clock // input i_reset,// Wishbone reset signal--unused // AXI write address channel signals input i_axi_awready, // Slave is ready to accept output reg [C_AXI_ID_WIDTH-1:0] o_axi_awid, // Write ID output reg [C_AXI_ADDR_WIDTH-1:0] o_axi_awaddr, // Write address output wire [7:0] o_axi_awlen, // Write Burst Length output wire [2:0] o_axi_awsize, // Write Burst size output wire [1:0] o_axi_awburst, // Write Burst type output wire [0:0] o_axi_awlock, // Write lock type output wire [3:0] o_axi_awcache, // Write Cache type output wire [2:0] o_axi_awprot, // Write Protection type output wire [3:0] o_axi_awqos, // Write Quality of Svc output reg o_axi_awvalid, // Write address valid // AXI write data channel signals input i_axi_wready, // Write data ready output reg [C_AXI_DATA_WIDTH-1:0] o_axi_wdata, // Write data output reg [C_AXI_DATA_WIDTH/8-1:0] o_axi_wstrb, // Write strobes output wire o_axi_wlast, // Last write transaction output reg o_axi_wvalid, // Write valid // AXI write response channel signals input [C_AXI_ID_WIDTH-1:0] i_axi_bid, // Response ID input [1:0] i_axi_bresp, // Write response input i_axi_bvalid, // Write reponse valid output wire o_axi_bready, // Response ready // AXI read address channel signals input i_axi_arready, // Read address ready output wire [C_AXI_ID_WIDTH-1:0] o_axi_arid, // Read ID output wire [C_AXI_ADDR_WIDTH-1:0] o_axi_araddr, // Read address output wire [7:0] o_axi_arlen, // Read Burst Length output wire [2:0] o_axi_arsize, // Read Burst size output wire [1:0] o_axi_arburst, // Read Burst type output wire [0:0] o_axi_arlock, // Read lock type output wire [3:0] o_axi_arcache, // Read Cache type output wire [2:0] o_axi_arprot, // Read Protection type output wire [3:0] o_axi_arqos, // Read Protection type output reg o_axi_arvalid, // Read address valid // AXI read data channel signals input [C_AXI_ID_WIDTH-1:0] i_axi_rid, // Response ID input [1:0] i_axi_rresp, // Read response input i_axi_rvalid, // Read reponse valid input [C_AXI_DATA_WIDTH-1:0] i_axi_rdata, // Read data input i_axi_rlast, // Read last output wire o_axi_rready, // Read Response ready // We'll share the clock and the reset input i_wb_cyc, input i_wb_stb, input i_wb_we, input [(AW-1):0] i_wb_addr, input [(DW-1):0] i_wb_data, input [(DW/8-1):0] i_wb_sel, output reg o_wb_ack, output wire o_wb_stall, output reg [(DW-1):0] o_wb_data, output reg o_wb_err, output wire [31:0] o_dbg ); //***************************************************************************** // Parameter declarations //***************************************************************************** localparam CTL_SIG_WIDTH = 3; // Control signal width localparam RD_STS_WIDTH = 16; // Read status signal width localparam WR_STS_WIDTH = 16; // Write status signal width //***************************************************************************** // Internal register and wire declarations //***************************************************************************** // Things we're not changing ... assign o_axi_awlen = 8'h0; // Burst length is one assign o_axi_awsize = 3'b101; // maximum bytes per burst is 32 assign o_axi_awburst = 2'b01; // Incrementing address (ignored) assign o_axi_arburst = 2'b01; // Incrementing address (ignored) assign o_axi_awlock = 1'b0; // Normal signaling assign o_axi_arlock = 1'b0; // Normal signaling assign o_axi_awcache = 4'h2; // Normal: no cache, no buffer assign o_axi_arcache = 4'h2; // Normal: no cache, no buffer assign o_axi_awprot = 3'b010; // Unpriviledged, unsecure, data access assign o_axi_arprot = 3'b010; // Unpriviledged, unsecure, data access assign o_axi_awqos = 4'h0; // Lowest quality of service (unused) assign o_axi_arqos = 4'h0; // Lowest quality of service (unused) // Command logic // Write address logic always @(posedge i_clk) o_axi_awvalid <= (!o_wb_stall)&&(i_wb_stb)&&(i_wb_we) ||(o_wb_stall)&&(o_axi_awvalid)&&(!i_axi_awready); generate if (DW == 32) begin always @(posedge i_clk) if (!o_wb_stall) // 26 bit address becomes 28 bit ... o_axi_awaddr <= { i_wb_addr[AW-1:2], 4'b00 }; end else if (DW == 128) begin always @(posedge i_clk) if (!o_wb_stall) // 28 bit address ... o_axi_awaddr <= { i_wb_addr[AW-1:0], 4'b00 }; end endgenerate reg [5:0] transaction_id; always @(posedge i_clk) if (!i_wb_cyc) transaction_id <= 6'h00; else if ((i_wb_stb)&&(~o_wb_stall)) transaction_id <= transaction_id + 6'h01; always @(posedge i_clk) if ((i_wb_stb)&&(~o_wb_stall)) o_axi_awid <= transaction_id; // Read address logic assign o_axi_arid = o_axi_awid; assign o_axi_araddr = o_axi_awaddr; assign o_axi_arlen = o_axi_awlen; assign o_axi_arsize = 3'b101; // maximum bytes per burst is 32 always @(posedge i_clk) o_axi_arvalid <= (!o_wb_stall)&&(i_wb_stb)&&(!i_wb_we) ||(o_wb_stall)&&(o_axi_arvalid)&&(!i_axi_arready); // Write data logic generate if (DW == 32) begin always @(posedge i_clk) if (!o_wb_stall) o_axi_wdata <= { i_wb_data, i_wb_data, i_wb_data, i_wb_data }; always @(posedge i_clk) if (!o_wb_stall) case(i_wb_addr[1:0]) 2'b00:o_axi_wstrb<={ 4'h0, 4'h0, 4'h0,i_wb_sel}; 2'b01:o_axi_wstrb<={ 4'h0, 4'h0,i_wb_sel, 4'h0}; 2'b10:o_axi_wstrb<={ 4'h0,i_wb_sel, 4'h0, 4'h0}; 2'b11:o_axi_wstrb<={i_wb_sel, 4'h0, 4'h0, 4'h0}; endcase end else if (DW == 128) begin always @(posedge i_clk) if (!o_wb_stall) o_axi_wdata <= i_wb_data; always @(posedge i_clk) if (!o_wb_stall) o_axi_wstrb <= i_wb_sel; end endgenerate assign o_axi_wlast = 1'b1; always @(posedge i_clk) o_axi_wvalid <= ((!o_wb_stall)&&(i_wb_stb)&&(i_wb_we)) ||(o_wb_stall)&&(o_axi_wvalid)&&(!i_axi_wready); // Read data channel / response logic assign o_axi_rready = 1'b1; assign o_axi_bready = 1'b1; wire w_fifo_full; generate if (STRICT_ORDER == 0) begin // Reorder FIFO // localparam LGFIFOLN = C_AXI_ID_WIDTH; localparam FIFOLN = (1<<LGFIFOLN); // FIFO reorder buffer reg [(LGFIFOLN-1):0] fifo_tail; reg [(C_AXI_DATA_WIDTH-1):0] reorder_fifo_data [0:(FIFOLN-1)]; reg [(FIFOLN-1):0] reorder_fifo_valid; reg [(FIFOLN-1):0] reorder_fifo_err; initial reorder_fifo_valid = 0; initial reorder_fifo_err = 0; if (DW == 32) begin reg [1:0] reorder_fifo_addr [0:(FIFOLN-1)]; reg [1:0] low_addr; always @(posedge i_clk) if ((i_wb_stb)&&(!o_wb_stall)) low_addr <= i_wb_addr[1:0]; always @(posedge i_clk) if ((o_axi_arvalid)&&(i_axi_arready)) reorder_fifo_addr[o_axi_arid] <= low_addr; always @(posedge i_clk) case(reorder_fifo_addr[fifo_tail][1:0]) 2'b00: o_wb_data <=reorder_fifo_data[fifo_tail][ 31: 0]; 2'b01: o_wb_data <=reorder_fifo_data[fifo_tail][ 63:32]; 2'b10: o_wb_data <=reorder_fifo_data[fifo_tail][ 95:64]; 2'b11: o_wb_data <=reorder_fifo_data[fifo_tail][127:96]; endcase end else if (DW == 128) begin always @(posedge i_clk) o_wb_data <= reorder_fifo_data[fifo_tail]; end wire [(LGFIFOLN-1):0] fifo_head; assign fifo_head = transaction_id; // Let's do some math to figure out where the FIFO head will // point to next, but let's also insist that it be LGFIFOLN // bits in size as well. This'll be part of the fifo_full // calculation below. wire [(LGFIFOLN-1):0] n_fifo_head, nn_fifo_head; assign n_fifo_head = fifo_head+1'b1; assign nn_fifo_head = { fifo_head[(LGFIFOLN-1):1]+1'b1, fifo_head[0] }; always @(posedge i_clk) begin if ((i_axi_rvalid)&&(o_axi_rready)) reorder_fifo_data[i_axi_rid]<= i_axi_rdata; if ((i_axi_rvalid)&&(o_axi_rready)) begin reorder_fifo_valid[i_axi_rid] <= 1'b1; reorder_fifo_err[i_axi_rid] <= i_axi_rresp[1]; end if ((i_axi_bvalid)&&(o_axi_bready)) begin reorder_fifo_valid[i_axi_bid] <= 1'b1; reorder_fifo_err[i_axi_bid] <= i_axi_bresp[1]; end if (reorder_fifo_valid[fifo_tail]) begin o_wb_ack <= 1'b1; o_wb_err <= reorder_fifo_err[fifo_tail]; fifo_tail <= fifo_tail + 6'h1; reorder_fifo_valid[fifo_tail] <= 1'b0; reorder_fifo_err[fifo_tail] <= 1'b0; end else begin o_wb_ack <= 1'b0; o_wb_err <= 1'b0; end if (!i_wb_cyc) begin reorder_fifo_valid <= {(FIFOLN){1'b0}}; reorder_fifo_err <= {(FIFOLN){1'b0}}; fifo_tail <= 6'h0; o_wb_err <= 1'b0; o_wb_ack <= 1'b0; end end // // The debug wires are set up for a 6-bit ID. In hind sight, // I only ever needed 5-bit ID's. Hence, let's expand those // five bit ID's for 6-bits so we can still fit nicely into // our 32-bit words. // wire [5:0] six_head, six_tail, six_rid, six_bid; assign six_head = {{(6-LGFIFOLN){1'b0}}, fifo_head }; assign six_tail = {{(6-LGFIFOLN){1'b0}}, fifo_tail }; assign six_rid = {{(6-LGFIFOLN){1'b0}}, i_axi_rid }; assign six_bid = {{(6-LGFIFOLN){1'b0}}, i_axi_bid }; assign o_dbg = { i_wb_stb, o_wb_stall, o_wb_ack, o_wb_err, six_head, six_tail, // 12 bits { ((i_axi_rvalid)&&(o_axi_rready)) ? six_rid : ((i_axi_bvalid)&&(o_axi_bready)) ? six_bid : 6'hf }, // 6 bits o_axi_arvalid, i_axi_arready, o_axi_awvalid, i_axi_awready, o_axi_wvalid, i_axi_wready, // 28 bits so far ... i_axi_rvalid, i_axi_bvalid, 2'b00 }; reg r_fifo_full; always @(posedge i_clk) begin if (!i_wb_cyc) r_fifo_full <= 1'b0; else if ((i_wb_stb)&&(~o_wb_stall) &&(reorder_fifo_valid[fifo_tail])) r_fifo_full <= (fifo_tail==n_fifo_head); else if ((i_wb_stb)&&(~o_wb_stall)) r_fifo_full <= (fifo_tail==nn_fifo_head); else if (reorder_fifo_valid[fifo_tail]) r_fifo_full <= 1'b0; else r_fifo_full <= (fifo_tail==n_fifo_head); end assign w_fifo_full = r_fifo_full; end else begin // // Strict ordering, but can only read every fourth addresses // assign w_fifo_full = 1'b0; always @(posedge i_clk) o_wb_data <= i_axi_rdata[31:0]; always @(posedge i_clk) o_wb_ack <= (i_wb_cyc)&&( ((i_axi_rvalid)&&(o_axi_rready)) ||((i_axi_bvalid)&&(o_axi_bready))); always @(posedge i_clk) o_wb_err <= (i_wb_cyc)&&((o_wb_err) ||((i_axi_rvalid)&&(i_axi_rresp[1])) ||((i_axi_bvalid)&&(i_axi_bresp[1]))); assign o_dbg = { i_wb_stb, o_wb_stall, o_wb_ack, o_wb_err, 12'h00, // 12 bits { ((i_axi_rvalid)&&(o_axi_rready)) ? i_axi_rid : ((i_axi_bvalid)&&(o_axi_bready)) ? i_axi_bid : 6'hf }, // 6 bits o_axi_arvalid, i_axi_arready, o_axi_awvalid, i_axi_awready, o_axi_wvalid, i_axi_wready, // 28 bits so far ... i_axi_rvalid, i_axi_bvalid, 2'b00 }; end endgenerate // Now, the difficult signal ... the stall signal // Let's build for a single cycle input ... and only stall if something // outgoing is valid and nothing is ready. assign o_wb_stall = (i_wb_cyc)&&( (w_fifo_full) ||((o_axi_awvalid)&&(!i_axi_awready)) ||((o_axi_wvalid )&&(!i_axi_wready )) ||((o_axi_arvalid)&&(!i_axi_arready))); endmodule