URL
https://opencores.org/ocsvn/openarty/openarty/trunk
Subversion Repositories openarty
[/] [openarty/] [trunk/] [sim/] [verilated/] [eqspiflashsim.cpp] - Rev 58
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: eqspiflashsim.cpp // // Project: OpenArty, an entirely open SoC based upon the Arty platform // // Purpose: This library simulates the operation of a Quad-SPI commanded // flash, such as the Micron N25Q128A used on the Arty development // board by Digilent. As such, it is defined by 16 MBytes of // memory (4 MWord). // // This simulator is useful for testing in a Verilator/C++ // environment, where this simulator can be used in place of // the actual hardware. // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2017, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // #include <stdio.h> #include <string.h> #include <assert.h> #include <stdlib.h> #include <stdint.h> #include "eqspiflashsim.h" static const unsigned DEVESD = 0x014, // MICROSECONDS = 200, // MILLISECONDS = MICROSECONDS * 1000, // SECONDS = MILLISECONDS * 1000, MICROSECONDS = 20, MILLISECONDS = MICROSECONDS * 10, SECONDS = MILLISECONDS * 10, tSHSL1 = 4, // S# deselect time after a read command tSHSL2 = 10, // S# deselect time after a non-read command tW = 1300 * MICROSECONDS, // write config cycle time tWNVCR = 200 * MILLISECONDS, // write nonvolatile-config cycle time tWVECR = 8, // write volatile enhanced config cycle time tBE = 32 * SECONDS, // Bulk erase time tDP = 10 * SECONDS, // Deep power down tRES = 30 * SECONDS, // Shall we artificially speed up this process? // These numbers are the "typical" times tPP = 500 * MICROSECONDS, // Page program time tSE = 700 * MILLISECONDS, // Sector erase time tSS = 250 * MILLISECONDS; // Subsector erase time // These are the maximum times // tW = 8300 * MICROSECONDS, // write config cycle time // tWNVCR = 3000 * MILLISECONDS, // write nonvolatile-config cycle time // tWVECR = 8, // write volatile enhanced config cycle time // tPP = 5000 * MICROSECONDS, // tSE = 3000 * MILLISECONDS; // tSS = 800 * MILLISECONDS; static const char IDSTR[20]= { 0x20, // Micron's ID, assigned by JEDEC (char)0xba, (char)0x18, // Memory type and capacity (char)0x10, // Length of data to follow (char)0xfe, (char)0xfd, // Extended device ID and device config info (char)0xfc, (char)0xfb, (char)0xfa, (char)0xf9, (char)0xf8, (char)0xf7, (char)0xf6, (char)0xf5, (char)0xf4, (char)0xf3, (char)0xf2, (char)0xf1, (char)0xf0, (char)0xef }; EQSPIFLASHSIM::EQSPIFLASHSIM(const int lglen, bool debug) { int nsectors; m_membytes = (1<<lglen); m_memmask = (m_membytes - 1); m_mem = new char[m_membytes]; m_pmem = new char[256]; m_otp = new char[65]; for(int i=0; i<65; i++) m_otp[i] = 0x0ff; m_otp[64] = 1; m_otp_wp = false; nsectors = m_membytes>>16; m_lockregs = new char[nsectors]; for(int i=0; i<nsectors; i++) m_lockregs[i] = 0; m_state = EQSPIF_IDLE; m_last_sck = 1; m_write_count = 0; m_ireg = m_oreg = 0; m_sreg = 0x01c; m_creg = 0x001; // Initial creg on delivery m_vconfig = 0x83; // Volatile configuration register m_nvconfig = 0x0fff; // Nonvolatile configuration register m_quad_mode = EQSPIF_QMODE_SPI; m_mode_byte = 0; m_flagreg = 0x0a5; m_debug = debug; memset(m_mem, 0x0ff, m_membytes); } void EQSPIFLASHSIM::load(const unsigned addr, const char *fname) { FILE *fp; size_t len, nr = 0; if (addr >= m_membytes) return; // return void // If not given, then length is from the given address until the end // of the flash memory len = m_membytes-addr*4; if (NULL != (fp = fopen(fname, "r"))) { nr = fread(&m_mem[addr*4], sizeof(char), len, fp); fclose(fp); if (nr == 0) { fprintf(stderr, "EQSPI-FLASH: Could not read %s\n", fname); perror("O/S Err:"); } } else { fprintf(stderr, "EQSPI-FLASH: Could not open %s\n", fname); perror("O/S Err:"); } for(unsigned i=nr; i<m_membytes; i++) m_mem[i] = 0x0ff; } void EQSPIFLASHSIM::load(const uint32_t offset, const char *data, const uint32_t len) { uint32_t moff = (offset & (m_memmask)); memcpy(&m_mem[moff], data, len); } #define QOREG(A) m_oreg = ((m_oreg & (~0x0ff))|(A&0x0ff)) int EQSPIFLASHSIM::operator()(const int csn, const int sck, const int dat) { // Keep track of a timer to determine when page program and erase // cycles complete. if (m_write_count > 0) { if (0 == (--m_write_count)) {// When done with erase/page pgm, // Clear the write in progress bit, together with the // write enable bit. m_sreg &= 0x0fc; if (m_debug) printf("Write complete, clearing WIP (inside SIM)\n"); } } if (csn) { m_last_sck = 1; m_ireg = 0; m_oreg = 0; if ((EQSPIF_PP == m_state)||(EQSPIF_QPP == m_state)) { // Start a page program if (m_debug) printf("EQSPI: Page Program write cycle begins\n"); if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07); if (m_debug) printf("EQSPI: pmem = %08lx\n", (unsigned long)m_pmem); assert((m_lockregs[(m_addr>>16)&0x0ff]&0x1)==0); assert((m_count & 7)==0); m_write_count = tPP; m_state = EQSPIF_IDLE; m_sreg &= (~EQSPIF_WEL_FLAG); m_sreg |= (EQSPIF_WIP_FLAG); for(int i=0; i<256; i++) { /* if (m_debug) printf("%02x: m_mem[%02x] = %02x &= %02x = %02x\n", i, (m_addr&(~0x0ff))+i, m_mem[(m_addr&(~0x0ff))+i]&0x0ff, m_pmem[i]&0x0ff, m_mem[(m_addr&(~0x0ff))+i]& m_pmem[i]&0x0ff); */ m_mem[(m_addr&(~0x0ff))+i] &= m_pmem[i]; } m_quad_mode = EQSPIF_QMODE_SPI; } else if (EQSPIF_WRCR == m_state) { if (m_debug) printf("Actually writing volatile config register: VCONFIG = 0x%04x\n", m_vconfig); if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07); m_state = EQSPIF_IDLE; } else if (EQSPIF_WRNVCONFIG == m_state) { if (m_debug) printf("Actually writing nonvolatile config register: VCONFIG = 0x%02x\n", m_nvconfig); m_write_count = tWNVCR; m_state = EQSPIF_IDLE; } else if (EQSPIF_WREVCONFIG == m_state) { if (m_debug) printf("Actually writing Enhanced volatile config register\n"); m_state = EQSPIF_IDLE; } else if (EQSPIF_WRSR == m_state) { if (m_debug) printf("Actually writing status register\n"); m_write_count = tW; m_state = EQSPIF_IDLE; m_sreg &= (~EQSPIF_WEL_FLAG); m_sreg |= (EQSPIF_WIP_FLAG); } else if (EQSPIF_WRLOCK == m_state) { if (m_debug) printf("Actually writing lock register\n"); m_write_count = tW; m_state = EQSPIF_IDLE; } else if (EQSPIF_CLRFLAGS == m_state) { if (m_debug) printf("Actually clearing the flags register bits\n"); m_state = EQSPIF_IDLE; m_flagreg &= 0x09f; } else if (m_state == EQSPIF_SUBSECTOR_ERASE) { if (m_debug) printf("Actually Erasing subsector, from %08x\n", m_addr); if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07); assert(((m_count & 7)==0)&&(m_count == 32)); assert((m_lockregs[(m_addr>>16)&0x0ff]&0x1)==0); m_write_count = tSS; m_state = EQSPIF_IDLE; m_sreg &= (~EQSPIF_WEL_FLAG); m_sreg |= (EQSPIF_WIP_FLAG); m_addr &= (-1<<12); for(int i=0; i<(1<<12); i++) m_mem[m_addr + i] = 0x0ff; if (m_debug) printf("Now waiting %d ticks delay\n", m_write_count); } else if (m_state == EQSPIF_SECTOR_ERASE) { if (m_debug) printf("Actually Erasing sector, from %08x\n", m_addr); m_write_count = tSE; if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07); assert(((m_count & 7)==0)&&(m_count == 32)); assert((m_lockregs[(m_addr>>16)&0x0ff]&0x1)==0); m_state = EQSPIF_IDLE; m_sreg &= (~EQSPIF_WEL_FLAG); m_sreg |= (EQSPIF_WIP_FLAG); m_addr &= (-1<<16); for(int i=0; i<(1<<16); i++) m_mem[m_addr + i] = 0x0ff; if (m_debug) printf("Now waiting %d ticks delay\n", m_write_count); } else if (m_state == EQSPIF_BULK_ERASE) { m_write_count = tBE; m_state = EQSPIF_IDLE; m_sreg &= (~EQSPIF_WEL_FLAG); m_sreg |= (EQSPIF_WIP_FLAG); // Should I be checking the lock register(s) here? for(unsigned i=0; i<m_membytes; i++) m_mem[i] = 0x0ff; } else if (m_state == EQSPIF_PROGRAM_OTP) { // Program the One-Time Programmable (OTP memory if (m_debug) printf("EQSPI: OTP Program write cycle begins\n"); if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07); // assert((m_lockregs[(m_addr>>16)&0x0ff]&0x1)==0); assert((m_count & 7)==0); m_write_count = tPP; // OTP cycle time as well m_state = EQSPIF_IDLE; m_sreg &= (~EQSPIF_WEL_FLAG); m_sreg |= (EQSPIF_WIP_FLAG); for(int i=0; i<65; i++) m_otp[i] &= m_pmem[i]; m_otp_wp = ((m_otp[64]&1)==0); /* } else if (m_state == EQSPIF_DEEP_POWER_DOWN) { m_write_count = tDP; m_state = EQSPIF_IDLE; } else if (m_state == EQSPIF_RELEASE) { m_write_count = tRES; m_state = EQSPIF_IDLE; */ } else if (m_state == EQSPIF_QUAD_READ) { m_state = EQSPIF_IDLE; if (m_mode_byte!=0) m_quad_mode = EQSPIF_QMODE_SPI; else { if (m_quad_mode == EQSPIF_QMODE_SPI_ADDR) m_quad_mode = EQSPIF_QMODE_SPI; m_state = EQSPIF_XIP; } } m_oreg = 0x0fe; m_count= 0; int out = m_nxtout[3]; m_nxtout[3] = m_nxtout[2]; m_nxtout[2] = m_nxtout[1]; m_nxtout[1] = m_nxtout[0]; m_nxtout[0] = dat; return out; } else if ((!m_last_sck)||(sck == m_last_sck)) { // Only change on the falling clock edge // printf("SFLASH-SKIP, CLK=%d -> %d\n", m_last_sck, sck); m_last_sck = sck; int out = m_nxtout[3]; m_nxtout[3] = m_nxtout[2]; m_nxtout[2] = m_nxtout[1]; m_nxtout[1] = m_nxtout[0]; if (m_quad_mode) m_nxtout[0] = (m_oreg>>8)&0x0f; else // return ((m_oreg & 0x0100)?2:0) | (dat & 0x0d); m_nxtout[0] = (m_oreg & 0x0100)?2:0; return out; } // We'll only get here if ... // last_sck = 1, and sck = 0, thus transitioning on the // negative edge as with everything else in this interface if (m_quad_mode) { m_ireg = (m_ireg << 4) | (dat & 0x0f); m_count+=4; m_oreg <<= 4; } else { m_ireg = (m_ireg << 1) | (dat & 1); m_count++; m_oreg <<= 1; } // printf("PROCESS, COUNT = %d, IREG = %02x\n", m_count, m_ireg); if (m_state == EQSPIF_XIP) { assert(m_quad_mode); if (m_count == 24) { if (m_debug) printf("EQSPI: Entering from Quad-Read Idle to Quad-Read\n"); if (m_debug) printf("EQSPI: QI/O Idle Addr = %02x\n", m_ireg&0x0ffffff); m_addr = (m_ireg) & m_memmask; assert((m_addr & (~(m_memmask)))==0); } else if (m_count == 24 + 4*8) {// After the idle bits m_state = EQSPIF_QUAD_READ; if (m_debug) printf("EQSPI: QI/O Dummy = %04x\n", m_ireg); m_mode_byte = (m_ireg>>24) & 0x10; } m_oreg = 0; } else if (m_count == 8) { QOREG(0x0a5); // printf("SFLASH-CMD = %02x\n", m_ireg & 0x0ff); // Figure out what command we've been given if (m_debug) printf("SPI FLASH CMD %02x\n", m_ireg&0x0ff); switch(m_ireg & 0x0ff) { case 0x01: // Write status register if (2 !=(m_sreg & 0x203)) { if (m_debug) printf("EQSPI: WEL not set, cannot write status reg\n"); m_state = EQSPIF_INVALID; } else m_state = EQSPIF_WRSR; break; case 0x02: // Normal speed (normal SPI, 1wire MOSI) Page program if (2 != (m_sreg & 0x203)) { if (m_debug) printf("EQSPI: Cannot program at this time, SREG = %x\n", m_sreg); m_state = EQSPIF_INVALID; } else { m_state = EQSPIF_PP; if (m_debug) printf("PAGE-PROGRAM COMMAND ACCEPTED\n"); } break; case 0x03: // Read data bytes // Our clock won't support this command, so go // to an invalid state if (m_debug) printf("EQSPI INVALID: This sim does not support slow reading\n"); m_state = EQSPIF_INVALID; break; case 0x04: // Write disable m_state = EQSPIF_IDLE; m_sreg &= (~EQSPIF_WEL_FLAG); break; case 0x05: // Read status register m_state = EQSPIF_RDSR; if (m_debug) printf("EQSPI: READING STATUS REGISTER: %02x\n", m_sreg); QOREG(m_sreg); break; case 0x06: // Write enable m_state = EQSPIF_IDLE; m_sreg |= EQSPIF_WEL_FLAG; if (m_debug) printf("EQSPI: WRITE-ENABLE COMMAND ACCEPTED\n"); break; case 0x0b: // Here's the read that we support if (m_debug) printf("EQSPI: FAST-READ (single-bit)\n"); m_state = EQSPIF_FAST_READ; break; case 0x20: // Subsector Erase if (2 != (m_sreg & 0x203)) { if (m_debug) printf("EQSPI: WEL not set, cannot do a subsector erase\n"); m_state = EQSPIF_INVALID; assert(0&&"WEL not set"); } else { m_state = EQSPIF_SUBSECTOR_ERASE; if (m_debug) printf("EQSPI: SUBSECTOR_ERASE COMMAND\n"); } break; case 0x32: // QUAD Page program, 4 bits at a time if (2 != (m_sreg & 0x203)) { if (m_debug) printf("EQSPI: Cannot program at this time, SREG = %x\n", m_sreg); m_state = EQSPIF_INVALID; assert(0&&"WEL not set"); } else { m_state = EQSPIF_QPP; if (m_debug) printf("EQSPI: QUAD-PAGE-PROGRAM COMMAND ACCEPTED\n"); if (m_debug) printf("EQSPI: pmem = %08lx\n", (unsigned long)m_pmem); } break; case 0x42: // Program OTP array if (2 != (m_sreg & 0x203)) { if (m_debug) printf("EQSPI: WEL not set, cannot program OTP\n"); m_state = EQSPIF_INVALID; } else if (m_otp_wp) { if (m_debug) printf("EQSPI: OTP Write protect is set, cannot program OTP ever again\n"); m_state = EQSPIF_INVALID; } else m_state = EQSPIF_PROGRAM_OTP; break; case 0x4b: // Read OTP array m_state = EQSPIF_READ_OTP; QOREG(0); if (m_debug) printf("EQSPI: Read OTP array command\n"); break; case 0x50: // Clear flag status register m_state = EQSPIF_CLRFLAGS; if (m_debug) printf("EQSPI: Clearing FLAGSTATUS REGISTER: %02x\n", m_flagreg); QOREG(m_flagreg); break; case 0x61: // WRITE Enhanced volatile config register m_state = EQSPIF_WREVCONFIG; if (m_debug) printf("EQSPI: WRITING EVCONFIG REGISTER\n"); break; case 0x65: // Read Enhanced volatile config register m_state = EQSPIF_RDEVCONFIG; if (m_debug) printf("EQSPI: READING EVCONFIG REGISTER: %02x\n", m_evconfig); QOREG(m_evconfig); break; case 0x06b: m_state = EQSPIF_QUAD_OREAD_CMD; // m_quad_mode = true; // Not yet, need to wait past dummy registers break; case 0x70: // Read flag status register m_state = EQSPIF_RDFLAGS; if (m_debug) printf("EQSPI: READING FLAGSTATUS REGISTER: %02x\n", m_flagreg); QOREG(m_flagreg); break; case 0x81: // Write volatile config register m_state = EQSPIF_WRCR; if (m_debug) printf("EQSPI: WRITING VOLATILE CONFIG REGISTER: %02x\n", m_vconfig); break; case 0x85: // Read volatile config register m_state = EQSPIF_RDCR; if (m_debug) printf("EQSPI: READING VOLATILE CONFIG REGISTER: %02x\n", m_vconfig); QOREG(m_vconfig); break; case 0x9e: // Read ID (fall through) case 0x9f: // Read ID m_state = EQSPIF_RDID; m_addr = 0; if (m_debug) printf("EQSPI: READING ID\n"); QOREG(IDSTR[0]); break; case 0xb1: // Write nonvolatile config register m_state = EQSPIF_WRNVCONFIG; if (m_debug) printf("EQSPI: WRITING NVCONFIG REGISTER: %02x\n", m_nvconfig); break; case 0xb5: // Read nonvolatile config register m_state = EQSPIF_RDNVCONFIG; if (m_debug) printf("EQSPI: READING NVCONFIG REGISTER: %02x\n", m_nvconfig); QOREG(m_nvconfig>>8); break; case 0xc7: // Bulk Erase if (2 != (m_sreg & 0x203)) { if (m_debug) printf("EQSPI: WEL not set, cannot erase device\n"); m_state = EQSPIF_INVALID; } else m_state = EQSPIF_BULK_ERASE; break; case 0xd8: // Sector Erase if (2 != (m_sreg & 0x203)) { if (m_debug) printf("EQSPI: WEL not set, cannot erase sector\n"); m_state = EQSPIF_INVALID; assert(0&&"WEL not set"); } else { m_state = EQSPIF_SECTOR_ERASE; if (m_debug) printf("EQSPI: SECTOR_ERASE COMMAND\n"); } break; case 0xe5: // Write lock register m_state = EQSPIF_WRLOCK; if (m_debug) printf("EQSPI: WRITING LOCK REGISTER\n"); break; case 0xe8: // Read lock register m_state = EQSPIF_RDLOCK; if (m_debug) printf("EQSPI: READ LOCK REGISTER (Waiting on address)\n"); break; case 0x0eb: // Here's the (other) read that we support m_state = EQSPIF_QUAD_IOREAD_CMD; m_quad_mode = EQSPIF_QMODE_QSPI_ADDR; break; default: printf("EQSPI: UNRECOGNIZED SPI FLASH CMD: %02x\n", m_ireg&0x0ff); m_state = EQSPIF_INVALID; assert(0 && "Unrecognized command\n"); break; } } else if ((0 == (m_count&0x07))&&(m_count != 0)) { QOREG(0); switch(m_state) { case EQSPIF_IDLE: printf("TOO MANY CLOCKS, SPIF in IDLE\n"); break; case EQSPIF_WRSR: if (m_count == 16) { m_sreg = (m_sreg & 0x07c) | (m_ireg & 0x07c); if (m_debug) printf("Request to set sreg to 0x%02x\n", m_ireg&0x0ff); } else { printf("TOO MANY CLOCKS FOR WRR!!!\n"); exit(-2); m_state = EQSPIF_IDLE; } break; case EQSPIF_WRCR: // Write volatile config register, 0x81 if (m_count == 8+8+8) { m_vconfig = m_ireg & 0x0ff; if (m_debug) printf("Setting volatile config register to %08x\n", m_vconfig); assert((m_vconfig & 0xfb)==0x8b); } break; case EQSPIF_WRNVCONFIG: // Write nonvolatile config register if (m_count == 8+8+8) { m_nvconfig = m_ireg & 0x0ffdf; if (m_debug) printf("Setting nonvolatile config register to %08x\n", m_nvconfig); assert((m_nvconfig & 0xffc5)==0x8fc5); } break; case EQSPIF_WREVCONFIG: // Write enhanced volatile config reg if (m_count == 8+8) { m_evconfig = m_ireg & 0x0ff; if (m_debug) printf("Setting enhanced volatile config register to %08x\n", m_evconfig); assert((m_evconfig & 0x0d7)==0xd7); } break; case EQSPIF_WRLOCK: if (m_count == 32) { m_addr = (m_ireg>>24)&0x0ff; if ((m_lockregs[m_addr]&2)==0) m_lockregs[m_addr] = m_ireg&3; if (m_debug) printf("Setting lock register[%02x] to %d\n", m_addr, m_lockregs[m_addr]); } break; case EQSPIF_RDLOCK: if (m_count == 24) { m_addr = (m_ireg>>16)&0x0ff; QOREG(m_lockregs[m_addr]); if (m_debug) printf("Reading lock register[%02x]: %d\n", m_addr, m_lockregs[m_addr]); } else QOREG(m_lockregs[m_addr]); break; case EQSPIF_CLRFLAGS: assert(0 && "Too many clocks for CLSR command!!\n"); break; case EQSPIF_READ_OTP: if (m_count == 32) { m_addr = m_ireg & 0x0ffffff; assert(m_addr < 65); m_otp[64] = (m_otp_wp)?0:1; if (m_debug) printf("READOTP, SETTING ADDR = %08x (%02x:%02x:%02x:%02x)\n", m_addr, ((m_addr<65)?m_otp[m_addr]:0)&0x0ff, ((m_addr<64)?m_otp[m_addr+1]:0)&0x0ff, ((m_addr<63)?m_otp[m_addr+2]:0)&0x0ff, ((m_addr<62)?m_otp[m_addr+3]:0)&0x0ff); if (m_debug) printf("READOTP, Array is %s, m_otp[64] = %d\n", (m_otp_wp)?"Locked":"Unlocked", m_otp[64]); QOREG(m_otp[m_addr]); } else if (m_count < 40) { } // else if (m_count == 40) else if ((m_count&7)==0) { if (m_debug) printf("READOTP, ADDR = %08x\n", m_addr); if (m_addr < 65) QOREG(m_otp[m_addr]); else QOREG(0); if (m_debug) printf("EQSPI: READING OTP, %02x%s\n", (m_addr<65)?m_otp[m_addr]&0x0ff:0xfff, (m_addr > 65)?"-- PAST OTP LENGTH!":""); m_addr++; } break; case EQSPIF_RDID: if ((m_count&7)==0) { m_addr++; if (m_debug) printf("READID, ADDR = %08x\n", m_addr); if (m_addr < sizeof(IDSTR)) QOREG(IDSTR[m_addr]); else QOREG(0); if (m_debug) printf("EQSPI: READING ID, %02x%s\n", IDSTR[m_addr]&0x0ff, (m_addr >= sizeof(IDSTR))?"-- PAST ID LENGTH!":""); } break; case EQSPIF_RDSR: // printf("Read SREG = %02x, wait = %08x\n", m_sreg, // m_write_count); QOREG(m_sreg); break; case EQSPIF_RDCR: if (m_debug) printf("Read VCONF = %02x\n", m_vconfig); QOREG(m_creg); break; case EQSPIF_FAST_READ: if (m_count < 32) { QOREG(0x0c3); } else if (m_count == 32) { m_addr = m_ireg & m_memmask; if (m_debug) printf("FAST READ, ADDR = %08x\n", m_addr); QOREG(0x0c3); if (m_addr & (~(m_memmask))) { printf("EQSPI: ADDR = %08x ? !!\n", m_addr); } assert((m_addr & (~(m_memmask)))==0); } else if ((m_count >= 40)&&(0 == (m_sreg&0x01))) { if ((m_debug)&&(m_count == 40)) printf("DUMMY BYTE COMPLETE ...\n"); QOREG(m_mem[m_addr++]); if (m_debug) printf("SPIF[%08x] = %02x -> %02x\n", m_addr-1, m_mem[m_addr-1]&0x0ff, m_oreg); } else if (0 != (m_sreg&0x01)) { m_oreg = 0; if (m_debug) printf("CANNOT READ WHEN WRITE IN PROGRESS, m_sreg = %02x\n", m_sreg); } else printf("How did I get here, m_count = %d\n", m_count); break; case EQSPIF_QUAD_IOREAD_CMD: if (m_count == 32) { m_addr = m_ireg & m_memmask; if (m_debug) printf("EQSPI: QUAD I/O READ, ADDR = %06x (%02x:%02x:%02x:%02x)\n", m_addr, (m_addr<0x1000000)?(m_mem[m_addr]&0x0ff):0, (m_addr<0x0ffffff)?(m_mem[m_addr+1]&0x0ff):0, (m_addr<0x0fffffe)?(m_mem[m_addr+2]&0x0ff):0, (m_addr<0x0fffffd)?(m_mem[m_addr+3]&0x0ff):0); assert((m_addr & (~(m_memmask)))==0); } else if (m_count == 8+24+8*4) { QOREG(m_mem[m_addr++]); m_quad_mode = EQSPIF_QMODE_QSPI_ADDR; m_mode_byte = (m_ireg & 0x080); m_state = EQSPIF_QUAD_READ; } else { m_oreg = 0; } break; case EQSPIF_QUAD_OREAD_CMD: if (m_count == 8+24) { m_addr = m_ireg & m_memmask; // printf("FAST READ, ADDR = %08x\n", m_addr); if (m_debug) printf("EQSPI: QUAD READ, ADDR = %06x (%02x:%02x:%02x:%02x)\n", m_addr, (m_addr<0x1000000)?(m_mem[m_addr]&0x0ff):0, (m_addr<0x0ffffff)?(m_mem[m_addr+1]&0x0ff):0, (m_addr<0x0fffffe)?(m_mem[m_addr+2]&0x0ff):0, (m_addr<0x0fffffd)?(m_mem[m_addr+3]&0x0ff):0); assert((m_addr & (~(m_memmask)))==0); } else if (m_count == 8+24+4*8) { QOREG(m_mem[m_addr]); m_quad_mode = EQSPIF_QMODE_SPI_ADDR; m_mode_byte = (m_ireg & 0x080); if (m_debug) printf("EQSPI: (QUAD) MODE BYTE = %02x\n", m_mode_byte); m_state = EQSPIF_QUAD_READ; } break; case EQSPIF_QUAD_READ: if ((m_count >= 64)&&(0 == (m_sreg&0x01))) { QOREG(m_mem[m_addr++]); // printf("EQSPIF[%08x]/QR = %02x\n", m_addr-1, m_oreg & 0x0ff); } else { m_oreg = 0; if (m_debug) printf("EQSPI/QR ... m_count = %d\n", m_count); } break; case EQSPIF_PP: if (m_count == 32) { m_addr = m_ireg & m_memmask; if (m_debug) printf("EQSPI: PAGE-PROGRAM ADDR = %06x\n", m_addr); assert((m_addr & (~(m_memmask)))==0); // m_page = m_addr >> 8; for(int i=0; i<256; i++) m_pmem[i] = 0x0ff; } else if (m_count >= 40) { m_pmem[m_addr & 0x0ff] = m_ireg & 0x0ff; // printf("EQSPI: PMEM[%02x] = 0x%02x -> %02x\n", m_addr & 0x0ff, m_ireg & 0x0ff, (m_pmem[(m_addr & 0x0ff)]&0x0ff)); m_addr = (m_addr & (~0x0ff)) | ((m_addr+1)&0x0ff); } break; case EQSPIF_QPP: if (m_count == 32) { m_addr = m_ireg & m_memmask; m_quad_mode = EQSPIF_QMODE_SPI_ADDR; if (m_debug) printf("EQSPI/QR: PAGE-PROGRAM ADDR = %06x\n", m_addr); assert((m_addr & (~(m_memmask)))==0); for(int i=0; i<256; i++) m_pmem[i] = 0x0ff; } else if (m_count >= 40) { if (m_debug) printf("EQSPI: PROGRAM[%06x] = %02x\n", m_addr, m_ireg & 0x0ff); m_pmem[m_addr & 0x0ff] = m_ireg & 0x0ff; m_addr = (m_addr & (~0x0ff)) | ((m_addr+1)&0x0ff); } break; case EQSPIF_SUBSECTOR_ERASE: if (m_count == 32) { m_addr = m_ireg & 0x0fff000; if (m_debug) printf("SUBSUBSECTOR_ERASE ADDRESS = %08x\n", m_addr); assert((m_addr & 0xff000000)==0); } break; case EQSPIF_SECTOR_ERASE: if (m_count == 32) { m_addr = m_ireg & 0x0ff0000; if (m_debug) printf("SECTOR_ERASE ADDRESS = %08x\n", m_addr); assert((m_addr & 0xf000000)==0); } break; case EQSPIF_PROGRAM_OTP: if (m_count == 32) { m_addr = m_ireg & 0x0ff; for(int i=0; i<65; i++) m_pmem[i] = 0x0ff; } else if ((m_count >= 40)&&(m_addr < 65)) { m_pmem[m_addr++] = m_ireg & 0x0ff; } break; /* case EQSPIF_RELEASE: if (m_count >= 32) { QOREG(DEVESD); } break; */ default: printf("EQSPI ... DEFAULT OP???\n"); QOREG(0xff); break; } } // else printf("SFLASH->count = %d\n", m_count); m_last_sck = sck; int out = m_nxtout[3]; m_nxtout[3] = m_nxtout[2]; m_nxtout[2] = m_nxtout[1]; m_nxtout[1] = m_nxtout[0]; if (m_quad_mode) m_nxtout[0] = (m_oreg>>8)&0x0f; else m_nxtout[0] = (m_oreg & 0x0100)?2:0; return out; }