URL
https://opencores.org/ocsvn/openarty/openarty/trunk
Subversion Repositories openarty
[/] [openarty/] [trunk/] [sw/] [board/] [exstartup.c] - Rev 36
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: exstartup.c // // Project: OpenArty, an entirely open SoC based upon the Arty platform // // Purpose: A fun example program that runs on the Arty, just to show // that the minimum set of peripherals (LEDs, color LEDs, buttons, // switches, etc.) work. // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // #include "artyboard.h" #include "zipsys.h" asm("\t.section\t.start\n" "\t.global\t_start\n" "_start:\n" "\tLDI\t_top_of_stack,SP\n" "\tMOV\t_after_bootloader(PC),R0\n" "\tBRA\tbootloader\n" "_after_bootloader:\n" "\tLDI\t_top_of_stack,SP\n" "\tOR\t0x4000,CC\n" // Clear the data cache "\tMOV\t_kernel_exit(PC),R0\n" "\tBRA\tentry\n" "_kernel_exit:\n" "\tHALT\n" "\tBRA\t_kernel_exit\n" "\t.section\t.text"); extern int _sdram_image_end, _sdram_image_start, _sdram, _blkram, _flash, _bss_image_end, _kernel_image_start, _kernel_image_end; extern void bootloader(void) __attribute__ ((section (".boot"))); // #define USE_DMA void bootloader(void) { int zero = 0; #ifdef USE_DMA zip->dma.ctrl= DMACLEAR; zip->dma.rd = _kernel_image_start; if (_kernel_image_end != _sdram_image_start) { zip->dma.len = _kernel_image_end - _blkram; zip->dma.wr = _blkram; zip->dma.ctrl= DMACCOPY; zip->pic = SYSINT_DMAC; while((zip->pic & SYSINT_DMAC)==0) ; } zip->dma.len = &_sdram_image_end - _sdram; zip->dma.wr = _sdram; zip->dma.ctrl= DMACCOPY; zip->pic = SYSINT_DMAC; while((zip->pic & SYSINT_DMAC)==0) ; if (_bss_image_end != _sdram_image_end) { zip->dma.len = _bss_image_end - _sdram_image_end; zip->dma.rd = &zero; // zip->dma.wr // Keeps the same value zip->dma.ctrl = DMACCOPY; zip->pic = SYSINT_DMAC; while((zip->pic & SYSINT_DMAC)==0) ; } #else int *rdp = &_kernel_image_start, *wrp = &_blkram; // // Load any part of the image into block RAM, but *only* if there's a // block RAM section in the image. Based upon our LD script, the // block RAM should be filled from _blkram to _kernel_image_end. // It starts at _kernel_image_start --- our last valid address within // the flash address region. // if (&_kernel_image_end != &_sdram_image_start) { for(int i=0; i< &_kernel_image_end - &_blkram; i++) *wrp++ = *rdp++; } // // Now, we move on to the SDRAM image. We'll here load into SDRAM // memory up to the end of the SDRAM image, _sdram_image_end. // As with the last pointer, this one is also created for us by the // linker. // wrp = &_sdram; for(int i=0; i< &_sdram_image_end - &_sdram; i++) *wrp++ = *rdp++; // // Finally, we load BSS. This is the segment that only needs to be // cleared to zero. It is available for global variables, but some // initialization is expected within it. We start writing where // the valid SDRAM context, i.e. the non-zero contents, end. // for(int i=0; i<&_bss_image_end - &_sdram_image_end; i++) *wrp++ = 0; #endif } void idle_task(void) { while(1) zip_idle(); } void entry(void) { const unsigned red = 0x0ff0000, green = 0x0ff00, blue = 0x0ff, white = 0x070707, black = 0, dimgreen = 0x1f00, second = 81250000; int i, sw; int user_context[16]; for(i=0; i<15; i++) user_context[i] = 0; user_context[15] = (unsigned)idle_task; zip_restore_context(user_context); for(i=0; i<4; i++) sys->io_clrled[i] = red; sys->io_ledctrl = 0x0ff; // Clear the PIC // // Acknowledge all interrupts, turn off all interrupts // zip->pic = 0x7fff7fff; while(sys->io_pwrcount < (second >> 4)) ; // Repeating timer, every 250ms zip->tma = (second/4) | 0x80000000; // zip->tma = 1024 | 0x80000000; // Restart the PIC -- listening for SYSINT_TMA only zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; zip_rtu(); zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; sys->io_clrled[0] = green; sys->io_ledctrl = 0x010; zip_rtu(); zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; sys->io_clrled[0] = dimgreen; sys->io_clrled[1] = green; sys->io_scope[0].s_ctrl = 32 | 0x80000000; // SCOPE_TRIGGER; sys->io_ledctrl = 0x020; zip_rtu(); zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; sys->io_clrled[1] = dimgreen; sys->io_clrled[2] = green; sys->io_ledctrl = 0x040; zip_rtu(); zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; sys->io_clrled[2] = dimgreen; sys->io_clrled[3] = green; sys->io_ledctrl = 0x080; zip_rtu(); zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; sys->io_clrled[3] = dimgreen; zip_rtu(); zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; for(i=0; i<4; i++) sys->io_clrled[i] = black; // Wait one second ... for(i=0; i<4; i++) { zip_rtu(); zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; } sw = sys->io_btnsw & 0x0f; for(int i=0; i<4; i++) sys->io_clrled[i] = (sw & (1<<i)) ? white : black; // Wait another two second ... for(i=0; i<8; i++) { zip_rtu(); zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; } // Blink all the LEDs // First turn them on sys->io_ledctrl = 0x0ff; // Then wait a quarter second zip_rtu(); zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; // Then turn the back off sys->io_ledctrl = 0x0f0; // and wait another quarter second zip_rtu(); zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; // Now, read buttons, and flash an LED on any button being held // down ... ? neat? // zip->tma = 20000000; // 1/4 second -- already set while(1) { unsigned btn, ledc; zip_rtu(); zip->pic = EINT(SYSINT_TMA)|SYSINT_TMA; // If the button is pressed, toggle the LED // Otherwise, turn the LED off. // // First, get all the pressed buttons btn = (sys->io_btnsw >> 4) & 0x0f; // Now, acknowledge the button presses that we just read sys->io_btnsw = (btn<<4); // Of any LEDs that are on, or buttons on, toggle their values ledc = (sys->io_ledctrl)&0x0f; ledc = (ledc | btn)&0x0f ^ ledc; // Make sure we set everything ledc |= 0x0f0; // Now issue the command sys->io_ledctrl = ledc; // That way, at the end, the toggle will leave them in the // off position. // sys->io_ledctrl = 0xf0 | ((sys->io_ledctrl&1)^1); sw = sys->io_btnsw & 0x0f; for(int i=0; i<4; i++) sys->io_clrled[i] = (sw & (1<<i)) ? white : black; } zip_halt(); }
Go to most recent revision | Compare with Previous | Blame | View Log