URL
https://opencores.org/ocsvn/openarty/openarty/trunk
Subversion Repositories openarty
[/] [openarty/] [trunk/] [sw/] [host/] [zipload.cpp] - Rev 51
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: zipload.cpp // // Project: OpenArty, an entirely open SoC based upon the Arty platform // // Purpose: To load a program for the ZipCPU into memory, whether flash // or SDRAM. This requires a working/running configuration // in order to successfully load. // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2017, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // #include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <strings.h> #include <ctype.h> #include <string.h> #include <signal.h> #include <assert.h> #include "port.h" #include "llcomms.h" #include "regdefs.h" #include "flashdrvr.h" #include "zipelf.h" #include "byteswap.h" FPGA *m_fpga; void usage(void) { printf("USAGE: zipload [-hr] <zip-program-file>\n"); printf("\n" "\t-h\tDisplay this usage statement\n" "\t-r\tStart the ZipCPU running from the address in the program file\n"); } int main(int argc, char **argv) { int skp=0; bool start_when_finished = false, verbose = false; unsigned entry = 0; FLASHDRVR *flash = NULL; const char *bitfile = NULL, *altbitfile = NULL, *execfile = NULL; if (argc < 2) { usage(); exit(EXIT_SUCCESS); } skp=1; for(int argn=0; argn<argc-skp; argn++) { if (argv[argn+skp][0] == '-') { switch(argv[argn+skp][1]) { case 'h': usage(); exit(EXIT_SUCCESS); break; case 'r': start_when_finished = true; break; case 'v': verbose = true; break; default: fprintf(stderr, "Unknown option, -%c\n\n", argv[argn+skp][0]); usage(); exit(EXIT_FAILURE); break; } skp++; argn--; } else { // Anything here must be either the program to load, // or a bit file to load argv[argn] = argv[argn+skp]; } } argc -= skp; for(int argn=0; argn<argc; argn++) { if (iself(argv[argn])) { if (execfile) { printf("Too many executable files given, %s and %s\n", execfile, argv[argn]); usage(); exit(EXIT_FAILURE); } execfile = argv[argn]; } else { // if (isbitfile(argv[argn])) if (!bitfile) bitfile = argv[argn]; else if (!altbitfile) altbitfile = argv[argn]; else { printf("Unknown file name or too many files, %s\n", argv[argn]); usage(); exit(EXIT_FAILURE); } } } if ((execfile == NULL)&&(bitfile == NULL)) { printf("No executable or bit file(s) given!\n\n"); usage(); exit(EXIT_FAILURE); } if ((bitfile)&&(access(bitfile,R_OK)!=0)) { // If there's no code file, or the code file cannot be opened fprintf(stderr, "Cannot open bitfile, %s\n", bitfile); exit(EXIT_FAILURE); } if ((altbitfile)&&(access(altbitfile,R_OK)!=0)) { // If there's no code file, or the code file cannot be opened fprintf(stderr, "Cannot open alternate bitfile, %s\n", altbitfile); exit(EXIT_FAILURE); } if ((execfile)&&(access(execfile,R_OK)!=0)) { // If there's no code file, or the code file cannot be opened fprintf(stderr, "Cannot open executable, %s\n", execfile); exit(EXIT_FAILURE); } const char *codef = (argc>0)?argv[0]:NULL; char *fbuf = new char[FLASHLEN]; // Set the flash buffer to all ones memset(fbuf, -1, FLASHLEN); FPGAOPEN(m_fpga); // Make certain we can talk to the FPGA try { unsigned v = m_fpga->readio(R_VERSION); if (v < 0x20170000) { fprintf(stderr, "Could not communicate with board (invalid version)\n"); exit(EXIT_FAILURE); } } catch(BUSERR b) { fprintf(stderr, "Could not communicate with board (BUSERR when reading VERSION)\n"); exit(EXIT_FAILURE); } // Halt the CPU try { printf("Halting the CPU\n"); m_fpga->writeio(R_ZIPCTRL, CPU_HALT|CPU_RESET); } catch(BUSERR b) { fprintf(stderr, "Could not halt the CPU (BUSERR)\n"); exit(EXIT_FAILURE); } flash = new FLASHDRVR(m_fpga); if (codef) try { ELFSECTION **secpp = NULL, *secp; if(iself(codef)) { // zip-readelf will help with both of these ... elfread(codef, entry, secpp); } else { fprintf(stderr, "ERR: %s is not in ELF format\n", codef); exit(EXIT_FAILURE); } printf("Loading: %s\n", codef); // assert(secpp[1]->m_len = 0); for(int i=0; secpp[i]->m_len; i++) { bool valid = false; secp= secpp[i]; // Make sure our section is either within block RAM if ((secp->m_start >= MEMBASE) &&(secp->m_start+secp->m_len <= MEMBASE+MEMLEN)) valid = true; // Flash if ((secp->m_start >= RESET_ADDRESS) &&(secp->m_start+secp->m_len <= EQSPIFLASH+FLASHLEN)) valid = true; // Or SDRAM if ((secp->m_start >= RAMBASE) &&(secp->m_start+secp->m_len <= RAMBASE+RAMLEN)) valid = true; if (!valid) { fprintf(stderr, "No such memory on board: 0x%08x - %08x\n", secp->m_start, secp->m_start+secp->m_len); exit(EXIT_FAILURE); } } unsigned startaddr = RESET_ADDRESS, codelen = 0; for(int i=0; secpp[i]->m_len; i++) { secp = secpp[i]; if ( ((secp->m_start >= RAMBASE) &&(secp->m_start+secp->m_len <= RAMBASE+RAMLEN)) ||((secp->m_start >= MEMBASE) &&(secp->m_start+secp->m_len <= MEMBASE+MEMLEN)) ) { if (verbose) printf("Writing to MEM: %08x-%08x\n", secp->m_start, secp->m_start+secp->m_len); unsigned ln = (secp->m_len+3)&-4; uint32_t *bswapd = new uint32_t[ln>>2]; if (ln != (secp->m_len&-4)) memset(bswapd, 0, ln); memcpy(bswapd, secp->m_data, ln); byteswapbuf(ln>>2, bswapd); m_fpga->writei(secp->m_start, ln>>2, bswapd); } else { // Otherwise writing to flash if (secp->m_start < startaddr) { // Keep track of the first address in // flash, as well as the last address // that we will write codelen += (startaddr-secp->m_start); startaddr = secp->m_start; } if (secp->m_start+secp->m_len > startaddr+codelen) { codelen = secp->m_start+secp->m_len-startaddr; } if (verbose) printf("Sending to flash: %08x-%08x\n", secp->m_start, secp->m_start+secp->m_len); // Copy this data into our copy of what we want // the flash to look like. memcpy(&fbuf[secp->m_start-EQSPIFLASH], secp->m_data, secp->m_len); } } if ((flash)&&(codelen>0)&&(!flash->write(startaddr, codelen, &fbuf[startaddr-EQSPIFLASH], true))) { fprintf(stderr, "ERR: Could not write program to flash\n"); exit(EXIT_FAILURE); } else if ((!flash)&&(codelen > 0)) { fprintf(stderr, "ERR: Cannot write to flash: Driver didn\'t load\n"); // fprintf(stderr, "flash->write(%08x, %d, ... );\n", startaddr, // codelen); } if (m_fpga) m_fpga->readio(R_VERSION); // Check for bus errors // Now ... how shall we start this CPU? if (start_when_finished) { printf("Clearing the CPUs registers\n"); for(int i=0; i<32; i++) { m_fpga->writeio(R_ZIPCTRL, CPU_HALT|i); m_fpga->writeio(R_ZIPDATA, 0); } m_fpga->writeio(R_ZIPCTRL, CPU_HALT|CPU_CLRCACHE); printf("Setting PC to %08x\n", entry); m_fpga->writeio(R_ZIPCTRL, CPU_HALT|CPU_sPC); m_fpga->writeio(R_ZIPDATA, entry); printf("Starting the CPU\n"); m_fpga->writeio(R_ZIPCTRL, CPU_GO|CPU_sPC); } else { printf("The CPU should be fully loaded, you may now\n"); printf("start it (from reset/reboot) with:\n"); printf("> wbregs cpu 0x40\n"); printf("\n"); } } catch(BUSERR a) { fprintf(stderr, "ARTY-BUS error: %08x\n", a.addr); exit(-2); } printf("CPU Status is: %08x\n", m_fpga->readio(R_ZIPCTRL)); if (m_fpga) delete m_fpga; return EXIT_SUCCESS; }