URL
https://opencores.org/ocsvn/openfpu64/openfpu64/trunk
Subversion Repositories openfpu64
[/] [openfpu64/] [trunk/] [openfpu64.vhd] - Rev 2
Compare with Previous | Blame | View Log
------------------------------------------------------------------------------- -- Project : openFPU64 - a double precision FPU (Toplevel Modul for Avalon) ------------------------------------------------------------------------------- -- File : openfpu64.vhd -- Author : Peter Huewe <peterhuewe@gmx.de> -- Created : 2010-02-09 -- Last update: 2010-04-19 -- Platform : CycloneII, CycloneIII. -- Standard : VHDL'87 ------------------------------------------------------------------------------- -- Description: This module contains the bus logic for the Avalon Interface of -- the openFPU64. -- the openFPU64 currently features: -- - double precision -- - Addition/Subtraction -- - Multiplication -- - rounding (to nearest even) -- - subnormals/denormals -- - verified against IEEE754 -- New algorithms can be added easily, just modify the code marked -- with ADD_ALGORITHMS_HERE -- Everything marked with FUTURE is not yet implemented, -- but already added for easier transition. ------------------------------------------------------------------------------- -- Copyright (c) 2010 ------------------------------------------------------------------------------- -- Licence: gpl v3 - see licence.txt ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.fpu_package.all; -- contains import defines. ------------------------------------------------------------------------------- entity openFPU64 is port( reset_n : in std_logic := '0'; -- reset, active low read : in std_logic := '0'; -- indicates a read transfer (from fpu) write : in std_logic := '1'; -- indicates a write tranfer (to fpu) -- address register, specifies where data comes from or is written to, # -- and also contains the desired operation while writing first operands high word -- see constants in fpu_package for more details address : in std_logic_vector (4 downto 0) := (others => '0'); --readdata result (FUTURE: and exceptions), transfers hi and low words in 2 cycles readdata : out std_logic_vector(31 downto 0) := (others => '0'); writedata : in std_logic_vector(31 downto 0) := (others => '0'); --operands and operator,2 cycles -- this signal indicates whether slave is stilly busy. When signal is asserted, bus signals have to remain stable -- CAUTION: Master may initiate a transfer though! waitrequest : out std_logic := '0'; begintransfer : in std_logic := '0'; -- Master initiates a new transfer clk : in std_logic := '0' -- clock ); end openFPU64; ------------------------------------------------------------------------------- architecture rtl of openFPU64 is ----------------------------------------------------------------------------- -- Internal signal declarations ----------------------------------------------------------------------------- -- Internal Floating Point format S eEEE EEEE EEEE bOhM....MRGt -- S Sign bit -- e xtra Exponent bit (12) -- E biased exponent (11 downto 0) -- b borrow for Subtraction (57) -- O Overflow (56) -- h Hiddenbit (55) -- M Mantissa bits (54 downto 3) -- R Round bit (2) -- G Guard bit (1) -- t Sticky bit (0) signal sign_a, sign_b : std_logic; -- signs of first/second operand signal exponent_a, exponent_b : std_logic_vector (11 downto 0); -- exponents of first/second operand signal mantissa_a, mantissa_b : std_logic_vector (57 downto 0); -- mantissas of first/second operand signal iwaitrequest : std_logic; -- internal signal waitrequest, is connected to waitrequest. signal started : std_logic; -- calculation can begin signal rounding_needed_1, rounding_needed_2 : std_logic; -- FUTURE signal which indicates if rounding is necessary. signal opmode : std_logic_vector (2 downto 0); -- keeps value of operation. -- The operation is encoded in the address, for better readability we define two aliases to split the -- register address from the desired operation alias operation : std_logic_vector (2 downto 0) is address(4 downto 2); -- desired operation -> fpu_package.vhd alias op_register : std_logic_vector (1 downto 0) is address (1 downto 0); -- register address of operand -- the next few signals are used for connecting components, -- if you like to add your own algorithm, please specify the necessary signals here, -- and document their usage. -- Notes: Add/Sub are one component, so some signals are shared. -- By using this technique a tristate bus for the components is avoided -- ADD_ALGORITHMS_HERE -- signal mode_1 : std_logic; -- ADD/SUB, switches between Addition ('0') and Subtraction ('1') signal cs_1, cs_2 : std_logic; -- chip select for each operation signal valid_1, valid_2 : std_logic; -- operation asserts this if it has finished its calculation signal sign_res_1, sign_res_2 : std_logic; -- sign of result for each operation. signal exponent_res_1, exponent_res_2 : std_logic_vector (11 downto 0); -- exponent of result for each operation signal mantissa_res_1, mantissa_res_2 : std_logic_vector(57 downto 0); -- mantissa of result, for each operation -- ADD_ALGORITHMS_HERE_END-- ----------------------------------------------------------------------------- -- Component declarations ----------------------------------------------------------------------------- -- Add/Sub component, reset active low component fpu_add port ( -- input operands sign_a, sign_b : in std_logic; exponent_a, exponent_b : in std_logic_vector (11 downto 0); mantissa_a, mantissa_b : in std_logic_vector (57 downto 0); -- output result sign_res : out std_logic; exponent_res : out std_logic_vector(11 downto 0); mantissa_res : out std_logic_vector (57 downto 0); -- misc signals rounding_needed : out std_logic; -- FUTURE mode : in std_logic; -- Switch mode Add=0 Sub=1 cs : in std_logic; -- Chip Select valid : out std_logic; -- calculation is finished clk : in std_logic; -- Clock reset_n : in std_logic); -- reset active low end component; -- Multiplication unit -- FUTURE: can be replaced by other implementations of Multiplication, -- e.g. one that uses only one embedded Multiplier, see fpu_mul_single.vhd -- Interface should remain stable for all implementations component fpu_mul port ( -- input operands sign_a, sign_b : in std_logic; exponent_a, exponent_b : in std_logic_vector (11 downto 0); mantissa_a, mantissa_b : in std_logic_vector (57 downto 0); -- output results sign_res : out std_logic; exponent_res : out std_logic_vector(11 downto 0); mantissa_res : out std_logic_vector (57 downto 0); -- misc signals rounding_needed : out std_logic; -- FUTURE valid : out std_logic; -- calculation is finished cs : in std_logic; -- Chip Select clk : in std_logic; -- Clock reset_n : in std_logic); -- Reset active low end component; ----------------------------------------------------------------------------- -- Component instantiations -- connect everything ----------------------------------------------------------------------------- begin fpu_addsub_1 : fpu_add port map ( sign_a => sign_a, sign_b => sign_b, exponent_a => exponent_a, exponent_b => exponent_b, mantissa_a => mantissa_a, mantissa_b => mantissa_b, sign_res => sign_res_1, exponent_res => exponent_res_1, mantissa_res => mantissa_res_1, rounding_needed => rounding_needed_1, mode => mode_1, cs => cs_1, valid => valid_1, clk => clk, reset_n => reset_n); fpu_mul_1 : fpu_mul port map ( clk => clk, reset_n => reset_n, cs => cs_2, sign_a => sign_a, sign_b => sign_b, exponent_a => exponent_a, exponent_b => exponent_b, mantissa_a => mantissa_a, mantissa_b => mantissa_b, sign_res => sign_res_2, exponent_res => exponent_res_2, mantissa_res => mantissa_res_2, rounding_needed => rounding_needed_2, valid => valid_2); -- purpose: Implements the Avalon logic and transfers data from/to submodules -- inputs : clk, reset_n,read, write, address, writedata, begintransfer -- outputs: readdata, waitrequest -- Note: Process is not coded using states on purpose in order to prevent -- lockups in case of bus resets or undefined accesses avalon_bus_logic : process (clk, reset_n) begin if reset_n = '0' then -- active low, switch of subcomponents, reset everything cs_1 <= '0'; cs_2 <= '0'; iwaitrequest <= '0'; started <= '0'; opmode <= (others => '0'); mantissa_a <= (others => '0'); mantissa_b <= (others => '0'); exponent_a <= (others => '0'); exponent_b <= (others => '0'); sign_a <= '0'; sign_b <= '0'; readdata <= x"AAAAC0C0"; elsif rising_edge(clk) then waitrequest <= iwaitrequest; cs_1 <= cs_1; cs_2 <= cs_2; opmode <= opmode; mantissa_a <= mantissa_a; mantissa_b <= mantissa_b; exponent_a <= exponent_a; exponent_b <= exponent_b; sign_a <= sign_a; sign_b <= sign_b; -- Dummy value which indicates wrong reads, deadbeef was already taken readdata <= x"AAAAC0C0"; started <= started; if started = '0' -- calculation is in progress, keep signals then iwaitrequest <= '0'; else iwaitrequest <= '1'; end if; if begintransfer = '1' and write = '1' then -- new write transfert case op_register is -- hi word is written, populate first operand and set opmode to desired operation when addr_a_hi => sign_a <= writedata(31); exponent_a <= '0' & writedata(30 downto 20); -- check for denormals, if not, set _h_idden bit in internal format. if unsigned(writedata(30 downto 20)) = ZEROS(30 downto 20) then mantissa_a(57 downto 35) <= "000" & writedata(19 downto 0); else mantissa_a(57 downto 35) <= "001" & writedata(19 downto 0); end if; opmode <= operation; -- lo word is written, populate rest of mantissa with clear RGS when addr_a_lo => mantissa_a(34 downto 0) <= writedata(31 downto 0) & "000"; -- hi word of second operand, populate fields when addr_b_hi => sign_b <= writedata(31); exponent_b <= '0' & writedata(30 downto 20); -- check for denormals, if not, set _h_idden bit in internal format. if unsigned(writedata(30 downto 20)) = ZEROS(30 downto 20) then mantissa_b(57 downto 35) <= "000" & writedata(19 downto 0); else mantissa_b(57 downto 35) <= "001" & writedata(19 downto 0); end if; -- lo word is written, populate rest of mantissa with clear RGS -- after low word is written, calculation starts when addr_b_lo => mantissa_b(34 downto 0) <= writedata(31 downto 0) & "000"; -- perform calculation by enabling component case opmode is -- ADD_ALGORITHMS_HERE when mode_add => cs_1 <= '1'; mode_1 <= '0'; when mode_sub => cs_1 <= '1'; mode_1 <= '1'; opmode <= mode_add; -- result will be read from same location when mode_mul => cs_2 <= '1'; -- when mode_div => -- FUTURE not implemented yet -- cs_3 <= '1'; -- FUTURE -- ADD_ALGORITHMS_HERE_END when others => null; end case; started <= '1'; -- calculation has started when others => null; end case; end if; -- results requested if read = '1' and started = '1' then if begintransfer = '1' then iwaitrequest <= '1'; waitrequest <= '1'; end if; -- ADD_ALGORITHMS_HERE -- -- if any of the operation returns with a valid result if valid_1 = '1' or valid_2 = '1' then -- ADD_ALGORITHMS_HERE_END-- iwaitrequest <= '1'; waitrequest <= '0'; -- read hi word of result if op_register = addr_result_hi then case opmode is -- ADD_ALGORITHMS_HERE -- -- generate result, skip internal format bits. when mode_add => readdata <= sign_res_1 & exponent_res_1 (10 downto 0) & mantissa_res_1(54 downto 35); -- ADD and SUB when mode_mul => readdata <= sign_res_2 & exponent_res_2 (10 downto 0) & mantissa_res_2(54 downto 35); -- when mode_div => readdata <= result_2(63 downto 32); -- not implemented yet -- ADD_ALGORITHMS_HERE_END-- when others => null; end case; -- read low word of result else -- op_register = add_result_lo case opmode is -- ADD_ALGORITHMS_HERE -- when mode_add => readdata <= mantissa_res_1(34 downto 3); -- ADD and SUB when mode_mul => readdata <= mantissa_res_2(34 downto 3); -- when mode_div => readdata <= result_2(31 downto 0); --Not implemented yet -- ADD_ALGORITHMS_HERE_END -- when others => null; end case; -- read is finished, return to "reset_state" -- ADD_ALGORITHMS_HERE -- cs_1 <= '0'; cs_2 <= '0'; mode_1 <= '0'; -- ADD_ALGORITHMS_HERE_END -- started <= '0'; opmode <= (others => '0'); end if; else end if; end if; end if; end process avalon_bus_logic; end rtl; -------------------------------------------------------------------------------