URL
https://opencores.org/ocsvn/openhmc/openhmc/trunk
Subversion Repositories openhmc
[/] [openhmc/] [trunk/] [openHMC/] [rtl/] [hmc_controller/] [tx/] [tx_scrambler.v] - Rev 15
Compare with Previous | Blame | View Log
/* * .--------------. .----------------. .------------. * | .------------. | .--------------. | .----------. | * | | ____ ____ | | | ____ ____ | | | ______ | | * | ||_ || _|| | ||_ \ / _|| | | .' ___ || | * ___ _ __ ___ _ __ | | | |__| | | | | | \/ | | | |/ .' \_|| | * / _ \| '_ \ / _ \ '_ \ | | | __ | | | | | |\ /| | | | || | | | * (_) | |_) | __/ | | || | _| | | |_ | | | _| |_\/_| |_ | | |\ `.___.'\| | * \___/| .__/ \___|_| |_|| ||____||____|| | ||_____||_____|| | | `._____.'| | * | | | | | | | | | | | | * |_| | '------------' | '--------------' | '----------' | * '--------------' '----------------' '------------' * * openHMC - An Open Source Hybrid Memory Cube Controller * (C) Copyright 2014 Computer Architecture Group - University of Heidelberg * www.ziti.uni-heidelberg.de * B6, 26 * 68159 Mannheim * Germany * * Contact: openhmc@ziti.uni-heidelberg.de * http://ra.ziti.uni-heidelberg.de/openhmc * * This source file is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This source file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this source file. If not, see <http://www.gnu.org/licenses/>. * * * Module name: tx_scrambler * * Description: * * This module implements a parallel scrambler based on the * polynomial 1+ x^(-14) + x^(-15). * Such Scrambler is typically shown as a 15 bit Linear Feedback Shift Register * (LFSR) with bits shifting from register 1 on the left to register 15 on the * right, with register 14 and 15 combining to shift into register 1. * The HMC Serializer outputs data[0] first from parallel tx data[n:0], * so if data[n:0] is to be bitwise scrambled with LFSR[n:0], we need the LFSR * to shift from n -> 0, the opposite direction from the typical illustration. * This implementation shifts data from LFSR[14] on the left to LFSR[0] on the * right, with LFSR[1] and [0] combining to shift into LFSR[14]. This way * LFSR[14:0] can bitwise scramble data[14:0] and be compatible with serializ- * ation that shifts out on the data[0] side. * Put otherwise: Polynomial 1+ x^(-14) + x^(-15) is equiv to * x^15 + x^1 + x^0 * This parallelized version calculates the next LANE_WIDTH steps of values for * the LFSR. These bits are used to scramble the parallel input, and to * choose the next value of lfsr (lfsr_steps[LANE_WIDTH-1]). */ `default_nettype none module tx_scrambler #( parameter LANE_WIDTH = 16, parameter HMC_RX_AC_COUPLED = 1 ) ( input wire clk, input wire res_n, input wire disable_scrambler, input wire [14:0] seed, // unique per lane input wire [LANE_WIDTH-1:0] data_in, output reg [LANE_WIDTH-1:0] data_out, input wire rf_run_length_enable, output wire rf_run_length_bit_flip ); //===================================================================================================== //----------------------------------------------------------------------------------------------------- //---------WIRING AND SIGNAL STUFF--------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------- //===================================================================================================== wire [LANE_WIDTH-1:0] data_out_tmp; wire [LANE_WIDTH-1:0] run_length_d_out; reg [14:0] lfsr; // LINEAR FEEDBACK SHIFT REGISTER wire [14:0] lfsr_steps [LANE_WIDTH-1:0]; // LFSR values for serial time steps // SEQUENTIAL PROCESS `ifdef ASYNC_RES always @(posedge clk or negedge res_n) begin `else always @(posedge clk) begin `endif `ifdef RESET_ALL if(!res_n) begin data_out <= {LANE_WIDTH{1'b0}}; end else `endif begin data_out <= run_length_d_out; end if(!res_n) lfsr <= seed; else lfsr <= disable_scrambler ? {15{1'b0}} : lfsr_steps[LANE_WIDTH-1]; end // SCRAMBLE genvar j; generate assign data_out_tmp [0] = data_in[0] ^ lfsr[0]; // single bit scrambled. assign lfsr_steps[0] = { (lfsr[1] ^ lfsr[0]) , lfsr[14:1] }; // lfsr at next bit clock for(j = 1; j < LANE_WIDTH; j = j + 1) begin : scrambler_gen assign data_out_tmp[j] = data_in[j] ^ lfsr_steps[j-1][0]; assign lfsr_steps[j] = { (lfsr_steps[j-1][1] ^ lfsr_steps[j-1][0]) , lfsr_steps[j-1][14:1] }; end endgenerate //===================================================================================================== //----------------------------------------------------------------------------------------------------- //---------INSTANTIATIONS HERE------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------- //===================================================================================================== generate if(HMC_RX_AC_COUPLED==1) begin tx_run_length_limiter #( .LANE_WIDTH(LANE_WIDTH) ) run_length_limiter_I ( .clk(clk), .res_n(res_n), .enable(rf_run_length_enable), .data_in(data_out_tmp), .data_out(run_length_d_out), .rf_bit_flip(rf_run_length_bit_flip) ); end else begin assign rf_run_length_bit_flip = 1'b0; assign run_length_d_out = data_out_tmp; end endgenerate endmodule `default_nettype wire