URL
https://opencores.org/ocsvn/openmsp430/openmsp430/trunk
Subversion Repositories openmsp430
[/] [openmsp430/] [trunk/] [core/] [synthesis/] [actel/] [src/] [omsp_alu.v] - Rev 85
Go to most recent revision | Compare with Previous | Blame | View Log
//---------------------------------------------------------------------------- // Copyright (C) 2001 Authors // // This source file may be used and distributed without restriction provided // that this copyright statement is not removed from the file and that any // derivative work contains the original copyright notice and the associated // disclaimer. // // This source file is free software; you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation; either version 2.1 of the License, or // (at your option) any later version. // // This source is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public // License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this source; if not, write to the Free Software Foundation, // Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA // //---------------------------------------------------------------------------- // // *File Name: omsp_alu.v // // *Module Description: // openMSP430 ALU // // *Author(s): // - Olivier Girard, olgirard@gmail.com // //---------------------------------------------------------------------------- // $Rev: 34 $ // $LastChangedBy: olivier.girard $ // $LastChangedDate: 2009-12-29 20:10:34 +0100 (Di, 29 Dez 2009) $ //---------------------------------------------------------------------------- `include "timescale.v" `include "openMSP430_defines.v" module omsp_alu ( // OUTPUTs alu_out, // ALU output value alu_out_add, // ALU adder output value alu_stat, // ALU Status {V,N,Z,C} alu_stat_wr, // ALU Status write {V,N,Z,C} // INPUTs dbg_halt_st, // Halt/Run status from CPU exec_cycle, // Instruction execution cycle inst_alu, // ALU control signals inst_bw, // Decoded Inst: byte width inst_jmp, // Decoded Inst: Conditional jump inst_so, // Single-operand arithmetic op_dst, // Destination operand op_src, // Source operand status // R2 Status {V,N,Z,C} ); // OUTPUTs //========= output [15:0] alu_out; // ALU output value output [15:0] alu_out_add; // ALU adder output value output [3:0] alu_stat; // ALU Status {V,N,Z,C} output [3:0] alu_stat_wr; // ALU Status write {V,N,Z,C} // INPUTs //========= input dbg_halt_st; // Halt/Run status from CPU input exec_cycle; // Instruction execution cycle input [11:0] inst_alu; // ALU control signals input inst_bw; // Decoded Inst: byte width input [7:0] inst_jmp; // Decoded Inst: Conditional jump input [7:0] inst_so; // Single-operand arithmetic input [15:0] op_dst; // Destination operand input [15:0] op_src; // Source operand input [3:0] status; // R2 Status {V,N,Z,C} //============================================================================= // 1) FUNCTIONS //============================================================================= function [4:0] bcd_add; input [3:0] X; input [3:0] Y; input C; reg [4:0] Z; begin Z = {1'b0,X}+{1'b0,Y}+C; if (Z<10) bcd_add = Z; else bcd_add = Z+6; end endfunction //============================================================================= // 2) INSTRUCTION FETCH/DECODE CONTROL STATE MACHINE //============================================================================= // SINGLE-OPERAND ARITHMETIC: //----------------------------------------------------------------------------- // Mnemonic S-Reg, Operation Status bits // D-Reg, V N Z C // // RRC dst C->MSB->...LSB->C * * * * // RRA dst MSB->MSB->...LSB->C 0 * * * // SWPB dst Swap bytes - - - - // SXT dst Bit7->Bit8...Bit15 0 * * * // PUSH src SP-2->SP, src->@SP - - - - // CALL dst SP-2->SP, PC+2->@SP, dst->PC - - - - // RETI TOS->SR, SP+2->SP, TOS->PC, SP+2->SP * * * * // //----------------------------------------------------------------------------- // TWO-OPERAND ARITHMETIC: //----------------------------------------------------------------------------- // Mnemonic S-Reg, Operation Status bits // D-Reg, V N Z C // // MOV src,dst src -> dst - - - - // ADD src,dst src + dst -> dst * * * * // ADDC src,dst src + dst + C -> dst * * * * // SUB src,dst dst + ~src + 1 -> dst * * * * // SUBC src,dst dst + ~src + C -> dst * * * * // CMP src,dst dst + ~src + 1 * * * * // DADD src,dst src + dst + C -> dst (decimaly) * * * * // BIT src,dst src & dst 0 * * * // BIC src,dst ~src & dst -> dst - - - - // BIS src,dst src | dst -> dst - - - - // XOR src,dst src ^ dst -> dst * * * * // AND src,dst src & dst -> dst 0 * * * // //----------------------------------------------------------------------------- // * the status bit is affected // - the status bit is not affected // 0 the status bit is cleared // 1 the status bit is set //----------------------------------------------------------------------------- // Invert source for substract and compare instructions. wire op_src_inv_cmd = exec_cycle & (inst_alu[`ALU_SRC_INV]); wire [15:0] op_src_inv = {16{op_src_inv_cmd}} ^ op_src; // Mask the bit 8 for the Byte instructions for correct flags generation wire op_bit8_msk = ~exec_cycle | ~inst_bw; wire [16:0] op_src_in = {1'b0, op_src_inv[15:9], op_src_inv[8] & op_bit8_msk, op_src_inv[7:0]}; wire [16:0] op_dst_in = {1'b0, op_dst[15:9], op_dst[8] & op_bit8_msk, op_dst[7:0]}; // Clear the source operand (= jump offset) for conditional jumps wire jmp_not_taken = (inst_jmp[`JL] & ~(status[3]^status[2])) | (inst_jmp[`JGE] & (status[3]^status[2])) | (inst_jmp[`JN] & ~status[2]) | (inst_jmp[`JC] & ~status[0]) | (inst_jmp[`JNC] & status[0]) | (inst_jmp[`JEQ] & ~status[1]) | (inst_jmp[`JNE] & status[1]); wire [16:0] op_src_in_jmp = op_src_in & {17{~jmp_not_taken}}; // Adder / AND / OR / XOR wire [16:0] alu_add = op_src_in_jmp + op_dst_in; wire [16:0] alu_and = op_src_in & op_dst_in; wire [16:0] alu_or = op_src_in | op_dst_in; wire [16:0] alu_xor = op_src_in ^ op_dst_in; // Incrementer wire alu_inc = exec_cycle & ((inst_alu[`ALU_INC_C] & status[0]) | inst_alu[`ALU_INC]); wire [16:0] alu_add_inc = alu_add + {16'h0000, alu_inc}; // Decimal adder (DADD) wire [4:0] alu_dadd0 = bcd_add(op_src_in[3:0], op_dst_in[3:0], status[0]); wire [4:0] alu_dadd1 = bcd_add(op_src_in[7:4], op_dst_in[7:4], alu_dadd0[4]); wire [4:0] alu_dadd2 = bcd_add(op_src_in[11:8], op_dst_in[11:8], alu_dadd1[4]); wire [4:0] alu_dadd3 = bcd_add(op_src_in[15:12], op_dst_in[15:12],alu_dadd2[4]); wire [16:0] alu_dadd = {alu_dadd3, alu_dadd2[3:0], alu_dadd1[3:0], alu_dadd0[3:0]}; // Shifter for rotate instructions (RRC & RRA) wire alu_shift_msb = inst_so[`RRC] ? status[0] : inst_bw ? op_src[7] : op_src[15]; wire alu_shift_7 = inst_bw ? alu_shift_msb : op_src[8]; wire [16:0] alu_shift = {1'b0, alu_shift_msb, op_src[15:9], alu_shift_7, op_src[7:1]}; // Swap bytes / Extend Sign wire [16:0] alu_swpb = {1'b0, op_src[7:0],op_src[15:8]}; wire [16:0] alu_sxt = {1'b0, {8{op_src[7]}},op_src[7:0]}; // Combine short paths toghether to simplify final ALU mux wire alu_short_thro = ~(inst_alu[`ALU_AND] | inst_alu[`ALU_OR] | inst_alu[`ALU_XOR] | inst_alu[`ALU_SHIFT] | inst_so[`SWPB] | inst_so[`SXT]); wire [16:0] alu_short = ({16{inst_alu[`ALU_AND]}} & alu_and) | ({16{inst_alu[`ALU_OR]}} & alu_or) | ({16{inst_alu[`ALU_XOR]}} & alu_xor) | ({16{inst_alu[`ALU_SHIFT]}} & alu_shift) | ({16{inst_so[`SWPB]}} & alu_swpb) | ({16{inst_so[`SXT]}} & alu_sxt) | ({16{alu_short_thro}} & op_src_in); // ALU output mux wire [16:0] alu_out_nxt = (inst_so[`IRQ] | dbg_halt_st | inst_alu[`ALU_ADD]) ? alu_add_inc : inst_alu[`ALU_DADD] ? alu_dadd : alu_short; assign alu_out = alu_out_nxt[15:0]; assign alu_out_add = alu_add[15:0]; //----------------------------------------------------------------------------- // STATUS FLAG GENERATION //----------------------------------------------------------------------------- wire V_xor = inst_bw ? (op_src_in[7] & op_dst_in[7]) : (op_src_in[15] & op_dst_in[15]); wire V = inst_bw ? ((~op_src_in[7] & ~op_dst_in[7] & alu_out[7]) | ( op_src_in[7] & op_dst_in[7] & ~alu_out[7])) : ((~op_src_in[15] & ~op_dst_in[15] & alu_out[15]) | ( op_src_in[15] & op_dst_in[15] & ~alu_out[15])); wire N = inst_bw ? alu_out[7] : alu_out[15]; wire Z = inst_bw ? (alu_out[7:0]==0) : (alu_out==0); wire C = inst_bw ? alu_out[8] : alu_out_nxt[16]; assign alu_stat = inst_alu[`ALU_SHIFT] ? {1'b0, N,Z,op_src_in[0]} : inst_alu[`ALU_STAT_7] ? {1'b0, N,Z,~Z} : inst_alu[`ALU_XOR] ? {V_xor,N,Z,~Z} : {V,N,Z,C}; assign alu_stat_wr = (inst_alu[`ALU_STAT_F] & exec_cycle) ? 4'b1111 : 4'b0000; endmodule // omsp_alu `include "openMSP430_undefines.v"
Go to most recent revision | Compare with Previous | Blame | View Log