URL
https://opencores.org/ocsvn/openmsp430/openmsp430/trunk
Subversion Repositories openmsp430
[/] [openmsp430/] [trunk/] [fpga/] [actel_m1a3pl_dev_kit/] [rtl/] [verilog/] [openmsp430/] [omsp_dbg.v] - Rev 216
Go to most recent revision | Compare with Previous | Blame | View Log
//---------------------------------------------------------------------------- // Copyright (C) 2009 , Olivier Girard // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of the authors nor the names of its contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, // OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF // THE POSSIBILITY OF SUCH DAMAGE // //---------------------------------------------------------------------------- // // *File Name: omsp_dbg.v // // *Module Description: // Debug interface // // *Author(s): // - Olivier Girard, olgirard@gmail.com // //---------------------------------------------------------------------------- // $Rev$ // $LastChangedBy$ // $LastChangedDate$ //---------------------------------------------------------------------------- `ifdef OMSP_NO_INCLUDE `else `include "openMSP430_defines.v" `endif module omsp_dbg ( // OUTPUTs dbg_cpu_reset, // Reset CPU from debug interface dbg_freeze, // Freeze peripherals dbg_halt_cmd, // Halt CPU command dbg_i2c_sda_out, // Debug interface: I2C SDA OUT dbg_mem_addr, // Debug address for rd/wr access dbg_mem_dout, // Debug unit data output dbg_mem_en, // Debug unit memory enable dbg_mem_wr, // Debug unit memory write dbg_reg_wr, // Debug unit CPU register write dbg_uart_txd, // Debug interface: UART TXD // INPUTs cpu_en_s, // Enable CPU code execution (synchronous) cpu_id, // CPU ID cpu_nr_inst, // Current oMSP instance number cpu_nr_total, // Total number of oMSP instances-1 dbg_clk, // Debug unit clock dbg_en_s, // Debug interface enable (synchronous) dbg_halt_st, // Halt/Run status from CPU dbg_i2c_addr, // Debug interface: I2C Address dbg_i2c_broadcast, // Debug interface: I2C Broadcast Address (for multicore systems) dbg_i2c_scl, // Debug interface: I2C SCL dbg_i2c_sda_in, // Debug interface: I2C SDA IN dbg_mem_din, // Debug unit Memory data input dbg_reg_din, // Debug unit CPU register data input dbg_rst, // Debug unit reset dbg_uart_rxd, // Debug interface: UART RXD (asynchronous) decode_noirq, // Frontend decode instruction eu_mab, // Execution-Unit Memory address bus eu_mb_en, // Execution-Unit Memory bus enable eu_mb_wr, // Execution-Unit Memory bus write transfer fe_mdb_in, // Frontend Memory data bus input pc, // Program counter puc_pnd_set // PUC pending set for the serial debug interface ); // OUTPUTs //========= output dbg_cpu_reset; // Reset CPU from debug interface output dbg_freeze; // Freeze peripherals output dbg_halt_cmd; // Halt CPU command output dbg_i2c_sda_out; // Debug interface: I2C SDA OUT output [15:0] dbg_mem_addr; // Debug address for rd/wr access output [15:0] dbg_mem_dout; // Debug unit data output output dbg_mem_en; // Debug unit memory enable output [1:0] dbg_mem_wr; // Debug unit memory write output dbg_reg_wr; // Debug unit CPU register write output dbg_uart_txd; // Debug interface: UART TXD // INPUTs //========= input cpu_en_s; // Enable CPU code execution (synchronous) input [31:0] cpu_id; // CPU ID input [7:0] cpu_nr_inst; // Current oMSP instance number input [7:0] cpu_nr_total; // Total number of oMSP instances-1 input dbg_clk; // Debug unit clock input dbg_en_s; // Debug interface enable (synchronous) input dbg_halt_st; // Halt/Run status from CPU input [6:0] dbg_i2c_addr; // Debug interface: I2C Address input [6:0] dbg_i2c_broadcast; // Debug interface: I2C Broadcast Address (for multicore systems) input dbg_i2c_scl; // Debug interface: I2C SCL input dbg_i2c_sda_in; // Debug interface: I2C SDA IN input [15:0] dbg_mem_din; // Debug unit Memory data input input [15:0] dbg_reg_din; // Debug unit CPU register data input input dbg_rst; // Debug unit reset input dbg_uart_rxd; // Debug interface: UART RXD (asynchronous) input decode_noirq; // Frontend decode instruction input [15:0] eu_mab; // Execution-Unit Memory address bus input eu_mb_en; // Execution-Unit Memory bus enable input [1:0] eu_mb_wr; // Execution-Unit Memory bus write transfer input [15:0] fe_mdb_in; // Frontend Memory data bus input input [15:0] pc; // Program counter input puc_pnd_set; // PUC pending set for the serial debug interface //============================================================================= // 1) WIRE & PARAMETER DECLARATION //============================================================================= // Diverse wires and registers wire [5:0] dbg_addr; wire [15:0] dbg_din; wire dbg_wr; reg mem_burst; wire dbg_reg_rd; wire dbg_mem_rd; reg dbg_mem_rd_dly; wire dbg_swbrk; wire dbg_rd; reg dbg_rd_rdy; wire mem_burst_rd; wire mem_burst_wr; wire brk0_halt; wire brk0_pnd; wire [15:0] brk0_dout; wire brk1_halt; wire brk1_pnd; wire [15:0] brk1_dout; wire brk2_halt; wire brk2_pnd; wire [15:0] brk2_dout; wire brk3_halt; wire brk3_pnd; wire [15:0] brk3_dout; // Number of registers parameter NR_REG = 25; // Register addresses parameter CPU_ID_LO = 6'h00; parameter CPU_ID_HI = 6'h01; parameter CPU_CTL = 6'h02; parameter CPU_STAT = 6'h03; parameter MEM_CTL = 6'h04; parameter MEM_ADDR = 6'h05; parameter MEM_DATA = 6'h06; parameter MEM_CNT = 6'h07; `ifdef DBG_HWBRK_0 parameter BRK0_CTL = 6'h08; parameter BRK0_STAT = 6'h09; parameter BRK0_ADDR0 = 6'h0A; parameter BRK0_ADDR1 = 6'h0B; `endif `ifdef DBG_HWBRK_1 parameter BRK1_CTL = 6'h0C; parameter BRK1_STAT = 6'h0D; parameter BRK1_ADDR0 = 6'h0E; parameter BRK1_ADDR1 = 6'h0F; `endif `ifdef DBG_HWBRK_2 parameter BRK2_CTL = 6'h10; parameter BRK2_STAT = 6'h11; parameter BRK2_ADDR0 = 6'h12; parameter BRK2_ADDR1 = 6'h13; `endif `ifdef DBG_HWBRK_3 parameter BRK3_CTL = 6'h14; parameter BRK3_STAT = 6'h15; parameter BRK3_ADDR0 = 6'h16; parameter BRK3_ADDR1 = 6'h17; `endif parameter CPU_NR = 6'h18; // Register one-hot decoder parameter BASE_D = {{NR_REG-1{1'b0}}, 1'b1}; parameter CPU_ID_LO_D = (BASE_D << CPU_ID_LO); parameter CPU_ID_HI_D = (BASE_D << CPU_ID_HI); parameter CPU_CTL_D = (BASE_D << CPU_CTL); parameter CPU_STAT_D = (BASE_D << CPU_STAT); parameter MEM_CTL_D = (BASE_D << MEM_CTL); parameter MEM_ADDR_D = (BASE_D << MEM_ADDR); parameter MEM_DATA_D = (BASE_D << MEM_DATA); parameter MEM_CNT_D = (BASE_D << MEM_CNT); `ifdef DBG_HWBRK_0 parameter BRK0_CTL_D = (BASE_D << BRK0_CTL); parameter BRK0_STAT_D = (BASE_D << BRK0_STAT); parameter BRK0_ADDR0_D = (BASE_D << BRK0_ADDR0); parameter BRK0_ADDR1_D = (BASE_D << BRK0_ADDR1); `endif `ifdef DBG_HWBRK_1 parameter BRK1_CTL_D = (BASE_D << BRK1_CTL); parameter BRK1_STAT_D = (BASE_D << BRK1_STAT); parameter BRK1_ADDR0_D = (BASE_D << BRK1_ADDR0); parameter BRK1_ADDR1_D = (BASE_D << BRK1_ADDR1); `endif `ifdef DBG_HWBRK_2 parameter BRK2_CTL_D = (BASE_D << BRK2_CTL); parameter BRK2_STAT_D = (BASE_D << BRK2_STAT); parameter BRK2_ADDR0_D = (BASE_D << BRK2_ADDR0); parameter BRK2_ADDR1_D = (BASE_D << BRK2_ADDR1); `endif `ifdef DBG_HWBRK_3 parameter BRK3_CTL_D = (BASE_D << BRK3_CTL); parameter BRK3_STAT_D = (BASE_D << BRK3_STAT); parameter BRK3_ADDR0_D = (BASE_D << BRK3_ADDR0); parameter BRK3_ADDR1_D = (BASE_D << BRK3_ADDR1); `endif parameter CPU_NR_D = (BASE_D << CPU_NR); //============================================================================ // 2) REGISTER DECODER //============================================================================ // Select Data register during a burst wire [5:0] dbg_addr_in = mem_burst ? MEM_DATA : dbg_addr; // Register address decode reg [NR_REG-1:0] reg_dec; always @(dbg_addr_in) case (dbg_addr_in) CPU_ID_LO : reg_dec = CPU_ID_LO_D; CPU_ID_HI : reg_dec = CPU_ID_HI_D; CPU_CTL : reg_dec = CPU_CTL_D; CPU_STAT : reg_dec = CPU_STAT_D; MEM_CTL : reg_dec = MEM_CTL_D; MEM_ADDR : reg_dec = MEM_ADDR_D; MEM_DATA : reg_dec = MEM_DATA_D; MEM_CNT : reg_dec = MEM_CNT_D; `ifdef DBG_HWBRK_0 BRK0_CTL : reg_dec = BRK0_CTL_D; BRK0_STAT : reg_dec = BRK0_STAT_D; BRK0_ADDR0: reg_dec = BRK0_ADDR0_D; BRK0_ADDR1: reg_dec = BRK0_ADDR1_D; `endif `ifdef DBG_HWBRK_1 BRK1_CTL : reg_dec = BRK1_CTL_D; BRK1_STAT : reg_dec = BRK1_STAT_D; BRK1_ADDR0: reg_dec = BRK1_ADDR0_D; BRK1_ADDR1: reg_dec = BRK1_ADDR1_D; `endif `ifdef DBG_HWBRK_2 BRK2_CTL : reg_dec = BRK2_CTL_D; BRK2_STAT : reg_dec = BRK2_STAT_D; BRK2_ADDR0: reg_dec = BRK2_ADDR0_D; BRK2_ADDR1: reg_dec = BRK2_ADDR1_D; `endif `ifdef DBG_HWBRK_3 BRK3_CTL : reg_dec = BRK3_CTL_D; BRK3_STAT : reg_dec = BRK3_STAT_D; BRK3_ADDR0: reg_dec = BRK3_ADDR0_D; BRK3_ADDR1: reg_dec = BRK3_ADDR1_D; `endif CPU_NR : reg_dec = CPU_NR_D; // pragma coverage off default: reg_dec = {NR_REG{1'b0}}; // pragma coverage on endcase // Read/Write probes wire reg_write = dbg_wr; wire reg_read = 1'b1; // Read/Write vectors wire [NR_REG-1:0] reg_wr = reg_dec & {NR_REG{reg_write}}; wire [NR_REG-1:0] reg_rd = reg_dec & {NR_REG{reg_read}}; //============================================================================= // 3) REGISTER: CORE INTERFACE //============================================================================= // CPU_ID Register //----------------- // ------------------------------------------------------------------- // CPU_ID_LO: | 15 14 13 12 11 10 9 | 8 7 6 5 4 | 3 | 2 1 0 | // |----------------------------+-----------------+------+-------------| // | PER_SPACE | USER_VERSION | ASIC | CPU_VERSION | // -------------------------------------------------------------------- // CPU_ID_HI: | 15 14 13 12 11 10 | 9 8 7 6 5 4 3 2 1 | 0 | // |----------------------------+-------------------------------+------| // | PMEM_SIZE | DMEM_SIZE | MPY | // ------------------------------------------------------------------- // This register is assigned in the SFR module // CPU_NR Register //----------------- // ------------------------------------------------------------------- // | 15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 0 | // |---------------------------------+---------------------------------| // | CPU_TOTAL_NR | CPU_INST_NR | // ------------------------------------------------------------------- wire [15:0] cpu_nr = {cpu_nr_total, cpu_nr_inst}; // CPU_CTL Register //----------------------------------------------------------------------------- // 7 6 5 4 3 2 1 0 // Reserved CPU_RST RST_BRK_EN FRZ_BRK_EN SW_BRK_EN ISTEP RUN HALT //----------------------------------------------------------------------------- reg [6:3] cpu_ctl; wire cpu_ctl_wr = reg_wr[CPU_CTL]; always @ (posedge dbg_clk or posedge dbg_rst) `ifdef DBG_RST_BRK_EN if (dbg_rst) cpu_ctl <= 4'h6; `else if (dbg_rst) cpu_ctl <= 4'h2; `endif else if (cpu_ctl_wr) cpu_ctl <= dbg_din[6:3]; wire [7:0] cpu_ctl_full = {1'b0, cpu_ctl, 3'b000}; wire halt_cpu = cpu_ctl_wr & dbg_din[`HALT] & ~dbg_halt_st; wire run_cpu = cpu_ctl_wr & dbg_din[`RUN] & dbg_halt_st; wire istep = cpu_ctl_wr & dbg_din[`ISTEP] & dbg_halt_st; // CPU_STAT Register //------------------------------------------------------------------------------------ // 7 6 5 4 3 2 1 0 // HWBRK3_PND HWBRK2_PND HWBRK1_PND HWBRK0_PND SWBRK_PND PUC_PND Res. HALT_RUN //------------------------------------------------------------------------------------ reg [3:2] cpu_stat; wire cpu_stat_wr = reg_wr[CPU_STAT]; wire [3:2] cpu_stat_set = {dbg_swbrk, puc_pnd_set}; wire [3:2] cpu_stat_clr = ~dbg_din[3:2]; always @ (posedge dbg_clk or posedge dbg_rst) if (dbg_rst) cpu_stat <= 2'b00; else if (cpu_stat_wr) cpu_stat <= ((cpu_stat & cpu_stat_clr) | cpu_stat_set); else cpu_stat <= (cpu_stat | cpu_stat_set); wire [7:0] cpu_stat_full = {brk3_pnd, brk2_pnd, brk1_pnd, brk0_pnd, cpu_stat, 1'b0, dbg_halt_st}; //============================================================================= // 4) REGISTER: MEMORY INTERFACE //============================================================================= // MEM_CTL Register //----------------------------------------------------------------------------- // 7 6 5 4 3 2 1 0 // Reserved B/W MEM/REG RD/WR START // // START : - 0 : Do nothing. // - 1 : Initiate memory transfer. // // RD/WR : - 0 : Read access. // - 1 : Write access. // // MEM/REG: - 0 : Memory access. // - 1 : CPU Register access. // // B/W : - 0 : 16 bit access. // - 1 : 8 bit access (not valid for CPU Registers). // //----------------------------------------------------------------------------- reg [3:1] mem_ctl; wire mem_ctl_wr = reg_wr[MEM_CTL]; always @ (posedge dbg_clk or posedge dbg_rst) if (dbg_rst) mem_ctl <= 3'h0; else if (mem_ctl_wr) mem_ctl <= dbg_din[3:1]; wire [7:0] mem_ctl_full = {4'b0000, mem_ctl, 1'b0}; reg mem_start; always @ (posedge dbg_clk or posedge dbg_rst) if (dbg_rst) mem_start <= 1'b0; else mem_start <= mem_ctl_wr & dbg_din[0]; wire mem_bw = mem_ctl[3]; // MEM_DATA Register //------------------ reg [15:0] mem_data; reg [15:0] mem_addr; wire mem_access; wire mem_data_wr = reg_wr[MEM_DATA]; wire [15:0] dbg_mem_din_bw = ~mem_bw ? dbg_mem_din : mem_addr[0] ? {8'h00, dbg_mem_din[15:8]} : {8'h00, dbg_mem_din[7:0]}; always @ (posedge dbg_clk or posedge dbg_rst) if (dbg_rst) mem_data <= 16'h0000; else if (mem_data_wr) mem_data <= dbg_din; else if (dbg_reg_rd) mem_data <= dbg_reg_din; else if (dbg_mem_rd_dly) mem_data <= dbg_mem_din_bw; // MEM_ADDR Register //------------------ reg [15:0] mem_cnt; wire mem_addr_wr = reg_wr[MEM_ADDR]; wire dbg_mem_acc = (|dbg_mem_wr | (dbg_rd_rdy & ~mem_ctl[2])); wire dbg_reg_acc = ( dbg_reg_wr | (dbg_rd_rdy & mem_ctl[2])); wire [15:0] mem_addr_inc = (mem_cnt==16'h0000) ? 16'h0000 : (mem_burst & dbg_mem_acc & ~mem_bw) ? 16'h0002 : (mem_burst & (dbg_mem_acc | dbg_reg_acc)) ? 16'h0001 : 16'h0000; always @ (posedge dbg_clk or posedge dbg_rst) if (dbg_rst) mem_addr <= 16'h0000; else if (mem_addr_wr) mem_addr <= dbg_din; else mem_addr <= mem_addr + mem_addr_inc; // MEM_CNT Register //------------------ wire mem_cnt_wr = reg_wr[MEM_CNT]; wire [15:0] mem_cnt_dec = (mem_cnt==16'h0000) ? 16'h0000 : (mem_burst & (dbg_mem_acc | dbg_reg_acc)) ? 16'hffff : 16'h0000; always @ (posedge dbg_clk or posedge dbg_rst) if (dbg_rst) mem_cnt <= 16'h0000; else if (mem_cnt_wr) mem_cnt <= dbg_din; else mem_cnt <= mem_cnt + mem_cnt_dec; //============================================================================= // 5) BREAKPOINTS / WATCHPOINTS //============================================================================= `ifdef DBG_HWBRK_0 // Hardware Breakpoint/Watchpoint Register read select wire [3:0] brk0_reg_rd = {reg_rd[BRK0_ADDR1], reg_rd[BRK0_ADDR0], reg_rd[BRK0_STAT], reg_rd[BRK0_CTL]}; // Hardware Breakpoint/Watchpoint Register write select wire [3:0] brk0_reg_wr = {reg_wr[BRK0_ADDR1], reg_wr[BRK0_ADDR0], reg_wr[BRK0_STAT], reg_wr[BRK0_CTL]}; omsp_dbg_hwbrk dbg_hwbr_0 ( // OUTPUTs .brk_halt (brk0_halt), // Hardware breakpoint command .brk_pnd (brk0_pnd), // Hardware break/watch-point pending .brk_dout (brk0_dout), // Hardware break/watch-point register data input // INPUTs .brk_reg_rd (brk0_reg_rd), // Hardware break/watch-point register read select .brk_reg_wr (brk0_reg_wr), // Hardware break/watch-point register write select .dbg_clk (dbg_clk), // Debug unit clock .dbg_din (dbg_din), // Debug register data input .dbg_rst (dbg_rst), // Debug unit reset .decode_noirq (decode_noirq), // Frontend decode instruction .eu_mab (eu_mab), // Execution-Unit Memory address bus .eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable .eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer .pc (pc) // Program counter ); `else assign brk0_halt = 1'b0; assign brk0_pnd = 1'b0; assign brk0_dout = 16'h0000; wire [15:0] UNUSED_eu_mab = eu_mab; wire UNUSED_eu_mb_en = eu_mb_en; wire [1:0] UNUSED_eu_mb_wr = eu_mb_wr; wire [15:0] UNUSED_pc = pc; `endif `ifdef DBG_HWBRK_1 // Hardware Breakpoint/Watchpoint Register read select wire [3:0] brk1_reg_rd = {reg_rd[BRK1_ADDR1], reg_rd[BRK1_ADDR0], reg_rd[BRK1_STAT], reg_rd[BRK1_CTL]}; // Hardware Breakpoint/Watchpoint Register write select wire [3:0] brk1_reg_wr = {reg_wr[BRK1_ADDR1], reg_wr[BRK1_ADDR0], reg_wr[BRK1_STAT], reg_wr[BRK1_CTL]}; omsp_dbg_hwbrk dbg_hwbr_1 ( // OUTPUTs .brk_halt (brk1_halt), // Hardware breakpoint command .brk_pnd (brk1_pnd), // Hardware break/watch-point pending .brk_dout (brk1_dout), // Hardware break/watch-point register data input // INPUTs .brk_reg_rd (brk1_reg_rd), // Hardware break/watch-point register read select .brk_reg_wr (brk1_reg_wr), // Hardware break/watch-point register write select .dbg_clk (dbg_clk), // Debug unit clock .dbg_din (dbg_din), // Debug register data input .dbg_rst (dbg_rst), // Debug unit reset .decode_noirq (decode_noirq), // Frontend decode instruction .eu_mab (eu_mab), // Execution-Unit Memory address bus .eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable .eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer .pc (pc) // Program counter ); `else assign brk1_halt = 1'b0; assign brk1_pnd = 1'b0; assign brk1_dout = 16'h0000; `endif `ifdef DBG_HWBRK_2 // Hardware Breakpoint/Watchpoint Register read select wire [3:0] brk2_reg_rd = {reg_rd[BRK2_ADDR1], reg_rd[BRK2_ADDR0], reg_rd[BRK2_STAT], reg_rd[BRK2_CTL]}; // Hardware Breakpoint/Watchpoint Register write select wire [3:0] brk2_reg_wr = {reg_wr[BRK2_ADDR1], reg_wr[BRK2_ADDR0], reg_wr[BRK2_STAT], reg_wr[BRK2_CTL]}; omsp_dbg_hwbrk dbg_hwbr_2 ( // OUTPUTs .brk_halt (brk2_halt), // Hardware breakpoint command .brk_pnd (brk2_pnd), // Hardware break/watch-point pending .brk_dout (brk2_dout), // Hardware break/watch-point register data input // INPUTs .brk_reg_rd (brk2_reg_rd), // Hardware break/watch-point register read select .brk_reg_wr (brk2_reg_wr), // Hardware break/watch-point register write select .dbg_clk (dbg_clk), // Debug unit clock .dbg_din (dbg_din), // Debug register data input .dbg_rst (dbg_rst), // Debug unit reset .decode_noirq (decode_noirq), // Frontend decode instruction .eu_mab (eu_mab), // Execution-Unit Memory address bus .eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable .eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer .pc (pc) // Program counter ); `else assign brk2_halt = 1'b0; assign brk2_pnd = 1'b0; assign brk2_dout = 16'h0000; `endif `ifdef DBG_HWBRK_3 // Hardware Breakpoint/Watchpoint Register read select wire [3:0] brk3_reg_rd = {reg_rd[BRK3_ADDR1], reg_rd[BRK3_ADDR0], reg_rd[BRK3_STAT], reg_rd[BRK3_CTL]}; // Hardware Breakpoint/Watchpoint Register write select wire [3:0] brk3_reg_wr = {reg_wr[BRK3_ADDR1], reg_wr[BRK3_ADDR0], reg_wr[BRK3_STAT], reg_wr[BRK3_CTL]}; omsp_dbg_hwbrk dbg_hwbr_3 ( // OUTPUTs .brk_halt (brk3_halt), // Hardware breakpoint command .brk_pnd (brk3_pnd), // Hardware break/watch-point pending .brk_dout (brk3_dout), // Hardware break/watch-point register data input // INPUTs .brk_reg_rd (brk3_reg_rd), // Hardware break/watch-point register read select .brk_reg_wr (brk3_reg_wr), // Hardware break/watch-point register write select .dbg_clk (dbg_clk), // Debug unit clock .dbg_din (dbg_din), // Debug register data input .dbg_rst (dbg_rst), // Debug unit reset .decode_noirq (decode_noirq), // Frontend decode instruction .eu_mab (eu_mab), // Execution-Unit Memory address bus .eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable .eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer .pc (pc) // Program counter ); `else assign brk3_halt = 1'b0; assign brk3_pnd = 1'b0; assign brk3_dout = 16'h0000; `endif //============================================================================ // 6) DATA OUTPUT GENERATION //============================================================================ wire [15:0] cpu_id_lo_rd = cpu_id[15:0] & {16{reg_rd[CPU_ID_LO]}}; wire [15:0] cpu_id_hi_rd = cpu_id[31:16] & {16{reg_rd[CPU_ID_HI]}}; wire [15:0] cpu_ctl_rd = {8'h00, cpu_ctl_full} & {16{reg_rd[CPU_CTL]}}; wire [15:0] cpu_stat_rd = {8'h00, cpu_stat_full} & {16{reg_rd[CPU_STAT]}}; wire [15:0] mem_ctl_rd = {8'h00, mem_ctl_full} & {16{reg_rd[MEM_CTL]}}; wire [15:0] mem_data_rd = mem_data & {16{reg_rd[MEM_DATA]}}; wire [15:0] mem_addr_rd = mem_addr & {16{reg_rd[MEM_ADDR]}}; wire [15:0] mem_cnt_rd = mem_cnt & {16{reg_rd[MEM_CNT]}}; wire [15:0] cpu_nr_rd = cpu_nr & {16{reg_rd[CPU_NR]}}; wire [15:0] dbg_dout = cpu_id_lo_rd | cpu_id_hi_rd | cpu_ctl_rd | cpu_stat_rd | mem_ctl_rd | mem_data_rd | mem_addr_rd | mem_cnt_rd | brk0_dout | brk1_dout | brk2_dout | brk3_dout | cpu_nr_rd; // Tell UART/I2C interface that the data is ready to be read always @ (posedge dbg_clk or posedge dbg_rst) if (dbg_rst) dbg_rd_rdy <= 1'b0; else if (mem_burst | mem_burst_rd) dbg_rd_rdy <= (dbg_reg_rd | dbg_mem_rd_dly); else dbg_rd_rdy <= dbg_rd; //============================================================================ // 7) CPU CONTROL //============================================================================ // Reset CPU //-------------------------- wire dbg_cpu_reset = cpu_ctl[`CPU_RST]; // Break after reset //-------------------------- wire halt_rst = cpu_ctl[`RST_BRK_EN] & dbg_en_s & puc_pnd_set; // Freeze peripherals //-------------------------- wire dbg_freeze = dbg_halt_st & (cpu_ctl[`FRZ_BRK_EN] | ~cpu_en_s); // Software break //-------------------------- assign dbg_swbrk = (fe_mdb_in==`DBG_SWBRK_OP) & decode_noirq & cpu_ctl[`SW_BRK_EN]; // Single step //-------------------------- reg [1:0] inc_step; always @(posedge dbg_clk or posedge dbg_rst) if (dbg_rst) inc_step <= 2'b00; else if (istep) inc_step <= 2'b11; else inc_step <= {inc_step[0], 1'b0}; // Run / Halt //-------------------------- reg halt_flag; wire mem_halt_cpu; wire mem_run_cpu; wire halt_flag_clr = run_cpu | mem_run_cpu; wire halt_flag_set = halt_cpu | halt_rst | dbg_swbrk | mem_halt_cpu | brk0_halt | brk1_halt | brk2_halt | brk3_halt; always @(posedge dbg_clk or posedge dbg_rst) if (dbg_rst) halt_flag <= 1'b0; else if (halt_flag_clr) halt_flag <= 1'b0; else if (halt_flag_set) halt_flag <= 1'b1; wire dbg_halt_cmd = (halt_flag | halt_flag_set) & ~inc_step[1]; //============================================================================ // 8) MEMORY CONTROL //============================================================================ // Control Memory bursts //------------------------------ wire mem_burst_start = (mem_start & |mem_cnt); wire mem_burst_end = ((dbg_wr | dbg_rd_rdy) & ~|mem_cnt); // Detect when burst is on going always @(posedge dbg_clk or posedge dbg_rst) if (dbg_rst) mem_burst <= 1'b0; else if (mem_burst_start) mem_burst <= 1'b1; else if (mem_burst_end) mem_burst <= 1'b0; // Control signals for UART/I2C interface assign mem_burst_rd = (mem_burst_start & ~mem_ctl[1]); assign mem_burst_wr = (mem_burst_start & mem_ctl[1]); // Trigger CPU Register or memory access during a burst reg mem_startb; always @(posedge dbg_clk or posedge dbg_rst) if (dbg_rst) mem_startb <= 1'b0; else mem_startb <= (mem_burst & (dbg_wr | dbg_rd)) | mem_burst_rd; // Combine single and burst memory start of sequence wire mem_seq_start = ((mem_start & ~|mem_cnt) | mem_startb); // Memory access state machine //------------------------------ reg [1:0] mem_state; reg [1:0] mem_state_nxt; // State machine definition parameter M_IDLE = 2'h0; parameter M_SET_BRK = 2'h1; parameter M_ACCESS_BRK = 2'h2; parameter M_ACCESS = 2'h3; // State transition always @(mem_state or mem_seq_start or dbg_halt_st) case (mem_state) M_IDLE : mem_state_nxt = ~mem_seq_start ? M_IDLE : dbg_halt_st ? M_ACCESS : M_SET_BRK; M_SET_BRK : mem_state_nxt = dbg_halt_st ? M_ACCESS_BRK : M_SET_BRK; M_ACCESS_BRK : mem_state_nxt = M_IDLE; M_ACCESS : mem_state_nxt = M_IDLE; // pragma coverage off default : mem_state_nxt = M_IDLE; // pragma coverage on endcase // State machine always @(posedge dbg_clk or posedge dbg_rst) if (dbg_rst) mem_state <= M_IDLE; else mem_state <= mem_state_nxt; // Utility signals assign mem_halt_cpu = (mem_state==M_IDLE) & (mem_state_nxt==M_SET_BRK); assign mem_run_cpu = (mem_state==M_ACCESS_BRK) & (mem_state_nxt==M_IDLE); assign mem_access = (mem_state==M_ACCESS) | (mem_state==M_ACCESS_BRK); // Interface to CPU Registers and Memory bacbkone //------------------------------------------------ assign dbg_mem_addr = mem_addr; assign dbg_mem_dout = ~mem_bw ? mem_data : mem_addr[0] ? {mem_data[7:0], 8'h00} : {8'h00, mem_data[7:0]}; assign dbg_reg_wr = mem_access & mem_ctl[1] & mem_ctl[2]; assign dbg_reg_rd = mem_access & ~mem_ctl[1] & mem_ctl[2]; assign dbg_mem_en = mem_access & ~mem_ctl[2]; assign dbg_mem_rd = dbg_mem_en & ~mem_ctl[1]; wire [1:0] dbg_mem_wr_msk = ~mem_bw ? 2'b11 : mem_addr[0] ? 2'b10 : 2'b01; assign dbg_mem_wr = {2{dbg_mem_en & mem_ctl[1]}} & dbg_mem_wr_msk; // It takes one additional cycle to read from Memory as from registers always @(posedge dbg_clk or posedge dbg_rst) if (dbg_rst) dbg_mem_rd_dly <= 1'b0; else dbg_mem_rd_dly <= dbg_mem_rd; //============================================================================= // 9) UART COMMUNICATION //============================================================================= `ifdef DBG_UART omsp_dbg_uart dbg_uart_0 ( // OUTPUTs .dbg_addr (dbg_addr), // Debug register address .dbg_din (dbg_din), // Debug register data input .dbg_rd (dbg_rd), // Debug register data read .dbg_uart_txd (dbg_uart_txd), // Debug interface: UART TXD .dbg_wr (dbg_wr), // Debug register data write // INPUTs .dbg_clk (dbg_clk), // Debug unit clock .dbg_dout (dbg_dout), // Debug register data output .dbg_rd_rdy (dbg_rd_rdy), // Debug register data is ready for read .dbg_rst (dbg_rst), // Debug unit reset .dbg_uart_rxd (dbg_uart_rxd), // Debug interface: UART RXD .mem_burst (mem_burst), // Burst on going .mem_burst_end (mem_burst_end), // End TX/RX burst .mem_burst_rd (mem_burst_rd), // Start TX burst .mem_burst_wr (mem_burst_wr), // Start RX burst .mem_bw (mem_bw) // Burst byte width ); `else assign dbg_uart_txd = 1'b1; wire UNUSED_dbg_uart_rxd = dbg_uart_rxd; `ifdef DBG_I2C `else assign dbg_addr = 6'h00; assign dbg_din = 16'h0000; assign dbg_rd = 1'b0; assign dbg_wr = 1'b0; `endif `endif //============================================================================= // 10) I2C COMMUNICATION //============================================================================= `ifdef DBG_I2C omsp_dbg_i2c dbg_i2c_0 ( // OUTPUTs .dbg_addr (dbg_addr), // Debug register address .dbg_din (dbg_din), // Debug register data input .dbg_i2c_sda_out (dbg_i2c_sda_out), // Debug interface: I2C SDA OUT .dbg_rd (dbg_rd), // Debug register data read .dbg_wr (dbg_wr), // Debug register data write // INPUTs .dbg_clk (dbg_clk), // Debug unit clock .dbg_dout (dbg_dout), // Debug register data output .dbg_i2c_addr (dbg_i2c_addr), // Debug interface: I2C Address .dbg_i2c_broadcast (dbg_i2c_broadcast), // Debug interface: I2C Broadcast Address (for multicore systems) .dbg_i2c_scl (dbg_i2c_scl), // Debug interface: I2C SCL .dbg_i2c_sda_in (dbg_i2c_sda_in), // Debug interface: I2C SDA IN .dbg_rst (dbg_rst), // Debug unit reset .mem_burst (mem_burst), // Burst on going .mem_burst_end (mem_burst_end), // End TX/RX burst .mem_burst_rd (mem_burst_rd), // Start TX burst .mem_burst_wr (mem_burst_wr), // Start RX burst .mem_bw (mem_bw) // Burst byte width ); `else assign dbg_i2c_sda_out = 1'b1; wire [6:0] UNUSED_dbg_i2c_addr = dbg_i2c_addr; wire [6:0] UNUSED_dbg_i2c_broadcast = dbg_i2c_broadcast; wire UNUSED_dbg_i2c_scl = dbg_i2c_scl; wire UNUSED_dbg_i2c_sda_in = dbg_i2c_sda_in; wire UNUSED_dbg_rd_rdy = dbg_rd_rdy; `endif endmodule // omsp_dbg `ifdef OMSP_NO_INCLUDE `else `include "openMSP430_undefines.v" `endif
Go to most recent revision | Compare with Previous | Blame | View Log