OpenCores
URL https://opencores.org/ocsvn/openmsp430/openmsp430/trunk

Subversion Repositories openmsp430

[/] [openmsp430/] [trunk/] [fpga/] [actel_m1a3pl_dev_kit/] [rtl/] [verilog/] [openmsp430/] [omsp_dbg_i2c.v] - Rev 191

Go to most recent revision | Compare with Previous | Blame | View Log

//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of the authors nor the names of its contributors
//       may be used to endorse or promote products derived from this software
//       without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_dbg_i2c.v
// 
// *Module Description:
//                       Debug I2C Slave communication interface
//
// *Author(s):
//              - Olivier Girard,    olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 103 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2011-03-05 15:44:48 +0100 (Sat, 05 Mar 2011) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
 
module  omsp_dbg_i2c (
 
// OUTPUTs
    dbg_addr,                          // Debug register address
    dbg_din,                           // Debug register data input
    dbg_i2c_sda_out,                   // Debug interface: I2C SDA OUT
    dbg_rd,                            // Debug register data read
    dbg_wr,                            // Debug register data write
 
// INPUTs
    dbg_clk,                           // Debug unit clock
    dbg_dout,                          // Debug register data output
    dbg_i2c_addr,                      // Debug interface: I2C ADDRESS
    dbg_i2c_broadcast,                 // Debug interface: I2C Broadcast Address (for multicore systems)
    dbg_i2c_scl,                       // Debug interface: I2C SCL
    dbg_i2c_sda_in,                    // Debug interface: I2C SDA IN
    dbg_rd_rdy,                        // Debug register data is ready for read
    dbg_rst,                           // Debug unit reset
    mem_burst,                         // Burst on going
    mem_burst_end,                     // End TX/RX burst
    mem_burst_rd,                      // Start TX burst
    mem_burst_wr,                      // Start RX burst
    mem_bw                             // Burst byte width
);
 
// OUTPUTs
//=========
output        [5:0] dbg_addr;          // Debug register address
output       [15:0] dbg_din;           // Debug register data input
output              dbg_i2c_sda_out;   // Debug interface: I2C SDA OUT
output              dbg_rd;            // Debug register data read
output              dbg_wr;            // Debug register data write
 
// INPUTs
//=========
input               dbg_clk;           // Debug unit clock
input        [15:0] dbg_dout;          // Debug register data output
input         [6:0] dbg_i2c_addr;      // Debug interface: I2C ADDRESS
input         [6:0] dbg_i2c_broadcast; // Debug interface: I2C Broadcast Address (for multicore systems)
input               dbg_i2c_scl;       // Debug interface: I2C SCL
input               dbg_i2c_sda_in;    // Debug interface: I2C SDA IN
input               dbg_rd_rdy;        // Debug register data is ready for read
input               dbg_rst;           // Debug unit reset
input               mem_burst;         // Burst on going
input               mem_burst_end;     // End TX/RX burst
input               mem_burst_rd;      // Start TX burst
input               mem_burst_wr;      // Start RX burst
input               mem_bw;            // Burst byte width
 
 
//=============================================================================
// 1) I2C RECEIVE LINE SYNCHRONIZTION & FILTERING
//=============================================================================
 
// Synchronize SCL/SDA inputs
//--------------------------------
 
wire scl_sync_n;
omsp_sync_cell sync_cell_i2c_scl (
    .data_out  (scl_sync_n),
    .data_in   (~dbg_i2c_scl),
    .clk       (dbg_clk),
    .rst       (dbg_rst)
);
wire scl_sync = ~scl_sync_n;
 
wire sda_in_sync_n;
omsp_sync_cell sync_cell_i2c_sda (
    .data_out  (sda_in_sync_n),
    .data_in   (~dbg_i2c_sda_in),
    .clk       (dbg_clk),
    .rst       (dbg_rst)
);
wire sda_in_sync = ~sda_in_sync_n;
 
 
// SCL/SDA input buffers
//--------------------------------
 
reg  [1:0] scl_buf;
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst) scl_buf <=  2'h3;
  else         scl_buf <=  {scl_buf[0], scl_sync};
 
reg  [1:0] sda_in_buf;
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst) sda_in_buf <=  2'h3;
  else         sda_in_buf <=  {sda_in_buf[0], sda_in_sync};
 
 
// SCL/SDA Majority decision
//------------------------------
 
wire scl         =  (scl_sync      & scl_buf[0])    |
                    (scl_sync      & scl_buf[1])    |
                    (scl_buf[0]    & scl_buf[1]);
 
wire sda_in      =  (sda_in_sync   & sda_in_buf[0]) |
                    (sda_in_sync   & sda_in_buf[1]) |
                    (sda_in_buf[0] & sda_in_buf[1]);
 
 
// SCL/SDA Edge detection
//------------------------------
 
// SDA Edge detection
reg        sda_in_dly;
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst) sda_in_dly <=  1'b1;
  else         sda_in_dly <=  sda_in;
 
wire sda_in_fe   =  sda_in_dly & ~sda_in;
wire sda_in_re   = ~sda_in_dly &  sda_in;
wire sda_in_edge =  sda_in_dly ^  sda_in;
 
// SCL Edge detection
reg        scl_dly;
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst) scl_dly <=  1'b1;
  else         scl_dly <=  scl;
 
wire scl_fe      =  scl_dly    & ~scl;
wire scl_re      = ~scl_dly    &  scl;
wire scl_edge    =  scl_dly    ^  scl;
 
 
// Delayed SCL Rising-Edge for SDA data sampling
reg  [1:0] scl_re_dly;
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst) scl_re_dly <=  2'b00;
  else         scl_re_dly <=  {scl_re_dly[0], scl_re};
 
wire scl_sample  =  scl_re_dly[1];
 
 
//=============================================================================
// 2) I2C START & STOP CONDITION DETECTION
//=============================================================================
 
//-----------------
// Start condition
//-----------------
 
wire start_detect = sda_in_fe & scl;
 
//-----------------
// Stop condition
//-----------------
 
 wire stop_detect = sda_in_re & scl;
 
//-----------------
// I2C Slave Active
//-----------------
// The I2C logic will be activated whenever a start condition
// is detected and will be disactivated if the slave address
// doesn't match or if a stop condition is detected.
 
wire i2c_addr_not_valid;
 
reg  i2c_active_seq;
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst)                                 i2c_active_seq <= 1'b0;
  else if (start_detect)                       i2c_active_seq <= 1'b1;
  else if (stop_detect || i2c_addr_not_valid)  i2c_active_seq <= 1'b0;
 
wire i2c_active =  i2c_active_seq & ~stop_detect;
wire i2c_init   = ~i2c_active     |  start_detect;
 
 
//=============================================================================
// 3) I2C STATE MACHINE
//=============================================================================
 
// State register/wires
reg   [2:0] i2c_state;
reg   [2:0] i2c_state_nxt;
 
// Utility signals
reg   [8:0] shift_buf;
wire        shift_rx_done;
wire        shift_tx_done;
reg         dbg_rd;
 
// State machine definition
parameter   RX_ADDR      =  3'h0;
parameter   RX_ADDR_ACK  =  3'h1;
parameter   RX_DATA      =  3'h2;
parameter   RX_DATA_ACK  =  3'h3;
parameter   TX_DATA      =  3'h4;
parameter   TX_DATA_ACK  =  3'h5;
 
// State transition
always @(i2c_state or i2c_init or shift_rx_done or i2c_addr_not_valid or shift_tx_done or scl_fe or shift_buf or sda_in)
  case (i2c_state)
    RX_ADDR     : i2c_state_nxt =   i2c_init           ?  RX_ADDR      :
                                   ~shift_rx_done      ?  RX_ADDR      :
                                    i2c_addr_not_valid ?  RX_ADDR      :
                                                          RX_ADDR_ACK;
 
    RX_ADDR_ACK : i2c_state_nxt =   i2c_init           ?  RX_ADDR      :
                                   ~scl_fe             ?  RX_ADDR_ACK  :
                                    shift_buf[0]       ?  TX_DATA      :
                                                          RX_DATA;
 
    RX_DATA     : i2c_state_nxt =   i2c_init           ?  RX_ADDR      :
                                   ~shift_rx_done      ?  RX_DATA      :
                                                          RX_DATA_ACK;
 
    RX_DATA_ACK : i2c_state_nxt =   i2c_init           ?  RX_ADDR      :
                                   ~scl_fe             ?  RX_DATA_ACK  :
                                                          RX_DATA;
 
    TX_DATA     : i2c_state_nxt =   i2c_init           ?  RX_ADDR      :
                                   ~shift_tx_done      ?  TX_DATA      :
                                                          TX_DATA_ACK;
 
    TX_DATA_ACK : i2c_state_nxt =   i2c_init           ?  RX_ADDR      :
                                   ~scl_fe             ?  TX_DATA_ACK  :
                                   ~sda_in             ?  TX_DATA      :
                                                          RX_ADDR;
  // pragma coverage off
    default     : i2c_state_nxt =                         RX_ADDR;
  // pragma coverage on
  endcase
 
// State machine
always @(posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst)       i2c_state <= RX_ADDR;
  else               i2c_state <= i2c_state_nxt;
 
 
//=============================================================================
// 4) I2C SHIFT REGISTER (FOR RECEIVING & TRANSMITING)
//=============================================================================
 
wire       shift_rx_en       = ((i2c_state==RX_ADDR) | (i2c_state    ==RX_DATA) | (i2c_state    ==RX_DATA_ACK));
wire       shift_tx_en       =                         (i2c_state    ==TX_DATA) | (i2c_state    ==TX_DATA_ACK);
wire       shift_tx_en_pre   =                         (i2c_state_nxt==TX_DATA) | (i2c_state_nxt==TX_DATA_ACK);
 
assign     shift_rx_done     = shift_rx_en & scl_fe & shift_buf[8];
assign     shift_tx_done     = shift_tx_en & scl_fe & (shift_buf==9'h100);
 
wire       shift_buf_rx_init = i2c_init | ((i2c_state==RX_ADDR_ACK) & scl_fe & ~shift_buf[0]) |
                                          ((i2c_state==RX_DATA_ACK) & scl_fe);
wire       shift_buf_rx_en   = shift_rx_en     & scl_sample;
 
wire       shift_buf_tx_init =            ((i2c_state==RX_ADDR_ACK) & scl_re &  shift_buf[0]) |
                                          ((i2c_state==TX_DATA_ACK) & scl_re);
wire       shift_buf_tx_en   = shift_tx_en_pre & scl_fe & (shift_buf!=9'h100);
 
wire [7:0] shift_tx_val;
 
wire [8:0] shift_buf_nxt     = shift_buf_rx_init  ? 9'h001                   : // RX Init 
                               shift_buf_tx_init  ? {shift_tx_val,   1'b1}   : // TX Init 
                               shift_buf_rx_en    ? {shift_buf[7:0], sda_in} : // RX Shift
                               shift_buf_tx_en    ? {shift_buf[7:0], 1'b0}   : // TX Shift
                                                     shift_buf[8:0];           // Hold
 
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst) shift_buf <= 9'h001;
  else         shift_buf <= shift_buf_nxt;
 
// Detect when the received I2C device address is not valid
assign i2c_addr_not_valid =  (i2c_state == RX_ADDR) && shift_rx_done && (
`ifdef DBG_I2C_BROADCAST
                              (shift_buf[7:1] != dbg_i2c_broadcast[6:0]) &&
`endif
                              (shift_buf[7:1] != dbg_i2c_addr[6:0]));
 
// Utility signals
wire        shift_rx_data_done = shift_rx_done & (i2c_state==RX_DATA); 
wire        shift_tx_data_done = shift_tx_done; 
 
 
//=============================================================================
// 5) I2C TRANSMIT BUFFER
//=============================================================================
 
reg dbg_i2c_sda_out;
 
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst)     dbg_i2c_sda_out <= 1'b1;
  else if (scl_fe) dbg_i2c_sda_out <= ~((i2c_state_nxt==RX_ADDR_ACK) ||
                                        (i2c_state_nxt==RX_DATA_ACK) ||
                                       (shift_buf_tx_en & ~shift_buf[8]));
 
 
//=============================================================================
// 6) DEBUG INTERFACE STATE MACHINE
//=============================================================================
 
// State register/wires
reg   [2:0] dbg_state;
reg   [2:0] dbg_state_nxt;
 
// Utility signals
reg         dbg_bw;
 
// State machine definition
parameter  RX_CMD     = 3'h0;
parameter  RX_BYTE_LO = 3'h1;
parameter  RX_BYTE_HI = 3'h2;
parameter  TX_BYTE_LO = 3'h3;
parameter  TX_BYTE_HI = 3'h4;
 
// State transition
always @(dbg_state    or shift_rx_data_done or shift_tx_data_done or shift_buf     or dbg_bw or
         mem_burst_wr or mem_burst_rd       or mem_burst          or mem_burst_end or mem_bw)
  case (dbg_state)
    RX_CMD     : dbg_state_nxt =  mem_burst_wr                ? RX_BYTE_LO  :
                                  mem_burst_rd                ? TX_BYTE_LO  :
                                  ~shift_rx_data_done         ? RX_CMD      :
                                   shift_buf[7]               ? RX_BYTE_LO  :
                                                                TX_BYTE_LO;
 
    RX_BYTE_LO : dbg_state_nxt = (mem_burst &  mem_burst_end) ? RX_CMD      :
                                  ~shift_rx_data_done         ? RX_BYTE_LO  :
                                 (mem_burst & ~mem_burst_end) ?
                                 (mem_bw                      ? RX_BYTE_LO  :
                                                                RX_BYTE_HI) :
                                  dbg_bw                      ? RX_CMD      :
                                                                RX_BYTE_HI;
 
    RX_BYTE_HI : dbg_state_nxt =  ~shift_rx_data_done         ? RX_BYTE_HI  :
                                 (mem_burst & ~mem_burst_end) ? RX_BYTE_LO  :
                                                                RX_CMD;
 
    TX_BYTE_LO : dbg_state_nxt =  ~shift_tx_data_done         ? TX_BYTE_LO  :
                                 ( mem_burst &  mem_bw)       ? TX_BYTE_LO  :
                                 ( mem_burst & ~mem_bw)       ? TX_BYTE_HI  :
                                  ~dbg_bw                     ? TX_BYTE_HI  :
                                                                RX_CMD;
 
    TX_BYTE_HI : dbg_state_nxt =  ~shift_tx_data_done         ? TX_BYTE_HI  :
                                   mem_burst                  ? TX_BYTE_LO  :
                                                                RX_CMD;
 
  // pragma coverage off
    default    : dbg_state_nxt =                                RX_CMD;
  // pragma coverage on
  endcase
 
// State machine
always @(posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst) dbg_state <= RX_CMD;
  else         dbg_state <= dbg_state_nxt;
 
// Utility signals
wire cmd_valid   = (dbg_state==RX_CMD)     & shift_rx_data_done;
wire rx_lo_valid = (dbg_state==RX_BYTE_LO) & shift_rx_data_done;
wire rx_hi_valid = (dbg_state==RX_BYTE_HI) & shift_rx_data_done;
 
 
//=============================================================================
// 7) REGISTER READ/WRITE ACCESS
//=============================================================================
 
parameter MEM_DATA = 6'h06;
 
// Debug register address & bit width
reg [5:0] dbg_addr;
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst)
    begin
       dbg_bw   <= 1'b0;
       dbg_addr <= 6'h00;
    end
  else if (cmd_valid)
    begin
       dbg_bw   <= shift_buf[6];
       dbg_addr <= shift_buf[5:0];
    end
  else if (mem_burst)
    begin
       dbg_bw   <= mem_bw;
       dbg_addr <= MEM_DATA;
    end
 
 
// Debug register data input
reg [7:0] dbg_din_lo;
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst)          dbg_din_lo <= 8'h00;
  else if (rx_lo_valid) dbg_din_lo <= shift_buf[7:0];
 
reg [7:0] dbg_din_hi;
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst)          dbg_din_hi <= 8'h00;
  else if (rx_lo_valid) dbg_din_hi <= 8'h00;
  else if (rx_hi_valid) dbg_din_hi <= shift_buf[7:0];
 
assign dbg_din = {dbg_din_hi, dbg_din_lo};
 
 
// Debug register data write command
reg  dbg_wr;
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst) dbg_wr <= 1'b0;
  else         dbg_wr <= (mem_burst &  mem_bw) ? rx_lo_valid :
                         (mem_burst & ~mem_bw) ? rx_hi_valid :
                         dbg_bw                ? rx_lo_valid :
                                                 rx_hi_valid;
 
 
// Debug register data read command
always @ (posedge dbg_clk or posedge dbg_rst)
  if (dbg_rst) dbg_rd <= 1'b0;
  else         dbg_rd <= (mem_burst &  mem_bw) ? (shift_tx_data_done & (dbg_state==TX_BYTE_LO)) :
                         (mem_burst & ~mem_bw) ? (shift_tx_data_done & (dbg_state==TX_BYTE_HI)) :        
                         cmd_valid             ?  ~shift_buf[7]                                 :
                                                  1'b0;
 
 
// Debug register data read value 
assign shift_tx_val = (dbg_state==TX_BYTE_HI) ? dbg_dout[15:8] :
                                                dbg_dout[7:0];
 
endmodule
 
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.