OpenCores
URL https://opencores.org/ocsvn/openmsp430/openmsp430/trunk

Subversion Repositories openmsp430

[/] [openmsp430/] [trunk/] [fpga/] [actel_m1a3pl_dev_kit/] [rtl/] [verilog/] [openmsp430/] [omsp_multiplier.v] - Rev 193

Go to most recent revision | Compare with Previous | Blame | View Log

//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of the authors nor the names of its contributors
//       may be used to endorse or promote products derived from this software
//       without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_multiplier.v
// 
// *Module Description:
//                       16x16 Hardware multiplier.
//
// *Author(s):
//              - Olivier Girard,    olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 23 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2009-08-30 18:39:26 +0200 (Sun, 30 Aug 2009) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
 
module  omsp_multiplier (
 
// OUTPUTs
    per_dout,                       // Peripheral data output
 
// INPUTs
    mclk,                           // Main system clock
    per_addr,                       // Peripheral address
    per_din,                        // Peripheral data input
    per_en,                         // Peripheral enable (high active)
    per_we,                         // Peripheral write enable (high active)
    puc_rst,                        // Main system reset
    scan_enable                     // Scan enable (active during scan shifting)
);
 
// OUTPUTs
//=========
output       [15:0] per_dout;       // Peripheral data output
 
// INPUTs
//=========
input               mclk;           // Main system clock
input        [13:0] per_addr;       // Peripheral address
input        [15:0] per_din;        // Peripheral data input
input               per_en;         // Peripheral enable (high active)
input         [1:0] per_we;         // Peripheral write enable (high active)
input               puc_rst;        // Main system reset
input               scan_enable;    // Scan enable (active during scan shifting)
 
 
//=============================================================================
// 1)  PARAMETER/REGISTERS & WIRE DECLARATION
//=============================================================================
 
// Register base address (must be aligned to decoder bit width)
parameter       [14:0] BASE_ADDR   = 15'h0130;
 
// Decoder bit width (defines how many bits are considered for address decoding)
parameter              DEC_WD      =  4;
 
// Register addresses offset
parameter [DEC_WD-1:0] OP1_MPY     = 'h0,
                       OP1_MPYS    = 'h2,
                       OP1_MAC     = 'h4,
                       OP1_MACS    = 'h6,
                       OP2         = 'h8,
                       RESLO       = 'hA,
                       RESHI       = 'hC,
                       SUMEXT      = 'hE;
 
// Register one-hot decoder utilities
parameter              DEC_SZ      =  (1 << DEC_WD);
parameter [DEC_SZ-1:0] BASE_REG    =  {{DEC_SZ-1{1'b0}}, 1'b1};
 
// Register one-hot decoder
parameter [DEC_SZ-1:0] OP1_MPY_D   = (BASE_REG << OP1_MPY),
                       OP1_MPYS_D  = (BASE_REG << OP1_MPYS),
                       OP1_MAC_D   = (BASE_REG << OP1_MAC),
                       OP1_MACS_D  = (BASE_REG << OP1_MACS),
                       OP2_D       = (BASE_REG << OP2),
                       RESLO_D     = (BASE_REG << RESLO),
                       RESHI_D     = (BASE_REG << RESHI),
                       SUMEXT_D    = (BASE_REG << SUMEXT);
 
 
// Wire pre-declarations
wire  result_wr;
wire  result_clr;
wire  early_read;
 
 
//============================================================================
// 2)  REGISTER DECODER
//============================================================================
 
// Local register selection
wire              reg_sel     =  per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
 
// Register local address
wire [DEC_WD-1:0] reg_addr    =  {per_addr[DEC_WD-2:0], 1'b0};
 
// Register address decode
wire [DEC_SZ-1:0] reg_dec     =  (OP1_MPY_D   &  {DEC_SZ{(reg_addr == OP1_MPY  )}})  |
                                 (OP1_MPYS_D  &  {DEC_SZ{(reg_addr == OP1_MPYS )}})  |
                                 (OP1_MAC_D   &  {DEC_SZ{(reg_addr == OP1_MAC  )}})  |
                                 (OP1_MACS_D  &  {DEC_SZ{(reg_addr == OP1_MACS )}})  |
                                 (OP2_D       &  {DEC_SZ{(reg_addr == OP2      )}})  |
                                 (RESLO_D     &  {DEC_SZ{(reg_addr == RESLO    )}})  |
                                 (RESHI_D     &  {DEC_SZ{(reg_addr == RESHI    )}})  |
                                 (SUMEXT_D    &  {DEC_SZ{(reg_addr == SUMEXT   )}});
 
// Read/Write probes
wire              reg_write   =  |per_we & reg_sel;
wire              reg_read    = ~|per_we & reg_sel;
 
// Read/Write vectors
wire [DEC_SZ-1:0] reg_wr      = reg_dec & {DEC_SZ{reg_write}};
wire [DEC_SZ-1:0] reg_rd      = reg_dec & {DEC_SZ{reg_read}};
 
// Masked input data for byte access
wire       [15:0] per_din_msk =  per_din & {{8{per_we[1]}}, 8'hff};
 
//============================================================================
// 3) REGISTERS
//============================================================================
 
// OP1 Register
//-----------------   
reg  [15:0] op1;
 
wire        op1_wr = reg_wr[OP1_MPY]  |
                     reg_wr[OP1_MPYS] |
                     reg_wr[OP1_MAC]  |
                     reg_wr[OP1_MACS];
 
`ifdef CLOCK_GATING
wire        mclk_op1;
omsp_clock_gate clock_gate_op1 (.gclk(mclk_op1),
                                .clk (mclk), .enable(op1_wr), .scan_enable(scan_enable));
`else
wire        mclk_op1 = mclk;
`endif
 
always @ (posedge mclk_op1 or posedge puc_rst)
  if (puc_rst)      op1 <=  16'h0000;
`ifdef CLOCK_GATING
  else              op1 <=  per_din_msk;
`else
  else if (op1_wr)  op1 <=  per_din_msk;
`endif
 
wire [15:0] op1_rd  = op1;
 
 
// OP2 Register
//-----------------   
reg  [15:0] op2;
 
wire        op2_wr = reg_wr[OP2];
 
`ifdef CLOCK_GATING
wire        mclk_op2;
omsp_clock_gate clock_gate_op2 (.gclk(mclk_op2),
                                .clk (mclk), .enable(op2_wr), .scan_enable(scan_enable));
`else
wire        mclk_op2 = mclk;
`endif
 
always @ (posedge mclk_op2 or posedge puc_rst)
  if (puc_rst)      op2 <=  16'h0000;
`ifdef CLOCK_GATING
  else              op2 <=  per_din_msk;
`else
  else if (op2_wr)  op2 <=  per_din_msk;
`endif
 
wire [15:0] op2_rd  = op2;
 
 
// RESLO Register
//-----------------   
reg  [15:0] reslo;
 
wire [15:0] reslo_nxt;
wire        reslo_wr = reg_wr[RESLO];
 
`ifdef CLOCK_GATING
wire        reslo_en = reslo_wr | result_clr | result_wr;
wire        mclk_reslo;
omsp_clock_gate clock_gate_reslo (.gclk(mclk_reslo),
                                  .clk (mclk), .enable(reslo_en), .scan_enable(scan_enable));
`else
wire        mclk_reslo = mclk;
`endif
 
always @ (posedge mclk_reslo or posedge puc_rst)
  if (puc_rst)         reslo <=  16'h0000;
  else if (reslo_wr)   reslo <=  per_din_msk;
  else if (result_clr) reslo <=  16'h0000;
`ifdef CLOCK_GATING
  else                 reslo <=  reslo_nxt;
`else
  else if (result_wr)  reslo <=  reslo_nxt;
`endif
 
wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo;
 
 
// RESHI Register
//-----------------   
reg  [15:0] reshi;
 
wire [15:0] reshi_nxt;
wire        reshi_wr = reg_wr[RESHI];
 
`ifdef CLOCK_GATING
wire        reshi_en = reshi_wr | result_clr | result_wr;
wire        mclk_reshi;
omsp_clock_gate clock_gate_reshi (.gclk(mclk_reshi),
                                  .clk (mclk), .enable(reshi_en), .scan_enable(scan_enable));
`else
wire        mclk_reshi = mclk;
`endif
 
always @ (posedge mclk_reshi or posedge puc_rst)
  if (puc_rst)         reshi <=  16'h0000;
  else if (reshi_wr)   reshi <=  per_din_msk;
  else if (result_clr) reshi <=  16'h0000;
`ifdef CLOCK_GATING
  else                 reshi <=  reshi_nxt;
`else
  else if (result_wr)  reshi <=  reshi_nxt;
`endif
 
wire [15:0] reshi_rd = early_read ? reshi_nxt  : reshi;
 
 
// SUMEXT Register
//-----------------   
reg  [1:0] sumext_s;
 
wire [1:0] sumext_s_nxt;
 
always @ (posedge mclk or posedge puc_rst)
  if (puc_rst)         sumext_s <=  2'b00;
  else if (op2_wr)     sumext_s <=  2'b00;
  else if (result_wr)  sumext_s <=  sumext_s_nxt;
 
wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt};
wire [15:0] sumext     = {{14{sumext_s[1]}},     sumext_s};
wire [15:0] sumext_rd  = early_read ? sumext_nxt : sumext;
 
 
//============================================================================
// 4) DATA OUTPUT GENERATION
//============================================================================
 
// Data output mux
wire [15:0] op1_mux    = op1_rd     & {16{reg_rd[OP1_MPY]  |
                                          reg_rd[OP1_MPYS] |
                                          reg_rd[OP1_MAC]  |
                                          reg_rd[OP1_MACS]}};
wire [15:0] op2_mux    = op2_rd     & {16{reg_rd[OP2]}};
wire [15:0] reslo_mux  = reslo_rd   & {16{reg_rd[RESLO]}};
wire [15:0] reshi_mux  = reshi_rd   & {16{reg_rd[RESHI]}};
wire [15:0] sumext_mux = sumext_rd  & {16{reg_rd[SUMEXT]}};
 
wire [15:0] per_dout   = op1_mux    |
                         op2_mux    |
                         reslo_mux  |
                         reshi_mux  |
                         sumext_mux;
 
 
//============================================================================
// 5) HARDWARE MULTIPLIER FUNCTIONAL LOGIC
//============================================================================
 
// Multiplier configuration
//--------------------------
 
// Detect signed mode
reg sign_sel;
always @ (posedge mclk_op1 or posedge puc_rst)
  if (puc_rst)     sign_sel <=  1'b0;
`ifdef CLOCK_GATING
  else             sign_sel <=  reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
`else
  else if (op1_wr) sign_sel <=  reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
`endif
 
 
// Detect accumulate mode
reg acc_sel;
always @ (posedge mclk_op1 or posedge puc_rst)
  if (puc_rst)     acc_sel  <=  1'b0;
`ifdef CLOCK_GATING
  else             acc_sel  <=  reg_wr[OP1_MAC]  | reg_wr[OP1_MACS];
`else
  else if (op1_wr) acc_sel  <=  reg_wr[OP1_MAC]  | reg_wr[OP1_MACS];
`endif
 
 
// Detect whenever the RESHI and RESLO registers should be cleared
assign      result_clr = op2_wr & ~acc_sel;
 
// Combine RESHI & RESLO 
wire [31:0] result     = {reshi, reslo};
 
 
// 16x16 Multiplier (result computed in 1 clock cycle)
//-----------------------------------------------------
`ifdef MPY_16x16
 
// Detect start of a multiplication
reg cycle;
always @ (posedge mclk or posedge puc_rst)
  if (puc_rst) cycle <=  1'b0;
  else         cycle <=  op2_wr;
 
assign result_wr = cycle;
 
// Expand the operands to support signed & unsigned operations
wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
wire signed [16:0] op2_xp = {sign_sel & op2[15], op2};
 
 
// 17x17 signed multiplication
wire signed [33:0] product = op1_xp * op2_xp;
 
// Accumulate
wire [32:0] result_nxt = {1'b0, result} + {1'b0, product[31:0]};
 
 
// Next register values
assign reslo_nxt    = result_nxt[15:0];
assign reshi_nxt    = result_nxt[31:16];
assign sumext_s_nxt =  sign_sel ? {2{result_nxt[31]}} :
                                  {1'b0, result_nxt[32]};
 
 
// Since the MAC is completed within 1 clock cycle,
// an early read can't happen.
assign early_read   = 1'b0;
 
 
// 16x8 Multiplier (result computed in 2 clock cycles)
//-----------------------------------------------------
`else
 
// Detect start of a multiplication
reg [1:0] cycle;
always @ (posedge mclk or posedge puc_rst)
  if (puc_rst) cycle <=  2'b00;
  else         cycle <=  {cycle[0], op2_wr};
 
assign result_wr = |cycle;
 
 
// Expand the operands to support signed & unsigned operations
wire signed [16:0] op1_xp    = {sign_sel & op1[15], op1};
wire signed  [8:0] op2_hi_xp = {sign_sel & op2[15], op2[15:8]};
wire signed  [8:0] op2_lo_xp = {              1'b0, op2[7:0]};
wire signed  [8:0] op2_xp    = cycle[0] ? op2_hi_xp : op2_lo_xp;
 
 
// 17x9 signed multiplication
wire signed [25:0] product    = op1_xp * op2_xp;
 
wire        [31:0] product_xp = cycle[0] ? {product[23:0], 8'h00} :
                                           {{8{sign_sel & product[23]}}, product[23:0]};
 
// Accumulate
wire [32:0] result_nxt  = {1'b0, result} + {1'b0, product_xp[31:0]};
 
 
// Next register values
assign reslo_nxt    = result_nxt[15:0];
assign reshi_nxt    = result_nxt[31:16];
assign sumext_s_nxt =  sign_sel ? {2{result_nxt[31]}} :
                                  {1'b0, result_nxt[32] | sumext_s[0]};
 
// Since the MAC is completed within 2 clock cycle,
// an early read can happen during the second cycle.
assign early_read   = cycle[1];
 
`endif
 
 
endmodule // omsp_multiplier
 
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.