URL
https://opencores.org/ocsvn/openmsp430/openmsp430/trunk
Subversion Repositories openmsp430
[/] [openmsp430/] [trunk/] [fpga/] [altera_de0_nano_soc/] [rtl/] [verilog/] [openmsp430/] [omsp_frontend.v] - Rev 221
Compare with Previous | Blame | View Log
//---------------------------------------------------------------------------- // Copyright (C) 2009 , Olivier Girard // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of the authors nor the names of its contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, // OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF // THE POSSIBILITY OF SUCH DAMAGE // //---------------------------------------------------------------------------- // // *File Name: omsp_frontend.v // // *Module Description: // openMSP430 Instruction fetch and decode unit // // *Author(s): // - Olivier Girard, olgirard@gmail.com // //---------------------------------------------------------------------------- // $Rev: 103 $ // $LastChangedBy: olivier.girard $ // $LastChangedDate: 2011-03-05 15:44:48 +0100 (Sat, 05 Mar 2011) $ //---------------------------------------------------------------------------- `ifdef OMSP_NO_INCLUDE `else `include "openMSP430_defines.v" `endif module omsp_frontend ( // OUTPUTs cpu_halt_st, // Halt/Run status from CPU decode_noirq, // Frontend decode instruction e_state, // Execution state exec_done, // Execution completed inst_ad, // Decoded Inst: destination addressing mode inst_as, // Decoded Inst: source addressing mode inst_alu, // ALU control signals inst_bw, // Decoded Inst: byte width inst_dest, // Decoded Inst: destination (one hot) inst_dext, // Decoded Inst: destination extended instruction word inst_irq_rst, // Decoded Inst: Reset interrupt inst_jmp, // Decoded Inst: Conditional jump inst_mov, // Decoded Inst: mov instruction inst_sext, // Decoded Inst: source extended instruction word inst_so, // Decoded Inst: Single-operand arithmetic inst_src, // Decoded Inst: source (one hot) inst_type, // Decoded Instruction type irq_acc, // Interrupt request accepted (one-hot signal) mab, // Frontend Memory address bus mb_en, // Frontend Memory bus enable mclk_dma_enable, // DMA Sub-System Clock enable mclk_dma_wkup, // DMA Sub-System Clock wake-up (asynchronous) mclk_enable, // Main System Clock enable mclk_wkup, // Main System Clock wake-up (asynchronous) nmi_acc, // Non-Maskable interrupt request accepted pc, // Program counter pc_nxt, // Next PC value (for CALL & IRQ) // INPUTs cpu_en_s, // Enable CPU code execution (synchronous) cpu_halt_cmd, // Halt CPU command cpuoff, // Turns off the CPU dbg_reg_sel, // Debug selected register for rd/wr access dma_en, // Direct Memory Access enable (high active) dma_wkup, // DMA Sub-System Wake-up (asynchronous and non-glitchy) fe_pmem_wait, // Frontend wait for Instruction fetch gie, // General interrupt enable irq, // Maskable interrupts mclk, // Main system clock mdb_in, // Frontend Memory data bus input nmi_pnd, // Non-maskable interrupt pending nmi_wkup, // NMI Wakeup pc_sw, // Program counter software value pc_sw_wr, // Program counter software write puc_rst, // Main system reset scan_enable, // Scan enable (active during scan shifting) wdt_irq, // Watchdog-timer interrupt wdt_wkup, // Watchdog Wakeup wkup // System Wake-up (asynchronous) ); // OUTPUTs //========= output cpu_halt_st; // Halt/Run status from CPU output decode_noirq; // Frontend decode instruction output [3:0] e_state; // Execution state output exec_done; // Execution completed output [7:0] inst_ad; // Decoded Inst: destination addressing mode output [7:0] inst_as; // Decoded Inst: source addressing mode output [11:0] inst_alu; // ALU control signals output inst_bw; // Decoded Inst: byte width output [15:0] inst_dest; // Decoded Inst: destination (one hot) output [15:0] inst_dext; // Decoded Inst: destination extended instruction word output inst_irq_rst; // Decoded Inst: Reset interrupt output [7:0] inst_jmp; // Decoded Inst: Conditional jump output inst_mov; // Decoded Inst: mov instruction output [15:0] inst_sext; // Decoded Inst: source extended instruction word output [7:0] inst_so; // Decoded Inst: Single-operand arithmetic output [15:0] inst_src; // Decoded Inst: source (one hot) output [2:0] inst_type; // Decoded Instruction type output [`IRQ_NR-3:0] irq_acc; // Interrupt request accepted (one-hot signal) output [15:0] mab; // Frontend Memory address bus output mb_en; // Frontend Memory bus enable output mclk_dma_enable; // DMA Sub-System Clock enable output mclk_dma_wkup; // DMA Sub-System Clock wake-up (asynchronous) output mclk_enable; // Main System Clock enable output mclk_wkup; // Main System Clock wake-up (asynchronous) output nmi_acc; // Non-Maskable interrupt request accepted output [15:0] pc; // Program counter output [15:0] pc_nxt; // Next PC value (for CALL & IRQ) // INPUTs //========= input cpu_en_s; // Enable CPU code execution (synchronous) input cpu_halt_cmd; // Halt CPU command input cpuoff; // Turns off the CPU input [3:0] dbg_reg_sel; // Debug selected register for rd/wr access input dma_en; // Direct Memory Access enable (high active) input dma_wkup; // DMA Sub-System Wake-up (asynchronous and non-glitchy) input fe_pmem_wait; // Frontend wait for Instruction fetch input gie; // General interrupt enable input [`IRQ_NR-3:0] irq; // Maskable interrupts input mclk; // Main system clock input [15:0] mdb_in; // Frontend Memory data bus input input nmi_pnd; // Non-maskable interrupt pending input nmi_wkup; // NMI Wakeup input [15:0] pc_sw; // Program counter software value input pc_sw_wr; // Program counter software write input puc_rst; // Main system reset input scan_enable; // Scan enable (active during scan shifting) input wdt_irq; // Watchdog-timer interrupt input wdt_wkup; // Watchdog Wakeup input wkup; // System Wake-up (asynchronous) //============================================================================= // 1) UTILITY FUNCTIONS //============================================================================= // 64 bits one-hot decoder function [63:0] one_hot64; input [5:0] binary; begin one_hot64 = 64'h0000_0000_0000_0000; one_hot64[binary] = 1'b1; end endfunction // 16 bits one-hot decoder function [15:0] one_hot16; input [3:0] binary; begin one_hot16 = 16'h0000; one_hot16[binary] = 1'b1; end endfunction // 8 bits one-hot decoder function [7:0] one_hot8; input [2:0] binary; begin one_hot8 = 8'h00; one_hot8[binary] = 1'b1; end endfunction // Get IRQ number function [5:0] get_irq_num; input [62:0] irq_all; integer ii; begin get_irq_num = 6'h3f; for (ii = 62; ii >= 0; ii = ii - 1) if (&get_irq_num & irq_all[ii]) get_irq_num = ii[5:0]; end endfunction //============================================================================= // 2) PARAMETER DEFINITIONS //============================================================================= // // 2.1) Instruction State machine definitons //------------------------------------------- parameter I_IRQ_FETCH = `I_IRQ_FETCH; parameter I_IRQ_DONE = `I_IRQ_DONE; parameter I_DEC = `I_DEC; // New instruction ready for decode parameter I_EXT1 = `I_EXT1; // 1st Extension word parameter I_EXT2 = `I_EXT2; // 2nd Extension word parameter I_IDLE = `I_IDLE; // CPU is in IDLE mode // // 2.2) Execution State machine definitons //------------------------------------------- parameter E_IRQ_0 = `E_IRQ_0; parameter E_IRQ_1 = `E_IRQ_1; parameter E_IRQ_2 = `E_IRQ_2; parameter E_IRQ_3 = `E_IRQ_3; parameter E_IRQ_4 = `E_IRQ_4; parameter E_SRC_AD = `E_SRC_AD; parameter E_SRC_RD = `E_SRC_RD; parameter E_SRC_WR = `E_SRC_WR; parameter E_DST_AD = `E_DST_AD; parameter E_DST_RD = `E_DST_RD; parameter E_DST_WR = `E_DST_WR; parameter E_EXEC = `E_EXEC; parameter E_JUMP = `E_JUMP; parameter E_IDLE = `E_IDLE; //============================================================================= // 3) FRONTEND STATE MACHINE //============================================================================= // The wire "conv" is used as state bits to calculate the next response reg [2:0] i_state; reg [2:0] i_state_nxt; reg [1:0] inst_sz; wire [1:0] inst_sz_nxt; wire irq_detect; wire [2:0] inst_type_nxt; wire is_const; reg [15:0] sconst_nxt; reg [3:0] e_state_nxt; // CPU on/off through an external interface (debug or mstr) or cpu_en port wire cpu_halt_req = cpu_halt_cmd | ~cpu_en_s; // States Transitions always @(i_state or inst_sz or inst_sz_nxt or pc_sw_wr or exec_done or irq_detect or cpuoff or cpu_halt_req or e_state) case(i_state) I_IDLE : i_state_nxt = (irq_detect & ~cpu_halt_req) ? I_IRQ_FETCH : (~cpuoff & ~cpu_halt_req) ? I_DEC : I_IDLE; I_IRQ_FETCH: i_state_nxt = I_IRQ_DONE; I_IRQ_DONE : i_state_nxt = I_DEC; I_DEC : i_state_nxt = irq_detect ? I_IRQ_FETCH : (cpuoff | cpu_halt_req) & exec_done ? I_IDLE : cpu_halt_req & (e_state==E_IDLE) ? I_IDLE : pc_sw_wr ? I_DEC : ~exec_done & ~(e_state==E_IDLE) ? I_DEC : // Wait in decode state (inst_sz_nxt!=2'b00) ? I_EXT1 : I_DEC; // until execution is completed I_EXT1 : i_state_nxt = pc_sw_wr ? I_DEC : (inst_sz!=2'b01) ? I_EXT2 : I_DEC; I_EXT2 : i_state_nxt = I_DEC; // pragma coverage off default : i_state_nxt = I_IRQ_FETCH; // pragma coverage on endcase // State machine always @(posedge mclk or posedge puc_rst) if (puc_rst) i_state <= I_IRQ_FETCH; else i_state <= i_state_nxt; // Utility signals wire decode_noirq = ((i_state==I_DEC) & (exec_done | (e_state==E_IDLE))); wire decode = decode_noirq | irq_detect; wire fetch = ~((i_state==I_DEC) & ~(exec_done | (e_state==E_IDLE))) & ~(e_state_nxt==E_IDLE); // Halt/Run CPU status reg cpu_halt_st; always @(posedge mclk or posedge puc_rst) if (puc_rst) cpu_halt_st <= 1'b0; else cpu_halt_st <= cpu_halt_req & (i_state_nxt==I_IDLE); //============================================================================= // 4) INTERRUPT HANDLING & SYSTEM WAKEUP //============================================================================= // // 4.1) INTERRUPT HANDLING //----------------------------------------- // Detect reset interrupt reg inst_irq_rst; always @(posedge mclk or posedge puc_rst) if (puc_rst) inst_irq_rst <= 1'b1; else if (exec_done) inst_irq_rst <= 1'b0; // Detect other interrupts assign irq_detect = (nmi_pnd | ((|irq | wdt_irq) & gie)) & ~cpu_halt_req & ~cpu_halt_st & (exec_done | (i_state==I_IDLE)); `ifdef CLOCK_GATING wire mclk_irq_num; omsp_clock_gate clock_gate_irq_num (.gclk(mclk_irq_num), .clk (mclk), .enable(irq_detect), .scan_enable(scan_enable)); `else wire UNUSED_scan_enable = scan_enable; wire mclk_irq_num = mclk; `endif // Combine all IRQs `ifdef IRQ_16 wire [62:0] irq_all = {nmi_pnd, irq, 48'h0000_0000_0000} | `else `ifdef IRQ_32 wire [62:0] irq_all = {nmi_pnd, irq, 32'h0000_0000} | `else `ifdef IRQ_64 wire [62:0] irq_all = {nmi_pnd, irq} | `endif `endif `endif {1'b0, 3'h0, wdt_irq, {58{1'b0}}}; // Select highest priority IRQ reg [5:0] irq_num; always @(posedge mclk_irq_num or posedge puc_rst) if (puc_rst) irq_num <= 6'h3f; `ifdef CLOCK_GATING else `else else if (irq_detect) `endif irq_num <= get_irq_num(irq_all); // Generate selected IRQ vector address wire [15:0] irq_addr = {9'h1ff, irq_num, 1'b0}; // Interrupt request accepted wire [63:0] irq_acc_all = one_hot64(irq_num) & {64{(i_state==I_IRQ_FETCH)}}; wire [`IRQ_NR-3:0] irq_acc = irq_acc_all[61:64-`IRQ_NR]; wire nmi_acc = irq_acc_all[62]; // // 4.2) SYSTEM WAKEUP //----------------------------------------- `ifdef CPUOFF_EN // Generate the main system clock enable signal // Keep the clock running if: wire mclk_enable = inst_irq_rst ? cpu_en_s : // - the RESET interrupt is currently executing // and if the CPU is enabled // otherwise if: ~((cpuoff | ~cpu_en_s) & // - the CPUOFF flag, cpu_en command, instruction (i_state==I_IDLE) & // and execution state machines are all two (e_state==E_IDLE)); // not idle. // Wakeup condition from maskable interrupts wire mirq_wkup; omsp_and_gate and_mirq_wkup (.y(mirq_wkup), .a(wkup | wdt_wkup), .b(gie)); // Combined asynchronous wakeup detection from nmi & irq (masked if the cpu is disabled) omsp_and_gate and_mclk_wkup (.y(mclk_wkup), .a(nmi_wkup | mirq_wkup), .b(cpu_en_s)); // Wakeup condition from DMA interface `ifdef DMA_IF_EN wire mclk_dma_enable = dma_en & cpu_en_s; omsp_and_gate and_mclk_dma_wkup (.y(mclk_dma_wkup), .a(dma_wkup), .b(cpu_en_s)); `else assign mclk_dma_wkup = 1'b0; assign mclk_dma_enable = 1'b0; wire UNUSED_dma_en = dma_en; wire UNUSED_dma_wkup = dma_wkup; `endif `else // In the CPUOFF feature is disabled, the wake-up and enable signals are always 1 assign mclk_dma_wkup = 1'b1; assign mclk_dma_enable = 1'b1; assign mclk_wkup = 1'b1; assign mclk_enable = 1'b1; wire UNUSED_dma_en = dma_en; wire UNUSED_wkup = wkup; wire UNUSED_wdt_wkup = wdt_wkup; wire UNUSED_nmi_wkup = nmi_wkup; wire UNUSED_dma_wkup = dma_wkup; `endif //============================================================================= // 5) FETCH INSTRUCTION //============================================================================= // // 5.1) PROGRAM COUNTER & MEMORY INTERFACE //----------------------------------------- // Program counter reg [15:0] pc; // Compute next PC value wire [15:0] pc_incr = pc + {14'h0000, fetch, 1'b0}; wire [15:0] pc_nxt = pc_sw_wr ? pc_sw : (i_state==I_IRQ_FETCH) ? irq_addr : (i_state==I_IRQ_DONE) ? mdb_in : pc_incr; `ifdef CLOCK_GATING wire pc_en = fetch | pc_sw_wr | (i_state==I_IRQ_FETCH) | (i_state==I_IRQ_DONE); wire mclk_pc; omsp_clock_gate clock_gate_pc (.gclk(mclk_pc), .clk (mclk), .enable(pc_en), .scan_enable(scan_enable)); `else wire mclk_pc = mclk; `endif always @(posedge mclk_pc or posedge puc_rst) if (puc_rst) pc <= 16'h0000; else pc <= pc_nxt; // Check if Program-Memory has been busy in order to retry Program-Memory access reg pmem_busy; always @(posedge mclk or posedge puc_rst) if (puc_rst) pmem_busy <= 1'b0; else pmem_busy <= fe_pmem_wait; // Memory interface wire [15:0] mab = pc_nxt; wire mb_en = fetch | pc_sw_wr | (i_state==I_IRQ_FETCH) | pmem_busy | (cpu_halt_st & ~cpu_halt_req); // // 5.2) INSTRUCTION REGISTER //-------------------------------- // Instruction register wire [15:0] ir = mdb_in; // Detect if source extension word is required wire is_sext = (inst_as[`IDX] | inst_as[`SYMB] | inst_as[`ABS] | inst_as[`IMM]); // For the Symbolic addressing mode, add -2 to the extension word in order // to make up for the PC address wire [15:0] ext_incr = ((i_state==I_EXT1) & inst_as[`SYMB]) | ((i_state==I_EXT2) & inst_ad[`SYMB]) | ((i_state==I_EXT1) & ~inst_as[`SYMB] & ~(i_state_nxt==I_EXT2) & inst_ad[`SYMB]) ? 16'hfffe : 16'h0000; wire [15:0] ext_nxt = ir + ext_incr; // Store source extension word reg [15:0] inst_sext; `ifdef CLOCK_GATING wire inst_sext_en = (decode & is_const) | (decode & inst_type_nxt[`INST_JMP]) | ((i_state==I_EXT1) & is_sext); wire mclk_inst_sext; omsp_clock_gate clock_gate_inst_sext (.gclk(mclk_inst_sext), .clk (mclk), .enable(inst_sext_en), .scan_enable(scan_enable)); `else wire mclk_inst_sext = mclk; `endif always @(posedge mclk_inst_sext or posedge puc_rst) if (puc_rst) inst_sext <= 16'h0000; else if (decode & is_const) inst_sext <= sconst_nxt; else if (decode & inst_type_nxt[`INST_JMP]) inst_sext <= {{5{ir[9]}},ir[9:0],1'b0}; `ifdef CLOCK_GATING else inst_sext <= ext_nxt; `else else if ((i_state==I_EXT1) & is_sext) inst_sext <= ext_nxt; `endif // Source extension word is ready wire inst_sext_rdy = (i_state==I_EXT1) & is_sext; // Store destination extension word reg [15:0] inst_dext; `ifdef CLOCK_GATING wire inst_dext_en = ((i_state==I_EXT1) & ~is_sext) | (i_state==I_EXT2); wire mclk_inst_dext; omsp_clock_gate clock_gate_inst_dext (.gclk(mclk_inst_dext), .clk (mclk), .enable(inst_dext_en), .scan_enable(scan_enable)); `else wire mclk_inst_dext = mclk; `endif always @(posedge mclk_inst_dext or posedge puc_rst) if (puc_rst) inst_dext <= 16'h0000; else if ((i_state==I_EXT1) & ~is_sext) inst_dext <= ext_nxt; `ifdef CLOCK_GATING else inst_dext <= ext_nxt; `else else if (i_state==I_EXT2) inst_dext <= ext_nxt; `endif // Destination extension word is ready wire inst_dext_rdy = (((i_state==I_EXT1) & ~is_sext) | (i_state==I_EXT2)); //============================================================================= // 6) DECODE INSTRUCTION //============================================================================= `ifdef CLOCK_GATING wire mclk_decode; omsp_clock_gate clock_gate_decode (.gclk(mclk_decode), .clk (mclk), .enable(decode), .scan_enable(scan_enable)); `else wire mclk_decode = mclk; `endif // // 6.1) OPCODE: INSTRUCTION TYPE //---------------------------------------- // Instructions type is encoded in a one hot fashion as following: // // 3'b001: Single-operand arithmetic // 3'b010: Conditional jump // 3'b100: Two-operand arithmetic reg [2:0] inst_type; assign inst_type_nxt = {(ir[15:14]!=2'b00), (ir[15:13]==3'b001), (ir[15:13]==3'b000)} & {3{~irq_detect}}; always @(posedge mclk_decode or posedge puc_rst) if (puc_rst) inst_type <= 3'b000; `ifdef CLOCK_GATING else inst_type <= inst_type_nxt; `else else if (decode) inst_type <= inst_type_nxt; `endif // // 6.2) OPCODE: SINGLE-OPERAND ARITHMETIC //---------------------------------------- // Instructions are encoded in a one hot fashion as following: // // 8'b00000001: RRC // 8'b00000010: SWPB // 8'b00000100: RRA // 8'b00001000: SXT // 8'b00010000: PUSH // 8'b00100000: CALL // 8'b01000000: RETI // 8'b10000000: IRQ reg [7:0] inst_so; wire [7:0] inst_so_nxt = irq_detect ? 8'h80 : (one_hot8(ir[9:7]) & {8{inst_type_nxt[`INST_SO]}}); always @(posedge mclk_decode or posedge puc_rst) if (puc_rst) inst_so <= 8'h00; `ifdef CLOCK_GATING else inst_so <= inst_so_nxt; `else else if (decode) inst_so <= inst_so_nxt; `endif // // 6.3) OPCODE: CONDITIONAL JUMP //-------------------------------- // Instructions are encoded in a one hot fashion as following: // // 8'b00000001: JNE/JNZ // 8'b00000010: JEQ/JZ // 8'b00000100: JNC/JLO // 8'b00001000: JC/JHS // 8'b00010000: JN // 8'b00100000: JGE // 8'b01000000: JL // 8'b10000000: JMP reg [2:0] inst_jmp_bin; always @(posedge mclk_decode or posedge puc_rst) if (puc_rst) inst_jmp_bin <= 3'h0; `ifdef CLOCK_GATING else inst_jmp_bin <= ir[12:10]; `else else if (decode) inst_jmp_bin <= ir[12:10]; `endif wire [7:0] inst_jmp = one_hot8(inst_jmp_bin) & {8{inst_type[`INST_JMP]}}; // // 6.4) OPCODE: TWO-OPERAND ARITHMETIC //------------------------------------- // Instructions are encoded in a one hot fashion as following: // // 12'b000000000001: MOV // 12'b000000000010: ADD // 12'b000000000100: ADDC // 12'b000000001000: SUBC // 12'b000000010000: SUB // 12'b000000100000: CMP // 12'b000001000000: DADD // 12'b000010000000: BIT // 12'b000100000000: BIC // 12'b001000000000: BIS // 12'b010000000000: XOR // 12'b100000000000: AND wire [15:0] inst_to_1hot = one_hot16(ir[15:12]) & {16{inst_type_nxt[`INST_TO]}}; wire [11:0] inst_to_nxt = inst_to_1hot[15:4]; reg inst_mov; always @(posedge mclk_decode or posedge puc_rst) if (puc_rst) inst_mov <= 1'b0; `ifdef CLOCK_GATING else inst_mov <= inst_to_nxt[`MOV]; `else else if (decode) inst_mov <= inst_to_nxt[`MOV]; `endif // // 6.5) SOURCE AND DESTINATION REGISTERS //--------------------------------------- // Destination register reg [3:0] inst_dest_bin; always @(posedge mclk_decode or posedge puc_rst) if (puc_rst) inst_dest_bin <= 4'h0; `ifdef CLOCK_GATING else inst_dest_bin <= ir[3:0]; `else else if (decode) inst_dest_bin <= ir[3:0]; `endif wire [15:0] inst_dest = cpu_halt_st ? one_hot16(dbg_reg_sel) : inst_type[`INST_JMP] ? 16'h0001 : inst_so[`IRQ] | inst_so[`PUSH] | inst_so[`CALL] ? 16'h0002 : one_hot16(inst_dest_bin); // Source register reg [3:0] inst_src_bin; always @(posedge mclk_decode or posedge puc_rst) if (puc_rst) inst_src_bin <= 4'h0; `ifdef CLOCK_GATING else inst_src_bin <= ir[11:8]; `else else if (decode) inst_src_bin <= ir[11:8]; `endif wire [15:0] inst_src = inst_type[`INST_TO] ? one_hot16(inst_src_bin) : inst_so[`RETI] ? 16'h0002 : inst_so[`IRQ] ? 16'h0001 : inst_type[`INST_SO] ? one_hot16(inst_dest_bin) : 16'h0000; // // 6.6) SOURCE ADDRESSING MODES //-------------------------------- // Source addressing modes are encoded in a one hot fashion as following: // // 13'b0000000000001: Register direct. // 13'b0000000000010: Register indexed. // 13'b0000000000100: Register indirect. // 13'b0000000001000: Register indirect autoincrement. // 13'b0000000010000: Symbolic (operand is in memory at address PC+x). // 13'b0000000100000: Immediate (operand is next word in the instruction stream). // 13'b0000001000000: Absolute (operand is in memory at address x). // 13'b0000010000000: Constant 4. // 13'b0000100000000: Constant 8. // 13'b0001000000000: Constant 0. // 13'b0010000000000: Constant 1. // 13'b0100000000000: Constant 2. // 13'b1000000000000: Constant -1. reg [12:0] inst_as_nxt; wire [3:0] src_reg = inst_type_nxt[`INST_SO] ? ir[3:0] : ir[11:8]; always @(src_reg or ir or inst_type_nxt) begin if (inst_type_nxt[`INST_JMP]) inst_as_nxt = 13'b0000000000001; else if (src_reg==4'h3) // Addressing mode using R3 case (ir[5:4]) 2'b11 : inst_as_nxt = 13'b1000000000000; 2'b10 : inst_as_nxt = 13'b0100000000000; 2'b01 : inst_as_nxt = 13'b0010000000000; default: inst_as_nxt = 13'b0001000000000; endcase else if (src_reg==4'h2) // Addressing mode using R2 case (ir[5:4]) 2'b11 : inst_as_nxt = 13'b0000100000000; 2'b10 : inst_as_nxt = 13'b0000010000000; 2'b01 : inst_as_nxt = 13'b0000001000000; default: inst_as_nxt = 13'b0000000000001; endcase else if (src_reg==4'h0) // Addressing mode using R0 case (ir[5:4]) 2'b11 : inst_as_nxt = 13'b0000000100000; 2'b10 : inst_as_nxt = 13'b0000000000100; 2'b01 : inst_as_nxt = 13'b0000000010000; default: inst_as_nxt = 13'b0000000000001; endcase else // General Addressing mode case (ir[5:4]) 2'b11 : inst_as_nxt = 13'b0000000001000; 2'b10 : inst_as_nxt = 13'b0000000000100; 2'b01 : inst_as_nxt = 13'b0000000000010; default: inst_as_nxt = 13'b0000000000001; endcase end assign is_const = |inst_as_nxt[12:7]; reg [7:0] inst_as; always @(posedge mclk_decode or posedge puc_rst) if (puc_rst) inst_as <= 8'h00; `ifdef CLOCK_GATING else inst_as <= {is_const, inst_as_nxt[6:0]}; `else else if (decode) inst_as <= {is_const, inst_as_nxt[6:0]}; `endif // 13'b0000010000000: Constant 4. // 13'b0000100000000: Constant 8. // 13'b0001000000000: Constant 0. // 13'b0010000000000: Constant 1. // 13'b0100000000000: Constant 2. // 13'b1000000000000: Constant -1. always @(inst_as_nxt) begin if (inst_as_nxt[7]) sconst_nxt = 16'h0004; else if (inst_as_nxt[8]) sconst_nxt = 16'h0008; else if (inst_as_nxt[9]) sconst_nxt = 16'h0000; else if (inst_as_nxt[10]) sconst_nxt = 16'h0001; else if (inst_as_nxt[11]) sconst_nxt = 16'h0002; else if (inst_as_nxt[12]) sconst_nxt = 16'hffff; else sconst_nxt = 16'h0000; end // // 6.7) DESTINATION ADDRESSING MODES //----------------------------------- // Destination addressing modes are encoded in a one hot fashion as following: // // 8'b00000001: Register direct. // 8'b00000010: Register indexed. // 8'b00010000: Symbolic (operand is in memory at address PC+x). // 8'b01000000: Absolute (operand is in memory at address x). reg [7:0] inst_ad_nxt; wire [3:0] dest_reg = ir[3:0]; always @(dest_reg or ir or inst_type_nxt) begin if (~inst_type_nxt[`INST_TO]) inst_ad_nxt = 8'b00000000; else if (dest_reg==4'h2) // Addressing mode using R2 case (ir[7]) 1'b1 : inst_ad_nxt = 8'b01000000; default: inst_ad_nxt = 8'b00000001; endcase else if (dest_reg==4'h0) // Addressing mode using R0 case (ir[7]) 1'b1 : inst_ad_nxt = 8'b00010000; default: inst_ad_nxt = 8'b00000001; endcase else // General Addressing mode case (ir[7]) 1'b1 : inst_ad_nxt = 8'b00000010; default: inst_ad_nxt = 8'b00000001; endcase end reg [7:0] inst_ad; always @(posedge mclk_decode or posedge puc_rst) if (puc_rst) inst_ad <= 8'h00; `ifdef CLOCK_GATING else inst_ad <= inst_ad_nxt; `else else if (decode) inst_ad <= inst_ad_nxt; `endif // // 6.8) REMAINING INSTRUCTION DECODING //------------------------------------- // Operation size reg inst_bw; always @(posedge mclk or posedge puc_rst) if (puc_rst) inst_bw <= 1'b0; else if (decode) inst_bw <= ir[6] & ~inst_type_nxt[`INST_JMP] & ~irq_detect & ~cpu_halt_req; // Extended instruction size assign inst_sz_nxt = {1'b0, (inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS] | inst_as_nxt[`IMM])} + {1'b0, ((inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]) & ~inst_type_nxt[`INST_SO])}; always @(posedge mclk_decode or posedge puc_rst) if (puc_rst) inst_sz <= 2'b00; `ifdef CLOCK_GATING else inst_sz <= inst_sz_nxt; `else else if (decode) inst_sz <= inst_sz_nxt; `endif //============================================================================= // 7) EXECUTION-UNIT STATE MACHINE //============================================================================= // State machine registers reg [3:0] e_state; // State machine control signals //-------------------------------- wire src_acalc_pre = inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS]; wire src_rd_pre = inst_as_nxt[`INDIR] | inst_as_nxt[`INDIR_I] | inst_as_nxt[`IMM] | inst_so_nxt[`RETI]; wire dst_acalc_pre = inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]; wire dst_acalc = inst_ad[`IDX] | inst_ad[`SYMB] | inst_ad[`ABS]; wire dst_rd_pre = inst_ad_nxt[`IDX] | inst_so_nxt[`PUSH] | inst_so_nxt[`CALL] | inst_so_nxt[`RETI]; wire dst_rd = inst_ad[`IDX] | inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI]; wire inst_branch = (inst_ad_nxt[`DIR] & (ir[3:0]==4'h0)) | inst_type_nxt[`INST_JMP] | inst_so_nxt[`RETI]; reg exec_jmp; always @(posedge mclk or posedge puc_rst) if (puc_rst) exec_jmp <= 1'b0; else if (inst_branch & decode) exec_jmp <= 1'b1; else if (e_state==E_JUMP) exec_jmp <= 1'b0; reg exec_dst_wr; always @(posedge mclk or posedge puc_rst) if (puc_rst) exec_dst_wr <= 1'b0; else if (e_state==E_DST_RD) exec_dst_wr <= 1'b1; else if (e_state==E_DST_WR) exec_dst_wr <= 1'b0; reg exec_src_wr; always @(posedge mclk or posedge puc_rst) if (puc_rst) exec_src_wr <= 1'b0; else if (inst_type[`INST_SO] & (e_state==E_SRC_RD)) exec_src_wr <= 1'b1; else if ((e_state==E_SRC_WR) || (e_state==E_DST_WR)) exec_src_wr <= 1'b0; reg exec_dext_rdy; always @(posedge mclk or posedge puc_rst) if (puc_rst) exec_dext_rdy <= 1'b0; else if (e_state==E_DST_RD) exec_dext_rdy <= 1'b0; else if (inst_dext_rdy) exec_dext_rdy <= 1'b1; // Execution first state wire [3:0] e_first_state = ~cpu_halt_st & inst_so_nxt[`IRQ] ? E_IRQ_0 : cpu_halt_req | (i_state==I_IDLE) ? E_IDLE : cpuoff ? E_IDLE : src_acalc_pre ? E_SRC_AD : src_rd_pre ? E_SRC_RD : dst_acalc_pre ? E_DST_AD : dst_rd_pre ? E_DST_RD : E_EXEC; // State machine //-------------------------------- // States Transitions always @(e_state or dst_acalc or dst_rd or inst_sext_rdy or inst_dext_rdy or exec_dext_rdy or exec_jmp or exec_dst_wr or e_first_state or exec_src_wr) case(e_state) E_IDLE : e_state_nxt = e_first_state; E_IRQ_0 : e_state_nxt = E_IRQ_1; E_IRQ_1 : e_state_nxt = E_IRQ_2; E_IRQ_2 : e_state_nxt = E_IRQ_3; E_IRQ_3 : e_state_nxt = E_IRQ_4; E_IRQ_4 : e_state_nxt = E_EXEC; E_SRC_AD : e_state_nxt = inst_sext_rdy ? E_SRC_RD : E_SRC_AD; E_SRC_RD : e_state_nxt = dst_acalc ? E_DST_AD : dst_rd ? E_DST_RD : E_EXEC; E_DST_AD : e_state_nxt = (inst_dext_rdy | exec_dext_rdy) ? E_DST_RD : E_DST_AD; E_DST_RD : e_state_nxt = E_EXEC; E_EXEC : e_state_nxt = exec_dst_wr ? E_DST_WR : exec_jmp ? E_JUMP : exec_src_wr ? E_SRC_WR : e_first_state; E_JUMP : e_state_nxt = e_first_state; E_DST_WR : e_state_nxt = exec_jmp ? E_JUMP : e_first_state; E_SRC_WR : e_state_nxt = e_first_state; // pragma coverage off default : e_state_nxt = E_IRQ_0; // pragma coverage on endcase // State machine always @(posedge mclk or posedge puc_rst) if (puc_rst) e_state <= E_IRQ_1; else e_state <= e_state_nxt; // Frontend State machine control signals //---------------------------------------- wire exec_done = exec_jmp ? (e_state==E_JUMP) : exec_dst_wr ? (e_state==E_DST_WR) : exec_src_wr ? (e_state==E_SRC_WR) : (e_state==E_EXEC); //============================================================================= // 8) EXECUTION-UNIT STATE CONTROL //============================================================================= // // 8.1) ALU CONTROL SIGNALS //------------------------------------- // // 12'b000000000001: Enable ALU source inverter // 12'b000000000010: Enable Incrementer // 12'b000000000100: Enable Incrementer on carry bit // 12'b000000001000: Select Adder // 12'b000000010000: Select AND // 12'b000000100000: Select OR // 12'b000001000000: Select XOR // 12'b000010000000: Select DADD // 12'b000100000000: Update N, Z & C (C=~Z) // 12'b001000000000: Update all status bits // 12'b010000000000: Update status bit for XOR instruction // 12'b100000000000: Don't write to destination reg [11:0] inst_alu; wire alu_src_inv = inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] | inst_to_nxt[`CMP] | inst_to_nxt[`BIC] ; wire alu_inc = inst_to_nxt[`SUB] | inst_to_nxt[`CMP]; wire alu_inc_c = inst_to_nxt[`ADDC] | inst_to_nxt[`DADD] | inst_to_nxt[`SUBC]; wire alu_add = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] | inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] | inst_to_nxt[`CMP] | inst_type_nxt[`INST_JMP] | inst_so_nxt[`RETI]; wire alu_and = inst_to_nxt[`AND] | inst_to_nxt[`BIC] | inst_to_nxt[`BIT]; wire alu_or = inst_to_nxt[`BIS]; wire alu_xor = inst_to_nxt[`XOR]; wire alu_dadd = inst_to_nxt[`DADD]; wire alu_stat_7 = inst_to_nxt[`BIT] | inst_to_nxt[`AND] | inst_so_nxt[`SXT]; wire alu_stat_f = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] | inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] | inst_to_nxt[`CMP] | inst_to_nxt[`DADD] | inst_to_nxt[`BIT] | inst_to_nxt[`XOR] | inst_to_nxt[`AND] | inst_so_nxt[`RRC] | inst_so_nxt[`RRA] | inst_so_nxt[`SXT]; wire alu_shift = inst_so_nxt[`RRC] | inst_so_nxt[`RRA]; wire exec_no_wr = inst_to_nxt[`CMP] | inst_to_nxt[`BIT]; wire [11:0] inst_alu_nxt = {exec_no_wr, alu_shift, alu_stat_f, alu_stat_7, alu_dadd, alu_xor, alu_or, alu_and, alu_add, alu_inc_c, alu_inc, alu_src_inv}; always @(posedge mclk_decode or posedge puc_rst) if (puc_rst) inst_alu <= 12'h000; `ifdef CLOCK_GATING else inst_alu <= inst_alu_nxt; `else else if (decode) inst_alu <= inst_alu_nxt; `endif endmodule // omsp_frontend `ifdef OMSP_NO_INCLUDE `else `include "openMSP430_undefines.v" `endif