OpenCores
URL https://opencores.org/ocsvn/openmsp430/openmsp430/trunk

Subversion Repositories openmsp430

[/] [openmsp430/] [trunk/] [fpga/] [xilinx_diligent_s3board/] [rtl/] [verilog/] [openmsp430/] [omsp_clock_module.v] - Rev 204

Go to most recent revision | Compare with Previous | Blame | View Log

//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of the authors nor the names of its contributors
//       may be used to endorse or promote products derived from this software
//       without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_clock_module.v
//
// *Module Description:
//                       Basic clock module implementation.
//
// *Author(s):
//              - Olivier Girard,    olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 202 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2015-07-01 23:13:32 +0200 (Wed, 01 Jul 2015) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
 
module  omsp_clock_module (
 
// OUTPUTs
    aclk,                             // ACLK
    aclk_en,                          // ACLK enable
    cpu_en_s,                         // Enable CPU code execution (synchronous)
    cpu_mclk,                         // Main system CPU only clock
    dma_mclk,                         // Main system DMA and/or CPU clock
    dbg_clk,                          // Debug unit clock
    dbg_en_s,                         // Debug interface enable (synchronous)
    dbg_rst,                          // Debug unit reset
    dco_enable,                       // Fast oscillator enable
    dco_wkup,                         // Fast oscillator wake-up (asynchronous)
    lfxt_enable,                      // Low frequency oscillator enable
    lfxt_wkup,                        // Low frequency oscillator wake-up (asynchronous)
    per_dout,                         // Peripheral data output
    por,                              // Power-on reset
    puc_pnd_set,                      // PUC pending set for the serial debug interface
    puc_rst,                          // Main system reset
    smclk,                            // SMCLK
    smclk_en,                         // SMCLK enable
 
// INPUTs
    cpu_en,                           // Enable CPU code execution (asynchronous)
    cpuoff,                           // Turns off the CPU
    dbg_cpu_reset,                    // Reset CPU from debug interface
    dbg_en,                           // Debug interface enable (asynchronous)
    dco_clk,                          // Fast oscillator (fast clock)
    lfxt_clk,                         // Low frequency oscillator (typ 32kHz)
    mclk_dma_enable,                  // DMA Sub-System Clock enable
    mclk_dma_wkup,                    // DMA Sub-System Clock wake-up (asynchronous)
    mclk_enable,                      // Main System Clock enable
    mclk_wkup,                        // Main System Clock wake-up (asynchronous)
    oscoff,                           // Turns off LFXT1 clock input
    per_addr,                         // Peripheral address
    per_din,                          // Peripheral data input
    per_en,                           // Peripheral enable (high active)
    per_we,                           // Peripheral write enable (high active)
    reset_n,                          // Reset Pin (low active, asynchronous)
    scan_enable,                      // Scan enable (active during scan shifting)
    scan_mode,                        // Scan mode
    scg0,                             // System clock generator 1. Turns off the DCO
    scg1,                             // System clock generator 1. Turns off the SMCLK
    wdt_reset                         // Watchdog-timer reset
);
 
// OUTPUTs
//=========
output              aclk;             // ACLK
output              aclk_en;          // ACLK enable
output              cpu_en_s;         // Enable CPU code execution (synchronous)
output              cpu_mclk;         // Main system CPU only clock
output              dma_mclk;         // Main system DMA and/or CPU clock
output              dbg_clk;          // Debug unit clock
output              dbg_en_s;         // Debug unit enable (synchronous)
output              dbg_rst;          // Debug unit reset
output              dco_enable;       // Fast oscillator enable
output              dco_wkup;         // Fast oscillator wake-up (asynchronous)
output              lfxt_enable;      // Low frequency oscillator enable
output              lfxt_wkup;        // Low frequency oscillator wake-up (asynchronous)
output       [15:0] per_dout;         // Peripheral data output
output              por;              // Power-on reset
output              puc_pnd_set;      // PUC pending set for the serial debug interface
output              puc_rst;          // Main system reset
output              smclk;            // SMCLK
output              smclk_en;         // SMCLK enable
 
// INPUTs
//=========
input               cpu_en;           // Enable CPU code execution (asynchronous)
input               cpuoff;           // Turns off the CPU
input               dbg_cpu_reset;    // Reset CPU from debug interface
input               dbg_en;           // Debug interface enable (asynchronous)
input               dco_clk;          // Fast oscillator (fast clock)
input               lfxt_clk;         // Low frequency oscillator (typ 32kHz)
input               mclk_dma_enable;  // DMA Sub-System Clock enable
input               mclk_dma_wkup;    // DMA Sub-System Clock wake-up (asynchronous)
input               mclk_enable;      // Main System Clock enable
input               mclk_wkup;        // Main System Clock wake-up (asynchronous)
input               oscoff;           // Turns off LFXT1 clock input
input        [13:0] per_addr;         // Peripheral address
input        [15:0] per_din;          // Peripheral data input
input               per_en;           // Peripheral enable (high active)
input         [1:0] per_we;           // Peripheral write enable (high active)
input               reset_n;          // Reset Pin (low active, asynchronous)
input               scan_enable;      // Scan enable (active during scan shifting)
input               scan_mode;        // Scan mode
input               scg0;             // System clock generator 1. Turns off the DCO
input               scg1;             // System clock generator 1. Turns off the SMCLK
input               wdt_reset;        // Watchdog-timer reset
 
 
//=============================================================================
// 1)  WIRES & PARAMETER DECLARATION
//=============================================================================
 
// Register base address (must be aligned to decoder bit width)
parameter       [14:0] BASE_ADDR   = 15'h0050;
 
// Decoder bit width (defines how many bits are considered for address decoding)
parameter              DEC_WD      =  4;
 
// Register addresses offset
parameter [DEC_WD-1:0] BCSCTL1     =  'h7,
                       BCSCTL2     =  'h8;
 
// Register one-hot decoder utilities
parameter              DEC_SZ      =  (1 << DEC_WD);
parameter [DEC_SZ-1:0] BASE_REG    =  {{DEC_SZ-1{1'b0}}, 1'b1};
 
// Register one-hot decoder
parameter [DEC_SZ-1:0] BCSCTL1_D   = (BASE_REG << BCSCTL1),
                       BCSCTL2_D   = (BASE_REG << BCSCTL2);
 
// Local wire declarations
wire nodiv_mclk;
wire nodiv_mclk_n;
wire nodiv_smclk;
 
 
//============================================================================
// 2)  REGISTER DECODER
//============================================================================
 
// Local register selection
wire              reg_sel      =  per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
 
// Register local address
wire [DEC_WD-1:0] reg_addr     =  {1'b0, per_addr[DEC_WD-2:0]};
 
// Register address decode
wire [DEC_SZ-1:0] reg_dec      = (BCSCTL1_D  &  {DEC_SZ{(reg_addr==(BCSCTL1 >>1))}}) |
                                 (BCSCTL2_D  &  {DEC_SZ{(reg_addr==(BCSCTL2 >>1))}});
 
// Read/Write probes
wire              reg_lo_write =  per_we[0] & reg_sel;
wire              reg_hi_write =  per_we[1] & reg_sel;
wire              reg_read     = ~|per_we   & reg_sel;
 
// Read/Write vectors
wire [DEC_SZ-1:0] reg_hi_wr    = reg_dec & {DEC_SZ{reg_hi_write}};
wire [DEC_SZ-1:0] reg_lo_wr    = reg_dec & {DEC_SZ{reg_lo_write}};
wire [DEC_SZ-1:0] reg_rd       = reg_dec & {DEC_SZ{reg_read}};
 
 
//============================================================================
// 3) REGISTERS
//============================================================================
 
// BCSCTL1 Register
//--------------
reg  [7:0] bcsctl1;
wire       bcsctl1_wr  = BCSCTL1[0] ? reg_hi_wr[BCSCTL1] : reg_lo_wr[BCSCTL1];
wire [7:0] bcsctl1_nxt = BCSCTL1[0] ? per_din[15:8]      : per_din[7:0];
 
`ifdef ASIC_CLOCKING
  `ifdef ACLK_DIVIDER
wire [7:0] divax_mask      = 8'h30;
  `else
wire [7:0] divax_mask      = 8'h00;
  `endif
  `ifdef DMA_IF_EN
    `ifdef CPUOFF_EN
wire [7:0] dma_cpuoff_mask = 8'h01;
    `else
wire [7:0] dma_cpuoff_mask = 8'h00;
    `endif
    `ifdef OSCOFF_EN
wire [7:0] dma_oscoff_mask = 8'h02;
    `else
wire [7:0] dma_oscoff_mask = 8'h00;
    `endif
    `ifdef SCG0_EN
wire [7:0] dma_scg0_mask   = 8'h04;
    `else
wire [7:0] dma_scg0_mask   = 8'h00;
    `endif
    `ifdef SCG1_EN
wire [7:0] dma_scg1_mask   = 8'h08;
    `else
wire [7:0] dma_scg1_mask   = 8'h00;
    `endif
  `else
wire [7:0] dma_cpuoff_mask = 8'h00;
wire [7:0] dma_scg0_mask   = 8'h00;
wire [7:0] dma_scg1_mask   = 8'h00;
wire [7:0] dma_oscoff_mask = 8'h00;
  `endif
`else
wire [7:0] divax_mask      = 8'h30;
wire [7:0] dma_cpuoff_mask = 8'h00;
wire [7:0] dma_scg0_mask   = 8'h00;
  `ifdef DMA_IF_EN
wire [7:0] dma_oscoff_mask = 8'h02;
wire [7:0] dma_scg1_mask   = 8'h08;
  `else
wire [7:0] dma_oscoff_mask = 8'h00;
wire [7:0] dma_scg1_mask   = 8'h00;
  `endif
`endif
 
always @ (posedge dma_mclk or posedge puc_rst)
  if (puc_rst)          bcsctl1  <=  8'h00;
  else if (bcsctl1_wr)  bcsctl1  <=  bcsctl1_nxt & (divax_mask      |
                                                    dma_cpuoff_mask | dma_oscoff_mask |
                                                    dma_scg0_mask   | dma_scg1_mask   ); // Mask unused bits
 
 
// BCSCTL2 Register
//--------------
reg  [7:0] bcsctl2;
wire       bcsctl2_wr    = BCSCTL2[0] ? reg_hi_wr[BCSCTL2] : reg_lo_wr[BCSCTL2];
wire [7:0] bcsctl2_nxt   = BCSCTL2[0] ? per_din[15:8]      : per_din[7:0];
 
`ifdef MCLK_MUX
wire [7:0] selmx_mask = 8'h80;
`else
wire [7:0] selmx_mask = 8'h00;
`endif
`ifdef MCLK_DIVIDER
wire [7:0] divmx_mask = 8'h30;
`else
wire [7:0] divmx_mask = 8'h00;
`endif
`ifdef ASIC_CLOCKING
  `ifdef SMCLK_MUX
wire [7:0] sels_mask  = 8'h08;
  `else
wire [7:0] sels_mask  = 8'h00;
  `endif
  `ifdef SMCLK_DIVIDER
wire [7:0] divsx_mask = 8'h06;
  `else
wire [7:0] divsx_mask = 8'h00;
  `endif
`else
wire [7:0] sels_mask  = 8'h08;
wire [7:0] divsx_mask = 8'h06;
`endif
 
always @ (posedge dma_mclk or posedge puc_rst)
  if (puc_rst)          bcsctl2  <=  8'h00;
  else if (bcsctl2_wr)  bcsctl2  <=  bcsctl2_nxt & ( sels_mask  | divsx_mask |
                                                     selmx_mask | divmx_mask); // Mask unused bits
 
 
//============================================================================
// 4) DATA OUTPUT GENERATION
//============================================================================
 
// Data output mux
wire [15:0] bcsctl1_rd   = {8'h00, (bcsctl1  & {8{reg_rd[BCSCTL1]}})}  << (8 & {4{BCSCTL1[0]}});
wire [15:0] bcsctl2_rd   = {8'h00, (bcsctl2  & {8{reg_rd[BCSCTL2]}})}  << (8 & {4{BCSCTL2[0]}});
 
wire [15:0] per_dout =  bcsctl1_rd   |
                        bcsctl2_rd;
 
 
//=============================================================================
// 5)  DCO_CLK / LFXT_CLK INTERFACES (WAKEUP, ENABLE, ...)
//=============================================================================
 
`ifdef ASIC_CLOCKING
   wire cpuoff_and_mclk_enable;
   wire cpuoff_and_mclk_dma_enable;
   wire cpuoff_and_mclk_dma_wkup;
  `ifdef CPUOFF_EN
   omsp_and_gate and_cpuoff_mclk_en       (.y(cpuoff_and_mclk_enable),     .a(cpuoff),               .b(mclk_enable));
    `ifdef DMA_IF_EN
   omsp_and_gate and_cpuoff_mclk_dma_en   (.y(cpuoff_and_mclk_dma_enable), .a(bcsctl1[`DMA_CPUOFF]), .b(mclk_dma_enable));
   omsp_and_gate and_cpuoff_mclk_dma_wkup (.y(cpuoff_and_mclk_dma_wkup),   .a(bcsctl1[`DMA_CPUOFF]), .b(mclk_dma_wkup));
    `else
   assign cpuoff_and_mclk_dma_enable = 1'b0;
   assign cpuoff_and_mclk_dma_wkup   = 1'b0;
    `endif
  `else
   assign cpuoff_and_mclk_enable     = 1'b0;
   assign cpuoff_and_mclk_dma_enable = 1'b0;
   assign cpuoff_and_mclk_dma_wkup   = 1'b0;
   wire   UNUSED_cpuoff              = cpuoff;
  `endif
 
   wire scg0_and_mclk_dma_enable;
   wire scg0_and_mclk_dma_wkup;
  `ifdef DMA_IF_EN
    `ifdef SCG0_EN
   omsp_and_gate and_scg0_mclk_dma_en     (.y(scg0_and_mclk_dma_enable),   .a(bcsctl1[`DMA_SCG0]),   .b(mclk_dma_enable));
   omsp_and_gate and_scg0_mclk_dma_wkup   (.y(scg0_and_mclk_dma_wkup),     .a(bcsctl1[`DMA_SCG0]),   .b(mclk_dma_wkup));
    `else
   assign scg0_and_mclk_dma_enable   = 1'b0;
   assign scg0_and_mclk_dma_wkup     = 1'b0;
   wire   UNUSED_scg0_mclk_dma_wkup  = mclk_dma_wkup;
    `endif
  `else
   assign scg0_and_mclk_dma_enable   = 1'b0;
   assign scg0_and_mclk_dma_wkup     = 1'b0;
  `endif
 
   wire scg1_and_mclk_dma_enable;
   wire scg1_and_mclk_dma_wkup;
  `ifdef DMA_IF_EN
    `ifdef SCG1_EN
   omsp_and_gate and_scg1_mclk_dma_en     (.y(scg1_and_mclk_dma_enable),   .a(bcsctl1[`DMA_SCG1]),   .b(mclk_dma_enable));
   omsp_and_gate and_scg1_mclk_dma_wkup   (.y(scg1_and_mclk_dma_wkup),     .a(bcsctl1[`DMA_SCG1]),   .b(mclk_dma_wkup));
    `else
   assign scg1_and_mclk_dma_enable   = 1'b0;
   assign scg1_and_mclk_dma_wkup     = 1'b0;
   wire   UNUSED_scg1_mclk_dma_wkup  = mclk_dma_wkup;
    `endif
  `else
   assign scg1_and_mclk_dma_enable   = 1'b0;
   assign scg1_and_mclk_dma_wkup     = 1'b0;
  `endif
 
   wire oscoff_and_mclk_dma_enable;
   wire oscoff_and_mclk_dma_wkup;
  `ifdef DMA_IF_EN
    `ifdef OSCOFF_EN
   omsp_and_gate and_oscoff_mclk_dma_en   (.y(oscoff_and_mclk_dma_enable), .a(bcsctl1[`DMA_OSCOFF]), .b(mclk_dma_enable));
   omsp_and_gate and_oscoff_mclk_dma_wkup (.y(oscoff_and_mclk_dma_wkup),   .a(bcsctl1[`DMA_OSCOFF]), .b(mclk_dma_wkup));
    `else
   assign oscoff_and_mclk_dma_enable = 1'b0;
   assign oscoff_and_mclk_dma_wkup   = 1'b0;
   wire   UNUSED_oscoff_mclk_dma_wkup= mclk_dma_wkup;
    `endif
  `else
   assign oscoff_and_mclk_dma_enable = 1'b0;
   assign oscoff_and_mclk_dma_wkup   = 1'b0;
  wire  UNUSED_mclk_dma_wkup         = mclk_dma_wkup;
  `endif
`else
  wire  UNUSED_cpuoff                = cpuoff;
  wire  UNUSED_mclk_enable           = mclk_enable;
  wire  UNUSED_mclk_dma_wkup         = mclk_dma_wkup;
`endif
 
 
//-----------------------------------------------------------
// 5.1) HIGH SPEED SYSTEM CLOCK GENERATOR (DCO_CLK)
//-----------------------------------------------------------
// Note1: switching off the DCO osillator is only
//        supported in ASIC mode with SCG0 low power mode
//
// Note2: unlike the original MSP430 specification,
//        we allow to switch off the DCO even
//        if it is selected by MCLK or SMCLK.
 
wire por_a;
wire dco_wkup;
wire cpu_en_wkup;
 
`ifdef SCG0_EN
 
   // The DCO oscillator is synchronously disabled if:
   //      - the cpu pin is disabled (in that case, wait for mclk_enable==0)
   //      - the debug interface is disabled
   //      - SCG0 is set (in that case, wait for the mclk_enable==0 if selected by SELMx)
   //
   // Note that we make extensive use of the AND gate module in order
   // to prevent glitch propagation on the wakeup logic cone.
   wire cpu_enabled_with_dco;
   wire dco_not_enabled_by_dbg;
   wire dco_disable_by_scg0;
   wire dco_disable_by_cpu_en;
   wire dco_enable_nxt;
   omsp_and_gate and_dco_dis1 (.y(cpu_enabled_with_dco),   .a(~bcsctl2[`SELMx]),     .b(cpuoff_and_mclk_enable));
   omsp_and_gate and_dco_dis2 (.y(dco_not_enabled_by_dbg), .a(~dbg_en_s),            .b(~(cpu_enabled_with_dco | scg0_and_mclk_dma_enable)));
   omsp_and_gate and_dco_dis3 (.y(dco_disable_by_scg0),    .a(scg0),                 .b(dco_not_enabled_by_dbg));
   omsp_and_gate and_dco_dis4 (.y(dco_disable_by_cpu_en),  .a(~cpu_en_s),            .b(~mclk_enable));
   omsp_and_gate and_dco_dis5 (.y(dco_enable_nxt),         .a(~dco_disable_by_scg0), .b(~dco_disable_by_cpu_en));
 
   // Register to prevent glitch propagation
   reg  dco_disable;
   always @(posedge nodiv_mclk_n or posedge por)
   if (por) dco_disable <= 1'b1;
   else     dco_disable <= ~dco_enable_nxt;
 
   // Note that a synchronizer is required if the MCLK mux is included
   wire dco_clk_n  = ~dco_clk;
   `ifdef MCLK_MUX
      omsp_sync_cell sync_cell_dco_disable (
         .data_out  (dco_enable),
         .data_in   (~dco_disable),
         .clk       (dco_clk_n),
         .rst       (por)
      );
   `else
      assign dco_enable     = ~dco_disable;
   `endif
 
   // The DCO oscillator will get an asynchronous wakeup if:
   //      - the MCLK  generates a wakeup (only if the MCLK mux selects dco_clk)
   //      - if the DCO wants to be synchronously enabled (i.e dco_enable_nxt=1)
   wire dco_mclk_wkup;
   wire dco_en_wkup;
   omsp_and_gate and_dco_mclk_wkup (.y(dco_mclk_wkup), .a(mclk_wkup),   .b(~bcsctl2[`SELMx]));
   omsp_and_gate and_dco_en_wkup   (.y(dco_en_wkup),   .a(~dco_enable), .b(dco_enable_nxt));
 
   wire dco_wkup_set = dco_mclk_wkup | scg0_and_mclk_dma_wkup | dco_en_wkup | cpu_en_wkup;
 
   // Scan MUX for the asynchronous SET
   wire dco_wkup_set_scan;
   omsp_scan_mux scan_mux_dco_wkup (
                                    .scan_mode    (scan_mode),
                                    .data_in_scan (por_a),
                                    .data_in_func (dco_wkup_set | por),
                                    .data_out     (dco_wkup_set_scan)
                                   );
 
   // Scan MUX to increase coverage
   wire dco_wkup_clear;
   omsp_scan_mux scan_mux_dco_wkup_clear (
                                          .scan_mode    (scan_mode),
                                          .data_in_scan (dco_wkup_set),
                                          .data_in_func (1'b1),
                                          .data_out     (dco_wkup_clear)
                                         );
 
   // The wakeup is asynchronously set, synchronously released
   wire dco_wkup_n;
   omsp_sync_cell sync_cell_dco_wkup (
       .data_out  (dco_wkup_n),
       .data_in   (dco_wkup_clear),
       .clk       (dco_clk_n),
       .rst       (dco_wkup_set_scan)
   );
 
   omsp_and_gate and_dco_wkup (.y(dco_wkup), .a(~dco_wkup_n), .b(cpu_en));
 
`else
   assign dco_enable          = 1'b1;
   assign dco_wkup            = 1'b1;
   wire   UNUSED_scg0         = scg0;
   wire   UNUSED_cpu_en_wkup1 = cpu_en_wkup;
`endif
 
 
//-----------------------------------------------------------
// 5.2) LOW FREQUENCY CRYSTAL CLOCK GENERATOR (LFXT_CLK)
//-----------------------------------------------------------
 
// ASIC MODE
//------------------------------------------------
// Note: unlike the original MSP430 specification,
//       we allow to switch off the LFXT even
//       if it is selected by MCLK or SMCLK.
`ifdef ASIC_CLOCKING
 
`ifdef OSCOFF_EN
 
   // The LFXT is synchronously disabled if:
   //      - the cpu pin is disabled (in that case, wait for mclk_enable==0)
   //      - the debug interface is disabled
   //      - OSCOFF is set (in that case, wait for the mclk_enable==0 if selected by SELMx)
   wire cpu_enabled_with_lfxt;
   wire lfxt_not_enabled_by_dbg;
   wire lfxt_disable_by_oscoff;
   wire lfxt_disable_by_cpu_en;
   wire lfxt_enable_nxt;
   omsp_and_gate and_lfxt_dis1 (.y(cpu_enabled_with_lfxt),   .a(bcsctl2[`SELMx]),         .b(cpuoff_and_mclk_enable));
   omsp_and_gate and_lfxt_dis2 (.y(lfxt_not_enabled_by_dbg), .a(~dbg_en_s),               .b(~(cpu_enabled_with_lfxt | oscoff_and_mclk_dma_enable)));
   omsp_and_gate and_lfxt_dis3 (.y(lfxt_disable_by_oscoff),  .a(oscoff),                  .b(lfxt_not_enabled_by_dbg));
   omsp_and_gate and_lfxt_dis4 (.y(lfxt_disable_by_cpu_en),  .a(~cpu_en_s),               .b(~mclk_enable));
   omsp_and_gate and_lfxt_dis5 (.y(lfxt_enable_nxt),         .a(~lfxt_disable_by_oscoff), .b(~lfxt_disable_by_cpu_en));
 
   // Register to prevent glitch propagation
   reg  lfxt_disable;
   always @(posedge nodiv_mclk_n or posedge por)
   if (por) lfxt_disable <= 1'b1;
   else     lfxt_disable <= ~lfxt_enable_nxt;
 
   // Synchronize the OSCOFF control signal to the LFXT clock domain
   wire lfxt_clk_n  = ~lfxt_clk;
   omsp_sync_cell sync_cell_lfxt_disable (
      .data_out  (lfxt_enable),
      .data_in   (~lfxt_disable),
      .clk       (lfxt_clk_n),
      .rst       (por)
   );
 
   // The LFXT will get an asynchronous wakeup if:
   //      - the MCLK  generates a wakeup (only if the MCLK  mux selects lfxt_clk)
   //      - if the LFXT wants to be synchronously enabled (i.e lfxt_enable_nxt=1)
   wire lfxt_mclk_wkup;
   wire lfxt_en_wkup;
   omsp_and_gate and_lfxt_mclk_wkup (.y(lfxt_mclk_wkup), .a(mclk_wkup),    .b(bcsctl2[`SELMx]));
   omsp_and_gate and_lfxt_en_wkup   (.y(lfxt_en_wkup),   .a(~lfxt_enable), .b(lfxt_enable_nxt));
 
   wire   lfxt_wkup_set  = lfxt_mclk_wkup | oscoff_and_mclk_dma_wkup | lfxt_en_wkup | cpu_en_wkup;
 
   // Scan MUX for the asynchronous SET
   wire lfxt_wkup_set_scan;
   omsp_scan_mux scan_mux_lfxt_wkup (
                                     .scan_mode    (scan_mode),
                                     .data_in_scan (por_a),
                                     .data_in_func (lfxt_wkup_set | por),
                                     .data_out     (lfxt_wkup_set_scan)
                                    );
 
   // Scan MUX to increase coverage
   wire lfxt_wkup_clear;
   omsp_scan_mux scan_mux_lfxt_wkup_clear (
                                           .scan_mode    (scan_mode),
                                           .data_in_scan (lfxt_wkup_set),
                                           .data_in_func (1'b1),
                                           .data_out     (lfxt_wkup_clear)
                                          );
 
   // The wakeup is asynchronously set, synchronously released
   wire lfxt_wkup_n;
   omsp_sync_cell sync_cell_lfxt_wkup (
       .data_out  (lfxt_wkup_n),
       .data_in   (lfxt_wkup_clear),
       .clk       (lfxt_clk_n),
       .rst       (lfxt_wkup_set_scan)
   );
 
   omsp_and_gate and_lfxt_wkup (.y(lfxt_wkup), .a(~lfxt_wkup_n), .b(cpu_en));
 
`else
   assign lfxt_enable                   = 1'b1;
   assign lfxt_wkup                     = 1'b0;
   wire   UNUSED_oscoff                 = oscoff;
  wire    UNUSED_cpuoff_and_mclk_enable = cpuoff_and_mclk_enable;
   wire   UNUSED_cpu_en_wkup2           = cpu_en_wkup;
`endif
 
 
// FPGA MODE
//---------------------------------------
// Synchronize LFXT_CLK & edge detection
`else
 
wire lfxt_clk_s;
 
omsp_sync_cell sync_cell_lfxt_clk (
    .data_out  (lfxt_clk_s),
    .data_in   (lfxt_clk),
    .clk       (nodiv_mclk),
    .rst       (por)
);
 
reg  lfxt_clk_dly;
 
always @ (posedge nodiv_mclk or posedge por)
  if (por) lfxt_clk_dly <=  1'b0;
  else     lfxt_clk_dly <=  lfxt_clk_s;
 
wire   lfxt_clk_en = (lfxt_clk_s & ~lfxt_clk_dly) & (~oscoff | (mclk_dma_enable & bcsctl1[`DMA_OSCOFF]));
assign lfxt_enable = 1'b1;
assign lfxt_wkup   = 1'b0;
`endif
 
 
//=============================================================================
// 6)  CLOCK GENERATION
//=============================================================================
 
//-----------------------------------------------------------
// 6.1) GLOBAL CPU ENABLE
//----------------------------------------------------------
// ACLK and SMCLK are directly switched-off
// with the cpu_en pin (after synchronization).
// MCLK will be switched off once the CPU reaches
// its IDLE state (through the mclk_enable signal)
 
 
// Synchronize CPU_EN signal to the MCLK domain
//----------------------------------------------
`ifdef SYNC_CPU_EN
   omsp_sync_cell sync_cell_cpu_en (
      .data_out  (cpu_en_s),
      .data_in   (cpu_en),
      .clk       (nodiv_mclk),
      .rst       (por)
   );
   omsp_and_gate and_cpu_en_wkup (.y(cpu_en_wkup), .a(cpu_en), .b(~cpu_en_s));
`else
   assign cpu_en_s    = cpu_en;
   assign cpu_en_wkup = 1'b0;
`endif
 
// Synchronize CPU_EN signal to the ACLK domain
//----------------------------------------------
`ifdef LFXT_DOMAIN
   wire cpu_en_aux_s;
   omsp_sync_cell sync_cell_cpu_aux_en (
      .data_out  (cpu_en_aux_s),
      .data_in   (cpu_en),
      .clk       (lfxt_clk),
      .rst       (por)
   );
`else
   wire   cpu_en_aux_s    = cpu_en_s;
`endif
 
// Synchronize CPU_EN signal to the SMCLK domain
//----------------------------------------------
// Note: the synchronizer is only required if there is a SMCLK_MUX
`ifdef ASIC_CLOCKING
  `ifdef SMCLK_MUX
     wire cpu_en_sm_s;
     omsp_sync_cell sync_cell_cpu_sm_en (
        .data_out  (cpu_en_sm_s),
        .data_in   (cpu_en),
        .clk       (nodiv_smclk),
        .rst       (por)
     );
  `else
   wire   cpu_en_sm_s    = cpu_en_s;
  `endif
`endif
 
 
//-----------------------------------------------------------
// 6.2) MCLK GENERATION
//-----------------------------------------------------------
 
// Clock MUX
//----------------------------
`ifdef MCLK_MUX
omsp_clock_mux clock_mux_mclk (
   .clk_out   (nodiv_mclk),
   .clk_in0   (dco_clk),
   .clk_in1   (lfxt_clk),
   .reset     (por),
   .scan_mode (scan_mode),
   .select_in (bcsctl2[`SELMx])
);
`else
assign nodiv_mclk   =  dco_clk;
`endif
assign nodiv_mclk_n = ~nodiv_mclk;
 
 
// Wakeup synchronizer
//----------------------------
wire cpuoff_and_mclk_dma_wkup_s;
wire mclk_wkup_s;
 
`ifdef CPUOFF_EN
  `ifdef DMA_IF_EN
omsp_sync_cell sync_cell_mclk_dma_wkup (
   .data_out  (cpuoff_and_mclk_dma_wkup_s),
   .data_in   (cpuoff_and_mclk_dma_wkup),
   .clk       (nodiv_mclk),
   .rst       (puc_rst)
);
  `else
   assign cpuoff_and_mclk_dma_wkup_s = 1'b0;
  `endif
omsp_sync_cell sync_cell_mclk_wkup (
   .data_out  (mclk_wkup_s),
   .data_in   (mclk_wkup),
   .clk       (nodiv_mclk),
   .rst       (puc_rst)
);
`else
   assign cpuoff_and_mclk_dma_wkup_s = 1'b0;
   assign mclk_wkup_s                = 1'b0;
   wire   UNUSED_mclk_wkup           = mclk_wkup;
`endif
 
 
// Clock Divider
//----------------------------
// No need for extra synchronizer as bcsctl2
// comes from the same clock domain.
 
`ifdef CPUOFF_EN
wire mclk_active     = mclk_enable                | mclk_wkup_s                | (dbg_en_s & cpu_en_s);
wire mclk_dma_active = cpuoff_and_mclk_dma_enable | cpuoff_and_mclk_dma_wkup_s | mclk_active;
`else
wire mclk_active     = 1'b1;
wire mclk_dma_active = 1'b1;
`endif
 
`ifdef MCLK_DIVIDER
reg [2:0] mclk_div;
always @ (posedge nodiv_mclk or posedge puc_rst)
  if (puc_rst)                       mclk_div <=  3'h0;
  else if ((bcsctl2[`DIVMx]!=2'b00)) mclk_div <=  mclk_div+3'h1;
 
  wire  mclk_div_sel    = (bcsctl2[`DIVMx]==2'b00) ?  1'b1          :
                          (bcsctl2[`DIVMx]==2'b01) ?  mclk_div[0]   :
                          (bcsctl2[`DIVMx]==2'b10) ? &mclk_div[1:0] :
                                                     &mclk_div[2:0] ;
 
  wire  mclk_div_en     = mclk_active     & mclk_div_sel;
  wire  mclk_dma_div_en = mclk_dma_active & mclk_div_sel;
 
`else
  wire  mclk_div_en     = mclk_active;
  wire  mclk_dma_div_en = mclk_dma_active;
`endif
 
 
// Generate main system clock
//----------------------------
`ifdef MCLK_CGATE
 
omsp_clock_gate clock_gate_mclk (
    .gclk        (cpu_mclk),
    .clk         (nodiv_mclk),
    .enable      (mclk_div_en),
    .scan_enable (scan_enable)
);
  `ifdef DMA_IF_EN
omsp_clock_gate clock_gate_dma_mclk (
    .gclk        (dma_mclk),
    .clk         (nodiv_mclk),
    .enable      (mclk_dma_div_en),
    .scan_enable (scan_enable)
);
  `else
   assign dma_mclk   = cpu_mclk;
  `endif
`else
   assign cpu_mclk   = nodiv_mclk;
   assign dma_mclk   = nodiv_mclk;
`endif
 
 
//-----------------------------------------------------------
// 6.3) ACLK GENERATION
//-----------------------------------------------------------
 
// ASIC MODE
//----------------------------
`ifdef ASIC_CLOCKING
 
  `ifdef ACLK_DIVIDER
    `ifdef LFXT_DOMAIN
 
   wire nodiv_aclk = lfxt_clk;
 
   // Synchronizers
   //------------------------------------------------------
 
   // Local Reset synchronizer
   wire puc_lfxt_noscan_n;
   wire puc_lfxt_rst;
   omsp_sync_cell sync_cell_puc_lfxt (
       .data_out     (puc_lfxt_noscan_n),
       .data_in      (1'b1),
       .clk          (nodiv_aclk),
       .rst          (puc_rst)
   );
   omsp_scan_mux scan_mux_puc_lfxt (
       .scan_mode    (scan_mode),
       .data_in_scan (por_a),
       .data_in_func (~puc_lfxt_noscan_n),
       .data_out     (puc_lfxt_rst)
   );
 
   // If the OSCOFF mode is enabled synchronize OSCOFF signal
   wire oscoff_s;
   `ifdef OSCOFF_EN
       omsp_sync_cell sync_cell_oscoff (
         .data_out     (oscoff_s),
         .data_in      (oscoff),
         .clk          (nodiv_aclk),
         .rst          (puc_lfxt_rst)
       );
   `else
   assign oscoff_s = 1'b0;
   `endif
 
   // Local synchronizer for the bcsctl1.DIVAx configuration
   // (note that we can live with a full bus synchronizer as
   //  it won't hurt if we get a wrong DIVAx value for a single clock cycle)
   reg [1:0] divax_s;
   reg [1:0] divax_ss;
   always @ (posedge nodiv_aclk or posedge puc_lfxt_rst)
     if (puc_lfxt_rst)
       begin
          divax_s  <=  2'h0;
          divax_ss <=  2'h0;
       end
     else
       begin
          divax_s  <=  bcsctl1[`DIVAx];
          divax_ss <=  divax_s;
       end
 
  `else
   wire       puc_lfxt_rst = puc_rst;
   wire       nodiv_aclk   = dco_clk;
   wire [1:0] divax_ss     = bcsctl1[`DIVAx];
   wire       oscoff_s     = oscoff;
  `endif
 
   // Wakeup synchronizer
   //----------------------------
   wire oscoff_and_mclk_dma_enable_s;
 
   `ifdef OSCOFF_EN
     `ifdef DMA_IF_EN
          omsp_sync_cell sync_cell_aclk_dma_wkup (
             .data_out  (oscoff_and_mclk_dma_enable_s),
             .data_in   (oscoff_and_mclk_dma_wkup | oscoff_and_mclk_dma_enable),
             .clk       (nodiv_aclk),
             .rst       (puc_lfxt_rst)
          );
     `else
      assign oscoff_and_mclk_dma_enable_s = 1'b0;
     `endif
   `else
      assign oscoff_and_mclk_dma_enable_s = 1'b0;
   `endif
 
   // Clock Divider
   //----------------------------
 
   wire      aclk_active  =  cpu_en_aux_s & (~oscoff_s | oscoff_and_mclk_dma_enable_s);
 
   reg [2:0] aclk_div;
   always @ (posedge nodiv_aclk or posedge puc_lfxt_rst)
     if (puc_lfxt_rst)           aclk_div <=  3'h0;
     else if ((divax_ss!=2'b00)) aclk_div <=  aclk_div+3'h1;
 
   wire      aclk_div_sel =  ((divax_ss==2'b00) ?  1'b1          :
                              (divax_ss==2'b01) ?  aclk_div[0]   :
                              (divax_ss==2'b10) ? &aclk_div[1:0] :
                                                  &aclk_div[2:0]);
 
   wire      aclk_div_en  =  aclk_active & aclk_div_sel;
 
   // Clock gate
   omsp_clock_gate clock_gate_aclk (
      .gclk        (aclk),
      .clk         (nodiv_aclk),
      .enable      (aclk_div_en),
      .scan_enable (scan_enable)
   );
 
  `else
    `ifdef LFXT_DOMAIN
    assign  aclk                = lfxt_clk;
    `else
    assign  aclk                = dco_clk;
    `endif
    wire    UNUSED_cpu_en_aux_s = cpu_en_aux_s;
  `endif
 
 `ifdef LFXT_DOMAIN
 `else
    wire    UNUSED_lfxt_clk     = lfxt_clk;
 `endif
 
    assign  aclk_en             = 1'b1;
 
 
// FPGA MODE
//----------------------------
`else
  reg       aclk_en;
  reg [2:0] aclk_div;
  wire      aclk_en_nxt =  lfxt_clk_en & ((bcsctl1[`DIVAx]==2'b00) ?  1'b1          :
                                          (bcsctl1[`DIVAx]==2'b01) ?  aclk_div[0]   :
                                          (bcsctl1[`DIVAx]==2'b10) ? &aclk_div[1:0] :
                                                                     &aclk_div[2:0]);
 
  always @ (posedge nodiv_mclk or posedge puc_rst)
    if (puc_rst)                                     aclk_div <=  3'h0;
    else if ((bcsctl1[`DIVAx]!=2'b00) & lfxt_clk_en) aclk_div <=  aclk_div+3'h1;
 
  always @ (posedge nodiv_mclk or posedge puc_rst)
    if (puc_rst)  aclk_en <=  1'b0;
    else          aclk_en <=  aclk_en_nxt & cpu_en_s;
 
  assign  aclk               = nodiv_mclk;
 
  wire    UNUSED_scan_enable = scan_enable;
  wire    UNUSED_scan_mode   = scan_mode;
`endif
 
 
//-----------------------------------------------------------
// 6.4) SMCLK GENERATION
//-----------------------------------------------------------
 
// Clock MUX
//----------------------------
`ifdef SMCLK_MUX
omsp_clock_mux clock_mux_smclk (
   .clk_out   (nodiv_smclk),
   .clk_in0   (dco_clk),
   .clk_in1   (lfxt_clk),
   .reset     (por),
   .scan_mode (scan_mode),
   .select_in (bcsctl2[`SELS])
);
`else
assign nodiv_smclk = dco_clk;
`endif
 
 
// ASIC MODE
//----------------------------
`ifdef ASIC_CLOCKING
  `ifdef SMCLK_MUX
 
    // SMCLK_MUX Synchronizers
    //------------------------------------------------------
    // When the SMCLK MUX is enabled, the reset and DIVSx
    // and SCG1 signals must be synchronized, otherwise not.
 
     // Local Reset synchronizer
     wire puc_sm_noscan_n;
     wire puc_sm_rst;
     omsp_sync_cell sync_cell_puc_sm (
         .data_out     (puc_sm_noscan_n),
         .data_in      (1'b1),
         .clk          (nodiv_smclk),
         .rst          (puc_rst)
     );
     omsp_scan_mux scan_mux_puc_sm (
         .scan_mode    (scan_mode),
         .data_in_scan (por_a),
         .data_in_func (~puc_sm_noscan_n),
         .data_out     (puc_sm_rst)
     );
 
     // SCG1 synchronizer
     wire scg1_s;
     `ifdef SCG1_EN
     omsp_sync_cell sync_cell_scg1 (
         .data_out     (scg1_s),
         .data_in      (scg1),
         .clk          (nodiv_smclk),
         .rst          (puc_sm_rst)
     );
     `else
     assign scg1_s            = 1'b0;
     wire   UNUSED_scg1       = scg1;
     wire   UNUSED_puc_sm_rst = puc_sm_rst;
     `endif
 
    `ifdef SMCLK_DIVIDER
     // Local synchronizer for the bcsctl2.DIVSx configuration
     // (note that we can live with a full bus synchronizer as
     //  it won't hurt if we get a wrong DIVSx value for a single clock cycle)
     reg [1:0] divsx_s;
     reg [1:0] divsx_ss;
     always @ (posedge nodiv_smclk or posedge puc_sm_rst)
       if (puc_sm_rst)
         begin
            divsx_s  <=  2'h0;
            divsx_ss <=  2'h0;
         end
       else
         begin
            divsx_s  <=  bcsctl2[`DIVSx];
            divsx_ss <=  divsx_s;
         end
    `endif
 
  `else
 
      wire       puc_sm_rst   = puc_rst;
      wire [1:0] divsx_ss     = bcsctl2[`DIVSx];
      wire       scg1_s       = scg1;
  `endif
 
   // Wakeup synchronizer
   //----------------------------
   wire scg1_and_mclk_dma_enable_s;
 
   `ifdef SCG1_EN
     `ifdef DMA_IF_EN
       `ifdef SMCLK_MUX
          omsp_sync_cell sync_cell_smclk_dma_wkup (
             .data_out  (scg1_and_mclk_dma_enable_s),
             .data_in   (scg1_and_mclk_dma_wkup | scg1_and_mclk_dma_enable),
             .clk       (nodiv_smclk),
             .rst       (puc_sm_rst)
          );
       `else
           wire scg1_and_mclk_dma_wkup_s;
           omsp_sync_cell sync_cell_smclk_dma_wkup (
             .data_out  (scg1_and_mclk_dma_wkup_s),
             .data_in   (scg1_and_mclk_dma_wkup),
             .clk       (nodiv_smclk),
             .rst       (puc_sm_rst)
          );
          assign scg1_and_mclk_dma_enable_s = scg1_and_mclk_dma_wkup_s | scg1_and_mclk_dma_enable;
       `endif
     `else
      assign scg1_and_mclk_dma_enable_s = 1'b0;
     `endif
   `else
      assign scg1_and_mclk_dma_enable_s = 1'b0;
   `endif
 
 
   // Clock Divider
   //----------------------------
 `ifdef SCG1_EN
   wire smclk_active  =  cpu_en_sm_s & (~scg1_s | scg1_and_mclk_dma_enable_s);
 `else
   wire smclk_active  =  cpu_en_sm_s;
 `endif
 
 `ifdef SMCLK_DIVIDER
   reg [2:0] smclk_div;
   always @ (posedge nodiv_smclk or posedge puc_sm_rst)
     if (puc_sm_rst)             smclk_div <=  3'h0;
     else if ((divsx_ss!=2'b00)) smclk_div <=  smclk_div+3'h1;
 
   wire  smclk_div_sel = ((divsx_ss==2'b00) ?  1'b1           :
                          (divsx_ss==2'b01) ?  smclk_div[0]   :
                          (divsx_ss==2'b10) ? &smclk_div[1:0] :
                                              &smclk_div[2:0]);
 
   wire  smclk_div_en  = smclk_active & smclk_div_sel;
 `else
   wire  smclk_div_en  = smclk_active;
 `endif
 
 
   // Generate sub-system clock
   //----------------------------
 `ifdef SMCLK_CGATE
   omsp_clock_gate clock_gate_smclk (
      .gclk        (smclk),
      .clk         (nodiv_smclk),
      .enable      (smclk_div_en),
      .scan_enable (scan_enable)
   );
 `else
   assign  smclk    = nodiv_smclk;
 `endif
 
   assign  smclk_en = 1'b1;
 
 
// FPGA MODE
//----------------------------
`else
reg       smclk_en;
reg [2:0] smclk_div;
 
wire      smclk_in     = (scg1 & ~(mclk_dma_enable & bcsctl1[`DMA_SCG1])) ? 1'b0        :
                          bcsctl2[`SELS]                                  ? lfxt_clk_en : 1'b1;
 
wire      smclk_en_nxt = smclk_in & ((bcsctl2[`DIVSx]==2'b00) ?  1'b1           :
                                     (bcsctl2[`DIVSx]==2'b01) ?  smclk_div[0]   :
                                     (bcsctl2[`DIVSx]==2'b10) ? &smclk_div[1:0] :
                                                                &smclk_div[2:0]);
 
always @ (posedge nodiv_mclk or posedge puc_rst)
  if (puc_rst)  smclk_en <=  1'b0;
  else          smclk_en <=  smclk_en_nxt & cpu_en_s;
 
always @ (posedge nodiv_mclk or posedge puc_rst)
  if (puc_rst)                                  smclk_div <=  3'h0;
  else if ((bcsctl2[`DIVSx]!=2'b00) & smclk_in) smclk_div <=  smclk_div+3'h1;
 
wire  smclk  = nodiv_mclk;
 
`endif
 
//-----------------------------------------------------------
// 6.5) DEBUG INTERFACE CLOCK GENERATION (DBG_CLK)
//-----------------------------------------------------------
 
// Synchronize DBG_EN signal to MCLK domain
//------------------------------------------
`ifdef DBG_EN
`ifdef SYNC_DBG_EN
    wire dbg_en_n_s;
    omsp_sync_cell sync_cell_dbg_en (
       .data_out  (dbg_en_n_s),
       .data_in   (~dbg_en),
       .clk       (cpu_mclk),
       .rst       (por)
    );
    assign dbg_en_s      = ~dbg_en_n_s;
    wire   dbg_rst_nxt   =  dbg_en_n_s;
`else
    assign dbg_en_s      =  dbg_en;
    wire   dbg_rst_nxt   = ~dbg_en;
`endif
`else
    assign dbg_en_s      =  1'b0;
    wire   dbg_rst_nxt   =  1'b0;
    wire   UNUSED_dbg_en =  dbg_en;
`endif
 
 
 
// Serial Debug Interface Clock gate
//------------------------------------------------
`ifdef DBG_EN
  `ifdef ASIC_CLOCKING
  omsp_clock_gate clock_gate_dbg_clk (
      .gclk        (dbg_clk),
      .clk         (cpu_mclk),
      .enable      (dbg_en_s),
      .scan_enable (scan_enable)
  );
  `else
     assign dbg_clk = dco_clk;
  `endif
`else
     assign dbg_clk = 1'b0;
`endif
 
 
//=============================================================================
// 7)  RESET GENERATION
//=============================================================================
//
// Whenever the reset pin (reset_n) is deasserted, the internal resets of the
// openMSP430 will be released in the following order:
//                1- POR
//                2- DBG_RST (if the sdi interface is enabled, i.e. dbg_en=1)
//                3- PUC
//
// Note: releasing the DBG_RST before PUC is particularly important in order
//       to allow the sdi interface to halt the cpu immediately after a PUC.
//
 
// Generate synchronized POR to MCLK domain
//------------------------------------------
 
// Asynchronous reset source
assign    por_a         =  !reset_n;
wire      por_noscan;
 
// Reset Synchronizer
omsp_sync_reset sync_reset_por (
    .rst_s        (por_noscan),
    .clk          (nodiv_mclk),
    .rst_a        (por_a)
);
 
// Scan Reset Mux
`ifdef ASIC
omsp_scan_mux scan_mux_por (
    .scan_mode    (scan_mode),
    .data_in_scan (por_a),
    .data_in_func (por_noscan),
    .data_out     (por)
);
`else
 assign por = por_noscan;
`endif
 
// Generate synchronized reset for the SDI
//------------------------------------------
`ifdef DBG_EN
 
// Reset Generation
reg  dbg_rst_noscan;
always @ (posedge cpu_mclk or posedge por)
  if (por)  dbg_rst_noscan <=  1'b1;
  else      dbg_rst_noscan <=  dbg_rst_nxt;
 
  // Scan Reset Mux
  `ifdef ASIC
  omsp_scan_mux scan_mux_dbg_rst (
      .scan_mode    (scan_mode),
      .data_in_scan (por_a),
      .data_in_func (dbg_rst_noscan),
      .data_out     (dbg_rst)
  );
  `else
   assign dbg_rst = dbg_rst_noscan;
  `endif
 
`else
   wire   dbg_rst_noscan = 1'b1;
   assign dbg_rst        = 1'b1;
`endif
 
 
// Generate main system reset (PUC_RST)
//--------------------------------------
wire puc_noscan_n;
wire puc_a_scan;
 
// Asynchronous PUC reset
wire puc_a = por | wdt_reset;
 
// Synchronous PUC reset
wire puc_s = dbg_cpu_reset |                              // With the debug interface command
 
            (dbg_en_s & dbg_rst_noscan & ~puc_noscan_n);  // Sequencing making sure PUC is released
                                                          // after DBG_RST if the debug interface is
                                                          // enabled at power-on-reset time
// Scan Reset Mux
`ifdef ASIC
omsp_scan_mux scan_mux_puc_rst_a (
    .scan_mode    (scan_mode),
    .data_in_scan (por_a),
    .data_in_func (puc_a),
    .data_out     (puc_a_scan)
);
`else
  assign puc_a_scan = puc_a;
`endif
 
// Reset Synchronizer
// (required because of the asynchronous watchdog reset)
omsp_sync_cell sync_cell_puc (
    .data_out  (puc_noscan_n),
    .data_in   (~puc_s),
    .clk       (cpu_mclk),
    .rst       (puc_a_scan)
);
 
// Scan Reset Mux
`ifdef ASIC
omsp_scan_mux scan_mux_puc_rst (
    .scan_mode    (scan_mode),
    .data_in_scan (por_a),
    .data_in_func (~puc_noscan_n),
    .data_out     (puc_rst)
);
`else
  assign puc_rst = ~puc_noscan_n;
`endif
 
// PUC pending set the serial debug interface
assign puc_pnd_set = ~puc_noscan_n;
 
 
endmodule // omsp_clock_module
 
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.