URL
https://opencores.org/ocsvn/openmsp430/openmsp430/trunk
Subversion Repositories openmsp430
[/] [openmsp430/] [trunk/] [fpga/] [xilinx_diligent_s3board/] [rtl/] [verilog/] [openmsp430/] [omsp_frontend.v] - Rev 85
Go to most recent revision | Compare with Previous | Blame | View Log
//---------------------------------------------------------------------------- // Copyright (C) 2001 Authors // // This source file may be used and distributed without restriction provided // that this copyright statement is not removed from the file and that any // derivative work contains the original copyright notice and the associated // disclaimer. // // This source file is free software; you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation; either version 2.1 of the License, or // (at your option) any later version. // // This source is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public // License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this source; if not, write to the Free Software Foundation, // Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA // //---------------------------------------------------------------------------- // // *File Name: omsp_frontend.v // // *Module Description: // openMSP430 Instruction fetch and decode unit // // *Author(s): // - Olivier Girard, olgirard@gmail.com // //---------------------------------------------------------------------------- // $Rev: 85 $ // $LastChangedBy: olivier.girard $ // $LastChangedDate: 2011-01-28 22:05:37 +0100 (Fri, 28 Jan 2011) $ //---------------------------------------------------------------------------- `include "timescale.v" `include "openMSP430_defines.v" module omsp_frontend ( // OUTPUTs dbg_halt_st, // Halt/Run status from CPU decode_noirq, // Frontend decode instruction e_state, // Execution state exec_done, // Execution completed inst_ad, // Decoded Inst: destination addressing mode inst_as, // Decoded Inst: source addressing mode inst_alu, // ALU control signals inst_bw, // Decoded Inst: byte width inst_dest, // Decoded Inst: destination (one hot) inst_dext, // Decoded Inst: destination extended instruction word inst_irq_rst, // Decoded Inst: Reset interrupt inst_jmp, // Decoded Inst: Conditional jump inst_sext, // Decoded Inst: source extended instruction word inst_so, // Decoded Inst: Single-operand arithmetic inst_src, // Decoded Inst: source (one hot) inst_type, // Decoded Instruction type irq_acc, // Interrupt request accepted (one-hot signal) mab, // Frontend Memory address bus mb_en, // Frontend Memory bus enable nmi_acc, // Non-Maskable interrupt request accepted pc, // Program counter pc_nxt, // Next PC value (for CALL & IRQ) // INPUTs cpuoff, // Turns off the CPU dbg_halt_cmd, // Halt CPU command dbg_reg_sel, // Debug selected register for rd/wr access fe_pmem_wait, // Frontend wait for Instruction fetch gie, // General interrupt enable irq, // Maskable interrupts mclk, // Main system clock mdb_in, // Frontend Memory data bus input nmi_evt, // Non-maskable interrupt event pc_sw, // Program counter software value pc_sw_wr, // Program counter software write puc, // Main system reset wdt_irq // Watchdog-timer interrupt ); // OUTPUTs //========= output dbg_halt_st; // Halt/Run status from CPU output decode_noirq; // Frontend decode instruction output [3:0] e_state; // Execution state output exec_done; // Execution completed output [7:0] inst_ad; // Decoded Inst: destination addressing mode output [7:0] inst_as; // Decoded Inst: source addressing mode output [11:0] inst_alu; // ALU control signals output inst_bw; // Decoded Inst: byte width output [15:0] inst_dest; // Decoded Inst: destination (one hot) output [15:0] inst_dext; // Decoded Inst: destination extended instruction word output inst_irq_rst; // Decoded Inst: Reset interrupt output [7:0] inst_jmp; // Decoded Inst: Conditional jump output [15:0] inst_sext; // Decoded Inst: source extended instruction word output [7:0] inst_so; // Decoded Inst: Single-operand arithmetic output [15:0] inst_src; // Decoded Inst: source (one hot) output [2:0] inst_type; // Decoded Instruction type output [13:0] irq_acc; // Interrupt request accepted (one-hot signal) output [15:0] mab; // Frontend Memory address bus output mb_en; // Frontend Memory bus enable output nmi_acc; // Non-Maskable interrupt request accepted output [15:0] pc; // Program counter output [15:0] pc_nxt; // Next PC value (for CALL & IRQ) // INPUTs //========= input cpuoff; // Turns off the CPU input dbg_halt_cmd; // Halt CPU command input [3:0] dbg_reg_sel; // Debug selected register for rd/wr access input fe_pmem_wait; // Frontend wait for Instruction fetch input gie; // General interrupt enable input [13:0] irq; // Maskable interrupts input mclk; // Main system clock input [15:0] mdb_in; // Frontend Memory data bus input input nmi_evt; // Non-maskable interrupt event input [15:0] pc_sw; // Program counter software value input pc_sw_wr; // Program counter software write input puc; // Main system reset input wdt_irq; // Watchdog-timer interrupt //============================================================================= // 0) UTILITY FUNCTIONS //============================================================================= // 16 bits one-hot decoder function [15:0] one_hot16; input [3:0] binary; begin one_hot16 = 16'h0000; one_hot16[binary] = 1'b1; end endfunction // 8 bits one-hot decoder function [7:0] one_hot8; input [2:0] binary; begin one_hot8 = 8'h00; one_hot8[binary] = 1'b1; end endfunction //============================================================================= // 1) FRONTEND STATE MACHINE //============================================================================= // The wire "conv" is used as state bits to calculate the next response reg [2:0] i_state; reg [2:0] i_state_nxt; reg [1:0] inst_sz; wire [1:0] inst_sz_nxt; wire irq_detect; wire [2:0] inst_type_nxt; wire is_const; reg [15:0] sconst_nxt; reg [3:0] e_state_nxt; // State machine definitons parameter I_IRQ_FETCH = 3'h0; parameter I_IRQ_DONE = 3'h1; parameter I_DEC = 3'h2; // New instruction ready for decode parameter I_EXT1 = 3'h3; // 1st Extension word parameter I_EXT2 = 3'h4; // 2nd Extension word parameter I_IDLE = 3'h5; // CPU is in IDLE mode // States Transitions always @(i_state or inst_sz or inst_sz_nxt or pc_sw_wr or exec_done or exec_done or irq_detect or cpuoff or dbg_halt_cmd or e_state) case(i_state) I_IDLE : i_state_nxt = (irq_detect & ~dbg_halt_cmd) ? I_IRQ_FETCH : (~cpuoff & ~dbg_halt_cmd) ? I_DEC : I_IDLE; I_IRQ_FETCH: i_state_nxt = I_IRQ_DONE; I_IRQ_DONE : i_state_nxt = I_DEC; I_DEC : i_state_nxt = irq_detect ? I_IRQ_FETCH : (cpuoff | dbg_halt_cmd) & exec_done ? I_IDLE : dbg_halt_cmd & (e_state==`E_IDLE) ? I_IDLE : pc_sw_wr ? I_DEC : ~exec_done & ~(e_state==`E_IDLE) ? I_DEC : // Wait in decode state (inst_sz_nxt!=2'b00) ? I_EXT1 : I_DEC; // until execution is completed I_EXT1 : i_state_nxt = irq_detect ? I_IRQ_FETCH : pc_sw_wr ? I_DEC : (inst_sz!=2'b01) ? I_EXT2 : I_DEC; I_EXT2 : i_state_nxt = irq_detect ? I_IRQ_FETCH : I_DEC; default : i_state_nxt = I_IRQ_FETCH; endcase // State machine always @(posedge mclk or posedge puc) if (puc) i_state <= I_IRQ_FETCH; else i_state <= i_state_nxt; // Utility signals wire decode_noirq = ((i_state==I_DEC) & (exec_done | (e_state==`E_IDLE))); wire decode = decode_noirq | irq_detect; wire fetch = ~((i_state==I_DEC) & ~(exec_done | (e_state==`E_IDLE))) & ~(e_state_nxt==`E_IDLE); // Debug interface cpu status reg dbg_halt_st; always @(posedge mclk or posedge puc) if (puc) dbg_halt_st <= 1'b0; else dbg_halt_st <= dbg_halt_cmd & (i_state_nxt==I_IDLE); //============================================================================= // 2) INTERRUPT HANDLING //============================================================================= // Detect nmi interrupt reg inst_nmi; always @(posedge mclk or posedge puc) if (puc) inst_nmi <= 1'b0; else if (nmi_evt) inst_nmi <= 1'b1; else if (i_state==I_IRQ_DONE) inst_nmi <= 1'b0; // Detect reset interrupt reg inst_irq_rst; always @(posedge mclk or posedge puc) if (puc) inst_irq_rst <= 1'b1; else if (exec_done) inst_irq_rst <= 1'b0; // Detect other interrupts assign irq_detect = (inst_nmi | ((|irq | wdt_irq) & gie)) & ~dbg_halt_cmd & (exec_done | (i_state==I_IDLE)); // Select interrupt vector reg [3:0] irq_num; always @(posedge mclk or posedge puc) if (puc) irq_num <= 4'hf; else if (irq_detect) irq_num <= inst_nmi ? 4'he : irq[13] ? 4'hd : irq[12] ? 4'hc : irq[11] ? 4'hb : (irq[10] | wdt_irq) ? 4'ha : irq[9] ? 4'h9 : irq[8] ? 4'h8 : irq[7] ? 4'h7 : irq[6] ? 4'h6 : irq[5] ? 4'h5 : irq[4] ? 4'h4 : irq[3] ? 4'h3 : irq[2] ? 4'h2 : irq[1] ? 4'h1 : irq[0] ? 4'h0 : 4'hf; wire [15:0] irq_addr = {11'h7ff, irq_num, 1'b0}; // Interrupt request accepted wire [15:0] irq_acc_all = one_hot16(irq_num) & {16{(i_state==I_IRQ_FETCH)}}; wire [13:0] irq_acc = irq_acc_all[13:0]; wire nmi_acc = irq_acc_all[14]; //============================================================================= // 3) FETCH INSTRUCTION //============================================================================= // // 3.1) PROGRAM COUNTER & MEMORY INTERFACE //----------------------------------------- // Program counter reg [15:0] pc; // Compute next PC value wire [15:0] pc_incr = pc + {14'h0000, fetch, 1'b0}; wire [15:0] pc_nxt = pc_sw_wr ? pc_sw : (i_state==I_IRQ_FETCH) ? irq_addr : (i_state==I_IRQ_DONE) ? mdb_in : pc_incr; always @(posedge mclk or posedge puc) if (puc) pc <= 16'h0000; else pc <= pc_nxt; // Check if ROM has been busy in order to retry ROM access reg pmem_busy; always @(posedge mclk or posedge puc) if (puc) pmem_busy <= 1'b0; else pmem_busy <= fe_pmem_wait; // Memory interface wire [15:0] mab = pc_nxt; wire mb_en = fetch | pc_sw_wr | (i_state==I_IRQ_FETCH) | pmem_busy | (dbg_halt_st & ~dbg_halt_cmd); // // 3.2) INSTRUCTION REGISTER //-------------------------------- // Instruction register wire [15:0] ir = mdb_in; // Detect if source extension word is required wire is_sext = (inst_as[`IDX] | inst_as[`SYMB] | inst_as[`ABS] | inst_as[`IMM]); // Detect if destination extension word is required wire is_dext = (inst_ad[`IDX] | inst_ad[`SYMB] | inst_ad[`ABS]); // For the Symbolic addressing mode, add -2 to the extension word in order // to make up for the PC address wire [15:0] ext_incr = ((i_state==I_EXT1) & inst_as[`SYMB]) | ((i_state==I_EXT2) & inst_ad[`SYMB]) | ((i_state==I_EXT1) & ~inst_as[`SYMB] & ~(i_state_nxt==I_EXT2) & inst_ad[`SYMB]) ? 16'hfffe : 16'h0000; wire [15:0] ext_nxt = ir + ext_incr; // Store source extension word reg [15:0] inst_sext; always @(posedge mclk or posedge puc) if (puc) inst_sext <= 16'h0000; else if (decode & is_const) inst_sext <= sconst_nxt; else if (decode & inst_type_nxt[`INST_JMP]) inst_sext <= {{5{ir[9]}},ir[9:0],1'b0}; else if ((i_state==I_EXT1) & is_sext) inst_sext <= ext_nxt; // Source extension word is ready wire inst_sext_rdy = (i_state==I_EXT1) & is_sext; // Store destination extension word reg [15:0] inst_dext; always @(posedge mclk or posedge puc) if (puc) inst_dext <= 16'h0000; else if ((i_state==I_EXT1) & ~is_sext) inst_dext <= ext_nxt; else if (i_state==I_EXT2) inst_dext <= ext_nxt; // Destination extension word is ready wire inst_dext_rdy = (((i_state==I_EXT1) & ~is_sext) | (i_state==I_EXT2)); //============================================================================= // 4) DECODE INSTRUCTION //============================================================================= // // 4.1) OPCODE: INSTRUCTION TYPE //---------------------------------------- // Instructions type is encoded in a one hot fashion as following: // // 3'b001: Single-operand arithmetic // 3'b010: Conditional jump // 3'b100: Two-operand arithmetic reg [2:0] inst_type; assign inst_type_nxt = {(ir[15:14]!=2'b00), (ir[15:13]==3'b001), (ir[15:13]==3'b000)} & {3{~irq_detect}}; always @(posedge mclk or posedge puc) if (puc) inst_type <= 3'b000; else if (decode) inst_type <= inst_type_nxt; // // 4.2) OPCODE: SINGLE-OPERAND ARITHMETIC //---------------------------------------- // Instructions are encoded in a one hot fashion as following: // // 8'b00000001: RRC // 8'b00000010: SWPB // 8'b00000100: RRA // 8'b00001000: SXT // 8'b00010000: PUSH // 8'b00100000: CALL // 8'b01000000: RETI // 8'b10000000: IRQ reg [7:0] inst_so; wire [7:0] inst_so_nxt = irq_detect ? 8'h80 : (one_hot8(ir[9:7]) & {8{inst_type_nxt[`INST_SO]}}); always @(posedge mclk or posedge puc) if (puc) inst_so <= 8'h00; else if (decode) inst_so <= inst_so_nxt; // // 4.3) OPCODE: CONDITIONAL JUMP //-------------------------------- // Instructions are encoded in a one hot fashion as following: // // 8'b00000001: JNE/JNZ // 8'b00000010: JEQ/JZ // 8'b00000100: JNC/JLO // 8'b00001000: JC/JHS // 8'b00010000: JN // 8'b00100000: JGE // 8'b01000000: JL // 8'b10000000: JMP reg [2:0] inst_jmp_bin; always @(posedge mclk or posedge puc) if (puc) inst_jmp_bin <= 3'h0; else if (decode) inst_jmp_bin <= ir[12:10]; wire [7:0] inst_jmp = one_hot8(inst_jmp_bin) & {8{inst_type[`INST_JMP]}}; // // 4.4) OPCODE: TWO-OPERAND ARITHMETIC //------------------------------------- // Instructions are encoded in a one hot fashion as following: // // 12'b000000000001: MOV // 12'b000000000010: ADD // 12'b000000000100: ADDC // 12'b000000001000: SUBC // 12'b000000010000: SUB // 12'b000000100000: CMP // 12'b000001000000: DADD // 12'b000010000000: BIT // 12'b000100000000: BIC // 12'b001000000000: BIS // 12'b010000000000: XOR // 12'b100000000000: AND wire [15:0] inst_to_1hot = one_hot16(ir[15:12]) & {16{inst_type_nxt[`INST_TO]}}; wire [11:0] inst_to_nxt = inst_to_1hot[15:4]; // // 4.5) SOURCE AND DESTINATION REGISTERS //--------------------------------------- // Destination register reg [3:0] inst_dest_bin; always @(posedge mclk or posedge puc) if (puc) inst_dest_bin <= 4'h0; else if (decode) inst_dest_bin <= ir[3:0]; wire [15:0] inst_dest = dbg_halt_st ? one_hot16(dbg_reg_sel) : inst_type[`INST_JMP] ? 16'h0001 : inst_so[`IRQ] | inst_so[`PUSH] | inst_so[`CALL] ? 16'h0002 : one_hot16(inst_dest_bin); // Source register reg [3:0] inst_src_bin; always @(posedge mclk or posedge puc) if (puc) inst_src_bin <= 4'h0; else if (decode) inst_src_bin <= ir[11:8]; wire [15:0] inst_src = inst_type[`INST_TO] ? one_hot16(inst_src_bin) : inst_so[`RETI] ? 16'h0002 : inst_so[`IRQ] ? 16'h0001 : inst_type[`INST_SO] ? one_hot16(inst_dest_bin) : 16'h0000; // // 4.6) SOURCE ADDRESSING MODES //-------------------------------- // Source addressing modes are encoded in a one hot fashion as following: // // 13'b0000000000001: Register direct. // 13'b0000000000010: Register indexed. // 13'b0000000000100: Register indirect. // 13'b0000000001000: Register indirect autoincrement. // 13'b0000000010000: Symbolic (operand is in memory at address PC+x). // 13'b0000000100000: Immediate (operand is next word in the instruction stream). // 13'b0000001000000: Absolute (operand is in memory at address x). // 13'b0000010000000: Constant 4. // 13'b0000100000000: Constant 8. // 13'b0001000000000: Constant 0. // 13'b0010000000000: Constant 1. // 13'b0100000000000: Constant 2. // 13'b1000000000000: Constant -1. reg [12:0] inst_as_nxt; wire [3:0] src_reg = inst_type_nxt[`INST_SO] ? ir[3:0] : ir[11:8]; always @(src_reg or ir or inst_type_nxt) begin if (inst_type_nxt[`INST_JMP]) inst_as_nxt = 13'b0000000000001; else if (src_reg==4'h3) // Addressing mode using R3 case (ir[5:4]) 2'b11 : inst_as_nxt = 13'b1000000000000; 2'b10 : inst_as_nxt = 13'b0100000000000; 2'b01 : inst_as_nxt = 13'b0010000000000; default: inst_as_nxt = 13'b0001000000000; endcase else if (src_reg==4'h2) // Addressing mode using R2 case (ir[5:4]) 2'b11 : inst_as_nxt = 13'b0000100000000; 2'b10 : inst_as_nxt = 13'b0000010000000; 2'b01 : inst_as_nxt = 13'b0000001000000; default: inst_as_nxt = 13'b0000000000001; endcase else if (src_reg==4'h0) // Addressing mode using R0 case (ir[5:4]) 2'b11 : inst_as_nxt = 13'b0000000100000; 2'b10 : inst_as_nxt = 13'b0000000000100; 2'b01 : inst_as_nxt = 13'b0000000010000; default: inst_as_nxt = 13'b0000000000001; endcase else // General Addressing mode case (ir[5:4]) 2'b11 : inst_as_nxt = 13'b0000000001000; 2'b10 : inst_as_nxt = 13'b0000000000100; 2'b01 : inst_as_nxt = 13'b0000000000010; default: inst_as_nxt = 13'b0000000000001; endcase end assign is_const = |inst_as_nxt[12:7]; reg [7:0] inst_as; always @(posedge mclk or posedge puc) if (puc) inst_as <= 8'h00; else if (decode) inst_as <= {is_const, inst_as_nxt[6:0]}; // 13'b0000010000000: Constant 4. // 13'b0000100000000: Constant 8. // 13'b0001000000000: Constant 0. // 13'b0010000000000: Constant 1. // 13'b0100000000000: Constant 2. // 13'b1000000000000: Constant -1. always @(inst_as_nxt) begin if (inst_as_nxt[7]) sconst_nxt = 16'h0004; else if (inst_as_nxt[8]) sconst_nxt = 16'h0008; else if (inst_as_nxt[9]) sconst_nxt = 16'h0000; else if (inst_as_nxt[10]) sconst_nxt = 16'h0001; else if (inst_as_nxt[11]) sconst_nxt = 16'h0002; else if (inst_as_nxt[12]) sconst_nxt = 16'hffff; else sconst_nxt = 16'h0000; end // // 4.7) DESTINATION ADDRESSING MODES //----------------------------------- // Destination addressing modes are encoded in a one hot fashion as following: // // 8'b00000001: Register direct. // 8'b00000010: Register indexed. // 8'b00010000: Symbolic (operand is in memory at address PC+x). // 8'b01000000: Absolute (operand is in memory at address x). reg [7:0] inst_ad_nxt; wire [3:0] dest_reg = ir[3:0]; always @(dest_reg or ir or inst_type_nxt) begin if (~inst_type_nxt[`INST_TO]) inst_ad_nxt = 8'b00000000; else if (dest_reg==4'h2) // Addressing mode using R2 case (ir[7]) 1'b1 : inst_ad_nxt = 8'b01000000; default: inst_ad_nxt = 8'b00000001; endcase else if (dest_reg==4'h0) // Addressing mode using R0 case (ir[7]) 2'b1 : inst_ad_nxt = 8'b00010000; default: inst_ad_nxt = 8'b00000001; endcase else // General Addressing mode case (ir[7]) 2'b1 : inst_ad_nxt = 8'b00000010; default: inst_ad_nxt = 8'b00000001; endcase end reg [7:0] inst_ad; always @(posedge mclk or posedge puc) if (puc) inst_ad <= 8'h00; else if (decode) inst_ad <= inst_ad_nxt; // // 4.8) REMAINING INSTRUCTION DECODING //------------------------------------- // Operation size reg inst_bw; always @(posedge mclk or posedge puc) if (puc) inst_bw <= 1'b0; else if (decode) inst_bw <= ir[6] & ~inst_type_nxt[`INST_JMP] & ~irq_detect & ~dbg_halt_cmd; // Extended instruction size assign inst_sz_nxt = {1'b0, (inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS] | inst_as_nxt[`IMM])} + {1'b0, ((inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]) & ~inst_type_nxt[`INST_SO])}; always @(posedge mclk or posedge puc) if (puc) inst_sz <= 2'b00; else if (decode) inst_sz <= inst_sz_nxt; //============================================================================= // 5) EXECUTION-UNIT STATE MACHINE //============================================================================= // State machine registers reg [3:0] e_state; // State machine control signals //-------------------------------- wire src_acalc_pre = inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS]; wire src_rd_pre = inst_as_nxt[`INDIR] | inst_as_nxt[`INDIR_I] | inst_as_nxt[`IMM] | inst_so_nxt[`RETI]; wire dst_acalc_pre = inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]; wire dst_acalc = inst_ad[`IDX] | inst_ad[`SYMB] | inst_ad[`ABS]; wire dst_rd_pre = inst_ad_nxt[`IDX] | inst_so_nxt[`PUSH] | inst_so_nxt[`CALL] | inst_so_nxt[`RETI]; wire dst_rd = inst_ad[`IDX] | inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI]; wire inst_branch = (inst_ad_nxt[`DIR] & (ir[3:0]==4'h0)) | inst_type_nxt[`INST_JMP] | inst_so_nxt[`RETI]; reg exec_jmp; always @(posedge mclk or posedge puc) if (puc) exec_jmp <= 1'b0; else if (inst_branch & decode) exec_jmp <= 1'b1; else if (e_state==`E_JUMP) exec_jmp <= 1'b0; reg exec_dst_wr; always @(posedge mclk or posedge puc) if (puc) exec_dst_wr <= 1'b0; else if (e_state==`E_DST_RD) exec_dst_wr <= 1'b1; else if (e_state==`E_DST_WR) exec_dst_wr <= 1'b0; reg exec_src_wr; always @(posedge mclk or posedge puc) if (puc) exec_src_wr <= 1'b0; else if (inst_type[`INST_SO] & (e_state==`E_SRC_RD)) exec_src_wr <= 1'b1; else if ((e_state==`E_SRC_WR) || (e_state==`E_DST_WR)) exec_src_wr <= 1'b0; reg exec_dext_rdy; always @(posedge mclk or posedge puc) if (puc) exec_dext_rdy <= 1'b0; else if (e_state==`E_DST_RD) exec_dext_rdy <= 1'b0; else if (inst_dext_rdy) exec_dext_rdy <= 1'b1; // Execution first state //wire [3:0] e_first_state = dbg_halt_cmd ? `E_IDLE : wire [3:0] e_first_state = ~dbg_halt_st & inst_so_nxt[`IRQ] ? `E_IRQ_0 : dbg_halt_cmd | (i_state==I_IDLE) ? `E_IDLE : cpuoff ? `E_IDLE : src_acalc_pre ? `E_SRC_AD : src_rd_pre ? `E_SRC_RD : dst_acalc_pre ? `E_DST_AD : dst_rd_pre ? `E_DST_RD : `E_EXEC; // State machine //-------------------------------- // States Transitions always @(e_state or dst_acalc or dst_rd or inst_sext_rdy or inst_dext_rdy or exec_dext_rdy or exec_jmp or exec_dst_wr or e_first_state or exec_src_wr) case(e_state) `E_IDLE : e_state_nxt = e_first_state; `E_IRQ_0 : e_state_nxt = `E_IRQ_1; `E_IRQ_1 : e_state_nxt = `E_IRQ_2; `E_IRQ_2 : e_state_nxt = `E_IRQ_3; `E_IRQ_3 : e_state_nxt = `E_IRQ_4; `E_IRQ_4 : e_state_nxt = `E_EXEC; `E_SRC_AD : e_state_nxt = inst_sext_rdy ? `E_SRC_RD : `E_SRC_AD; `E_SRC_RD : e_state_nxt = dst_acalc ? `E_DST_AD : dst_rd ? `E_DST_RD : `E_EXEC; `E_DST_AD : e_state_nxt = (inst_dext_rdy | exec_dext_rdy) ? `E_DST_RD : `E_DST_AD; `E_DST_RD : e_state_nxt = `E_EXEC; `E_EXEC : e_state_nxt = exec_dst_wr ? `E_DST_WR : exec_jmp ? `E_JUMP : exec_src_wr ? `E_SRC_WR : e_first_state; `E_JUMP : e_state_nxt = e_first_state; `E_DST_WR : e_state_nxt = exec_jmp ? `E_JUMP : e_first_state; `E_SRC_WR : e_state_nxt = e_first_state; default : e_state_nxt = `E_IRQ_0; endcase // State machine always @(posedge mclk or posedge puc) if (puc) e_state <= `E_IRQ_1; else e_state <= e_state_nxt; // Frontend State machine control signals //---------------------------------------- wire exec_done = exec_jmp ? (e_state==`E_JUMP) : exec_dst_wr ? (e_state==`E_DST_WR) : exec_src_wr ? (e_state==`E_SRC_WR) : (e_state==`E_EXEC); //============================================================================= // 6) EXECUTION-UNIT STATE CONTROL //============================================================================= // // 6.1) ALU CONTROL SIGNALS //------------------------------------- // // 12'b000000000001: Enable ALU source inverter // 12'b000000000010: Enable Incrementer // 12'b000000000100: Enable Incrementer on carry bit // 12'b000000001000: Select Adder // 12'b000000010000: Select AND // 12'b000000100000: Select OR // 12'b000001000000: Select XOR // 12'b000010000000: Select DADD // 12'b000100000000: Update N, Z & C (C=~Z) // 12'b001000000000: Update all status bits // 12'b010000000000: Update status bit for XOR instruction // 12'b100000000000: Don't write to destination reg [11:0] inst_alu; wire alu_src_inv = inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] | inst_to_nxt[`CMP] | inst_to_nxt[`BIC] ; wire alu_inc = inst_to_nxt[`SUB] | inst_to_nxt[`CMP]; wire alu_inc_c = inst_to_nxt[`ADDC] | inst_to_nxt[`DADD] | inst_to_nxt[`SUBC]; wire alu_add = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] | inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] | inst_to_nxt[`CMP] | inst_type_nxt[`INST_JMP] | inst_so_nxt[`RETI]; wire alu_and = inst_to_nxt[`AND] | inst_to_nxt[`BIC] | inst_to_nxt[`BIT]; wire alu_or = inst_to_nxt[`BIS]; wire alu_xor = inst_to_nxt[`XOR]; wire alu_dadd = inst_to_nxt[`DADD]; wire alu_stat_7 = inst_to_nxt[`BIT] | inst_to_nxt[`AND] | inst_so_nxt[`SXT]; wire alu_stat_f = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] | inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] | inst_to_nxt[`CMP] | inst_to_nxt[`DADD] | inst_to_nxt[`BIT] | inst_to_nxt[`XOR] | inst_to_nxt[`AND] | inst_so_nxt[`RRC] | inst_so_nxt[`RRA] | inst_so_nxt[`SXT]; wire alu_shift = inst_so_nxt[`RRC] | inst_so_nxt[`RRA]; wire exec_no_wr = inst_to_nxt[`CMP] | inst_to_nxt[`BIT]; always @(posedge mclk or posedge puc) if (puc) inst_alu <= 12'h000; else if (decode) inst_alu <= {exec_no_wr, alu_shift, alu_stat_f, alu_stat_7, alu_dadd, alu_xor, alu_or, alu_and, alu_add, alu_inc_c, alu_inc, alu_src_inv}; endmodule // omsp_frontend `include "openMSP430_undefines.v"
Go to most recent revision | Compare with Previous | Blame | View Log