URL
https://opencores.org/ocsvn/openmsp430/openmsp430/trunk
Subversion Repositories openmsp430
[/] [openmsp430/] [trunk/] [fpga/] [xilinx_diligent_s3board/] [rtl/] [verilog/] [openmsp430/] [omsp_multiplier.v] - Rev 161
Go to most recent revision | Compare with Previous | Blame | View Log
//---------------------------------------------------------------------------- // Copyright (C) 2009 , Olivier Girard // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of the authors nor the names of its contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, // OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF // THE POSSIBILITY OF SUCH DAMAGE // //---------------------------------------------------------------------------- // // *File Name: omsp_multiplier.v // // *Module Description: // 16x16 Hardware multiplier. // // *Author(s): // - Olivier Girard, olgirard@gmail.com // //---------------------------------------------------------------------------- // $Rev: 23 $ // $LastChangedBy: olivier.girard $ // $LastChangedDate: 2009-08-30 18:39:26 +0200 (Sun, 30 Aug 2009) $ //---------------------------------------------------------------------------- `ifdef OMSP_NO_INCLUDE `else `include "openMSP430_defines.v" `endif module omsp_multiplier ( // OUTPUTs per_dout, // Peripheral data output // INPUTs mclk, // Main system clock per_addr, // Peripheral address per_din, // Peripheral data input per_en, // Peripheral enable (high active) per_we, // Peripheral write enable (high active) puc_rst, // Main system reset scan_enable // Scan enable (active during scan shifting) ); // OUTPUTs //========= output [15:0] per_dout; // Peripheral data output // INPUTs //========= input mclk; // Main system clock input [13:0] per_addr; // Peripheral address input [15:0] per_din; // Peripheral data input input per_en; // Peripheral enable (high active) input [1:0] per_we; // Peripheral write enable (high active) input puc_rst; // Main system reset input scan_enable; // Scan enable (active during scan shifting) //============================================================================= // 1) PARAMETER/REGISTERS & WIRE DECLARATION //============================================================================= // Register base address (must be aligned to decoder bit width) parameter [14:0] BASE_ADDR = 15'h0130; // Decoder bit width (defines how many bits are considered for address decoding) parameter DEC_WD = 4; // Register addresses offset parameter [DEC_WD-1:0] OP1_MPY = 'h0, OP1_MPYS = 'h2, OP1_MAC = 'h4, OP1_MACS = 'h6, OP2 = 'h8, RESLO = 'hA, RESHI = 'hC, SUMEXT = 'hE; // Register one-hot decoder utilities parameter DEC_SZ = (1 << DEC_WD); parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1}; // Register one-hot decoder parameter [DEC_SZ-1:0] OP1_MPY_D = (BASE_REG << OP1_MPY), OP1_MPYS_D = (BASE_REG << OP1_MPYS), OP1_MAC_D = (BASE_REG << OP1_MAC), OP1_MACS_D = (BASE_REG << OP1_MACS), OP2_D = (BASE_REG << OP2), RESLO_D = (BASE_REG << RESLO), RESHI_D = (BASE_REG << RESHI), SUMEXT_D = (BASE_REG << SUMEXT); // Wire pre-declarations wire result_wr; wire result_clr; wire early_read; //============================================================================ // 2) REGISTER DECODER //============================================================================ // Local register selection wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]); // Register local address wire [DEC_WD-1:0] reg_addr = {per_addr[DEC_WD-2:0], 1'b0}; // Register address decode wire [DEC_SZ-1:0] reg_dec = (OP1_MPY_D & {DEC_SZ{(reg_addr == OP1_MPY )}}) | (OP1_MPYS_D & {DEC_SZ{(reg_addr == OP1_MPYS )}}) | (OP1_MAC_D & {DEC_SZ{(reg_addr == OP1_MAC )}}) | (OP1_MACS_D & {DEC_SZ{(reg_addr == OP1_MACS )}}) | (OP2_D & {DEC_SZ{(reg_addr == OP2 )}}) | (RESLO_D & {DEC_SZ{(reg_addr == RESLO )}}) | (RESHI_D & {DEC_SZ{(reg_addr == RESHI )}}) | (SUMEXT_D & {DEC_SZ{(reg_addr == SUMEXT )}}); // Read/Write probes wire reg_write = |per_we & reg_sel; wire reg_read = ~|per_we & reg_sel; // Read/Write vectors wire [DEC_SZ-1:0] reg_wr = reg_dec & {DEC_SZ{reg_write}}; wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}}; //============================================================================ // 3) REGISTERS //============================================================================ // OP1 Register //----------------- reg [15:0] op1; wire op1_wr = reg_wr[OP1_MPY] | reg_wr[OP1_MPYS] | reg_wr[OP1_MAC] | reg_wr[OP1_MACS]; `ifdef CLOCK_GATING wire mclk_op1; omsp_clock_gate clock_gate_op1 (.gclk(mclk_op1), .clk (mclk), .enable(op1_wr), .scan_enable(scan_enable)); `else wire mclk_op1 = mclk; `endif always @ (posedge mclk_op1 or posedge puc_rst) if (puc_rst) op1 <= 16'h0000; `ifdef CLOCK_GATING else op1 <= per_din; `else else if (op1_wr) op1 <= per_din; `endif wire [15:0] op1_rd = op1; // OP2 Register //----------------- reg [15:0] op2; wire op2_wr = reg_wr[OP2]; `ifdef CLOCK_GATING wire mclk_op2; omsp_clock_gate clock_gate_op2 (.gclk(mclk_op2), .clk (mclk), .enable(op2_wr), .scan_enable(scan_enable)); `else wire mclk_op2 = mclk; `endif always @ (posedge mclk_op2 or posedge puc_rst) if (puc_rst) op2 <= 16'h0000; `ifdef CLOCK_GATING else op2 <= per_din; `else else if (op2_wr) op2 <= per_din; `endif wire [15:0] op2_rd = op2; // RESLO Register //----------------- reg [15:0] reslo; wire [15:0] reslo_nxt; wire reslo_wr = reg_wr[RESLO]; `ifdef CLOCK_GATING wire reslo_en = reslo_wr | result_clr | result_wr; wire mclk_reslo; omsp_clock_gate clock_gate_reslo (.gclk(mclk_reslo), .clk (mclk), .enable(reslo_en), .scan_enable(scan_enable)); `else wire mclk_reslo = mclk; `endif always @ (posedge mclk_reslo or posedge puc_rst) if (puc_rst) reslo <= 16'h0000; else if (reslo_wr) reslo <= per_din; else if (result_clr) reslo <= 16'h0000; `ifdef CLOCK_GATING else reslo <= reslo_nxt; `else else if (result_wr) reslo <= reslo_nxt; `endif wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo; // RESHI Register //----------------- reg [15:0] reshi; wire [15:0] reshi_nxt; wire reshi_wr = reg_wr[RESHI]; `ifdef CLOCK_GATING wire reshi_en = reshi_wr | result_clr | result_wr; wire mclk_reshi; omsp_clock_gate clock_gate_reshi (.gclk(mclk_reshi), .clk (mclk), .enable(reshi_en), .scan_enable(scan_enable)); `else wire mclk_reshi = mclk; `endif always @ (posedge mclk_reshi or posedge puc_rst) if (puc_rst) reshi <= 16'h0000; else if (reshi_wr) reshi <= per_din; else if (result_clr) reshi <= 16'h0000; `ifdef CLOCK_GATING else reshi <= reshi_nxt; `else else if (result_wr) reshi <= reshi_nxt; `endif wire [15:0] reshi_rd = early_read ? reshi_nxt : reshi; // SUMEXT Register //----------------- reg [1:0] sumext_s; wire [1:0] sumext_s_nxt; always @ (posedge mclk or posedge puc_rst) if (puc_rst) sumext_s <= 2'b00; else if (op2_wr) sumext_s <= 2'b00; else if (result_wr) sumext_s <= sumext_s_nxt; wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt}; wire [15:0] sumext = {{14{sumext_s[1]}}, sumext_s}; wire [15:0] sumext_rd = early_read ? sumext_nxt : sumext; //============================================================================ // 4) DATA OUTPUT GENERATION //============================================================================ // Data output mux wire [15:0] op1_mux = op1_rd & {16{reg_rd[OP1_MPY] | reg_rd[OP1_MPYS] | reg_rd[OP1_MAC] | reg_rd[OP1_MACS]}}; wire [15:0] op2_mux = op2_rd & {16{reg_rd[OP2]}}; wire [15:0] reslo_mux = reslo_rd & {16{reg_rd[RESLO]}}; wire [15:0] reshi_mux = reshi_rd & {16{reg_rd[RESHI]}}; wire [15:0] sumext_mux = sumext_rd & {16{reg_rd[SUMEXT]}}; wire [15:0] per_dout = op1_mux | op2_mux | reslo_mux | reshi_mux | sumext_mux; //============================================================================ // 5) HARDWARE MULTIPLIER FUNCTIONAL LOGIC //============================================================================ // Multiplier configuration //-------------------------- // Detect signed mode reg sign_sel; always @ (posedge mclk_op1 or posedge puc_rst) if (puc_rst) sign_sel <= 1'b0; `ifdef CLOCK_GATING else sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS]; `else else if (op1_wr) sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS]; `endif // Detect accumulate mode reg acc_sel; always @ (posedge mclk_op1 or posedge puc_rst) if (puc_rst) acc_sel <= 1'b0; `ifdef CLOCK_GATING else acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS]; `else else if (op1_wr) acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS]; `endif // Detect whenever the RESHI and RESLO registers should be cleared assign result_clr = op2_wr & ~acc_sel; // Combine RESHI & RESLO wire [31:0] result = {reshi, reslo}; // 16x16 Multiplier (result computed in 1 clock cycle) //----------------------------------------------------- `ifdef MPY_16x16 // Detect start of a multiplication reg cycle; always @ (posedge mclk or posedge puc_rst) if (puc_rst) cycle <= 1'b0; else cycle <= op2_wr; assign result_wr = cycle; // Expand the operands to support signed & unsigned operations wire signed [16:0] op1_xp = {sign_sel & op1[15], op1}; wire signed [16:0] op2_xp = {sign_sel & op2[15], op2}; // 17x17 signed multiplication wire signed [33:0] product = op1_xp * op2_xp; // Accumulate wire [32:0] result_nxt = {1'b0, result} + {1'b0, product[31:0]}; // Next register values assign reslo_nxt = result_nxt[15:0]; assign reshi_nxt = result_nxt[31:16]; assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} : {1'b0, result_nxt[32]}; // Since the MAC is completed within 1 clock cycle, // an early read can't happen. assign early_read = 1'b0; // 16x8 Multiplier (result computed in 2 clock cycles) //----------------------------------------------------- `else // Detect start of a multiplication reg [1:0] cycle; always @ (posedge mclk or posedge puc_rst) if (puc_rst) cycle <= 2'b00; else cycle <= {cycle[0], op2_wr}; assign result_wr = |cycle; // Expand the operands to support signed & unsigned operations wire signed [16:0] op1_xp = {sign_sel & op1[15], op1}; wire signed [8:0] op2_hi_xp = {sign_sel & op2[15], op2[15:8]}; wire signed [8:0] op2_lo_xp = { 1'b0, op2[7:0]}; wire signed [8:0] op2_xp = cycle[0] ? op2_hi_xp : op2_lo_xp; // 17x9 signed multiplication wire signed [25:0] product = op1_xp * op2_xp; wire [31:0] product_xp = cycle[0] ? {product[23:0], 8'h00} : {{8{sign_sel & product[23]}}, product[23:0]}; // Accumulate wire [32:0] result_nxt = {1'b0, result} + {1'b0, product_xp[31:0]}; // Next register values assign reslo_nxt = result_nxt[15:0]; assign reshi_nxt = result_nxt[31:16]; assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} : {1'b0, result_nxt[32] | sumext_s[0]}; // Since the MAC is completed within 2 clock cycle, // an early read can happen during the second cycle. assign early_read = cycle[1]; `endif endmodule // omsp_multiplier `ifdef OMSP_NO_INCLUDE `else `include "openMSP430_undefines.v" `endif
Go to most recent revision | Compare with Previous | Blame | View Log