URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [boehm-gc/] [cord/] [cordxtra.c] - Rev 721
Compare with Previous | Blame | View Log
/* * Copyright (c) 1993-1994 by Xerox Corporation. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * * Author: Hans-J. Boehm (boehm@parc.xerox.com) */ /* * These are functions on cords that do not need to understand their * implementation. They serve also serve as example client code for * cord_basics. */ /* Boehm, December 8, 1995 1:53 pm PST */ # include <stdio.h> # include <string.h> # include <stdlib.h> # include <stdarg.h> # include "cord.h" # include "ec.h" # define I_HIDE_POINTERS /* So we get access to allocation lock. */ /* We use this for lazy file reading, */ /* so that we remain independent */ /* of the threads primitives. */ # include "gc.h" /* For now we assume that pointer reads and writes are atomic, */ /* i.e. another thread always sees the state before or after */ /* a write. This might be false on a Motorola M68K with */ /* pointers that are not 32-bit aligned. But there probably */ /* aren't too many threads packages running on those. */ # define ATOMIC_WRITE(x,y) (x) = (y) # define ATOMIC_READ(x) (*(x)) /* The standard says these are in stdio.h, but they aren't always: */ # ifndef SEEK_SET # define SEEK_SET 0 # endif # ifndef SEEK_END # define SEEK_END 2 # endif # define BUFSZ 2048 /* Size of stack allocated buffers when */ /* we want large buffers. */ typedef void (* oom_fn)(void); # define OUT_OF_MEMORY { if (CORD_oom_fn != (oom_fn) 0) (*CORD_oom_fn)(); \ ABORT("Out of memory\n"); } # define ABORT(msg) { fprintf(stderr, "%s\n", msg); abort(); } CORD CORD_cat_char(CORD x, char c) { register char * string; if (c == '\0') return(CORD_cat(x, CORD_nul(1))); string = GC_MALLOC_ATOMIC(2); if (string == 0) OUT_OF_MEMORY; string[0] = c; string[1] = '\0'; return(CORD_cat_char_star(x, string, 1)); } CORD CORD_catn(int nargs, ...) { register CORD result = CORD_EMPTY; va_list args; register int i; va_start(args, nargs); for (i = 0; i < nargs; i++) { register CORD next = va_arg(args, CORD); result = CORD_cat(result, next); } va_end(args); return(result); } typedef struct { size_t len; size_t count; char * buf; } CORD_fill_data; int CORD_fill_proc(char c, void * client_data) { register CORD_fill_data * d = (CORD_fill_data *)client_data; register size_t count = d -> count; (d -> buf)[count] = c; d -> count = ++count; if (count >= d -> len) { return(1); } else { return(0); } } int CORD_batched_fill_proc(const char * s, void * client_data) { register CORD_fill_data * d = (CORD_fill_data *)client_data; register size_t count = d -> count; register size_t max = d -> len; register char * buf = d -> buf; register const char * t = s; while((buf[count] = *t++) != '\0') { count++; if (count >= max) { d -> count = count; return(1); } } d -> count = count; return(0); } /* Fill buf with len characters starting at i. */ /* Assumes len characters are available. */ void CORD_fill_buf(CORD x, size_t i, size_t len, char * buf) { CORD_fill_data fd; fd.len = len; fd.buf = buf; fd.count = 0; (void)CORD_iter5(x, i, CORD_fill_proc, CORD_batched_fill_proc, &fd); } int CORD_cmp(CORD x, CORD y) { CORD_pos xpos; CORD_pos ypos; register size_t avail, yavail; if (y == CORD_EMPTY) return(x != CORD_EMPTY); if (x == CORD_EMPTY) return(-1); if (CORD_IS_STRING(y) && CORD_IS_STRING(x)) return(strcmp(x,y)); CORD_set_pos(xpos, x, 0); CORD_set_pos(ypos, y, 0); for(;;) { if (!CORD_pos_valid(xpos)) { if (CORD_pos_valid(ypos)) { return(-1); } else { return(0); } } if (!CORD_pos_valid(ypos)) { return(1); } if ((avail = CORD_pos_chars_left(xpos)) <= 0 || (yavail = CORD_pos_chars_left(ypos)) <= 0) { register char xcurrent = CORD_pos_fetch(xpos); register char ycurrent = CORD_pos_fetch(ypos); if (xcurrent != ycurrent) return(xcurrent - ycurrent); CORD_next(xpos); CORD_next(ypos); } else { /* process as many characters as we can */ register int result; if (avail > yavail) avail = yavail; result = strncmp(CORD_pos_cur_char_addr(xpos), CORD_pos_cur_char_addr(ypos), avail); if (result != 0) return(result); CORD_pos_advance(xpos, avail); CORD_pos_advance(ypos, avail); } } } int CORD_ncmp(CORD x, size_t x_start, CORD y, size_t y_start, size_t len) { CORD_pos xpos; CORD_pos ypos; register size_t count; register long avail, yavail; CORD_set_pos(xpos, x, x_start); CORD_set_pos(ypos, y, y_start); for(count = 0; count < len;) { if (!CORD_pos_valid(xpos)) { if (CORD_pos_valid(ypos)) { return(-1); } else { return(0); } } if (!CORD_pos_valid(ypos)) { return(1); } if ((avail = CORD_pos_chars_left(xpos)) <= 0 || (yavail = CORD_pos_chars_left(ypos)) <= 0) { register char xcurrent = CORD_pos_fetch(xpos); register char ycurrent = CORD_pos_fetch(ypos); if (xcurrent != ycurrent) return(xcurrent - ycurrent); CORD_next(xpos); CORD_next(ypos); count++; } else { /* process as many characters as we can */ register int result; if (avail > yavail) avail = yavail; count += avail; if (count > len) avail -= (count - len); result = strncmp(CORD_pos_cur_char_addr(xpos), CORD_pos_cur_char_addr(ypos), (size_t)avail); if (result != 0) return(result); CORD_pos_advance(xpos, (size_t)avail); CORD_pos_advance(ypos, (size_t)avail); } } return(0); } char * CORD_to_char_star(CORD x) { register size_t len = CORD_len(x); char * result = GC_MALLOC_ATOMIC(len + 1); if (result == 0) OUT_OF_MEMORY; CORD_fill_buf(x, 0, len, result); result[len] = '\0'; return(result); } CORD CORD_from_char_star(const char *s) { char * result; size_t len = strlen(s); if (0 == len) return(CORD_EMPTY); result = GC_MALLOC_ATOMIC(len + 1); if (result == 0) OUT_OF_MEMORY; memcpy(result, s, len+1); return(result); } const char * CORD_to_const_char_star(CORD x) { if (x == 0) return(""); if (CORD_IS_STRING(x)) return((const char *)x); return(CORD_to_char_star(x)); } char CORD_fetch(CORD x, size_t i) { CORD_pos xpos; CORD_set_pos(xpos, x, i); if (!CORD_pos_valid(xpos)) ABORT("bad index?"); return(CORD_pos_fetch(xpos)); } int CORD_put_proc(char c, void * client_data) { register FILE * f = (FILE *)client_data; return(putc(c, f) == EOF); } int CORD_batched_put_proc(const char * s, void * client_data) { register FILE * f = (FILE *)client_data; return(fputs(s, f) == EOF); } int CORD_put(CORD x, FILE * f) { if (CORD_iter5(x, 0, CORD_put_proc, CORD_batched_put_proc, f)) { return(EOF); } else { return(1); } } typedef struct { size_t pos; /* Current position in the cord */ char target; /* Character we're looking for */ } chr_data; int CORD_chr_proc(char c, void * client_data) { register chr_data * d = (chr_data *)client_data; if (c == d -> target) return(1); (d -> pos) ++; return(0); } int CORD_rchr_proc(char c, void * client_data) { register chr_data * d = (chr_data *)client_data; if (c == d -> target) return(1); (d -> pos) --; return(0); } int CORD_batched_chr_proc(const char *s, void * client_data) { register chr_data * d = (chr_data *)client_data; register char * occ = strchr(s, d -> target); if (occ == 0) { d -> pos += strlen(s); return(0); } else { d -> pos += occ - s; return(1); } } size_t CORD_chr(CORD x, size_t i, int c) { chr_data d; d.pos = i; d.target = c; if (CORD_iter5(x, i, CORD_chr_proc, CORD_batched_chr_proc, &d)) { return(d.pos); } else { return(CORD_NOT_FOUND); } } size_t CORD_rchr(CORD x, size_t i, int c) { chr_data d; d.pos = i; d.target = c; if (CORD_riter4(x, i, CORD_rchr_proc, &d)) { return(d.pos); } else { return(CORD_NOT_FOUND); } } /* Find the first occurrence of s in x at position start or later. */ /* This uses an asymptotically poor algorithm, which should typically */ /* perform acceptably. We compare the first few characters directly, */ /* and call CORD_ncmp whenever there is a partial match. */ /* This has the advantage that we allocate very little, or not at all. */ /* It's very fast if there are few close misses. */ size_t CORD_str(CORD x, size_t start, CORD s) { CORD_pos xpos; size_t xlen = CORD_len(x); size_t slen; register size_t start_len; const char * s_start; unsigned long s_buf = 0; /* The first few characters of s */ unsigned long x_buf = 0; /* Start of candidate substring. */ /* Initialized only to make compilers */ /* happy. */ unsigned long mask = 0; register size_t i; register size_t match_pos; if (s == CORD_EMPTY) return(start); if (CORD_IS_STRING(s)) { s_start = s; slen = strlen(s); } else { s_start = CORD_to_char_star(CORD_substr(s, 0, sizeof(unsigned long))); slen = CORD_len(s); } if (xlen < start || xlen - start < slen) return(CORD_NOT_FOUND); start_len = slen; if (start_len > sizeof(unsigned long)) start_len = sizeof(unsigned long); CORD_set_pos(xpos, x, start); for (i = 0; i < start_len; i++) { mask <<= 8; mask |= 0xff; s_buf <<= 8; s_buf |= (unsigned char)s_start[i]; x_buf <<= 8; x_buf |= (unsigned char)CORD_pos_fetch(xpos); CORD_next(xpos); } for (match_pos = start; ; match_pos++) { if ((x_buf & mask) == s_buf) { if (slen == start_len || CORD_ncmp(x, match_pos + start_len, s, start_len, slen - start_len) == 0) { return(match_pos); } } if ( match_pos == xlen - slen ) { return(CORD_NOT_FOUND); } x_buf <<= 8; x_buf |= (unsigned char)CORD_pos_fetch(xpos); CORD_next(xpos); } } void CORD_ec_flush_buf(CORD_ec x) { register size_t len = x[0].ec_bufptr - x[0].ec_buf; char * s; if (len == 0) return; s = GC_MALLOC_ATOMIC(len+1); memcpy(s, x[0].ec_buf, len); s[len] = '\0'; x[0].ec_cord = CORD_cat_char_star(x[0].ec_cord, s, len); x[0].ec_bufptr = x[0].ec_buf; } void CORD_ec_append_cord(CORD_ec x, CORD s) { CORD_ec_flush_buf(x); x[0].ec_cord = CORD_cat(x[0].ec_cord, s); } /*ARGSUSED*/ char CORD_nul_func(size_t i, void * client_data) { return((char)(unsigned long)client_data); } CORD CORD_chars(char c, size_t i) { return(CORD_from_fn(CORD_nul_func, (void *)(unsigned long)c, i)); } CORD CORD_from_file_eager(FILE * f) { register int c; CORD_ec ecord; CORD_ec_init(ecord); for(;;) { c = getc(f); if (c == 0) { /* Append the right number of NULs */ /* Note that any string of NULs is rpresented in 4 words, */ /* independent of its length. */ register size_t count = 1; CORD_ec_flush_buf(ecord); while ((c = getc(f)) == 0) count++; ecord[0].ec_cord = CORD_cat(ecord[0].ec_cord, CORD_nul(count)); } if (c == EOF) break; CORD_ec_append(ecord, c); } (void) fclose(f); return(CORD_balance(CORD_ec_to_cord(ecord))); } /* The state maintained for a lazily read file consists primarily */ /* of a large direct-mapped cache of previously read values. */ /* We could rely more on stdio buffering. That would have 2 */ /* disadvantages: */ /* 1) Empirically, not all fseek implementations preserve the */ /* buffer whenever they could. */ /* 2) It would fail if 2 different sections of a long cord */ /* were being read alternately. */ /* We do use the stdio buffer for read ahead. */ /* To guarantee thread safety in the presence of atomic pointer */ /* writes, cache lines are always replaced, and never modified in */ /* place. */ # define LOG_CACHE_SZ 14 # define CACHE_SZ (1 << LOG_CACHE_SZ) # define LOG_LINE_SZ 9 # define LINE_SZ (1 << LOG_LINE_SZ) typedef struct { size_t tag; char data[LINE_SZ]; /* data[i%LINE_SZ] = ith char in file if tag = i/LINE_SZ */ } cache_line; typedef struct { FILE * lf_file; size_t lf_current; /* Current file pointer value */ cache_line * volatile lf_cache[CACHE_SZ/LINE_SZ]; } lf_state; # define MOD_CACHE_SZ(n) ((n) & (CACHE_SZ - 1)) # define DIV_CACHE_SZ(n) ((n) >> LOG_CACHE_SZ) # define MOD_LINE_SZ(n) ((n) & (LINE_SZ - 1)) # define DIV_LINE_SZ(n) ((n) >> LOG_LINE_SZ) # define LINE_START(n) ((n) & ~(LINE_SZ - 1)) typedef struct { lf_state * state; size_t file_pos; /* Position of needed character. */ cache_line * new_cache; } refill_data; /* Executed with allocation lock. */ static char refill_cache(client_data) refill_data * client_data; { register lf_state * state = client_data -> state; register size_t file_pos = client_data -> file_pos; FILE *f = state -> lf_file; size_t line_start = LINE_START(file_pos); size_t line_no = DIV_LINE_SZ(MOD_CACHE_SZ(file_pos)); cache_line * new_cache = client_data -> new_cache; if (line_start != state -> lf_current && fseek(f, line_start, SEEK_SET) != 0) { ABORT("fseek failed"); } if (fread(new_cache -> data, sizeof(char), LINE_SZ, f) <= file_pos - line_start) { ABORT("fread failed"); } new_cache -> tag = DIV_LINE_SZ(file_pos); /* Store barrier goes here. */ ATOMIC_WRITE(state -> lf_cache[line_no], new_cache); state -> lf_current = line_start + LINE_SZ; return(new_cache->data[MOD_LINE_SZ(file_pos)]); } char CORD_lf_func(size_t i, void * client_data) { register lf_state * state = (lf_state *)client_data; register cache_line * volatile * cl_addr = &(state -> lf_cache[DIV_LINE_SZ(MOD_CACHE_SZ(i))]); register cache_line * cl = (cache_line *)ATOMIC_READ(cl_addr); if (cl == 0 || cl -> tag != DIV_LINE_SZ(i)) { /* Cache miss */ refill_data rd; rd.state = state; rd.file_pos = i; rd.new_cache = GC_NEW_ATOMIC(cache_line); if (rd.new_cache == 0) OUT_OF_MEMORY; return((char)(GC_word) GC_call_with_alloc_lock((GC_fn_type) refill_cache, &rd)); } return(cl -> data[MOD_LINE_SZ(i)]); } /*ARGSUSED*/ void CORD_lf_close_proc(void * obj, void * client_data) { if (fclose(((lf_state *)obj) -> lf_file) != 0) { ABORT("CORD_lf_close_proc: fclose failed"); } } CORD CORD_from_file_lazy_inner(FILE * f, size_t len) { register lf_state * state = GC_NEW(lf_state); register int i; if (state == 0) OUT_OF_MEMORY; if (len != 0) { /* Dummy read to force buffer allocation. */ /* This greatly increases the probability */ /* of avoiding deadlock if buffer allocation */ /* is redirected to GC_malloc and the */ /* world is multithreaded. */ char buf[1]; (void) fread(buf, 1, 1, f); rewind(f); } state -> lf_file = f; for (i = 0; i < CACHE_SZ/LINE_SZ; i++) { state -> lf_cache[i] = 0; } state -> lf_current = 0; GC_REGISTER_FINALIZER(state, CORD_lf_close_proc, 0, 0, 0); return(CORD_from_fn(CORD_lf_func, state, len)); } CORD CORD_from_file_lazy(FILE * f) { register long len; if (fseek(f, 0l, SEEK_END) != 0) { ABORT("Bad fd argument - fseek failed"); } if ((len = ftell(f)) < 0) { ABORT("Bad fd argument - ftell failed"); } rewind(f); return(CORD_from_file_lazy_inner(f, (size_t)len)); } # define LAZY_THRESHOLD (128*1024 + 1) CORD CORD_from_file(FILE * f) { register long len; if (fseek(f, 0l, SEEK_END) != 0) { ABORT("Bad fd argument - fseek failed"); } if ((len = ftell(f)) < 0) { ABORT("Bad fd argument - ftell failed"); } rewind(f); if (len < LAZY_THRESHOLD) { return(CORD_from_file_eager(f)); } else { return(CORD_from_file_lazy_inner(f, (size_t)len)); } }