URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [boehm-gc/] [include/] [new_gc_alloc.h] - Rev 834
Go to most recent revision | Compare with Previous | Blame | View Log
/* * Copyright (c) 1996-1998 by Silicon Graphics. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ // // This is a revision of gc_alloc.h for SGI STL versions > 3.0 // Unlike earlier versions, it supplements the standard "alloc.h" // instead of replacing it. // // This is sloppy about variable names used in header files. // It also doesn't yet understand the new header file names or // namespaces. // // This assumes the collector has been compiled with -DATOMIC_UNCOLLECTABLE. // The user should also consider -DREDIRECT_MALLOC=GC_uncollectable_malloc, // to ensure that object allocated through malloc are traced. // // Some of this could be faster in the explicit deallocation case. // In particular, we spend too much time clearing objects on the // free lists. That could be avoided. // // This uses template classes with static members, and hence does not work // with g++ 2.7.2 and earlier. // // Unlike its predecessor, this one simply defines // gc_alloc // single_client_gc_alloc // traceable_alloc // single_client_traceable_alloc // // It does not redefine alloc. Nor does it change the default allocator, // though the user may wish to do so. (The argument against changing // the default allocator is that it may introduce subtle link compatibility // problems. The argument for changing it is that the usual default // allocator is usually a very bad choice for a garbage collected environment.) // // This code assumes that the collector itself has been compiled with a // compiler that defines __STDC__ . // #ifndef GC_ALLOC_H #include "gc.h" #if (__GNUC__ < 3) # include <stack> // A more portable way to get stl_alloc.h . #else # include <bits/stl_alloc.h> # ifndef __STL_BEGIN_NAMESPACE # define __STL_BEGIN_NAMESPACE namespace std { # define __STL_END_NAMESPACE }; # endif #ifndef __STL_USE_STD_ALLOCATORS #define __STL_USE_STD_ALLOCATORS #endif #endif /* A hack to deal with gcc 3.1. If you are using gcc3.1 and later, */ /* you should probably really use gc_allocator.h instead. */ #if defined (__GNUC__) && \ (__GNUC > 3 || (__GNUC__ == 3 && (__GNUC_MINOR__ >= 1))) # define simple_alloc __simple_alloc #endif #define GC_ALLOC_H #include <stddef.h> #include <string.h> // The following need to match collector data structures. // We can't include gc_priv.h, since that pulls in way too much stuff. // This should eventually be factored out into another include file. extern "C" { extern void ** const GC_objfreelist_ptr; extern void ** const GC_aobjfreelist_ptr; extern void ** const GC_uobjfreelist_ptr; extern void ** const GC_auobjfreelist_ptr; extern void GC_incr_words_allocd(size_t words); extern void GC_incr_mem_freed(size_t words); extern char * GC_generic_malloc_words_small(size_t word, int kind); } // Object kinds; must match PTRFREE, NORMAL, UNCOLLECTABLE, and // AUNCOLLECTABLE in gc_priv.h. enum { GC_PTRFREE = 0, GC_NORMAL = 1, GC_UNCOLLECTABLE = 2, GC_AUNCOLLECTABLE = 3 }; enum { GC_max_fast_bytes = 255 }; enum { GC_bytes_per_word = sizeof(char *) }; enum { GC_byte_alignment = 8 }; enum { GC_word_alignment = GC_byte_alignment/GC_bytes_per_word }; inline void * &GC_obj_link(void * p) { return *reinterpret_cast<void **>(p); } // Compute a number of words >= n+1 bytes. // The +1 allows for pointers one past the end. inline size_t GC_round_up(size_t n) { return ((n + GC_byte_alignment)/GC_byte_alignment)*GC_word_alignment; } // The same but don't allow for extra byte. inline size_t GC_round_up_uncollectable(size_t n) { return ((n + GC_byte_alignment - 1)/GC_byte_alignment)*GC_word_alignment; } template <int dummy> class GC_aux_template { public: // File local count of allocated words. Occasionally this is // added into the global count. A separate count is necessary since the // real one must be updated with a procedure call. static size_t GC_words_recently_allocd; // Same for uncollectable mmory. Not yet reflected in either // GC_words_recently_allocd or GC_non_gc_bytes. static size_t GC_uncollectable_words_recently_allocd; // Similar counter for explicitly deallocated memory. static size_t GC_mem_recently_freed; // Again for uncollectable memory. static size_t GC_uncollectable_mem_recently_freed; static void * GC_out_of_line_malloc(size_t nwords, int kind); }; template <int dummy> size_t GC_aux_template<dummy>::GC_words_recently_allocd = 0; template <int dummy> size_t GC_aux_template<dummy>::GC_uncollectable_words_recently_allocd = 0; template <int dummy> size_t GC_aux_template<dummy>::GC_mem_recently_freed = 0; template <int dummy> size_t GC_aux_template<dummy>::GC_uncollectable_mem_recently_freed = 0; template <int dummy> void * GC_aux_template<dummy>::GC_out_of_line_malloc(size_t nwords, int kind) { GC_words_recently_allocd += GC_uncollectable_words_recently_allocd; GC_non_gc_bytes += GC_bytes_per_word * GC_uncollectable_words_recently_allocd; GC_uncollectable_words_recently_allocd = 0; GC_mem_recently_freed += GC_uncollectable_mem_recently_freed; GC_non_gc_bytes -= GC_bytes_per_word * GC_uncollectable_mem_recently_freed; GC_uncollectable_mem_recently_freed = 0; GC_incr_words_allocd(GC_words_recently_allocd); GC_words_recently_allocd = 0; GC_incr_mem_freed(GC_mem_recently_freed); GC_mem_recently_freed = 0; return GC_generic_malloc_words_small(nwords, kind); } typedef GC_aux_template<0> GC_aux; // A fast, single-threaded, garbage-collected allocator // We assume the first word will be immediately overwritten. // In this version, deallocation is not a noop, and explicit // deallocation is likely to help performance. template <int dummy> class single_client_gc_alloc_template { public: static void * allocate(size_t n) { size_t nwords = GC_round_up(n); void ** flh; void * op; if (n > GC_max_fast_bytes) return GC_malloc(n); flh = GC_objfreelist_ptr + nwords; if (0 == (op = *flh)) { return GC_aux::GC_out_of_line_malloc(nwords, GC_NORMAL); } *flh = GC_obj_link(op); GC_aux::GC_words_recently_allocd += nwords; return op; } static void * ptr_free_allocate(size_t n) { size_t nwords = GC_round_up(n); void ** flh; void * op; if (n > GC_max_fast_bytes) return GC_malloc_atomic(n); flh = GC_aobjfreelist_ptr + nwords; if (0 == (op = *flh)) { return GC_aux::GC_out_of_line_malloc(nwords, GC_PTRFREE); } *flh = GC_obj_link(op); GC_aux::GC_words_recently_allocd += nwords; return op; } static void deallocate(void *p, size_t n) { size_t nwords = GC_round_up(n); void ** flh; if (n > GC_max_fast_bytes) { GC_free(p); } else { flh = GC_objfreelist_ptr + nwords; GC_obj_link(p) = *flh; memset(reinterpret_cast<char *>(p) + GC_bytes_per_word, 0, GC_bytes_per_word * (nwords - 1)); *flh = p; GC_aux::GC_mem_recently_freed += nwords; } } static void ptr_free_deallocate(void *p, size_t n) { size_t nwords = GC_round_up(n); void ** flh; if (n > GC_max_fast_bytes) { GC_free(p); } else { flh = GC_aobjfreelist_ptr + nwords; GC_obj_link(p) = *flh; *flh = p; GC_aux::GC_mem_recently_freed += nwords; } } }; typedef single_client_gc_alloc_template<0> single_client_gc_alloc; // Once more, for uncollectable objects. template <int dummy> class single_client_traceable_alloc_template { public: static void * allocate(size_t n) { size_t nwords = GC_round_up_uncollectable(n); void ** flh; void * op; if (n > GC_max_fast_bytes) return GC_malloc_uncollectable(n); flh = GC_uobjfreelist_ptr + nwords; if (0 == (op = *flh)) { return GC_aux::GC_out_of_line_malloc(nwords, GC_UNCOLLECTABLE); } *flh = GC_obj_link(op); GC_aux::GC_uncollectable_words_recently_allocd += nwords; return op; } static void * ptr_free_allocate(size_t n) { size_t nwords = GC_round_up_uncollectable(n); void ** flh; void * op; if (n > GC_max_fast_bytes) return GC_malloc_atomic_uncollectable(n); flh = GC_auobjfreelist_ptr + nwords; if (0 == (op = *flh)) { return GC_aux::GC_out_of_line_malloc(nwords, GC_AUNCOLLECTABLE); } *flh = GC_obj_link(op); GC_aux::GC_uncollectable_words_recently_allocd += nwords; return op; } static void deallocate(void *p, size_t n) { size_t nwords = GC_round_up_uncollectable(n); void ** flh; if (n > GC_max_fast_bytes) { GC_free(p); } else { flh = GC_uobjfreelist_ptr + nwords; GC_obj_link(p) = *flh; *flh = p; GC_aux::GC_uncollectable_mem_recently_freed += nwords; } } static void ptr_free_deallocate(void *p, size_t n) { size_t nwords = GC_round_up_uncollectable(n); void ** flh; if (n > GC_max_fast_bytes) { GC_free(p); } else { flh = GC_auobjfreelist_ptr + nwords; GC_obj_link(p) = *flh; *flh = p; GC_aux::GC_uncollectable_mem_recently_freed += nwords; } } }; typedef single_client_traceable_alloc_template<0> single_client_traceable_alloc; template < int dummy > class gc_alloc_template { public: static void * allocate(size_t n) { return GC_malloc(n); } static void * ptr_free_allocate(size_t n) { return GC_malloc_atomic(n); } static void deallocate(void *, size_t) { } static void ptr_free_deallocate(void *, size_t) { } }; typedef gc_alloc_template < 0 > gc_alloc; template < int dummy > class traceable_alloc_template { public: static void * allocate(size_t n) { return GC_malloc_uncollectable(n); } static void * ptr_free_allocate(size_t n) { return GC_malloc_atomic_uncollectable(n); } static void deallocate(void *p, size_t) { GC_free(p); } static void ptr_free_deallocate(void *p, size_t) { GC_free(p); } }; typedef traceable_alloc_template < 0 > traceable_alloc; // We want to specialize simple_alloc so that it does the right thing // for all pointerfree types. At the moment there is no portable way to // even approximate that. The following approximation should work for // SGI compilers, and recent versions of g++. # define __GC_SPECIALIZE(T,alloc) \ class simple_alloc<T, alloc> { \ public: \ static T *allocate(size_t n) \ { return 0 == n? 0 : \ reinterpret_cast<T*>(alloc::ptr_free_allocate(n * sizeof (T))); } \ static T *allocate(void) \ { return reinterpret_cast<T*>(alloc::ptr_free_allocate(sizeof (T))); } \ static void deallocate(T *p, size_t n) \ { if (0 != n) alloc::ptr_free_deallocate(p, n * sizeof (T)); } \ static void deallocate(T *p) \ { alloc::ptr_free_deallocate(p, sizeof (T)); } \ }; __STL_BEGIN_NAMESPACE __GC_SPECIALIZE(char, gc_alloc) __GC_SPECIALIZE(int, gc_alloc) __GC_SPECIALIZE(unsigned, gc_alloc) __GC_SPECIALIZE(float, gc_alloc) __GC_SPECIALIZE(double, gc_alloc) __GC_SPECIALIZE(char, traceable_alloc) __GC_SPECIALIZE(int, traceable_alloc) __GC_SPECIALIZE(unsigned, traceable_alloc) __GC_SPECIALIZE(float, traceable_alloc) __GC_SPECIALIZE(double, traceable_alloc) __GC_SPECIALIZE(char, single_client_gc_alloc) __GC_SPECIALIZE(int, single_client_gc_alloc) __GC_SPECIALIZE(unsigned, single_client_gc_alloc) __GC_SPECIALIZE(float, single_client_gc_alloc) __GC_SPECIALIZE(double, single_client_gc_alloc) __GC_SPECIALIZE(char, single_client_traceable_alloc) __GC_SPECIALIZE(int, single_client_traceable_alloc) __GC_SPECIALIZE(unsigned, single_client_traceable_alloc) __GC_SPECIALIZE(float, single_client_traceable_alloc) __GC_SPECIALIZE(double, single_client_traceable_alloc) __STL_END_NAMESPACE #ifdef __STL_USE_STD_ALLOCATORS __STL_BEGIN_NAMESPACE template <class _Tp> struct _Alloc_traits<_Tp, gc_alloc > { static const bool _S_instanceless = true; typedef simple_alloc<_Tp, gc_alloc > _Alloc_type; typedef __allocator<_Tp, gc_alloc > allocator_type; }; inline bool operator==(const gc_alloc&, const gc_alloc&) { return true; } inline bool operator!=(const gc_alloc&, const gc_alloc&) { return false; } template <class _Tp> struct _Alloc_traits<_Tp, single_client_gc_alloc > { static const bool _S_instanceless = true; typedef simple_alloc<_Tp, single_client_gc_alloc > _Alloc_type; typedef __allocator<_Tp, single_client_gc_alloc > allocator_type; }; inline bool operator==(const single_client_gc_alloc&, const single_client_gc_alloc&) { return true; } inline bool operator!=(const single_client_gc_alloc&, const single_client_gc_alloc&) { return false; } template <class _Tp> struct _Alloc_traits<_Tp, traceable_alloc > { static const bool _S_instanceless = true; typedef simple_alloc<_Tp, traceable_alloc > _Alloc_type; typedef __allocator<_Tp, traceable_alloc > allocator_type; }; inline bool operator==(const traceable_alloc&, const traceable_alloc&) { return true; } inline bool operator!=(const traceable_alloc&, const traceable_alloc&) { return false; } template <class _Tp> struct _Alloc_traits<_Tp, single_client_traceable_alloc > { static const bool _S_instanceless = true; typedef simple_alloc<_Tp, single_client_traceable_alloc > _Alloc_type; typedef __allocator<_Tp, single_client_traceable_alloc > allocator_type; }; inline bool operator==(const single_client_traceable_alloc&, const single_client_traceable_alloc&) { return true; } inline bool operator!=(const single_client_traceable_alloc&, const single_client_traceable_alloc&) { return false; } __STL_END_NAMESPACE #endif /* __STL_USE_STD_ALLOCATORS */ #endif /* GC_ALLOC_H */
Go to most recent revision | Compare with Previous | Blame | View Log