URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [boehm-gc/] [misc.c] - Rev 852
Go to most recent revision | Compare with Previous | Blame | View Log
/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * Copyright (c) 1999-2001 by Hewlett-Packard Company. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ /* Boehm, July 31, 1995 5:02 pm PDT */ #include <stdio.h> #include <limits.h> #ifndef _WIN32_WCE #include <signal.h> #endif #define I_HIDE_POINTERS /* To make GC_call_with_alloc_lock visible */ #include "private/gc_pmark.h" #ifdef GC_SOLARIS_THREADS # include <sys/syscall.h> #endif #if defined(MSWIN32) || defined(MSWINCE) # define WIN32_LEAN_AND_MEAN # define NOSERVICE # include <windows.h> # include <tchar.h> #endif # ifdef THREADS # ifdef PCR # include "il/PCR_IL.h" PCR_Th_ML GC_allocate_ml; # else # ifdef SRC_M3 /* Critical section counter is defined in the M3 runtime */ /* That's all we use. */ # else # ifdef GC_SOLARIS_THREADS mutex_t GC_allocate_ml; /* Implicitly initialized. */ # else # if defined(GC_WIN32_THREADS) # if defined(GC_PTHREADS) pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER; # elif defined(GC_DLL) __declspec(dllexport) CRITICAL_SECTION GC_allocate_ml; # else CRITICAL_SECTION GC_allocate_ml; # endif # else # if defined(GC_PTHREADS) && !defined(GC_SOLARIS_THREADS) # if defined(USE_SPIN_LOCK) pthread_t GC_lock_holder = NO_THREAD; # else pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER; pthread_t GC_lock_holder = NO_THREAD; /* Used only for assertions, and to prevent */ /* recursive reentry in the system call wrapper. */ # endif # else --> declare allocator lock here # endif # endif # endif # endif # endif # endif #if defined(NOSYS) || defined(ECOS) #undef STACKBASE #endif /* Dont unnecessarily call GC_register_main_static_data() in case */ /* dyn_load.c isn't linked in. */ #ifdef DYNAMIC_LOADING # define GC_REGISTER_MAIN_STATIC_DATA() GC_register_main_static_data() #else # define GC_REGISTER_MAIN_STATIC_DATA() TRUE #endif GC_FAR struct _GC_arrays GC_arrays /* = { 0 } */; GC_bool GC_debugging_started = FALSE; /* defined here so we don't have to load debug_malloc.o */ void (*GC_check_heap) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0; void (*GC_print_all_smashed) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0; void (*GC_start_call_back) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0; ptr_t GC_stackbottom = 0; #ifdef IA64 ptr_t GC_register_stackbottom = 0; #endif GC_bool GC_dont_gc = 0; GC_bool GC_dont_precollect = 0; GC_bool GC_quiet = 0; GC_bool GC_print_stats = 0; GC_bool GC_print_back_height = 0; #ifndef NO_DEBUGGING GC_bool GC_dump_regularly = 0; /* Generate regular debugging dumps. */ #endif #ifdef KEEP_BACK_PTRS long GC_backtraces = 0; /* Number of random backtraces to */ /* generate for each GC. */ #endif #ifdef FIND_LEAK int GC_find_leak = 1; #else int GC_find_leak = 0; #endif #ifdef ALL_INTERIOR_POINTERS int GC_all_interior_pointers = 1; #else int GC_all_interior_pointers = 0; #endif long GC_large_alloc_warn_interval = 5; /* Interval between unsuppressed warnings. */ long GC_large_alloc_warn_suppressed = 0; /* Number of warnings suppressed so far. */ /*ARGSUSED*/ GC_PTR GC_default_oom_fn GC_PROTO((size_t bytes_requested)) { return(0); } GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested)) = GC_default_oom_fn; extern signed_word GC_mem_found; void * GC_project2(arg1, arg2) void *arg1; void *arg2; { return arg2; } # ifdef MERGE_SIZES /* Set things up so that GC_size_map[i] >= words(i), */ /* but not too much bigger */ /* and so that size_map contains relatively few distinct entries */ /* This is stolen from Russ Atkinson's Cedar quantization */ /* alogrithm (but we precompute it). */ void GC_init_size_map() { register unsigned i; /* Map size 0 to something bigger. */ /* This avoids problems at lower levels. */ /* One word objects don't have to be 2 word aligned, */ /* unless we're using mark bytes. */ for (i = 0; i < sizeof(word); i++) { GC_size_map[i] = MIN_WORDS; } # if MIN_WORDS > 1 GC_size_map[sizeof(word)] = MIN_WORDS; # else GC_size_map[sizeof(word)] = ROUNDED_UP_WORDS(sizeof(word)); # endif for (i = sizeof(word) + 1; i <= 8 * sizeof(word); i++) { GC_size_map[i] = ALIGNED_WORDS(i); } for (i = 8*sizeof(word) + 1; i <= 16 * sizeof(word); i++) { GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 1) & (~1); } # ifdef GC_GCJ_SUPPORT /* Make all sizes up to 32 words predictable, so that a */ /* compiler can statically perform the same computation, */ /* or at least a computation that results in similar size */ /* classes. */ for (i = 16*sizeof(word) + 1; i <= 32 * sizeof(word); i++) { GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 3) & (~3); } # endif /* We leave the rest of the array to be filled in on demand. */ } /* Fill in additional entries in GC_size_map, including the ith one */ /* We assume the ith entry is currently 0. */ /* Note that a filled in section of the array ending at n always */ /* has length at least n/4. */ void GC_extend_size_map(i) word i; { word orig_word_sz = ROUNDED_UP_WORDS(i); word word_sz = orig_word_sz; register word byte_sz = WORDS_TO_BYTES(word_sz); /* The size we try to preserve. */ /* Close to to i, unless this would */ /* introduce too many distinct sizes. */ word smaller_than_i = byte_sz - (byte_sz >> 3); word much_smaller_than_i = byte_sz - (byte_sz >> 2); register word low_limit; /* The lowest indexed entry we */ /* initialize. */ register word j; if (GC_size_map[smaller_than_i] == 0) { low_limit = much_smaller_than_i; while (GC_size_map[low_limit] != 0) low_limit++; } else { low_limit = smaller_than_i + 1; while (GC_size_map[low_limit] != 0) low_limit++; word_sz = ROUNDED_UP_WORDS(low_limit); word_sz += word_sz >> 3; if (word_sz < orig_word_sz) word_sz = orig_word_sz; } # ifdef ALIGN_DOUBLE word_sz += 1; word_sz &= ~1; # endif if (word_sz > MAXOBJSZ) { word_sz = MAXOBJSZ; } /* If we can fit the same number of larger objects in a block, */ /* do so. */ { size_t number_of_objs = BODY_SZ/word_sz; word_sz = BODY_SZ/number_of_objs; # ifdef ALIGN_DOUBLE word_sz &= ~1; # endif } byte_sz = WORDS_TO_BYTES(word_sz); if (GC_all_interior_pointers) { /* We need one extra byte; don't fill in GC_size_map[byte_sz] */ byte_sz -= EXTRA_BYTES; } for (j = low_limit; j <= byte_sz; j++) GC_size_map[j] = word_sz; } # endif /* * The following is a gross hack to deal with a problem that can occur * on machines that are sloppy about stack frame sizes, notably SPARC. * Bogus pointers may be written to the stack and not cleared for * a LONG time, because they always fall into holes in stack frames * that are not written. We partially address this by clearing * sections of the stack whenever we get control. */ word GC_stack_last_cleared = 0; /* GC_no when we last did this */ # ifdef THREADS # define BIG_CLEAR_SIZE 2048 /* Clear this much now and then. */ # define SMALL_CLEAR_SIZE 256 /* Clear this much every time. */ # endif # define CLEAR_SIZE 213 /* Granularity for GC_clear_stack_inner */ # define DEGRADE_RATE 50 word GC_min_sp; /* Coolest stack pointer value from which we've */ /* already cleared the stack. */ word GC_high_water; /* "hottest" stack pointer value we have seen */ /* recently. Degrades over time. */ word GC_words_allocd_at_reset; #if defined(ASM_CLEAR_CODE) extern ptr_t GC_clear_stack_inner(); #else /* Clear the stack up to about limit. Return arg. */ /*ARGSUSED*/ ptr_t GC_clear_stack_inner(arg, limit) ptr_t arg; word limit; { word dummy[CLEAR_SIZE]; BZERO(dummy, CLEAR_SIZE*sizeof(word)); if ((word)(dummy) COOLER_THAN limit) { (void) GC_clear_stack_inner(arg, limit); } /* Make sure the recursive call is not a tail call, and the bzero */ /* call is not recognized as dead code. */ GC_noop1((word)dummy); return(arg); } #endif /* Clear some of the inaccessible part of the stack. Returns its */ /* argument, so it can be used in a tail call position, hence clearing */ /* another frame. */ ptr_t GC_clear_stack(arg) ptr_t arg; { register word sp = (word)GC_approx_sp(); /* Hotter than actual sp */ # ifdef THREADS word dummy[SMALL_CLEAR_SIZE]; static unsigned random_no = 0; /* Should be more random than it is ... */ /* Used to occasionally clear a bigger */ /* chunk. */ # endif register word limit; # define SLOP 400 /* Extra bytes we clear every time. This clears our own */ /* activation record, and should cause more frequent */ /* clearing near the cold end of the stack, a good thing. */ # define GC_SLOP 4000 /* We make GC_high_water this much hotter than we really saw */ /* saw it, to cover for GC noise etc. above our current frame. */ # define CLEAR_THRESHOLD 100000 /* We restart the clearing process after this many bytes of */ /* allocation. Otherwise very heavily recursive programs */ /* with sparse stacks may result in heaps that grow almost */ /* without bounds. As the heap gets larger, collection */ /* frequency decreases, thus clearing frequency would decrease, */ /* thus more junk remains accessible, thus the heap gets */ /* larger ... */ # ifdef THREADS if (++random_no % 13 == 0) { limit = sp; MAKE_HOTTER(limit, BIG_CLEAR_SIZE*sizeof(word)); limit &= ~0xf; /* Make it sufficiently aligned for assembly */ /* implementations of GC_clear_stack_inner. */ return GC_clear_stack_inner(arg, limit); } else { BZERO(dummy, SMALL_CLEAR_SIZE*sizeof(word)); return arg; } # else if (GC_gc_no > GC_stack_last_cleared) { /* Start things over, so we clear the entire stack again */ if (GC_stack_last_cleared == 0) GC_high_water = (word) GC_stackbottom; GC_min_sp = GC_high_water; GC_stack_last_cleared = GC_gc_no; GC_words_allocd_at_reset = GC_words_allocd; } /* Adjust GC_high_water */ MAKE_COOLER(GC_high_water, WORDS_TO_BYTES(DEGRADE_RATE) + GC_SLOP); if (sp HOTTER_THAN GC_high_water) { GC_high_water = sp; } MAKE_HOTTER(GC_high_water, GC_SLOP); limit = GC_min_sp; MAKE_HOTTER(limit, SLOP); if (sp COOLER_THAN limit) { limit &= ~0xf; /* Make it sufficiently aligned for assembly */ /* implementations of GC_clear_stack_inner. */ GC_min_sp = sp; return(GC_clear_stack_inner(arg, limit)); } else if (WORDS_TO_BYTES(GC_words_allocd - GC_words_allocd_at_reset) > CLEAR_THRESHOLD) { /* Restart clearing process, but limit how much clearing we do. */ GC_min_sp = sp; MAKE_HOTTER(GC_min_sp, CLEAR_THRESHOLD/4); if (GC_min_sp HOTTER_THAN GC_high_water) GC_min_sp = GC_high_water; GC_words_allocd_at_reset = GC_words_allocd; } return(arg); # endif } /* Return a pointer to the base address of p, given a pointer to a */ /* an address within an object. Return 0 o.w. */ # ifdef __STDC__ GC_PTR GC_base(GC_PTR p) # else GC_PTR GC_base(p) GC_PTR p; # endif { register word r; register struct hblk *h; register bottom_index *bi; register hdr *candidate_hdr; register word limit; r = (word)p; if (!GC_is_initialized) return 0; h = HBLKPTR(r); GET_BI(r, bi); candidate_hdr = HDR_FROM_BI(bi, r); if (candidate_hdr == 0) return(0); /* If it's a pointer to the middle of a large object, move it */ /* to the beginning. */ while (IS_FORWARDING_ADDR_OR_NIL(candidate_hdr)) { h = FORWARDED_ADDR(h,candidate_hdr); r = (word)h; candidate_hdr = HDR(h); } if (candidate_hdr -> hb_map == GC_invalid_map) return(0); /* Make sure r points to the beginning of the object */ r &= ~(WORDS_TO_BYTES(1) - 1); { register int offset = HBLKDISPL(r); register signed_word sz = candidate_hdr -> hb_sz; register signed_word map_entry; map_entry = MAP_ENTRY((candidate_hdr -> hb_map), offset); if (map_entry > CPP_MAX_OFFSET) { map_entry = (signed_word)(BYTES_TO_WORDS(offset)) % sz; } r -= WORDS_TO_BYTES(map_entry); limit = r + WORDS_TO_BYTES(sz); if (limit > (word)(h + 1) && sz <= BYTES_TO_WORDS(HBLKSIZE)) { return(0); } if ((word)p >= limit) return(0); } return((GC_PTR)r); } /* Return the size of an object, given a pointer to its base. */ /* (For small obects this also happens to work from interior pointers, */ /* but that shouldn't be relied upon.) */ # ifdef __STDC__ size_t GC_size(GC_PTR p) # else size_t GC_size(p) GC_PTR p; # endif { register int sz; register hdr * hhdr = HDR(p); sz = WORDS_TO_BYTES(hhdr -> hb_sz); return(sz); } size_t GC_get_heap_size GC_PROTO(()) { return ((size_t) GC_heapsize); } size_t GC_get_free_bytes GC_PROTO(()) { return ((size_t) GC_large_free_bytes); } size_t GC_get_bytes_since_gc GC_PROTO(()) { return ((size_t) WORDS_TO_BYTES(GC_words_allocd)); } size_t GC_get_total_bytes GC_PROTO(()) { return ((size_t) WORDS_TO_BYTES(GC_words_allocd+GC_words_allocd_before_gc)); } GC_bool GC_is_initialized = FALSE; void GC_init() { DCL_LOCK_STATE; DISABLE_SIGNALS(); #if defined(GC_WIN32_THREADS) && !defined(GC_PTHREADS) if (!GC_is_initialized) { BOOL (WINAPI *pfn) (LPCRITICAL_SECTION, DWORD) = NULL; HMODULE hK32 = GetModuleHandle("kernel32.dll"); if (hK32) pfn = (BOOL (WINAPI *) (LPCRITICAL_SECTION, DWORD)) GetProcAddress (hK32, "InitializeCriticalSectionAndSpinCount"); if (pfn) pfn(&GC_allocate_ml, 4000); else InitializeCriticalSection (&GC_allocate_ml); } #endif /* MSWIN32 */ LOCK(); GC_init_inner(); UNLOCK(); ENABLE_SIGNALS(); # if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC) /* Make sure marker threads and started and thread local */ /* allocation is initialized, in case we didn't get */ /* called from GC_init_parallel(); */ { extern void GC_init_parallel(void); GC_init_parallel(); } # endif /* PARALLEL_MARK || THREAD_LOCAL_ALLOC */ # if defined(DYNAMIC_LOADING) && defined(DARWIN) { /* This must be called WITHOUT the allocation lock held and before any threads are created */ extern void GC_init_dyld(); GC_init_dyld(); } # endif } #if defined(MSWIN32) || defined(MSWINCE) CRITICAL_SECTION GC_write_cs; #endif #ifdef MSWIN32 extern void GC_init_win32 GC_PROTO((void)); #endif extern void GC_setpagesize(); #ifdef MSWIN32 extern GC_bool GC_no_win32_dlls; #else # define GC_no_win32_dlls FALSE #endif void GC_exit_check GC_PROTO((void)) { GC_gcollect(); } #ifdef SEARCH_FOR_DATA_START extern void GC_init_linux_data_start GC_PROTO((void)); #endif #ifdef UNIX_LIKE extern void GC_set_and_save_fault_handler GC_PROTO((void (*handler)(int))); static void looping_handler(sig) int sig; { GC_err_printf1("Caught signal %d: looping in handler\n", sig); for(;;); } static GC_bool installed_looping_handler = FALSE; static void maybe_install_looping_handler() { /* Install looping handler before the write fault handler, so we */ /* handle write faults correctly. */ if (!installed_looping_handler && 0 != GETENV("GC_LOOP_ON_ABORT")) { GC_set_and_save_fault_handler(looping_handler); installed_looping_handler = TRUE; } } #else /* !UNIX_LIKE */ # define maybe_install_looping_handler() #endif void GC_init_inner() { # if !defined(THREADS) && defined(GC_ASSERTIONS) word dummy; # endif word initial_heap_sz = (word)MINHINCR; if (GC_is_initialized) return; # ifdef PRINTSTATS GC_print_stats = 1; # endif # if defined(MSWIN32) || defined(MSWINCE) InitializeCriticalSection(&GC_write_cs); # endif if (0 != GETENV("GC_PRINT_STATS")) { GC_print_stats = 1; } # ifndef NO_DEBUGGING if (0 != GETENV("GC_DUMP_REGULARLY")) { GC_dump_regularly = 1; } # endif # ifdef KEEP_BACK_PTRS { char * backtraces_string = GETENV("GC_BACKTRACES"); if (0 != backtraces_string) { GC_backtraces = atol(backtraces_string); if (backtraces_string[0] == '\0') GC_backtraces = 1; } } # endif if (0 != GETENV("GC_FIND_LEAK")) { GC_find_leak = 1; # ifdef __STDC__ atexit(GC_exit_check); # endif } if (0 != GETENV("GC_ALL_INTERIOR_POINTERS")) { GC_all_interior_pointers = 1; } if (0 != GETENV("GC_DONT_GC")) { GC_dont_gc = 1; } if (0 != GETENV("GC_PRINT_BACK_HEIGHT")) { GC_print_back_height = 1; } if (0 != GETENV("GC_NO_BLACKLIST_WARNING")) { GC_large_alloc_warn_interval = LONG_MAX; } { char * time_limit_string = GETENV("GC_PAUSE_TIME_TARGET"); if (0 != time_limit_string) { long time_limit = atol(time_limit_string); if (time_limit < 5) { WARN("GC_PAUSE_TIME_TARGET environment variable value too small " "or bad syntax: Ignoring\n", 0); } else { GC_time_limit = time_limit; } } } { char * interval_string = GETENV("GC_LARGE_ALLOC_WARN_INTERVAL"); if (0 != interval_string) { long interval = atol(interval_string); if (interval <= 0) { WARN("GC_LARGE_ALLOC_WARN_INTERVAL environment variable has " "bad value: Ignoring\n", 0); } else { GC_large_alloc_warn_interval = interval; } } } maybe_install_looping_handler(); /* Adjust normal object descriptor for extra allocation. */ if (ALIGNMENT > GC_DS_TAGS && EXTRA_BYTES != 0) { GC_obj_kinds[NORMAL].ok_descriptor = ((word)(-ALIGNMENT) | GC_DS_LENGTH); } GC_setpagesize(); GC_exclude_static_roots(beginGC_arrays, endGC_arrays); GC_exclude_static_roots(beginGC_obj_kinds, endGC_obj_kinds); # ifdef SEPARATE_GLOBALS GC_exclude_static_roots(beginGC_objfreelist, endGC_objfreelist); GC_exclude_static_roots(beginGC_aobjfreelist, endGC_aobjfreelist); # endif # ifdef MSWIN32 GC_init_win32(); # endif # if defined(SEARCH_FOR_DATA_START) GC_init_linux_data_start(); # endif # if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) GC_init_netbsd_elf(); # endif # if defined(GC_PTHREADS) || defined(GC_SOLARIS_THREADS) \ || defined(GC_WIN32_THREADS) GC_thr_init(); # endif # ifdef GC_SOLARIS_THREADS /* We need dirty bits in order to find live stack sections. */ GC_dirty_init(); # endif # if !defined(THREADS) || defined(GC_PTHREADS) || defined(GC_WIN32_THREADS) \ || defined(GC_SOLARIS_THREADS) if (GC_stackbottom == 0) { # if defined(GC_PTHREADS) && ! defined(GC_SOLARIS_THREADS) /* Use thread_stack_base if available, as GC could be initialized from a thread that is not the "main" thread. */ GC_stackbottom = GC_get_thread_stack_base(); # endif if (GC_stackbottom == 0) GC_stackbottom = GC_get_stack_base(); # if (defined(LINUX) || defined(HPUX)) && defined(IA64) GC_register_stackbottom = GC_get_register_stack_base(); # endif } else { # if (defined(LINUX) || defined(HPUX)) && defined(IA64) if (GC_register_stackbottom == 0) { WARN("GC_register_stackbottom should be set with GC_stackbottom", 0); /* The following may fail, since we may rely on */ /* alignment properties that may not hold with a user set */ /* GC_stackbottom. */ GC_register_stackbottom = GC_get_register_stack_base(); } # endif } # endif GC_STATIC_ASSERT(sizeof (ptr_t) == sizeof(word)); GC_STATIC_ASSERT(sizeof (signed_word) == sizeof(word)); GC_STATIC_ASSERT(sizeof (struct hblk) == HBLKSIZE); # ifndef THREADS # if defined(STACK_GROWS_UP) && defined(STACK_GROWS_DOWN) ABORT( "Only one of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n"); # endif # if !defined(STACK_GROWS_UP) && !defined(STACK_GROWS_DOWN) ABORT( "One of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n"); # endif # ifdef STACK_GROWS_DOWN GC_ASSERT((word)(&dummy) <= (word)GC_stackbottom); # else GC_ASSERT((word)(&dummy) >= (word)GC_stackbottom); # endif # endif # if !defined(_AUX_SOURCE) || defined(__GNUC__) GC_ASSERT((word)(-1) > (word)0); /* word should be unsigned */ # endif GC_ASSERT((signed_word)(-1) < (signed_word)0); /* Add initial guess of root sets. Do this first, since sbrk(0) */ /* might be used. */ if (GC_REGISTER_MAIN_STATIC_DATA()) GC_register_data_segments(); GC_init_headers(); GC_bl_init(); GC_mark_init(); { char * sz_str = GETENV("GC_INITIAL_HEAP_SIZE"); if (sz_str != NULL) { initial_heap_sz = atoi(sz_str); if (initial_heap_sz <= MINHINCR * HBLKSIZE) { WARN("Bad initial heap size %s - ignoring it.\n", sz_str); } initial_heap_sz = divHBLKSZ(initial_heap_sz); } } { char * sz_str = GETENV("GC_MAXIMUM_HEAP_SIZE"); if (sz_str != NULL) { word max_heap_sz = (word)atol(sz_str); if (max_heap_sz < initial_heap_sz * HBLKSIZE) { WARN("Bad maximum heap size %s - ignoring it.\n", sz_str); } if (0 == GC_max_retries) GC_max_retries = 2; GC_set_max_heap_size(max_heap_sz); } } if (!GC_expand_hp_inner(initial_heap_sz)) { GC_err_printf0("Can't start up: not enough memory\n"); EXIT(); } /* Preallocate large object map. It's otherwise inconvenient to */ /* deal with failure. */ if (!GC_add_map_entry((word)0)) { GC_err_printf0("Can't start up: not enough memory\n"); EXIT(); } GC_register_displacement_inner(0L); # ifdef MERGE_SIZES GC_init_size_map(); # endif # ifdef PCR if (PCR_IL_Lock(PCR_Bool_false, PCR_allSigsBlocked, PCR_waitForever) != PCR_ERes_okay) { ABORT("Can't lock load state\n"); } else if (PCR_IL_Unlock() != PCR_ERes_okay) { ABORT("Can't unlock load state\n"); } PCR_IL_Unlock(); GC_pcr_install(); # endif # if !defined(SMALL_CONFIG) if (!GC_no_win32_dlls && 0 != GETENV("GC_ENABLE_INCREMENTAL")) { GC_ASSERT(!GC_incremental); GC_setpagesize(); # ifndef GC_SOLARIS_THREADS GC_dirty_init(); # endif GC_ASSERT(GC_words_allocd == 0) GC_incremental = TRUE; } # endif /* !SMALL_CONFIG */ COND_DUMP; /* Get black list set up and/or incremental GC started */ if (!GC_dont_precollect || GC_incremental) GC_gcollect_inner(); GC_is_initialized = TRUE; # ifdef STUBBORN_ALLOC GC_stubborn_init(); # endif /* Convince lint that some things are used */ # ifdef LINT { extern char * GC_copyright[]; extern int GC_read(); extern void GC_register_finalizer_no_order(); GC_noop(GC_copyright, GC_find_header, GC_push_one, GC_call_with_alloc_lock, GC_read, GC_dont_expand, # ifndef NO_DEBUGGING GC_dump, # endif GC_register_finalizer_no_order); } # endif } void GC_enable_incremental GC_PROTO(()) { # if !defined(SMALL_CONFIG) && !defined(KEEP_BACK_PTRS) /* If we are keeping back pointers, the GC itself dirties all */ /* pages on which objects have been marked, making */ /* incremental GC pointless. */ if (!GC_find_leak) { DCL_LOCK_STATE; DISABLE_SIGNALS(); LOCK(); if (GC_incremental) goto out; GC_setpagesize(); if (GC_no_win32_dlls) goto out; # ifndef GC_SOLARIS_THREADS maybe_install_looping_handler(); /* Before write fault handler! */ GC_dirty_init(); # endif if (!GC_is_initialized) { GC_init_inner(); } if (GC_incremental) goto out; if (GC_dont_gc) { /* Can't easily do it. */ UNLOCK(); ENABLE_SIGNALS(); return; } if (GC_words_allocd > 0) { /* There may be unmarked reachable objects */ GC_gcollect_inner(); } /* else we're OK in assuming everything's */ /* clean since nothing can point to an */ /* unmarked object. */ GC_read_dirty(); GC_incremental = TRUE; out: UNLOCK(); ENABLE_SIGNALS(); } # endif } #if defined(MSWIN32) || defined(MSWINCE) # define LOG_FILE _T("gc.log") HANDLE GC_stdout = 0; void GC_deinit() { if (GC_is_initialized) { DeleteCriticalSection(&GC_write_cs); } } int GC_write(buf, len) GC_CONST char * buf; size_t len; { BOOL tmp; DWORD written; if (len == 0) return 0; EnterCriticalSection(&GC_write_cs); if (GC_stdout == INVALID_HANDLE_VALUE) { return -1; } else if (GC_stdout == 0) { GC_stdout = CreateFile(LOG_FILE, GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, CREATE_ALWAYS, FILE_FLAG_WRITE_THROUGH, NULL); if (GC_stdout == INVALID_HANDLE_VALUE) ABORT("Open of log file failed"); } tmp = WriteFile(GC_stdout, buf, len, &written, NULL); if (!tmp) DebugBreak(); LeaveCriticalSection(&GC_write_cs); return tmp ? (int)written : -1; } #endif #if defined(OS2) || defined(MACOS) FILE * GC_stdout = NULL; FILE * GC_stderr = NULL; int GC_tmp; /* Should really be local ... */ void GC_set_files() { if (GC_stdout == NULL) { GC_stdout = stdout; } if (GC_stderr == NULL) { GC_stderr = stderr; } } #endif #if !defined(OS2) && !defined(MACOS) && !defined(MSWIN32) && !defined(MSWINCE) int GC_stdout = 1; int GC_stderr = 2; # if !defined(AMIGA) # include <unistd.h> # endif #endif #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(OS2) \ && !defined(MACOS) && !defined(ECOS) && !defined(NOSYS) int GC_write(fd, buf, len) int fd; GC_CONST char *buf; size_t len; { register int bytes_written = 0; register int result; while (bytes_written < len) { # ifdef GC_SOLARIS_THREADS result = syscall(SYS_write, fd, buf + bytes_written, len - bytes_written); # else result = write(fd, buf + bytes_written, len - bytes_written); # endif if (-1 == result) return(result); bytes_written += result; } return(bytes_written); } #endif /* UN*X */ #ifdef ECOS int GC_write(fd, buf, len) { _Jv_diag_write (buf, len); return len; } #endif #ifdef NOSYS int GC_write(fd, buf, len) { /* No writing. */ return len; } #endif #if defined(MSWIN32) || defined(MSWINCE) # define WRITE(f, buf, len) GC_write(buf, len) #else # if defined(OS2) || defined(MACOS) # define WRITE(f, buf, len) (GC_set_files(), \ GC_tmp = fwrite((buf), 1, (len), (f)), \ fflush(f), GC_tmp) # else # define WRITE(f, buf, len) GC_write((f), (buf), (len)) # endif #endif /* A version of printf that is unlikely to call malloc, and is thus safer */ /* to call from the collector in case malloc has been bound to GC_malloc. */ /* Assumes that no more than 1023 characters are written at once. */ /* Assumes that all arguments have been converted to something of the */ /* same size as long, and that the format conversions expect something */ /* of that size. */ void GC_printf(format, a, b, c, d, e, f) GC_CONST char * format; long a, b, c, d, e, f; { char buf[1025]; if (GC_quiet) return; buf[1024] = 0x15; (void) sprintf(buf, format, a, b, c, d, e, f); if (buf[1024] != 0x15) ABORT("GC_printf clobbered stack"); if (WRITE(GC_stdout, buf, strlen(buf)) < 0) ABORT("write to stdout failed"); } void GC_err_printf(format, a, b, c, d, e, f) GC_CONST char * format; long a, b, c, d, e, f; { char buf[1025]; buf[1024] = 0x15; (void) sprintf(buf, format, a, b, c, d, e, f); if (buf[1024] != 0x15) ABORT("GC_err_printf clobbered stack"); if (WRITE(GC_stderr, buf, strlen(buf)) < 0) ABORT("write to stderr failed"); } void GC_err_puts(s) GC_CONST char *s; { if (WRITE(GC_stderr, s, strlen(s)) < 0) ABORT("write to stderr failed"); } #if defined(LINUX) && !defined(SMALL_CONFIG) void GC_err_write(buf, len) GC_CONST char *buf; size_t len; { if (WRITE(GC_stderr, buf, len) < 0) ABORT("write to stderr failed"); } #endif # if defined(__STDC__) || defined(__cplusplus) void GC_default_warn_proc(char *msg, GC_word arg) # else void GC_default_warn_proc(msg, arg) char *msg; GC_word arg; # endif { GC_err_printf1(msg, (unsigned long)arg); } GC_warn_proc GC_current_warn_proc = GC_default_warn_proc; # if defined(__STDC__) || defined(__cplusplus) GC_warn_proc GC_set_warn_proc(GC_warn_proc p) # else GC_warn_proc GC_set_warn_proc(p) GC_warn_proc p; # endif { GC_warn_proc result; # ifdef GC_WIN32_THREADS GC_ASSERT(GC_is_initialized); # endif LOCK(); result = GC_current_warn_proc; GC_current_warn_proc = p; UNLOCK(); return(result); } # if defined(__STDC__) || defined(__cplusplus) GC_word GC_set_free_space_divisor (GC_word value) # else GC_word GC_set_free_space_divisor (value) GC_word value; # endif { GC_word old = GC_free_space_divisor; GC_free_space_divisor = value; return old; } #ifndef PCR void GC_abort(msg) GC_CONST char * msg; { # if defined(MSWIN32) (void) MessageBoxA(NULL, msg, "Fatal error in gc", MB_ICONERROR|MB_OK); # else GC_err_printf1("%s\n", msg); # endif if (GETENV("GC_LOOP_ON_ABORT") != NULL) { /* In many cases it's easier to debug a running process. */ /* It's arguably nicer to sleep, but that makes it harder */ /* to look at the thread if the debugger doesn't know much */ /* about threads. */ for(;;) {} } # if defined(MSWIN32) || defined(MSWINCE) DebugBreak(); # else (void) abort(); # endif } #endif void GC_enable() { LOCK(); GC_dont_gc--; UNLOCK(); } void GC_disable() { LOCK(); GC_dont_gc++; UNLOCK(); } /* Helper procedures for new kind creation. */ void ** GC_new_free_list_inner() { void *result = GC_INTERNAL_MALLOC((MAXOBJSZ+1)*sizeof(ptr_t), PTRFREE); if (result == 0) ABORT("Failed to allocate freelist for new kind"); BZERO(result, (MAXOBJSZ+1)*sizeof(ptr_t)); return result; } void ** GC_new_free_list() { void *result; LOCK(); DISABLE_SIGNALS(); result = GC_new_free_list_inner(); UNLOCK(); ENABLE_SIGNALS(); return result; } int GC_new_kind_inner(fl, descr, adjust, clear) void **fl; GC_word descr; int adjust; int clear; { int result = GC_n_kinds++; if (GC_n_kinds > MAXOBJKINDS) ABORT("Too many kinds"); GC_obj_kinds[result].ok_freelist = (ptr_t *)fl; GC_obj_kinds[result].ok_reclaim_list = 0; GC_obj_kinds[result].ok_descriptor = descr; GC_obj_kinds[result].ok_relocate_descr = adjust; GC_obj_kinds[result].ok_init = clear; return result; } int GC_new_kind(fl, descr, adjust, clear) void **fl; GC_word descr; int adjust; int clear; { int result; LOCK(); DISABLE_SIGNALS(); result = GC_new_kind_inner(fl, descr, adjust, clear); UNLOCK(); ENABLE_SIGNALS(); return result; } int GC_new_proc_inner(proc) GC_mark_proc proc; { int result = GC_n_mark_procs++; if (GC_n_mark_procs > MAX_MARK_PROCS) ABORT("Too many mark procedures"); GC_mark_procs[result] = proc; return result; } int GC_new_proc(proc) GC_mark_proc proc; { int result; LOCK(); DISABLE_SIGNALS(); result = GC_new_proc_inner(proc); UNLOCK(); ENABLE_SIGNALS(); return result; } #if !defined(NO_DEBUGGING) void GC_dump() { GC_printf0("***Static roots:\n"); GC_print_static_roots(); GC_printf0("\n***Heap sections:\n"); GC_print_heap_sects(); GC_printf0("\n***Free blocks:\n"); GC_print_hblkfreelist(); GC_printf0("\n***Blocks in use:\n"); GC_print_block_list(); GC_printf0("\n***Finalization statistics:\n"); GC_print_finalization_stats(); } #endif /* NO_DEBUGGING */
Go to most recent revision | Compare with Previous | Blame | View Log