URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [a-coinve.adb] - Rev 724
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT LIBRARY COMPONENTS -- -- -- -- A D A . C O N T A I N E R S . I N D E F I N I T E _ V E C T O R S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2004-2012, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- <http://www.gnu.org/licenses/>. -- -- -- -- This unit was originally developed by Matthew J Heaney. -- ------------------------------------------------------------------------------ with Ada.Containers.Generic_Array_Sort; with Ada.Unchecked_Deallocation; with System; use type System.Address; package body Ada.Containers.Indefinite_Vectors is procedure Free is new Ada.Unchecked_Deallocation (Elements_Type, Elements_Access); procedure Free is new Ada.Unchecked_Deallocation (Element_Type, Element_Access); type Iterator is new Limited_Controlled and Vector_Iterator_Interfaces.Reversible_Iterator with record Container : Vector_Access; Index : Index_Type'Base; end record; overriding procedure Finalize (Object : in out Iterator); overriding function First (Object : Iterator) return Cursor; overriding function Last (Object : Iterator) return Cursor; overriding function Next (Object : Iterator; Position : Cursor) return Cursor; overriding function Previous (Object : Iterator; Position : Cursor) return Cursor; --------- -- "&" -- --------- function "&" (Left, Right : Vector) return Vector is LN : constant Count_Type := Length (Left); RN : constant Count_Type := Length (Right); N : Count_Type'Base; -- length of result J : Count_Type'Base; -- for computing intermediate values Last : Index_Type'Base; -- Last index of result begin -- We decide that the capacity of the result is the sum of the lengths -- of the vector parameters. We could decide to make it larger, but we -- have no basis for knowing how much larger, so we just allocate the -- minimum amount of storage. -- Here we handle the easy cases first, when one of the vector -- parameters is empty. (We say "easy" because there's nothing to -- compute, that can potentially overflow.) if LN = 0 then if RN = 0 then return Empty_Vector; end if; declare RE : Elements_Array renames Right.Elements.EA (Index_Type'First .. Right.Last); Elements : Elements_Access := new Elements_Type (Right.Last); begin -- Elements of an indefinite vector are allocated, so we cannot -- use simple slice assignment to give a value to our result. -- Hence we must walk the array of the Right vector, and copy -- each source element individually. for I in Elements.EA'Range loop begin if RE (I) /= null then Elements.EA (I) := new Element_Type'(RE (I).all); end if; exception when others => for J in Index_Type'First .. I - 1 loop Free (Elements.EA (J)); end loop; Free (Elements); raise; end; end loop; return (Controlled with Elements, Right.Last, 0, 0); end; end if; if RN = 0 then declare LE : Elements_Array renames Left.Elements.EA (Index_Type'First .. Left.Last); Elements : Elements_Access := new Elements_Type (Left.Last); begin -- Elements of an indefinite vector are allocated, so we cannot -- use simple slice assignment to give a value to our result. -- Hence we must walk the array of the Left vector, and copy -- each source element individually. for I in Elements.EA'Range loop begin if LE (I) /= null then Elements.EA (I) := new Element_Type'(LE (I).all); end if; exception when others => for J in Index_Type'First .. I - 1 loop Free (Elements.EA (J)); end loop; Free (Elements); raise; end; end loop; return (Controlled with Elements, Left.Last, 0, 0); end; end if; -- Neither of the vector parameters is empty, so we must compute the -- length of the result vector and its last index. (This is the harder -- case, because our computations must avoid overflow.) -- There are two constraints we need to satisfy. The first constraint is -- that a container cannot have more than Count_Type'Last elements, so -- we must check the sum of the combined lengths. Note that we cannot -- simply add the lengths, because of the possibility of overflow. if LN > Count_Type'Last - RN then raise Constraint_Error with "new length is out of range"; end if; -- It is now safe compute the length of the new vector. N := LN + RN; -- The second constraint is that the new Last index value cannot -- exceed Index_Type'Last. We use the wider of Index_Type'Base and -- Count_Type'Base as the type for intermediate values. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then -- We perform a two-part test. First we determine whether the -- computed Last value lies in the base range of the type, and then -- determine whether it lies in the range of the index (sub)type. -- Last must satisfy this relation: -- First + Length - 1 <= Last -- We regroup terms: -- First - 1 <= Last - Length -- Which can rewrite as: -- No_Index <= Last - Length if Index_Type'Base'Last - Index_Type'Base (N) < No_Index then raise Constraint_Error with "new length is out of range"; end if; -- We now know that the computed value of Last is within the base -- range of the type, so it is safe to compute its value: Last := No_Index + Index_Type'Base (N); -- Finally we test whether the value is within the range of the -- generic actual index subtype: if Last > Index_Type'Last then raise Constraint_Error with "new length is out of range"; end if; elsif Index_Type'First <= 0 then -- Here we can compute Last directly, in the normal way. We know that -- No_Index is less than 0, so there is no danger of overflow when -- adding the (positive) value of length. J := Count_Type'Base (No_Index) + N; -- Last if J > Count_Type'Base (Index_Type'Last) then raise Constraint_Error with "new length is out of range"; end if; -- We know that the computed value (having type Count_Type) of Last -- is within the range of the generic actual index subtype, so it is -- safe to convert to Index_Type: Last := Index_Type'Base (J); else -- Here Index_Type'First (and Index_Type'Last) is positive, so we -- must test the length indirectly (by working backwards from the -- largest possible value of Last), in order to prevent overflow. J := Count_Type'Base (Index_Type'Last) - N; -- No_Index if J < Count_Type'Base (No_Index) then raise Constraint_Error with "new length is out of range"; end if; -- We have determined that the result length would not create a Last -- index value outside of the range of Index_Type, so we can now -- safely compute its value. Last := Index_Type'Base (Count_Type'Base (No_Index) + N); end if; declare LE : Elements_Array renames Left.Elements.EA (Index_Type'First .. Left.Last); RE : Elements_Array renames Right.Elements.EA (Index_Type'First .. Right.Last); Elements : Elements_Access := new Elements_Type (Last); I : Index_Type'Base := No_Index; begin -- Elements of an indefinite vector are allocated, so we cannot use -- simple slice assignment to give a value to our result. Hence we -- must walk the array of each vector parameter, and copy each source -- element individually. for LI in LE'Range loop I := I + 1; begin if LE (LI) /= null then Elements.EA (I) := new Element_Type'(LE (LI).all); end if; exception when others => for J in Index_Type'First .. I - 1 loop Free (Elements.EA (J)); end loop; Free (Elements); raise; end; end loop; for RI in RE'Range loop I := I + 1; begin if RE (RI) /= null then Elements.EA (I) := new Element_Type'(RE (RI).all); end if; exception when others => for J in Index_Type'First .. I - 1 loop Free (Elements.EA (J)); end loop; Free (Elements); raise; end; end loop; return (Controlled with Elements, Last, 0, 0); end; end "&"; function "&" (Left : Vector; Right : Element_Type) return Vector is begin -- We decide that the capacity of the result is the sum of the lengths -- of the parameters. We could decide to make it larger, but we have no -- basis for knowing how much larger, so we just allocate the minimum -- amount of storage. -- Here we handle the easy case first, when the vector parameter (Left) -- is empty. if Left.Is_Empty then declare Elements : Elements_Access := new Elements_Type (Index_Type'First); begin begin Elements.EA (Index_Type'First) := new Element_Type'(Right); exception when others => Free (Elements); raise; end; return (Controlled with Elements, Index_Type'First, 0, 0); end; end if; -- The vector parameter is not empty, so we must compute the length of -- the result vector and its last index, but in such a way that overflow -- is avoided. We must satisfy two constraints: the new length cannot -- exceed Count_Type'Last, and the new Last index cannot exceed -- Index_Type'Last. if Left.Length = Count_Type'Last then raise Constraint_Error with "new length is out of range"; end if; if Left.Last >= Index_Type'Last then raise Constraint_Error with "new length is out of range"; end if; declare Last : constant Index_Type := Left.Last + 1; LE : Elements_Array renames Left.Elements.EA (Index_Type'First .. Left.Last); Elements : Elements_Access := new Elements_Type (Last); begin for I in LE'Range loop begin if LE (I) /= null then Elements.EA (I) := new Element_Type'(LE (I).all); end if; exception when others => for J in Index_Type'First .. I - 1 loop Free (Elements.EA (J)); end loop; Free (Elements); raise; end; end loop; begin Elements.EA (Last) := new Element_Type'(Right); exception when others => for J in Index_Type'First .. Last - 1 loop Free (Elements.EA (J)); end loop; Free (Elements); raise; end; return (Controlled with Elements, Last, 0, 0); end; end "&"; function "&" (Left : Element_Type; Right : Vector) return Vector is begin -- We decide that the capacity of the result is the sum of the lengths -- of the parameters. We could decide to make it larger, but we have no -- basis for knowing how much larger, so we just allocate the minimum -- amount of storage. -- Here we handle the easy case first, when the vector parameter (Right) -- is empty. if Right.Is_Empty then declare Elements : Elements_Access := new Elements_Type (Index_Type'First); begin begin Elements.EA (Index_Type'First) := new Element_Type'(Left); exception when others => Free (Elements); raise; end; return (Controlled with Elements, Index_Type'First, 0, 0); end; end if; -- The vector parameter is not empty, so we must compute the length of -- the result vector and its last index, but in such a way that overflow -- is avoided. We must satisfy two constraints: the new length cannot -- exceed Count_Type'Last, and the new Last index cannot exceed -- Index_Type'Last. if Right.Length = Count_Type'Last then raise Constraint_Error with "new length is out of range"; end if; if Right.Last >= Index_Type'Last then raise Constraint_Error with "new length is out of range"; end if; declare Last : constant Index_Type := Right.Last + 1; RE : Elements_Array renames Right.Elements.EA (Index_Type'First .. Right.Last); Elements : Elements_Access := new Elements_Type (Last); I : Index_Type'Base := Index_Type'First; begin begin Elements.EA (I) := new Element_Type'(Left); exception when others => Free (Elements); raise; end; for RI in RE'Range loop I := I + 1; begin if RE (RI) /= null then Elements.EA (I) := new Element_Type'(RE (RI).all); end if; exception when others => for J in Index_Type'First .. I - 1 loop Free (Elements.EA (J)); end loop; Free (Elements); raise; end; end loop; return (Controlled with Elements, Last, 0, 0); end; end "&"; function "&" (Left, Right : Element_Type) return Vector is begin -- We decide that the capacity of the result is the sum of the lengths -- of the parameters. We could decide to make it larger, but we have no -- basis for knowing how much larger, so we just allocate the minimum -- amount of storage. -- We must compute the length of the result vector and its last index, -- but in such a way that overflow is avoided. We must satisfy two -- constraints: the new length cannot exceed Count_Type'Last (here, we -- know that that condition is satisfied), and the new Last index cannot -- exceed Index_Type'Last. if Index_Type'First >= Index_Type'Last then raise Constraint_Error with "new length is out of range"; end if; declare Last : constant Index_Type := Index_Type'First + 1; Elements : Elements_Access := new Elements_Type (Last); begin begin Elements.EA (Index_Type'First) := new Element_Type'(Left); exception when others => Free (Elements); raise; end; begin Elements.EA (Last) := new Element_Type'(Right); exception when others => Free (Elements.EA (Index_Type'First)); Free (Elements); raise; end; return (Controlled with Elements, Last, 0, 0); end; end "&"; --------- -- "=" -- --------- overriding function "=" (Left, Right : Vector) return Boolean is begin if Left'Address = Right'Address then return True; end if; if Left.Last /= Right.Last then return False; end if; for J in Index_Type'First .. Left.Last loop if Left.Elements.EA (J) = null then if Right.Elements.EA (J) /= null then return False; end if; elsif Right.Elements.EA (J) = null then return False; elsif Left.Elements.EA (J).all /= Right.Elements.EA (J).all then return False; end if; end loop; return True; end "="; ------------ -- Adjust -- ------------ procedure Adjust (Container : in out Vector) is begin if Container.Last = No_Index then Container.Elements := null; return; end if; declare L : constant Index_Type := Container.Last; E : Elements_Array renames Container.Elements.EA (Index_Type'First .. L); begin Container.Elements := null; Container.Last := No_Index; Container.Busy := 0; Container.Lock := 0; Container.Elements := new Elements_Type (L); for I in E'Range loop if E (I) /= null then Container.Elements.EA (I) := new Element_Type'(E (I).all); end if; Container.Last := I; end loop; end; end Adjust; procedure Adjust (Control : in out Reference_Control_Type) is begin if Control.Container /= null then declare C : Vector renames Control.Container.all; B : Natural renames C.Busy; L : Natural renames C.Lock; begin B := B + 1; L := L + 1; end; end if; end Adjust; ------------ -- Append -- ------------ procedure Append (Container : in out Vector; New_Item : Vector) is begin if Is_Empty (New_Item) then return; end if; if Container.Last = Index_Type'Last then raise Constraint_Error with "vector is already at its maximum length"; end if; Insert (Container, Container.Last + 1, New_Item); end Append; procedure Append (Container : in out Vector; New_Item : Element_Type; Count : Count_Type := 1) is begin if Count = 0 then return; end if; if Container.Last = Index_Type'Last then raise Constraint_Error with "vector is already at its maximum length"; end if; Insert (Container, Container.Last + 1, New_Item, Count); end Append; ------------ -- Assign -- ------------ procedure Assign (Target : in out Vector; Source : Vector) is begin if Target'Address = Source'Address then return; end if; Target.Clear; Target.Append (Source); end Assign; -------------- -- Capacity -- -------------- function Capacity (Container : Vector) return Count_Type is begin if Container.Elements = null then return 0; end if; return Container.Elements.EA'Length; end Capacity; ----------- -- Clear -- ----------- procedure Clear (Container : in out Vector) is begin if Container.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (vector is busy)"; end if; while Container.Last >= Index_Type'First loop declare X : Element_Access := Container.Elements.EA (Container.Last); begin Container.Elements.EA (Container.Last) := null; Container.Last := Container.Last - 1; Free (X); end; end loop; end Clear; ------------------------ -- Constant_Reference -- ------------------------ function Constant_Reference (Container : aliased Vector; Position : Cursor) return Constant_Reference_Type is E : Element_Access; begin if Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor denotes wrong container"; end if; if Position.Index > Position.Container.Last then raise Constraint_Error with "Position cursor is out of range"; end if; E := Container.Elements.EA (Position.Index); if E = null then raise Constraint_Error with "element at Position is empty"; end if; declare C : Vector renames Container'Unrestricted_Access.all; B : Natural renames C.Busy; L : Natural renames C.Lock; begin return R : constant Constant_Reference_Type := (Element => E.all'Access, Control => (Controlled with Container'Unrestricted_Access)) do B := B + 1; L := L + 1; end return; end; end Constant_Reference; function Constant_Reference (Container : aliased Vector; Index : Index_Type) return Constant_Reference_Type is E : Element_Access; begin if Index > Container.Last then raise Constraint_Error with "Index is out of range"; end if; E := Container.Elements.EA (Index); if E = null then raise Constraint_Error with "element at Index is empty"; end if; declare C : Vector renames Container'Unrestricted_Access.all; B : Natural renames C.Busy; L : Natural renames C.Lock; begin return R : constant Constant_Reference_Type := (Element => E.all'Access, Control => (Controlled with Container'Unrestricted_Access)) do B := B + 1; L := L + 1; end return; end; end Constant_Reference; -------------- -- Contains -- -------------- function Contains (Container : Vector; Item : Element_Type) return Boolean is begin return Find_Index (Container, Item) /= No_Index; end Contains; ---------- -- Copy -- ---------- function Copy (Source : Vector; Capacity : Count_Type := 0) return Vector is C : Count_Type; begin if Capacity = 0 then C := Source.Length; elsif Capacity >= Source.Length then C := Capacity; else raise Capacity_Error with "Requested capacity is less than Source length"; end if; return Target : Vector do Target.Reserve_Capacity (C); Target.Assign (Source); end return; end Copy; ------------ -- Delete -- ------------ procedure Delete (Container : in out Vector; Index : Extended_Index; Count : Count_Type := 1) is Old_Last : constant Index_Type'Base := Container.Last; New_Last : Index_Type'Base; Count2 : Count_Type'Base; -- count of items from Index to Old_Last J : Index_Type'Base; -- first index of items that slide down begin -- Delete removes items from the vector, the number of which is the -- minimum of the specified Count and the items (if any) that exist from -- Index to Container.Last. There are no constraints on the specified -- value of Count (it can be larger than what's available at this -- position in the vector, for example), but there are constraints on -- the allowed values of the Index. -- As a precondition on the generic actual Index_Type, the base type -- must include Index_Type'Pred (Index_Type'First); this is the value -- that Container.Last assumes when the vector is empty. However, we do -- not allow that as the value for Index when specifying which items -- should be deleted, so we must manually check. (That the user is -- allowed to specify the value at all here is a consequence of the -- declaration of the Extended_Index subtype, which includes the values -- in the base range that immediately precede and immediately follow the -- values in the Index_Type.) if Index < Index_Type'First then raise Constraint_Error with "Index is out of range (too small)"; end if; -- We do allow a value greater than Container.Last to be specified as -- the Index, but only if it's immediately greater. This allows the -- corner case of deleting no items from the back end of the vector to -- be treated as a no-op. (It is assumed that specifying an index value -- greater than Last + 1 indicates some deeper flaw in the caller's -- algorithm, so that case is treated as a proper error.) if Index > Old_Last then if Index > Old_Last + 1 then raise Constraint_Error with "Index is out of range (too large)"; end if; return; end if; -- Here and elsewhere we treat deleting 0 items from the container as a -- no-op, even when the container is busy, so we simply return. if Count = 0 then return; end if; -- The internal elements array isn't guaranteed to exist unless we have -- elements, so we handle that case here in order to avoid having to -- check it later. (Note that an empty vector can never be busy, so -- there's no semantic harm in returning early.) if Container.Is_Empty then return; end if; -- The tampering bits exist to prevent an item from being deleted (or -- otherwise harmfully manipulated) while it is being visited. Query, -- Update, and Iterate increment the busy count on entry, and decrement -- the count on exit. Delete checks the count to determine whether it is -- being called while the associated callback procedure is executing. if Container.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (vector is busy)"; end if; -- We first calculate what's available for deletion starting at -- Index. Here and elsewhere we use the wider of Index_Type'Base and -- Count_Type'Base as the type for intermediate values. (See function -- Length for more information.) if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then Count2 := Count_Type'Base (Old_Last) - Count_Type'Base (Index) + 1; else Count2 := Count_Type'Base (Old_Last - Index + 1); end if; -- If the number of elements requested (Count) for deletion is equal to -- (or greater than) the number of elements available (Count2) for -- deletion beginning at Index, then everything from Index to -- Container.Last is deleted (this is equivalent to Delete_Last). if Count >= Count2 then -- Elements in an indefinite vector are allocated, so we must iterate -- over the loop and deallocate elements one-at-a-time. We work from -- back to front, deleting the last element during each pass, in -- order to gracefully handle deallocation failures. declare EA : Elements_Array renames Container.Elements.EA; begin while Container.Last >= Index loop declare K : constant Index_Type := Container.Last; X : Element_Access := EA (K); begin -- We first isolate the element we're deleting, removing it -- from the vector before we attempt to deallocate it, in -- case the deallocation fails. EA (K) := null; Container.Last := K - 1; -- Container invariants have been restored, so it is now -- safe to attempt to deallocate the element. Free (X); end; end loop; end; return; end if; -- There are some elements that aren't being deleted (the requested -- count was less than the available count), so we must slide them down -- to Index. We first calculate the index values of the respective array -- slices, using the wider of Index_Type'Base and Count_Type'Base as the -- type for intermediate calculations. For the elements that slide down, -- index value New_Last is the last index value of their new home, and -- index value J is the first index of their old home. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then New_Last := Old_Last - Index_Type'Base (Count); J := Index + Index_Type'Base (Count); else New_Last := Index_Type'Base (Count_Type'Base (Old_Last) - Count); J := Index_Type'Base (Count_Type'Base (Index) + Count); end if; -- The internal elements array isn't guaranteed to exist unless we have -- elements, but we have that guarantee here because we know we have -- elements to slide. The array index values for each slice have -- already been determined, so what remains to be done is to first -- deallocate the elements that are being deleted, and then slide down -- to Index the elements that aren't being deleted. declare EA : Elements_Array renames Container.Elements.EA; begin -- Before we can slide down the elements that aren't being deleted, -- we need to deallocate the elements that are being deleted. for K in Index .. J - 1 loop declare X : Element_Access := EA (K); begin -- First we remove the element we're about to deallocate from -- the vector, in case the deallocation fails, in order to -- preserve representation invariants. EA (K) := null; -- The element has been removed from the vector, so it is now -- safe to attempt to deallocate it. Free (X); end; end loop; EA (Index .. New_Last) := EA (J .. Old_Last); Container.Last := New_Last; end; end Delete; procedure Delete (Container : in out Vector; Position : in out Cursor; Count : Count_Type := 1) is pragma Warnings (Off, Position); begin if Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor denotes wrong container"; end if; if Position.Index > Container.Last then raise Program_Error with "Position index is out of range"; end if; Delete (Container, Position.Index, Count); Position := No_Element; end Delete; ------------------ -- Delete_First -- ------------------ procedure Delete_First (Container : in out Vector; Count : Count_Type := 1) is begin if Count = 0 then return; end if; if Count >= Length (Container) then Clear (Container); return; end if; Delete (Container, Index_Type'First, Count); end Delete_First; ----------------- -- Delete_Last -- ----------------- procedure Delete_Last (Container : in out Vector; Count : Count_Type := 1) is begin -- It is not permitted to delete items while the container is busy (for -- example, we're in the middle of a passive iteration). However, we -- always treat deleting 0 items as a no-op, even when we're busy, so we -- simply return without checking. if Count = 0 then return; end if; -- We cannot simply subsume the empty case into the loop below (the loop -- would iterate 0 times), because we rename the internal array object -- (which is allocated), but an empty vector isn't guaranteed to have -- actually allocated an array. (Note that an empty vector can never be -- busy, so there's no semantic harm in returning early here.) if Container.Is_Empty then return; end if; -- The tampering bits exist to prevent an item from being deleted (or -- otherwise harmfully manipulated) while it is being visited. Query, -- Update, and Iterate increment the busy count on entry, and decrement -- the count on exit. Delete_Last checks the count to determine whether -- it is being called while the associated callback procedure is -- executing. if Container.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (vector is busy)"; end if; -- Elements in an indefinite vector are allocated, so we must iterate -- over the loop and deallocate elements one-at-a-time. We work from -- back to front, deleting the last element during each pass, in order -- to gracefully handle deallocation failures. declare E : Elements_Array renames Container.Elements.EA; begin for Indx in 1 .. Count_Type'Min (Count, Container.Length) loop declare J : constant Index_Type := Container.Last; X : Element_Access := E (J); begin -- Note that we first isolate the element we're deleting, -- removing it from the vector, before we actually deallocate -- it, in order to preserve representation invariants even if -- the deallocation fails. E (J) := null; Container.Last := J - 1; -- Container invariants have been restored, so it is now safe -- to deallocate the element. Free (X); end; end loop; end; end Delete_Last; ------------- -- Element -- ------------- function Element (Container : Vector; Index : Index_Type) return Element_Type is begin if Index > Container.Last then raise Constraint_Error with "Index is out of range"; end if; declare EA : constant Element_Access := Container.Elements.EA (Index); begin if EA = null then raise Constraint_Error with "element is empty"; end if; return EA.all; end; end Element; function Element (Position : Cursor) return Element_Type is begin if Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Position.Index > Position.Container.Last then raise Constraint_Error with "Position cursor is out of range"; end if; declare EA : constant Element_Access := Position.Container.Elements.EA (Position.Index); begin if EA = null then raise Constraint_Error with "element is empty"; end if; return EA.all; end; end Element; -------------- -- Finalize -- -------------- procedure Finalize (Container : in out Vector) is begin Clear (Container); -- Checks busy-bit declare X : Elements_Access := Container.Elements; begin Container.Elements := null; Free (X); end; end Finalize; procedure Finalize (Object : in out Iterator) is B : Natural renames Object.Container.Busy; begin B := B - 1; end Finalize; procedure Finalize (Control : in out Reference_Control_Type) is begin if Control.Container /= null then declare C : Vector renames Control.Container.all; B : Natural renames C.Busy; L : Natural renames C.Lock; begin B := B - 1; L := L - 1; end; Control.Container := null; end if; end Finalize; ---------- -- Find -- ---------- function Find (Container : Vector; Item : Element_Type; Position : Cursor := No_Element) return Cursor is begin if Position.Container /= null then if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor denotes wrong container"; end if; if Position.Index > Container.Last then raise Program_Error with "Position index is out of range"; end if; end if; for J in Position.Index .. Container.Last loop if Container.Elements.EA (J) /= null and then Container.Elements.EA (J).all = Item then return (Container'Unrestricted_Access, J); end if; end loop; return No_Element; end Find; ---------------- -- Find_Index -- ---------------- function Find_Index (Container : Vector; Item : Element_Type; Index : Index_Type := Index_Type'First) return Extended_Index is begin for Indx in Index .. Container.Last loop if Container.Elements.EA (Indx) /= null and then Container.Elements.EA (Indx).all = Item then return Indx; end if; end loop; return No_Index; end Find_Index; ----------- -- First -- ----------- function First (Container : Vector) return Cursor is begin if Is_Empty (Container) then return No_Element; end if; return (Container'Unrestricted_Access, Index_Type'First); end First; function First (Object : Iterator) return Cursor is begin -- The value of the iterator object's Index component influences the -- behavior of the First (and Last) selector function. -- When the Index component is No_Index, this means the iterator -- object was constructed without a start expression, in which case the -- (forward) iteration starts from the (logical) beginning of the entire -- sequence of items (corresponding to Container.First, for a forward -- iterator). -- Otherwise, this is iteration over a partial sequence of items. -- When the Index component isn't No_Index, the iterator object was -- constructed with a start expression, that specifies the position -- from which the (forward) partial iteration begins. if Object.Index = No_Index then return First (Object.Container.all); else return Cursor'(Object.Container, Object.Index); end if; end First; ------------------- -- First_Element -- ------------------- function First_Element (Container : Vector) return Element_Type is begin if Container.Last = No_Index then raise Constraint_Error with "Container is empty"; end if; declare EA : constant Element_Access := Container.Elements.EA (Index_Type'First); begin if EA = null then raise Constraint_Error with "first element is empty"; end if; return EA.all; end; end First_Element; ----------------- -- First_Index -- ----------------- function First_Index (Container : Vector) return Index_Type is pragma Unreferenced (Container); begin return Index_Type'First; end First_Index; --------------------- -- Generic_Sorting -- --------------------- package body Generic_Sorting is ----------------------- -- Local Subprograms -- ----------------------- function Is_Less (L, R : Element_Access) return Boolean; pragma Inline (Is_Less); ------------- -- Is_Less -- ------------- function Is_Less (L, R : Element_Access) return Boolean is begin if L = null then return R /= null; elsif R = null then return False; else return L.all < R.all; end if; end Is_Less; --------------- -- Is_Sorted -- --------------- function Is_Sorted (Container : Vector) return Boolean is begin if Container.Last <= Index_Type'First then return True; end if; declare E : Elements_Array renames Container.Elements.EA; begin for I in Index_Type'First .. Container.Last - 1 loop if Is_Less (E (I + 1), E (I)) then return False; end if; end loop; end; return True; end Is_Sorted; ----------- -- Merge -- ----------- procedure Merge (Target, Source : in out Vector) is I, J : Index_Type'Base; begin -- The semantics of Merge changed slightly per AI05-0021. It was -- originally the case that if Target and Source denoted the same -- container object, then the GNAT implementation of Merge did -- nothing. However, it was argued that RM05 did not precisely -- specify the semantics for this corner case. The decision of the -- ARG was that if Target and Source denote the same non-empty -- container object, then Program_Error is raised. if Source.Last < Index_Type'First then -- Source is empty return; end if; if Target'Address = Source'Address then raise Program_Error with "Target and Source denote same non-empty container"; end if; if Target.Last < Index_Type'First then -- Target is empty Move (Target => Target, Source => Source); return; end if; if Source.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (vector is busy)"; end if; I := Target.Last; -- original value (before Set_Length) Target.Set_Length (Length (Target) + Length (Source)); J := Target.Last; -- new value (after Set_Length) while Source.Last >= Index_Type'First loop pragma Assert (Source.Last <= Index_Type'First or else not (Is_Less (Source.Elements.EA (Source.Last), Source.Elements.EA (Source.Last - 1)))); if I < Index_Type'First then declare Src : Elements_Array renames Source.Elements.EA (Index_Type'First .. Source.Last); begin Target.Elements.EA (Index_Type'First .. J) := Src; Src := (others => null); end; Source.Last := No_Index; return; end if; pragma Assert (I <= Index_Type'First or else not (Is_Less (Target.Elements.EA (I), Target.Elements.EA (I - 1)))); declare Src : Element_Access renames Source.Elements.EA (Source.Last); Tgt : Element_Access renames Target.Elements.EA (I); begin if Is_Less (Src, Tgt) then Target.Elements.EA (J) := Tgt; Tgt := null; I := I - 1; else Target.Elements.EA (J) := Src; Src := null; Source.Last := Source.Last - 1; end if; end; J := J - 1; end loop; end Merge; ---------- -- Sort -- ---------- procedure Sort (Container : in out Vector) is procedure Sort is new Generic_Array_Sort (Index_Type => Index_Type, Element_Type => Element_Access, Array_Type => Elements_Array, "<" => Is_Less); -- Start of processing for Sort begin if Container.Last <= Index_Type'First then return; end if; -- The exception behavior for the vector container must match that -- for the list container, so we check for cursor tampering here -- (which will catch more things) instead of for element tampering -- (which will catch fewer things). It's true that the elements of -- this vector container could be safely moved around while (say) an -- iteration is taking place (iteration only increments the busy -- counter), and so technically all we would need here is a test for -- element tampering (indicated by the lock counter), that's simply -- an artifact of our array-based implementation. Logically Sort -- requires a check for cursor tampering. if Container.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (vector is busy)"; end if; Sort (Container.Elements.EA (Index_Type'First .. Container.Last)); end Sort; end Generic_Sorting; ----------------- -- Has_Element -- ----------------- function Has_Element (Position : Cursor) return Boolean is begin if Position.Container = null then return False; end if; return Position.Index <= Position.Container.Last; end Has_Element; ------------ -- Insert -- ------------ procedure Insert (Container : in out Vector; Before : Extended_Index; New_Item : Element_Type; Count : Count_Type := 1) is Old_Length : constant Count_Type := Container.Length; Max_Length : Count_Type'Base; -- determined from range of Index_Type New_Length : Count_Type'Base; -- sum of current length and Count New_Last : Index_Type'Base; -- last index of vector after insertion Index : Index_Type'Base; -- scratch for intermediate values J : Count_Type'Base; -- scratch New_Capacity : Count_Type'Base; -- length of new, expanded array Dst_Last : Index_Type'Base; -- last index of new, expanded array Dst : Elements_Access; -- new, expanded internal array begin -- As a precondition on the generic actual Index_Type, the base type -- must include Index_Type'Pred (Index_Type'First); this is the value -- that Container.Last assumes when the vector is empty. However, we do -- not allow that as the value for Index when specifying where the new -- items should be inserted, so we must manually check. (That the user -- is allowed to specify the value at all here is a consequence of the -- declaration of the Extended_Index subtype, which includes the values -- in the base range that immediately precede and immediately follow the -- values in the Index_Type.) if Before < Index_Type'First then raise Constraint_Error with "Before index is out of range (too small)"; end if; -- We do allow a value greater than Container.Last to be specified as -- the Index, but only if it's immediately greater. This allows for the -- case of appending items to the back end of the vector. (It is assumed -- that specifying an index value greater than Last + 1 indicates some -- deeper flaw in the caller's algorithm, so that case is treated as a -- proper error.) if Before > Container.Last and then Before > Container.Last + 1 then raise Constraint_Error with "Before index is out of range (too large)"; end if; -- We treat inserting 0 items into the container as a no-op, even when -- the container is busy, so we simply return. if Count = 0 then return; end if; -- There are two constraints we need to satisfy. The first constraint is -- that a container cannot have more than Count_Type'Last elements, so -- we must check the sum of the current length and the insertion count. -- Note that we cannot simply add these values, because of the -- possibility of overflow. if Old_Length > Count_Type'Last - Count then raise Constraint_Error with "Count is out of range"; end if; -- It is now safe compute the length of the new vector, without fear of -- overflow. New_Length := Old_Length + Count; -- The second constraint is that the new Last index value cannot exceed -- Index_Type'Last. In each branch below, we calculate the maximum -- length (computed from the range of values in Index_Type), and then -- compare the new length to the maximum length. If the new length is -- acceptable, then we compute the new last index from that. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then -- We have to handle the case when there might be more values in the -- range of Index_Type than in the range of Count_Type. if Index_Type'First <= 0 then -- We know that No_Index (the same as Index_Type'First - 1) is -- less than 0, so it is safe to compute the following sum without -- fear of overflow. Index := No_Index + Index_Type'Base (Count_Type'Last); if Index <= Index_Type'Last then -- We have determined that range of Index_Type has at least as -- many values as in Count_Type, so Count_Type'Last is the -- maximum number of items that are allowed. Max_Length := Count_Type'Last; else -- The range of Index_Type has fewer values than in Count_Type, -- so the maximum number of items is computed from the range of -- the Index_Type. Max_Length := Count_Type'Base (Index_Type'Last - No_Index); end if; else -- No_Index is equal or greater than 0, so we can safely compute -- the difference without fear of overflow (which we would have to -- worry about if No_Index were less than 0, but that case is -- handled above). Max_Length := Count_Type'Base (Index_Type'Last - No_Index); end if; elsif Index_Type'First <= 0 then -- We know that No_Index (the same as Index_Type'First - 1) is less -- than 0, so it is safe to compute the following sum without fear of -- overflow. J := Count_Type'Base (No_Index) + Count_Type'Last; if J <= Count_Type'Base (Index_Type'Last) then -- We have determined that range of Index_Type has at least as -- many values as in Count_Type, so Count_Type'Last is the maximum -- number of items that are allowed. Max_Length := Count_Type'Last; else -- The range of Index_Type has fewer values than Count_Type does, -- so the maximum number of items is computed from the range of -- the Index_Type. Max_Length := Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index); end if; else -- No_Index is equal or greater than 0, so we can safely compute the -- difference without fear of overflow (which we would have to worry -- about if No_Index were less than 0, but that case is handled -- above). Max_Length := Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index); end if; -- We have just computed the maximum length (number of items). We must -- now compare the requested length to the maximum length, as we do not -- allow a vector expand beyond the maximum (because that would create -- an internal array with a last index value greater than -- Index_Type'Last, with no way to index those elements). if New_Length > Max_Length then raise Constraint_Error with "Count is out of range"; end if; -- New_Last is the last index value of the items in the container after -- insertion. Use the wider of Index_Type'Base and Count_Type'Base to -- compute its value from the New_Length. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then New_Last := No_Index + Index_Type'Base (New_Length); else New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length); end if; if Container.Elements = null then pragma Assert (Container.Last = No_Index); -- This is the simplest case, with which we must always begin: we're -- inserting items into an empty vector that hasn't allocated an -- internal array yet. Note that we don't need to check the busy bit -- here, because an empty container cannot be busy. -- In an indefinite vector, elements are allocated individually, and -- stored as access values on the internal array (the length of which -- represents the vector "capacity"), which is separately allocated. Container.Elements := new Elements_Type (New_Last); -- The element backbone has been successfully allocated, so now we -- allocate the elements. for Idx in Container.Elements.EA'Range loop -- In order to preserve container invariants, we always attempt -- the element allocation first, before setting the Last index -- value, in case the allocation fails (either because there is no -- storage available, or because element initialization fails). Container.Elements.EA (Idx) := new Element_Type'(New_Item); -- The allocation of the element succeeded, so it is now safe to -- update the Last index, restoring container invariants. Container.Last := Idx; end loop; return; end if; -- The tampering bits exist to prevent an item from being harmfully -- manipulated while it is being visited. Query, Update, and Iterate -- increment the busy count on entry, and decrement the count on -- exit. Insert checks the count to determine whether it is being called -- while the associated callback procedure is executing. if Container.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (vector is busy)"; end if; if New_Length <= Container.Elements.EA'Length then -- In this case, we're inserting elements into a vector that has -- already allocated an internal array, and the existing array has -- enough unused storage for the new items. declare E : Elements_Array renames Container.Elements.EA; K : Index_Type'Base; begin if Before > Container.Last then -- The new items are being appended to the vector, so no -- sliding of existing elements is required. for Idx in Before .. New_Last loop -- In order to preserve container invariants, we always -- attempt the element allocation first, before setting the -- Last index value, in case the allocation fails (either -- because there is no storage available, or because element -- initialization fails). E (Idx) := new Element_Type'(New_Item); -- The allocation of the element succeeded, so it is now -- safe to update the Last index, restoring container -- invariants. Container.Last := Idx; end loop; else -- The new items are being inserted before some existing -- elements, so we must slide the existing elements up to their -- new home. We use the wider of Index_Type'Base and -- Count_Type'Base as the type for intermediate index values. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then Index := Before + Index_Type'Base (Count); else Index := Index_Type'Base (Count_Type'Base (Before) + Count); end if; -- The new items are being inserted in the middle of the array, -- in the range [Before, Index). Copy the existing elements to -- the end of the array, to make room for the new items. E (Index .. New_Last) := E (Before .. Container.Last); Container.Last := New_Last; -- We have copied the existing items up to the end of the -- array, to make room for the new items in the middle of -- the array. Now we actually allocate the new items. -- Note: initialize K outside loop to make it clear that -- K always has a value if the exception handler triggers. K := Before; begin while K < Index loop E (K) := new Element_Type'(New_Item); K := K + 1; end loop; exception when others => -- Values in the range [Before, K) were successfully -- allocated, but values in the range [K, Index) are -- stale (these array positions contain copies of the -- old items, that did not get assigned a new item, -- because the allocation failed). We must finish what -- we started by clearing out all of the stale values, -- leaving a "hole" in the middle of the array. E (K .. Index - 1) := (others => null); raise; end; end if; end; return; end if; -- In this case, we're inserting elements into a vector that has already -- allocated an internal array, but the existing array does not have -- enough storage, so we must allocate a new, longer array. In order to -- guarantee that the amortized insertion cost is O(1), we always -- allocate an array whose length is some power-of-two factor of the -- current array length. (The new array cannot have a length less than -- the New_Length of the container, but its last index value cannot be -- greater than Index_Type'Last.) New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length); while New_Capacity < New_Length loop if New_Capacity > Count_Type'Last / 2 then New_Capacity := Count_Type'Last; exit; end if; New_Capacity := 2 * New_Capacity; end loop; if New_Capacity > Max_Length then -- We have reached the limit of capacity, so no further expansion -- will occur. (This is not a problem, as there is never a need to -- have more capacity than the maximum container length.) New_Capacity := Max_Length; end if; -- We have computed the length of the new internal array (and this is -- what "vector capacity" means), so use that to compute its last index. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then Dst_Last := No_Index + Index_Type'Base (New_Capacity); else Dst_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity); end if; -- Now we allocate the new, longer internal array. If the allocation -- fails, we have not changed any container state, so no side-effect -- will occur as a result of propagating the exception. Dst := new Elements_Type (Dst_Last); -- We have our new internal array. All that needs to be done now is to -- copy the existing items (if any) from the old array (the "source" -- array) to the new array (the "destination" array), and then -- deallocate the old array. declare Src : Elements_Access := Container.Elements; begin Dst.EA (Index_Type'First .. Before - 1) := Src.EA (Index_Type'First .. Before - 1); if Before > Container.Last then -- The new items are being appended to the vector, so no -- sliding of existing elements is required. -- We have copied the elements from to the old, source array to -- the new, destination array, so we can now deallocate the old -- array. Container.Elements := Dst; Free (Src); -- Now we append the new items. for Idx in Before .. New_Last loop -- In order to preserve container invariants, we always -- attempt the element allocation first, before setting the -- Last index value, in case the allocation fails (either -- because there is no storage available, or because element -- initialization fails). Dst.EA (Idx) := new Element_Type'(New_Item); -- The allocation of the element succeeded, so it is now safe -- to update the Last index, restoring container invariants. Container.Last := Idx; end loop; else -- The new items are being inserted before some existing elements, -- so we must slide the existing elements up to their new home. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then Index := Before + Index_Type'Base (Count); else Index := Index_Type'Base (Count_Type'Base (Before) + Count); end if; Dst.EA (Index .. New_Last) := Src.EA (Before .. Container.Last); -- We have copied the elements from to the old, source array to -- the new, destination array, so we can now deallocate the old -- array. Container.Elements := Dst; Container.Last := New_Last; Free (Src); -- The new array has a range in the middle containing null access -- values. We now fill in that partition of the array with the new -- items. for Idx in Before .. Index - 1 loop -- Note that container invariants have already been satisfied -- (in particular, the Last index value of the vector has -- already been updated), so if this allocation fails we simply -- let it propagate. Dst.EA (Idx) := new Element_Type'(New_Item); end loop; end if; end; end Insert; procedure Insert (Container : in out Vector; Before : Extended_Index; New_Item : Vector) is N : constant Count_Type := Length (New_Item); J : Index_Type'Base; begin -- Use Insert_Space to create the "hole" (the destination slice) into -- which we copy the source items. Insert_Space (Container, Before, Count => N); if N = 0 then -- There's nothing else to do here (vetting of parameters was -- performed already in Insert_Space), so we simply return. return; end if; if Container'Address /= New_Item'Address then -- This is the simple case. New_Item denotes an object different -- from Container, so there's nothing special we need to do to copy -- the source items to their destination, because all of the source -- items are contiguous. declare subtype Src_Index_Subtype is Index_Type'Base range Index_Type'First .. New_Item.Last; Src : Elements_Array renames New_Item.Elements.EA (Src_Index_Subtype); Dst : Elements_Array renames Container.Elements.EA; Dst_Index : Index_Type'Base; begin Dst_Index := Before - 1; for Src_Index in Src'Range loop Dst_Index := Dst_Index + 1; if Src (Src_Index) /= null then Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all); end if; end loop; end; return; end if; -- New_Item denotes the same object as Container, so an insertion has -- potentially split the source items. The first source slice is -- [Index_Type'First, Before), and the second source slice is -- [J, Container.Last], where index value J is the first index of the -- second slice. (J gets computed below, but only after we have -- determined that the second source slice is non-empty.) The -- destination slice is always the range [Before, J). We perform the -- copy in two steps, using each of the two slices of the source items. declare L : constant Index_Type'Base := Before - 1; subtype Src_Index_Subtype is Index_Type'Base range Index_Type'First .. L; Src : Elements_Array renames Container.Elements.EA (Src_Index_Subtype); Dst : Elements_Array renames Container.Elements.EA; Dst_Index : Index_Type'Base; begin -- We first copy the source items that precede the space we -- inserted. (If Before equals Index_Type'First, then this first -- source slice will be empty, which is harmless.) Dst_Index := Before - 1; for Src_Index in Src'Range loop Dst_Index := Dst_Index + 1; if Src (Src_Index) /= null then Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all); end if; end loop; if Src'Length = N then -- The new items were effectively appended to the container, so we -- have already copied all of the items that need to be copied. -- We return early here, even though the source slice below is -- empty (so the assignment would be harmless), because we want to -- avoid computing J, which will overflow if J is greater than -- Index_Type'Base'Last. return; end if; end; -- Index value J is the first index of the second source slice. (It is -- also 1 greater than the last index of the destination slice.) Note: -- avoid computing J if J is greater than Index_Type'Base'Last, in order -- to avoid overflow. Prevent that by returning early above, immediately -- after copying the first slice of the source, and determining that -- this second slice of the source is empty. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then J := Before + Index_Type'Base (N); else J := Index_Type'Base (Count_Type'Base (Before) + N); end if; declare subtype Src_Index_Subtype is Index_Type'Base range J .. Container.Last; Src : Elements_Array renames Container.Elements.EA (Src_Index_Subtype); Dst : Elements_Array renames Container.Elements.EA; Dst_Index : Index_Type'Base; begin -- We next copy the source items that follow the space we inserted. -- Index value Dst_Index is the first index of that portion of the -- destination that receives this slice of the source. (For the -- reasons given above, this slice is guaranteed to be non-empty.) if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then Dst_Index := J - Index_Type'Base (Src'Length); else Dst_Index := Index_Type'Base (Count_Type'Base (J) - Src'Length); end if; for Src_Index in Src'Range loop if Src (Src_Index) /= null then Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all); end if; Dst_Index := Dst_Index + 1; end loop; end; end Insert; procedure Insert (Container : in out Vector; Before : Cursor; New_Item : Vector) is Index : Index_Type'Base; begin if Before.Container /= null and then Before.Container /= Container'Unrestricted_Access then raise Program_Error with "Before cursor denotes wrong container"; end if; if Is_Empty (New_Item) then return; end if; if Before.Container = null or else Before.Index > Container.Last then if Container.Last = Index_Type'Last then raise Constraint_Error with "vector is already at its maximum length"; end if; Index := Container.Last + 1; else Index := Before.Index; end if; Insert (Container, Index, New_Item); end Insert; procedure Insert (Container : in out Vector; Before : Cursor; New_Item : Vector; Position : out Cursor) is Index : Index_Type'Base; begin if Before.Container /= null and then Before.Container /= Vector_Access'(Container'Unrestricted_Access) then raise Program_Error with "Before cursor denotes wrong container"; end if; if Is_Empty (New_Item) then if Before.Container = null or else Before.Index > Container.Last then Position := No_Element; else Position := (Container'Unrestricted_Access, Before.Index); end if; return; end if; if Before.Container = null or else Before.Index > Container.Last then if Container.Last = Index_Type'Last then raise Constraint_Error with "vector is already at its maximum length"; end if; Index := Container.Last + 1; else Index := Before.Index; end if; Insert (Container, Index, New_Item); Position := Cursor'(Container'Unrestricted_Access, Index); end Insert; procedure Insert (Container : in out Vector; Before : Cursor; New_Item : Element_Type; Count : Count_Type := 1) is Index : Index_Type'Base; begin if Before.Container /= null and then Before.Container /= Container'Unrestricted_Access then raise Program_Error with "Before cursor denotes wrong container"; end if; if Count = 0 then return; end if; if Before.Container = null or else Before.Index > Container.Last then if Container.Last = Index_Type'Last then raise Constraint_Error with "vector is already at its maximum length"; end if; Index := Container.Last + 1; else Index := Before.Index; end if; Insert (Container, Index, New_Item, Count); end Insert; procedure Insert (Container : in out Vector; Before : Cursor; New_Item : Element_Type; Position : out Cursor; Count : Count_Type := 1) is Index : Index_Type'Base; begin if Before.Container /= null and then Before.Container /= Container'Unrestricted_Access then raise Program_Error with "Before cursor denotes wrong container"; end if; if Count = 0 then if Before.Container = null or else Before.Index > Container.Last then Position := No_Element; else Position := (Container'Unrestricted_Access, Before.Index); end if; return; end if; if Before.Container = null or else Before.Index > Container.Last then if Container.Last = Index_Type'Last then raise Constraint_Error with "vector is already at its maximum length"; end if; Index := Container.Last + 1; else Index := Before.Index; end if; Insert (Container, Index, New_Item, Count); Position := (Container'Unrestricted_Access, Index); end Insert; ------------------ -- Insert_Space -- ------------------ procedure Insert_Space (Container : in out Vector; Before : Extended_Index; Count : Count_Type := 1) is Old_Length : constant Count_Type := Container.Length; Max_Length : Count_Type'Base; -- determined from range of Index_Type New_Length : Count_Type'Base; -- sum of current length and Count New_Last : Index_Type'Base; -- last index of vector after insertion Index : Index_Type'Base; -- scratch for intermediate values J : Count_Type'Base; -- scratch New_Capacity : Count_Type'Base; -- length of new, expanded array Dst_Last : Index_Type'Base; -- last index of new, expanded array Dst : Elements_Access; -- new, expanded internal array begin -- As a precondition on the generic actual Index_Type, the base type -- must include Index_Type'Pred (Index_Type'First); this is the value -- that Container.Last assumes when the vector is empty. However, we do -- not allow that as the value for Index when specifying where the new -- items should be inserted, so we must manually check. (That the user -- is allowed to specify the value at all here is a consequence of the -- declaration of the Extended_Index subtype, which includes the values -- in the base range that immediately precede and immediately follow the -- values in the Index_Type.) if Before < Index_Type'First then raise Constraint_Error with "Before index is out of range (too small)"; end if; -- We do allow a value greater than Container.Last to be specified as -- the Index, but only if it's immediately greater. This allows for the -- case of appending items to the back end of the vector. (It is assumed -- that specifying an index value greater than Last + 1 indicates some -- deeper flaw in the caller's algorithm, so that case is treated as a -- proper error.) if Before > Container.Last and then Before > Container.Last + 1 then raise Constraint_Error with "Before index is out of range (too large)"; end if; -- We treat inserting 0 items into the container as a no-op, even when -- the container is busy, so we simply return. if Count = 0 then return; end if; -- There are two constraints we need to satisfy. The first constraint is -- that a container cannot have more than Count_Type'Last elements, so -- we must check the sum of the current length and the insertion -- count. Note that we cannot simply add these values, because of the -- possibility of overflow. if Old_Length > Count_Type'Last - Count then raise Constraint_Error with "Count is out of range"; end if; -- It is now safe compute the length of the new vector, without fear of -- overflow. New_Length := Old_Length + Count; -- The second constraint is that the new Last index value cannot exceed -- Index_Type'Last. In each branch below, we calculate the maximum -- length (computed from the range of values in Index_Type), and then -- compare the new length to the maximum length. If the new length is -- acceptable, then we compute the new last index from that. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then -- We have to handle the case when there might be more values in the -- range of Index_Type than in the range of Count_Type. if Index_Type'First <= 0 then -- We know that No_Index (the same as Index_Type'First - 1) is -- less than 0, so it is safe to compute the following sum without -- fear of overflow. Index := No_Index + Index_Type'Base (Count_Type'Last); if Index <= Index_Type'Last then -- We have determined that range of Index_Type has at least as -- many values as in Count_Type, so Count_Type'Last is the -- maximum number of items that are allowed. Max_Length := Count_Type'Last; else -- The range of Index_Type has fewer values than in Count_Type, -- so the maximum number of items is computed from the range of -- the Index_Type. Max_Length := Count_Type'Base (Index_Type'Last - No_Index); end if; else -- No_Index is equal or greater than 0, so we can safely compute -- the difference without fear of overflow (which we would have to -- worry about if No_Index were less than 0, but that case is -- handled above). Max_Length := Count_Type'Base (Index_Type'Last - No_Index); end if; elsif Index_Type'First <= 0 then -- We know that No_Index (the same as Index_Type'First - 1) is less -- than 0, so it is safe to compute the following sum without fear of -- overflow. J := Count_Type'Base (No_Index) + Count_Type'Last; if J <= Count_Type'Base (Index_Type'Last) then -- We have determined that range of Index_Type has at least as -- many values as in Count_Type, so Count_Type'Last is the maximum -- number of items that are allowed. Max_Length := Count_Type'Last; else -- The range of Index_Type has fewer values than Count_Type does, -- so the maximum number of items is computed from the range of -- the Index_Type. Max_Length := Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index); end if; else -- No_Index is equal or greater than 0, so we can safely compute the -- difference without fear of overflow (which we would have to worry -- about if No_Index were less than 0, but that case is handled -- above). Max_Length := Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index); end if; -- We have just computed the maximum length (number of items). We must -- now compare the requested length to the maximum length, as we do not -- allow a vector expand beyond the maximum (because that would create -- an internal array with a last index value greater than -- Index_Type'Last, with no way to index those elements). if New_Length > Max_Length then raise Constraint_Error with "Count is out of range"; end if; -- New_Last is the last index value of the items in the container after -- insertion. Use the wider of Index_Type'Base and Count_Type'Base to -- compute its value from the New_Length. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then New_Last := No_Index + Index_Type'Base (New_Length); else New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length); end if; if Container.Elements = null then pragma Assert (Container.Last = No_Index); -- This is the simplest case, with which we must always begin: we're -- inserting items into an empty vector that hasn't allocated an -- internal array yet. Note that we don't need to check the busy bit -- here, because an empty container cannot be busy. -- In an indefinite vector, elements are allocated individually, and -- stored as access values on the internal array (the length of which -- represents the vector "capacity"), which is separately allocated. -- We have no elements here (because we're inserting "space"), so all -- we need to do is allocate the backbone. Container.Elements := new Elements_Type (New_Last); Container.Last := New_Last; return; end if; -- The tampering bits exist to prevent an item from being harmfully -- manipulated while it is being visited. Query, Update, and Iterate -- increment the busy count on entry, and decrement the count on exit. -- Insert checks the count to determine whether it is being called while -- the associated callback procedure is executing. if Container.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (vector is busy)"; end if; if New_Length <= Container.Elements.EA'Length then -- In this case, we're inserting elements into a vector that has -- already allocated an internal array, and the existing array has -- enough unused storage for the new items. declare E : Elements_Array renames Container.Elements.EA; begin if Before <= Container.Last then -- The new space is being inserted before some existing -- elements, so we must slide the existing elements up to their -- new home. We use the wider of Index_Type'Base and -- Count_Type'Base as the type for intermediate index values. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then Index := Before + Index_Type'Base (Count); else Index := Index_Type'Base (Count_Type'Base (Before) + Count); end if; E (Index .. New_Last) := E (Before .. Container.Last); E (Before .. Index - 1) := (others => null); end if; end; Container.Last := New_Last; return; end if; -- In this case, we're inserting elements into a vector that has already -- allocated an internal array, but the existing array does not have -- enough storage, so we must allocate a new, longer array. In order to -- guarantee that the amortized insertion cost is O(1), we always -- allocate an array whose length is some power-of-two factor of the -- current array length. (The new array cannot have a length less than -- the New_Length of the container, but its last index value cannot be -- greater than Index_Type'Last.) New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length); while New_Capacity < New_Length loop if New_Capacity > Count_Type'Last / 2 then New_Capacity := Count_Type'Last; exit; end if; New_Capacity := 2 * New_Capacity; end loop; if New_Capacity > Max_Length then -- We have reached the limit of capacity, so no further expansion -- will occur. (This is not a problem, as there is never a need to -- have more capacity than the maximum container length.) New_Capacity := Max_Length; end if; -- We have computed the length of the new internal array (and this is -- what "vector capacity" means), so use that to compute its last index. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then Dst_Last := No_Index + Index_Type'Base (New_Capacity); else Dst_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity); end if; -- Now we allocate the new, longer internal array. If the allocation -- fails, we have not changed any container state, so no side-effect -- will occur as a result of propagating the exception. Dst := new Elements_Type (Dst_Last); -- We have our new internal array. All that needs to be done now is to -- copy the existing items (if any) from the old array (the "source" -- array) to the new array (the "destination" array), and then -- deallocate the old array. declare Src : Elements_Access := Container.Elements; begin Dst.EA (Index_Type'First .. Before - 1) := Src.EA (Index_Type'First .. Before - 1); if Before <= Container.Last then -- The new items are being inserted before some existing elements, -- so we must slide the existing elements up to their new home. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then Index := Before + Index_Type'Base (Count); else Index := Index_Type'Base (Count_Type'Base (Before) + Count); end if; Dst.EA (Index .. New_Last) := Src.EA (Before .. Container.Last); end if; -- We have copied the elements from to the old, source array to the -- new, destination array, so we can now restore invariants, and -- deallocate the old array. Container.Elements := Dst; Container.Last := New_Last; Free (Src); end; end Insert_Space; procedure Insert_Space (Container : in out Vector; Before : Cursor; Position : out Cursor; Count : Count_Type := 1) is Index : Index_Type'Base; begin if Before.Container /= null and then Before.Container /= Container'Unrestricted_Access then raise Program_Error with "Before cursor denotes wrong container"; end if; if Count = 0 then if Before.Container = null or else Before.Index > Container.Last then Position := No_Element; else Position := (Container'Unrestricted_Access, Before.Index); end if; return; end if; if Before.Container = null or else Before.Index > Container.Last then if Container.Last = Index_Type'Last then raise Constraint_Error with "vector is already at its maximum length"; end if; Index := Container.Last + 1; else Index := Before.Index; end if; Insert_Space (Container, Index, Count); Position := Cursor'(Container'Unrestricted_Access, Index); end Insert_Space; -------------- -- Is_Empty -- -------------- function Is_Empty (Container : Vector) return Boolean is begin return Container.Last < Index_Type'First; end Is_Empty; ------------- -- Iterate -- ------------- procedure Iterate (Container : Vector; Process : not null access procedure (Position : Cursor)) is B : Natural renames Container'Unrestricted_Access.all.Busy; begin B := B + 1; begin for Indx in Index_Type'First .. Container.Last loop Process (Cursor'(Container'Unrestricted_Access, Indx)); end loop; exception when others => B := B - 1; raise; end; B := B - 1; end Iterate; function Iterate (Container : Vector) return Vector_Iterator_Interfaces.Reversible_Iterator'Class is V : constant Vector_Access := Container'Unrestricted_Access; B : Natural renames V.Busy; begin -- The value of its Index component influences the behavior of the First -- and Last selector functions of the iterator object. When the Index -- component is No_Index (as is the case here), this means the iterator -- object was constructed without a start expression. This is a complete -- iterator, meaning that the iteration starts from the (logical) -- beginning of the sequence of items. -- Note: For a forward iterator, Container.First is the beginning, and -- for a reverse iterator, Container.Last is the beginning. return It : constant Iterator := (Limited_Controlled with Container => V, Index => No_Index) do B := B + 1; end return; end Iterate; function Iterate (Container : Vector; Start : Cursor) return Vector_Iterator_Interfaces.Reversible_Iterator'Class is V : constant Vector_Access := Container'Unrestricted_Access; B : Natural renames V.Busy; begin -- It was formerly the case that when Start = No_Element, the partial -- iterator was defined to behave the same as for a complete iterator, -- and iterate over the entire sequence of items. However, those -- semantics were unintuitive and arguably error-prone (it is too easy -- to accidentally create an endless loop), and so they were changed, -- per the ARG meeting in Denver on 2011/11. However, there was no -- consensus about what positive meaning this corner case should have, -- and so it was decided to simply raise an exception. This does imply, -- however, that it is not possible to use a partial iterator to specify -- an empty sequence of items. if Start.Container = null then raise Constraint_Error with "Start position for iterator equals No_Element"; end if; if Start.Container /= V then raise Program_Error with "Start cursor of Iterate designates wrong vector"; end if; if Start.Index > V.Last then raise Constraint_Error with "Start position for iterator equals No_Element"; end if; -- The value of its Index component influences the behavior of the First -- and Last selector functions of the iterator object. When the Index -- component is not No_Index (as is the case here), it means that this -- is a partial iteration, over a subset of the complete sequence of -- items. The iterator object was constructed with a start expression, -- indicating the position from which the iteration begins. Note that -- the start position has the same value irrespective of whether this -- is a forward or reverse iteration. return It : constant Iterator := (Limited_Controlled with Container => V, Index => Start.Index) do B := B + 1; end return; end Iterate; ---------- -- Last -- ---------- function Last (Container : Vector) return Cursor is begin if Is_Empty (Container) then return No_Element; end if; return (Container'Unrestricted_Access, Container.Last); end Last; function Last (Object : Iterator) return Cursor is begin -- The value of the iterator object's Index component influences the -- behavior of the Last (and First) selector function. -- When the Index component is No_Index, this means the iterator -- object was constructed without a start expression, in which case the -- (reverse) iteration starts from the (logical) beginning of the entire -- sequence (corresponding to Container.Last, for a reverse iterator). -- Otherwise, this is iteration over a partial sequence of items. -- When the Index component is not No_Index, the iterator object was -- constructed with a start expression, that specifies the position -- from which the (reverse) partial iteration begins. if Object.Index = No_Index then return Last (Object.Container.all); else return Cursor'(Object.Container, Object.Index); end if; end Last; ----------------- -- Last_Element -- ------------------ function Last_Element (Container : Vector) return Element_Type is begin if Container.Last = No_Index then raise Constraint_Error with "Container is empty"; end if; declare EA : constant Element_Access := Container.Elements.EA (Container.Last); begin if EA = null then raise Constraint_Error with "last element is empty"; end if; return EA.all; end; end Last_Element; ---------------- -- Last_Index -- ---------------- function Last_Index (Container : Vector) return Extended_Index is begin return Container.Last; end Last_Index; ------------ -- Length -- ------------ function Length (Container : Vector) return Count_Type is L : constant Index_Type'Base := Container.Last; F : constant Index_Type := Index_Type'First; begin -- The base range of the index type (Index_Type'Base) might not include -- all values for length (Count_Type). Contrariwise, the index type -- might include values outside the range of length. Hence we use -- whatever type is wider for intermediate values when calculating -- length. Note that no matter what the index type is, the maximum -- length to which a vector is allowed to grow is always the minimum -- of Count_Type'Last and (IT'Last - IT'First + 1). -- For example, an Index_Type with range -127 .. 127 is only guaranteed -- to have a base range of -128 .. 127, but the corresponding vector -- would have lengths in the range 0 .. 255. In this case we would need -- to use Count_Type'Base for intermediate values. -- Another case would be the index range -2**63 + 1 .. -2**63 + 10. The -- vector would have a maximum length of 10, but the index values lie -- outside the range of Count_Type (which is only 32 bits). In this -- case we would need to use Index_Type'Base for intermediate values. if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then return Count_Type'Base (L) - Count_Type'Base (F) + 1; else return Count_Type (L - F + 1); end if; end Length; ---------- -- Move -- ---------- procedure Move (Target : in out Vector; Source : in out Vector) is begin if Target'Address = Source'Address then return; end if; if Source.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (Source is busy)"; end if; Clear (Target); -- Checks busy-bit declare Target_Elements : constant Elements_Access := Target.Elements; begin Target.Elements := Source.Elements; Source.Elements := Target_Elements; end; Target.Last := Source.Last; Source.Last := No_Index; end Move; ---------- -- Next -- ---------- function Next (Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Position.Index < Position.Container.Last then return (Position.Container, Position.Index + 1); end if; return No_Element; end Next; function Next (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Position.Container /= Object.Container then raise Program_Error with "Position cursor of Next designates wrong vector"; end if; return Next (Position); end Next; procedure Next (Position : in out Cursor) is begin if Position.Container = null then return; end if; if Position.Index < Position.Container.Last then Position.Index := Position.Index + 1; else Position := No_Element; end if; end Next; ------------- -- Prepend -- ------------- procedure Prepend (Container : in out Vector; New_Item : Vector) is begin Insert (Container, Index_Type'First, New_Item); end Prepend; procedure Prepend (Container : in out Vector; New_Item : Element_Type; Count : Count_Type := 1) is begin Insert (Container, Index_Type'First, New_Item, Count); end Prepend; -------------- -- Previous -- -------------- procedure Previous (Position : in out Cursor) is begin if Position.Container = null then return; end if; if Position.Index > Index_Type'First then Position.Index := Position.Index - 1; else Position := No_Element; end if; end Previous; function Previous (Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Position.Index > Index_Type'First then return (Position.Container, Position.Index - 1); end if; return No_Element; end Previous; function Previous (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Position.Container /= Object.Container then raise Program_Error with "Position cursor of Previous designates wrong vector"; end if; return Previous (Position); end Previous; ------------------- -- Query_Element -- ------------------- procedure Query_Element (Container : Vector; Index : Index_Type; Process : not null access procedure (Element : Element_Type)) is V : Vector renames Container'Unrestricted_Access.all; B : Natural renames V.Busy; L : Natural renames V.Lock; begin if Index > Container.Last then raise Constraint_Error with "Index is out of range"; end if; if V.Elements.EA (Index) = null then raise Constraint_Error with "element is null"; end if; B := B + 1; L := L + 1; begin Process (V.Elements.EA (Index).all); exception when others => L := L - 1; B := B - 1; raise; end; L := L - 1; B := B - 1; end Query_Element; procedure Query_Element (Position : Cursor; Process : not null access procedure (Element : Element_Type)) is begin if Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; Query_Element (Position.Container.all, Position.Index, Process); end Query_Element; ---------- -- Read -- ---------- procedure Read (Stream : not null access Root_Stream_Type'Class; Container : out Vector) is Length : Count_Type'Base; Last : Index_Type'Base := Index_Type'Pred (Index_Type'First); B : Boolean; begin Clear (Container); Count_Type'Base'Read (Stream, Length); if Length > Capacity (Container) then Reserve_Capacity (Container, Capacity => Length); end if; for J in Count_Type range 1 .. Length loop Last := Last + 1; Boolean'Read (Stream, B); if B then Container.Elements.EA (Last) := new Element_Type'(Element_Type'Input (Stream)); end if; Container.Last := Last; end loop; end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Position : out Cursor) is begin raise Program_Error with "attempt to stream vector cursor"; end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Constant_Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Read; --------------- -- Reference -- --------------- function Reference (Container : aliased in out Vector; Position : Cursor) return Reference_Type is E : Element_Access; begin if Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor denotes wrong container"; end if; if Position.Index > Position.Container.Last then raise Constraint_Error with "Position cursor is out of range"; end if; E := Container.Elements.EA (Position.Index); if E = null then raise Constraint_Error with "element at Position is empty"; end if; declare C : Vector renames Container'Unrestricted_Access.all; B : Natural renames C.Busy; L : Natural renames C.Lock; begin return R : constant Reference_Type := (Element => E.all'Access, Control => (Controlled with Position.Container)) do B := B + 1; L := L + 1; end return; end; end Reference; function Reference (Container : aliased in out Vector; Index : Index_Type) return Reference_Type is E : Element_Access; begin if Index > Container.Last then raise Constraint_Error with "Index is out of range"; end if; E := Container.Elements.EA (Index); if E = null then raise Constraint_Error with "element at Index is empty"; end if; declare C : Vector renames Container'Unrestricted_Access.all; B : Natural renames C.Busy; L : Natural renames C.Lock; begin return R : constant Reference_Type := (Element => E.all'Access, Control => (Controlled with Container'Unrestricted_Access)) do B := B + 1; L := L + 1; end return; end; end Reference; --------------------- -- Replace_Element -- --------------------- procedure Replace_Element (Container : in out Vector; Index : Index_Type; New_Item : Element_Type) is begin if Index > Container.Last then raise Constraint_Error with "Index is out of range"; end if; if Container.Lock > 0 then raise Program_Error with "attempt to tamper with elements (vector is locked)"; end if; declare X : Element_Access := Container.Elements.EA (Index); begin Container.Elements.EA (Index) := new Element_Type'(New_Item); Free (X); end; end Replace_Element; procedure Replace_Element (Container : in out Vector; Position : Cursor; New_Item : Element_Type) is begin if Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor denotes wrong container"; end if; if Position.Index > Container.Last then raise Constraint_Error with "Position cursor is out of range"; end if; if Container.Lock > 0 then raise Program_Error with "attempt to tamper with elements (vector is locked)"; end if; declare X : Element_Access := Container.Elements.EA (Position.Index); begin Container.Elements.EA (Position.Index) := new Element_Type'(New_Item); Free (X); end; end Replace_Element; ---------------------- -- Reserve_Capacity -- ---------------------- procedure Reserve_Capacity (Container : in out Vector; Capacity : Count_Type) is N : constant Count_Type := Length (Container); Index : Count_Type'Base; Last : Index_Type'Base; begin -- Reserve_Capacity can be used to either expand the storage available -- for elements (this would be its typical use, in anticipation of -- future insertion), or to trim back storage. In the latter case, -- storage can only be trimmed back to the limit of the container -- length. Note that Reserve_Capacity neither deletes (active) elements -- nor inserts elements; it only affects container capacity, never -- container length. if Capacity = 0 then -- This is a request to trim back storage, to the minimum amount -- possible given the current state of the container. if N = 0 then -- The container is empty, so in this unique case we can -- deallocate the entire internal array. Note that an empty -- container can never be busy, so there's no need to check the -- tampering bits. declare X : Elements_Access := Container.Elements; begin -- First we remove the internal array from the container, to -- handle the case when the deallocation raises an exception -- (although that's unlikely, since this is simply an array of -- access values, all of which are null). Container.Elements := null; -- Container invariants have been restored, so it is now safe -- to attempt to deallocate the internal array. Free (X); end; elsif N < Container.Elements.EA'Length then -- The container is not empty, and the current length is less than -- the current capacity, so there's storage available to trim. In -- this case, we allocate a new internal array having a length -- that exactly matches the number of items in the -- container. (Reserve_Capacity does not delete active elements, -- so this is the best we can do with respect to minimizing -- storage). if Container.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (vector is busy)"; end if; declare subtype Array_Index_Subtype is Index_Type'Base range Index_Type'First .. Container.Last; Src : Elements_Array renames Container.Elements.EA (Array_Index_Subtype); X : Elements_Access := Container.Elements; begin -- Although we have isolated the old internal array that we're -- going to deallocate, we don't deallocate it until we have -- successfully allocated a new one. If there is an exception -- during allocation (because there is not enough storage), we -- let it propagate without causing any side-effect. Container.Elements := new Elements_Type'(Container.Last, Src); -- We have successfully allocated a new internal array (with a -- smaller length than the old one, and containing a copy of -- just the active elements in the container), so we can -- deallocate the old array. Free (X); end; end if; return; end if; -- Reserve_Capacity can be used to expand the storage available for -- elements, but we do not let the capacity grow beyond the number of -- values in Index_Type'Range. (Were it otherwise, there would be no way -- to refer to the elements with index values greater than -- Index_Type'Last, so that storage would be wasted.) Here we compute -- the Last index value of the new internal array, in a way that avoids -- any possibility of overflow. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then -- We perform a two-part test. First we determine whether the -- computed Last value lies in the base range of the type, and then -- determine whether it lies in the range of the index (sub)type. -- Last must satisfy this relation: -- First + Length - 1 <= Last -- We regroup terms: -- First - 1 <= Last - Length -- Which can rewrite as: -- No_Index <= Last - Length if Index_Type'Base'Last - Index_Type'Base (Capacity) < No_Index then raise Constraint_Error with "Capacity is out of range"; end if; -- We now know that the computed value of Last is within the base -- range of the type, so it is safe to compute its value: Last := No_Index + Index_Type'Base (Capacity); -- Finally we test whether the value is within the range of the -- generic actual index subtype: if Last > Index_Type'Last then raise Constraint_Error with "Capacity is out of range"; end if; elsif Index_Type'First <= 0 then -- Here we can compute Last directly, in the normal way. We know that -- No_Index is less than 0, so there is no danger of overflow when -- adding the (positive) value of Capacity. Index := Count_Type'Base (No_Index) + Capacity; -- Last if Index > Count_Type'Base (Index_Type'Last) then raise Constraint_Error with "Capacity is out of range"; end if; -- We know that the computed value (having type Count_Type) of Last -- is within the range of the generic actual index subtype, so it is -- safe to convert to Index_Type: Last := Index_Type'Base (Index); else -- Here Index_Type'First (and Index_Type'Last) is positive, so we -- must test the length indirectly (by working backwards from the -- largest possible value of Last), in order to prevent overflow. Index := Count_Type'Base (Index_Type'Last) - Capacity; -- No_Index if Index < Count_Type'Base (No_Index) then raise Constraint_Error with "Capacity is out of range"; end if; -- We have determined that the value of Capacity would not create a -- Last index value outside of the range of Index_Type, so we can now -- safely compute its value. Last := Index_Type'Base (Count_Type'Base (No_Index) + Capacity); end if; -- The requested capacity is non-zero, but we don't know yet whether -- this is a request for expansion or contraction of storage. if Container.Elements = null then -- The container is empty (it doesn't even have an internal array), -- so this represents a request to allocate storage having the given -- capacity. Container.Elements := new Elements_Type (Last); return; end if; if Capacity <= N then -- This is a request to trim back storage, but only to the limit of -- what's already in the container. (Reserve_Capacity never deletes -- active elements, it only reclaims excess storage.) if N < Container.Elements.EA'Length then -- The container is not empty (because the requested capacity is -- positive, and less than or equal to the container length), and -- the current length is less than the current capacity, so there -- is storage available to trim. In this case, we allocate a new -- internal array having a length that exactly matches the number -- of items in the container. if Container.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (vector is busy)"; end if; declare subtype Array_Index_Subtype is Index_Type'Base range Index_Type'First .. Container.Last; Src : Elements_Array renames Container.Elements.EA (Array_Index_Subtype); X : Elements_Access := Container.Elements; begin -- Although we have isolated the old internal array that we're -- going to deallocate, we don't deallocate it until we have -- successfully allocated a new one. If there is an exception -- during allocation (because there is not enough storage), we -- let it propagate without causing any side-effect. Container.Elements := new Elements_Type'(Container.Last, Src); -- We have successfully allocated a new internal array (with a -- smaller length than the old one, and containing a copy of -- just the active elements in the container), so it is now -- safe to deallocate the old array. Free (X); end; end if; return; end if; -- The requested capacity is larger than the container length (the -- number of active elements). Whether this represents a request for -- expansion or contraction of the current capacity depends on what the -- current capacity is. if Capacity = Container.Elements.EA'Length then -- The requested capacity matches the existing capacity, so there's -- nothing to do here. We treat this case as a no-op, and simply -- return without checking the busy bit. return; end if; -- There is a change in the capacity of a non-empty container, so a new -- internal array will be allocated. (The length of the new internal -- array could be less or greater than the old internal array. We know -- only that the length of the new internal array is greater than the -- number of active elements in the container.) We must check whether -- the container is busy before doing anything else. if Container.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (vector is busy)"; end if; -- We now allocate a new internal array, having a length different from -- its current value. declare X : Elements_Access := Container.Elements; subtype Index_Subtype is Index_Type'Base range Index_Type'First .. Container.Last; begin -- We now allocate a new internal array, having a length different -- from its current value. Container.Elements := new Elements_Type (Last); -- We have successfully allocated the new internal array, so now we -- move the existing elements from the existing the old internal -- array onto the new one. Note that we're just copying access -- values, to this should not raise any exceptions. Container.Elements.EA (Index_Subtype) := X.EA (Index_Subtype); -- We have moved the elements from the old internal array, so now we -- can deallocate it. Free (X); end; end Reserve_Capacity; ---------------------- -- Reverse_Elements -- ---------------------- procedure Reverse_Elements (Container : in out Vector) is begin if Container.Length <= 1 then return; end if; -- The exception behavior for the vector container must match that for -- the list container, so we check for cursor tampering here (which will -- catch more things) instead of for element tampering (which will catch -- fewer things). It's true that the elements of this vector container -- could be safely moved around while (say) an iteration is taking place -- (iteration only increments the busy counter), and so technically all -- we would need here is a test for element tampering (indicated by the -- lock counter), that's simply an artifact of our array-based -- implementation. Logically Reverse_Elements requires a check for -- cursor tampering. if Container.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (vector is busy)"; end if; declare I : Index_Type; J : Index_Type; E : Elements_Array renames Container.Elements.EA; begin I := Index_Type'First; J := Container.Last; while I < J loop declare EI : constant Element_Access := E (I); begin E (I) := E (J); E (J) := EI; end; I := I + 1; J := J - 1; end loop; end; end Reverse_Elements; ------------------ -- Reverse_Find -- ------------------ function Reverse_Find (Container : Vector; Item : Element_Type; Position : Cursor := No_Element) return Cursor is Last : Index_Type'Base; begin if Position.Container /= null and then Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor denotes wrong container"; end if; if Position.Container = null or else Position.Index > Container.Last then Last := Container.Last; else Last := Position.Index; end if; for Indx in reverse Index_Type'First .. Last loop if Container.Elements.EA (Indx) /= null and then Container.Elements.EA (Indx).all = Item then return (Container'Unrestricted_Access, Indx); end if; end loop; return No_Element; end Reverse_Find; ------------------------ -- Reverse_Find_Index -- ------------------------ function Reverse_Find_Index (Container : Vector; Item : Element_Type; Index : Index_Type := Index_Type'Last) return Extended_Index is Last : constant Index_Type'Base := (if Index > Container.Last then Container.Last else Index); begin for Indx in reverse Index_Type'First .. Last loop if Container.Elements.EA (Indx) /= null and then Container.Elements.EA (Indx).all = Item then return Indx; end if; end loop; return No_Index; end Reverse_Find_Index; --------------------- -- Reverse_Iterate -- --------------------- procedure Reverse_Iterate (Container : Vector; Process : not null access procedure (Position : Cursor)) is V : Vector renames Container'Unrestricted_Access.all; B : Natural renames V.Busy; begin B := B + 1; begin for Indx in reverse Index_Type'First .. Container.Last loop Process (Cursor'(Container'Unrestricted_Access, Indx)); end loop; exception when others => B := B - 1; raise; end; B := B - 1; end Reverse_Iterate; ---------------- -- Set_Length -- ---------------- procedure Set_Length (Container : in out Vector; Length : Count_Type) is Count : constant Count_Type'Base := Container.Length - Length; begin -- Set_Length allows the user to set the length explicitly, instead of -- implicitly as a side-effect of deletion or insertion. If the -- requested length is less than the current length, this is equivalent -- to deleting items from the back end of the vector. If the requested -- length is greater than the current length, then this is equivalent to -- inserting "space" (nonce items) at the end. if Count >= 0 then Container.Delete_Last (Count); elsif Container.Last >= Index_Type'Last then raise Constraint_Error with "vector is already at its maximum length"; else Container.Insert_Space (Container.Last + 1, -Count); end if; end Set_Length; ---------- -- Swap -- ---------- procedure Swap (Container : in out Vector; I, J : Index_Type) is begin if I > Container.Last then raise Constraint_Error with "I index is out of range"; end if; if J > Container.Last then raise Constraint_Error with "J index is out of range"; end if; if I = J then return; end if; if Container.Lock > 0 then raise Program_Error with "attempt to tamper with elements (vector is locked)"; end if; declare EI : Element_Access renames Container.Elements.EA (I); EJ : Element_Access renames Container.Elements.EA (J); EI_Copy : constant Element_Access := EI; begin EI := EJ; EJ := EI_Copy; end; end Swap; procedure Swap (Container : in out Vector; I, J : Cursor) is begin if I.Container = null then raise Constraint_Error with "I cursor has no element"; end if; if J.Container = null then raise Constraint_Error with "J cursor has no element"; end if; if I.Container /= Container'Unrestricted_Access then raise Program_Error with "I cursor denotes wrong container"; end if; if J.Container /= Container'Unrestricted_Access then raise Program_Error with "J cursor denotes wrong container"; end if; Swap (Container, I.Index, J.Index); end Swap; --------------- -- To_Cursor -- --------------- function To_Cursor (Container : Vector; Index : Extended_Index) return Cursor is begin if Index not in Index_Type'First .. Container.Last then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Index); end To_Cursor; -------------- -- To_Index -- -------------- function To_Index (Position : Cursor) return Extended_Index is begin if Position.Container = null then return No_Index; end if; if Position.Index <= Position.Container.Last then return Position.Index; end if; return No_Index; end To_Index; --------------- -- To_Vector -- --------------- function To_Vector (Length : Count_Type) return Vector is Index : Count_Type'Base; Last : Index_Type'Base; Elements : Elements_Access; begin if Length = 0 then return Empty_Vector; end if; -- We create a vector object with a capacity that matches the specified -- Length, but we do not allow the vector capacity (the length of the -- internal array) to exceed the number of values in Index_Type'Range -- (otherwise, there would be no way to refer to those components via an -- index). We must therefore check whether the specified Length would -- create a Last index value greater than Index_Type'Last. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then -- We perform a two-part test. First we determine whether the -- computed Last value lies in the base range of the type, and then -- determine whether it lies in the range of the index (sub)type. -- Last must satisfy this relation: -- First + Length - 1 <= Last -- We regroup terms: -- First - 1 <= Last - Length -- Which can rewrite as: -- No_Index <= Last - Length if Index_Type'Base'Last - Index_Type'Base (Length) < No_Index then raise Constraint_Error with "Length is out of range"; end if; -- We now know that the computed value of Last is within the base -- range of the type, so it is safe to compute its value: Last := No_Index + Index_Type'Base (Length); -- Finally we test whether the value is within the range of the -- generic actual index subtype: if Last > Index_Type'Last then raise Constraint_Error with "Length is out of range"; end if; elsif Index_Type'First <= 0 then -- Here we can compute Last directly, in the normal way. We know that -- No_Index is less than 0, so there is no danger of overflow when -- adding the (positive) value of Length. Index := Count_Type'Base (No_Index) + Length; -- Last if Index > Count_Type'Base (Index_Type'Last) then raise Constraint_Error with "Length is out of range"; end if; -- We know that the computed value (having type Count_Type) of Last -- is within the range of the generic actual index subtype, so it is -- safe to convert to Index_Type: Last := Index_Type'Base (Index); else -- Here Index_Type'First (and Index_Type'Last) is positive, so we -- must test the length indirectly (by working backwards from the -- largest possible value of Last), in order to prevent overflow. Index := Count_Type'Base (Index_Type'Last) - Length; -- No_Index if Index < Count_Type'Base (No_Index) then raise Constraint_Error with "Length is out of range"; end if; -- We have determined that the value of Length would not create a -- Last index value outside of the range of Index_Type, so we can now -- safely compute its value. Last := Index_Type'Base (Count_Type'Base (No_Index) + Length); end if; Elements := new Elements_Type (Last); return Vector'(Controlled with Elements, Last, 0, 0); end To_Vector; function To_Vector (New_Item : Element_Type; Length : Count_Type) return Vector is Index : Count_Type'Base; Last : Index_Type'Base; Elements : Elements_Access; begin if Length = 0 then return Empty_Vector; end if; -- We create a vector object with a capacity that matches the specified -- Length, but we do not allow the vector capacity (the length of the -- internal array) to exceed the number of values in Index_Type'Range -- (otherwise, there would be no way to refer to those components via an -- index). We must therefore check whether the specified Length would -- create a Last index value greater than Index_Type'Last. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then -- We perform a two-part test. First we determine whether the -- computed Last value lies in the base range of the type, and then -- determine whether it lies in the range of the index (sub)type. -- Last must satisfy this relation: -- First + Length - 1 <= Last -- We regroup terms: -- First - 1 <= Last - Length -- Which can rewrite as: -- No_Index <= Last - Length if Index_Type'Base'Last - Index_Type'Base (Length) < No_Index then raise Constraint_Error with "Length is out of range"; end if; -- We now know that the computed value of Last is within the base -- range of the type, so it is safe to compute its value: Last := No_Index + Index_Type'Base (Length); -- Finally we test whether the value is within the range of the -- generic actual index subtype: if Last > Index_Type'Last then raise Constraint_Error with "Length is out of range"; end if; elsif Index_Type'First <= 0 then -- Here we can compute Last directly, in the normal way. We know that -- No_Index is less than 0, so there is no danger of overflow when -- adding the (positive) value of Length. Index := Count_Type'Base (No_Index) + Length; -- Last if Index > Count_Type'Base (Index_Type'Last) then raise Constraint_Error with "Length is out of range"; end if; -- We know that the computed value (having type Count_Type) of Last -- is within the range of the generic actual index subtype, so it is -- safe to convert to Index_Type: Last := Index_Type'Base (Index); else -- Here Index_Type'First (and Index_Type'Last) is positive, so we -- must test the length indirectly (by working backwards from the -- largest possible value of Last), in order to prevent overflow. Index := Count_Type'Base (Index_Type'Last) - Length; -- No_Index if Index < Count_Type'Base (No_Index) then raise Constraint_Error with "Length is out of range"; end if; -- We have determined that the value of Length would not create a -- Last index value outside of the range of Index_Type, so we can now -- safely compute its value. Last := Index_Type'Base (Count_Type'Base (No_Index) + Length); end if; Elements := new Elements_Type (Last); -- We use Last as the index of the loop used to populate the internal -- array with items. In general, we prefer to initialize the loop index -- immediately prior to entering the loop. However, Last is also used in -- the exception handler (to reclaim elements that have been allocated, -- before propagating the exception), and the initialization of Last -- after entering the block containing the handler confuses some static -- analysis tools, with respect to whether Last has been properly -- initialized when the handler executes. So here we initialize our loop -- variable earlier than we prefer, before entering the block, so there -- is no ambiguity. Last := Index_Type'First; begin loop Elements.EA (Last) := new Element_Type'(New_Item); exit when Last = Elements.Last; Last := Last + 1; end loop; exception when others => for J in Index_Type'First .. Last - 1 loop Free (Elements.EA (J)); end loop; Free (Elements); raise; end; return (Controlled with Elements, Last, 0, 0); end To_Vector; -------------------- -- Update_Element -- -------------------- procedure Update_Element (Container : in out Vector; Index : Index_Type; Process : not null access procedure (Element : in out Element_Type)) is B : Natural renames Container.Busy; L : Natural renames Container.Lock; begin if Index > Container.Last then raise Constraint_Error with "Index is out of range"; end if; if Container.Elements.EA (Index) = null then raise Constraint_Error with "element is null"; end if; B := B + 1; L := L + 1; begin Process (Container.Elements.EA (Index).all); exception when others => L := L - 1; B := B - 1; raise; end; L := L - 1; B := B - 1; end Update_Element; procedure Update_Element (Container : in out Vector; Position : Cursor; Process : not null access procedure (Element : in out Element_Type)) is begin if Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor denotes wrong container"; end if; Update_Element (Container, Position.Index, Process); end Update_Element; ----------- -- Write -- ----------- procedure Write (Stream : not null access Root_Stream_Type'Class; Container : Vector) is N : constant Count_Type := Length (Container); begin Count_Type'Base'Write (Stream, N); if N = 0 then return; end if; declare E : Elements_Array renames Container.Elements.EA; begin for Indx in Index_Type'First .. Container.Last loop if E (Indx) = null then Boolean'Write (Stream, False); else Boolean'Write (Stream, True); Element_Type'Output (Stream, E (Indx).all); end if; end loop; end; end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Position : Cursor) is begin raise Program_Error with "attempt to stream vector cursor"; end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Constant_Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Write; end Ada.Containers.Indefinite_Vectors;
Go to most recent revision | Compare with Previous | Blame | View Log