URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [a-coormu.adb] - Rev 849
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT LIBRARY COMPONENTS -- -- -- -- A D A . C O N T A I N E R S . O R D E R E D _ M U L T I S E T S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2004-2011, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- <http://www.gnu.org/licenses/>. -- -- -- -- This unit was originally developed by Matthew J Heaney. -- ------------------------------------------------------------------------------ with Ada.Unchecked_Deallocation; with Ada.Containers.Red_Black_Trees.Generic_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations); with Ada.Containers.Red_Black_Trees.Generic_Keys; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys); with Ada.Containers.Red_Black_Trees.Generic_Set_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations); with System; use type System.Address; package body Ada.Containers.Ordered_Multisets is type Iterator is new Limited_Controlled and Set_Iterator_Interfaces.Reversible_Iterator with record Container : Set_Access; Node : Node_Access; end record; overriding procedure Finalize (Object : in out Iterator); overriding function First (Object : Iterator) return Cursor; overriding function Last (Object : Iterator) return Cursor; overriding function Next (Object : Iterator; Position : Cursor) return Cursor; overriding function Previous (Object : Iterator; Position : Cursor) return Cursor; ----------------------------- -- Node Access Subprograms -- ----------------------------- -- These subprograms provide a functional interface to access fields -- of a node, and a procedural interface for modifying these values. function Color (Node : Node_Access) return Color_Type; pragma Inline (Color); function Left (Node : Node_Access) return Node_Access; pragma Inline (Left); function Parent (Node : Node_Access) return Node_Access; pragma Inline (Parent); function Right (Node : Node_Access) return Node_Access; pragma Inline (Right); procedure Set_Parent (Node : Node_Access; Parent : Node_Access); pragma Inline (Set_Parent); procedure Set_Left (Node : Node_Access; Left : Node_Access); pragma Inline (Set_Left); procedure Set_Right (Node : Node_Access; Right : Node_Access); pragma Inline (Set_Right); procedure Set_Color (Node : Node_Access; Color : Color_Type); pragma Inline (Set_Color); ----------------------- -- Local Subprograms -- ----------------------- function Copy_Node (Source : Node_Access) return Node_Access; pragma Inline (Copy_Node); procedure Free (X : in out Node_Access); procedure Insert_Sans_Hint (Tree : in out Tree_Type; New_Item : Element_Type; Node : out Node_Access); procedure Insert_With_Hint (Dst_Tree : in out Tree_Type; Dst_Hint : Node_Access; Src_Node : Node_Access; Dst_Node : out Node_Access); function Is_Equal_Node_Node (L, R : Node_Access) return Boolean; pragma Inline (Is_Equal_Node_Node); function Is_Greater_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Greater_Element_Node); function Is_Less_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Less_Element_Node); function Is_Less_Node_Node (L, R : Node_Access) return Boolean; pragma Inline (Is_Less_Node_Node); procedure Replace_Element (Tree : in out Tree_Type; Node : Node_Access; Item : Element_Type); -------------------------- -- Local Instantiations -- -------------------------- package Tree_Operations is new Red_Black_Trees.Generic_Operations (Tree_Types); procedure Delete_Tree is new Tree_Operations.Generic_Delete_Tree (Free); function Copy_Tree is new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree); use Tree_Operations; function Is_Equal is new Tree_Operations.Generic_Equal (Is_Equal_Node_Node); package Element_Keys is new Red_Black_Trees.Generic_Keys (Tree_Operations => Tree_Operations, Key_Type => Element_Type, Is_Less_Key_Node => Is_Less_Element_Node, Is_Greater_Key_Node => Is_Greater_Element_Node); package Set_Ops is new Generic_Set_Operations (Tree_Operations => Tree_Operations, Insert_With_Hint => Insert_With_Hint, Copy_Tree => Copy_Tree, Delete_Tree => Delete_Tree, Is_Less => Is_Less_Node_Node, Free => Free); --------- -- "<" -- --------- function "<" (Left, Right : Cursor) return Boolean is begin if Left.Node = null then raise Constraint_Error with "Left cursor equals No_Element"; end if; if Right.Node = null then raise Constraint_Error with "Right cursor equals No_Element"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "bad Left cursor in ""<"""); pragma Assert (Vet (Right.Container.Tree, Right.Node), "bad Right cursor in ""<"""); return Left.Node.Element < Right.Node.Element; end "<"; function "<" (Left : Cursor; Right : Element_Type) return Boolean is begin if Left.Node = null then raise Constraint_Error with "Left cursor equals No_Element"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "bad Left cursor in ""<"""); return Left.Node.Element < Right; end "<"; function "<" (Left : Element_Type; Right : Cursor) return Boolean is begin if Right.Node = null then raise Constraint_Error with "Right cursor equals No_Element"; end if; pragma Assert (Vet (Right.Container.Tree, Right.Node), "bad Right cursor in ""<"""); return Left < Right.Node.Element; end "<"; --------- -- "=" -- --------- function "=" (Left, Right : Set) return Boolean is begin return Is_Equal (Left.Tree, Right.Tree); end "="; --------- -- ">" -- --------- function ">" (Left, Right : Cursor) return Boolean is begin if Left.Node = null then raise Constraint_Error with "Left cursor equals No_Element"; end if; if Right.Node = null then raise Constraint_Error with "Right cursor equals No_Element"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "bad Left cursor in "">"""); pragma Assert (Vet (Right.Container.Tree, Right.Node), "bad Right cursor in "">"""); -- L > R same as R < L return Right.Node.Element < Left.Node.Element; end ">"; function ">" (Left : Cursor; Right : Element_Type) return Boolean is begin if Left.Node = null then raise Constraint_Error with "Left cursor equals No_Element"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "bad Left cursor in "">"""); return Right < Left.Node.Element; end ">"; function ">" (Left : Element_Type; Right : Cursor) return Boolean is begin if Right.Node = null then raise Constraint_Error with "Right cursor equals No_Element"; end if; pragma Assert (Vet (Right.Container.Tree, Right.Node), "bad Right cursor in "">"""); return Right.Node.Element < Left; end ">"; ------------ -- Adjust -- ------------ procedure Adjust is new Tree_Operations.Generic_Adjust (Copy_Tree); procedure Adjust (Container : in out Set) is begin Adjust (Container.Tree); end Adjust; ------------ -- Assign -- ------------ procedure Assign (Target : in out Set; Source : Set) is begin if Target'Address = Source'Address then return; end if; Target.Clear; Target.Union (Source); end Assign; ------------- -- Ceiling -- ------------- function Ceiling (Container : Set; Item : Element_Type) return Cursor is Node : constant Node_Access := Element_Keys.Ceiling (Container.Tree, Item); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Ceiling; ----------- -- Clear -- ----------- procedure Clear is new Tree_Operations.Generic_Clear (Delete_Tree); procedure Clear (Container : in out Set) is begin Clear (Container.Tree); end Clear; ----------- -- Color -- ----------- function Color (Node : Node_Access) return Color_Type is begin return Node.Color; end Color; -------------- -- Contains -- -------------- function Contains (Container : Set; Item : Element_Type) return Boolean is begin return Find (Container, Item) /= No_Element; end Contains; ---------- -- Copy -- ---------- function Copy (Source : Set) return Set is begin return Target : Set do Target.Assign (Source); end return; end Copy; --------------- -- Copy_Node -- --------------- function Copy_Node (Source : Node_Access) return Node_Access is Target : constant Node_Access := new Node_Type'(Parent => null, Left => null, Right => null, Color => Source.Color, Element => Source.Element); begin return Target; end Copy_Node; ------------ -- Delete -- ------------ procedure Delete (Container : in out Set; Item : Element_Type) is Tree : Tree_Type renames Container.Tree; Node : Node_Access := Element_Keys.Ceiling (Tree, Item); Done : constant Node_Access := Element_Keys.Upper_Bound (Tree, Item); X : Node_Access; begin if Node = Done then raise Constraint_Error with "attempt to delete element not in set"; end if; loop X := Node; Node := Tree_Operations.Next (Node); Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); exit when Node = Done; end loop; end Delete; procedure Delete (Container : in out Set; Position : in out Cursor) is begin if Position.Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong set"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "bad cursor in Delete"); Delete_Node_Sans_Free (Container.Tree, Position.Node); Free (Position.Node); Position.Container := null; end Delete; ------------------ -- Delete_First -- ------------------ procedure Delete_First (Container : in out Set) is Tree : Tree_Type renames Container.Tree; X : Node_Access := Tree.First; begin if X = null then return; end if; Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); end Delete_First; ----------------- -- Delete_Last -- ----------------- procedure Delete_Last (Container : in out Set) is Tree : Tree_Type renames Container.Tree; X : Node_Access := Tree.Last; begin if X = null then return; end if; Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); end Delete_Last; ---------------- -- Difference -- ---------------- procedure Difference (Target : in out Set; Source : Set) is begin Set_Ops.Difference (Target.Tree, Source.Tree); end Difference; function Difference (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Difference (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Difference; ------------- -- Element -- ------------- function Element (Position : Cursor) return Element_Type is begin if Position.Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "bad cursor in Element"); return Position.Node.Element; end Element; ------------------------- -- Equivalent_Elements -- ------------------------- function Equivalent_Elements (Left, Right : Element_Type) return Boolean is begin if Left < Right or else Right < Left then return False; else return True; end if; end Equivalent_Elements; --------------------- -- Equivalent_Sets -- --------------------- function Equivalent_Sets (Left, Right : Set) return Boolean is function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean; pragma Inline (Is_Equivalent_Node_Node); function Is_Equivalent is new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node); ----------------------------- -- Is_Equivalent_Node_Node -- ----------------------------- function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean is begin if L.Element < R.Element then return False; elsif R.Element < L.Element then return False; else return True; end if; end Is_Equivalent_Node_Node; -- Start of processing for Equivalent_Sets begin return Is_Equivalent (Left.Tree, Right.Tree); end Equivalent_Sets; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Set; Item : Element_Type) is Tree : Tree_Type renames Container.Tree; Node : Node_Access := Element_Keys.Ceiling (Tree, Item); Done : constant Node_Access := Element_Keys.Upper_Bound (Tree, Item); X : Node_Access; begin while Node /= Done loop X := Node; Node := Tree_Operations.Next (Node); Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); end loop; end Exclude; -------------- -- Finalize -- -------------- procedure Finalize (Object : in out Iterator) is B : Natural renames Object.Container.Tree.Busy; pragma Assert (B > 0); begin B := B - 1; end Finalize; ---------- -- Find -- ---------- function Find (Container : Set; Item : Element_Type) return Cursor is Node : constant Node_Access := Element_Keys.Find (Container.Tree, Item); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Find; ----------- -- First -- ----------- function First (Container : Set) return Cursor is begin if Container.Tree.First = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Container.Tree.First); end First; function First (Object : Iterator) return Cursor is begin -- The value of the iterator object's Node component influences the -- behavior of the First (and Last) selector function. -- When the Node component is null, this means the iterator object was -- constructed without a start expression, in which case the (forward) -- iteration starts from the (logical) beginning of the entire sequence -- of items (corresponding to Container.First, for a forward iterator). -- Otherwise, this is iteration over a partial sequence of items. When -- the Node component is non-null, the iterator object was constructed -- with a start expression, that specifies the position from which the -- (forward) partial iteration begins. if Object.Node = null then return Object.Container.First; else return Cursor'(Object.Container, Object.Node); end if; end First; ------------------- -- First_Element -- ------------------- function First_Element (Container : Set) return Element_Type is begin if Container.Tree.First = null then raise Constraint_Error with "set is empty"; end if; return Container.Tree.First.Element; end First_Element; ----------- -- Floor -- ----------- function Floor (Container : Set; Item : Element_Type) return Cursor is Node : constant Node_Access := Element_Keys.Floor (Container.Tree, Item); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Floor; ---------- -- Free -- ---------- procedure Free (X : in out Node_Access) is procedure Deallocate is new Ada.Unchecked_Deallocation (Node_Type, Node_Access); begin if X /= null then X.Parent := X; X.Left := X; X.Right := X; Deallocate (X); end if; end Free; ------------------ -- Generic_Keys -- ------------------ package body Generic_Keys is ----------------------- -- Local Subprograms -- ----------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Greater_Key_Node); function Is_Less_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Less_Key_Node); -------------------------- -- Local_Instantiations -- -------------------------- package Key_Keys is new Red_Black_Trees.Generic_Keys (Tree_Operations => Tree_Operations, Key_Type => Key_Type, Is_Less_Key_Node => Is_Less_Key_Node, Is_Greater_Key_Node => Is_Greater_Key_Node); ------------- -- Ceiling -- ------------- function Ceiling (Container : Set; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Keys.Ceiling (Container.Tree, Key); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Ceiling; -------------- -- Contains -- -------------- function Contains (Container : Set; Key : Key_Type) return Boolean is begin return Find (Container, Key) /= No_Element; end Contains; ------------ -- Delete -- ------------ procedure Delete (Container : in out Set; Key : Key_Type) is Tree : Tree_Type renames Container.Tree; Node : Node_Access := Key_Keys.Ceiling (Tree, Key); Done : constant Node_Access := Key_Keys.Upper_Bound (Tree, Key); X : Node_Access; begin if Node = Done then raise Constraint_Error with "attempt to delete key not in set"; end if; loop X := Node; Node := Tree_Operations.Next (Node); Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); exit when Node = Done; end loop; end Delete; ------------- -- Element -- ------------- function Element (Container : Set; Key : Key_Type) return Element_Type is Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); begin if Node = null then raise Constraint_Error with "key not in set"; end if; return Node.Element; end Element; --------------------- -- Equivalent_Keys -- --------------------- function Equivalent_Keys (Left, Right : Key_Type) return Boolean is begin if Left < Right or else Right < Left then return False; else return True; end if; end Equivalent_Keys; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Set; Key : Key_Type) is Tree : Tree_Type renames Container.Tree; Node : Node_Access := Key_Keys.Ceiling (Tree, Key); Done : constant Node_Access := Key_Keys.Upper_Bound (Tree, Key); X : Node_Access; begin while Node /= Done loop X := Node; Node := Tree_Operations.Next (Node); Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); end loop; end Exclude; ---------- -- Find -- ---------- function Find (Container : Set; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Find; ----------- -- Floor -- ----------- function Floor (Container : Set; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Keys.Floor (Container.Tree, Key); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Floor; ------------------------- -- Is_Greater_Key_Node -- ------------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean is begin return Key (Right.Element) < Left; end Is_Greater_Key_Node; ---------------------- -- Is_Less_Key_Node -- ---------------------- function Is_Less_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean is begin return Left < Key (Right.Element); end Is_Less_Key_Node; ------------- -- Iterate -- ------------- procedure Iterate (Container : Set; Key : Key_Type; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Iterate is new Key_Keys.Generic_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; T : Tree_Type renames Container.Tree'Unrestricted_Access.all; B : Natural renames T.Busy; -- Start of processing for Iterate begin B := B + 1; begin Local_Iterate (T, Key); exception when others => B := B - 1; raise; end; B := B - 1; end Iterate; --------- -- Key -- --------- function Key (Position : Cursor) return Key_Type is begin if Position.Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "bad cursor in Key"); return Key (Position.Node.Element); end Key; --------------------- -- Reverse_Iterate -- --------------------- procedure Reverse_Iterate (Container : Set; Key : Key_Type; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Reverse_Iterate is new Key_Keys.Generic_Reverse_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; T : Tree_Type renames Container.Tree'Unrestricted_Access.all; B : Natural renames T.Busy; -- Start of processing for Reverse_Iterate begin B := B + 1; begin Local_Reverse_Iterate (T, Key); exception when others => B := B - 1; raise; end; B := B - 1; end Reverse_Iterate; -------------------- -- Update_Element -- -------------------- procedure Update_Element (Container : in out Set; Position : Cursor; Process : not null access procedure (Element : in out Element_Type)) is Tree : Tree_Type renames Container.Tree; Node : constant Node_Access := Position.Node; begin if Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong set"; end if; pragma Assert (Vet (Tree, Node), "bad cursor in Update_Element"); declare E : Element_Type renames Node.Element; K : constant Key_Type := Key (E); B : Natural renames Tree.Busy; L : Natural renames Tree.Lock; begin B := B + 1; L := L + 1; begin Process (E); exception when others => L := L - 1; B := B - 1; raise; end; L := L - 1; B := B - 1; if Equivalent_Keys (Left => K, Right => Key (E)) then return; end if; end; -- Delete_Node checks busy-bit Tree_Operations.Delete_Node_Sans_Free (Tree, Node); Insert_New_Item : declare function New_Node return Node_Access; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Unconditional_Insert is new Element_Keys.Generic_Unconditional_Insert (Insert_Post); -------------- -- New_Node -- -------------- function New_Node return Node_Access is begin Node.Color := Red_Black_Trees.Red; Node.Parent := null; Node.Left := null; Node.Right := null; return Node; end New_Node; Result : Node_Access; -- Start of processing for Insert_New_Item begin Unconditional_Insert (Tree => Tree, Key => Node.Element, Node => Result); pragma Assert (Result = Node); end Insert_New_Item; end Update_Element; end Generic_Keys; ----------------- -- Has_Element -- ----------------- function Has_Element (Position : Cursor) return Boolean is begin return Position /= No_Element; end Has_Element; ------------ -- Insert -- ------------ procedure Insert (Container : in out Set; New_Item : Element_Type) is Position : Cursor; pragma Unreferenced (Position); begin Insert (Container, New_Item, Position); end Insert; procedure Insert (Container : in out Set; New_Item : Element_Type; Position : out Cursor) is begin Insert_Sans_Hint (Container.Tree, New_Item, Position.Node); Position.Container := Container'Unrestricted_Access; end Insert; ---------------------- -- Insert_Sans_Hint -- ---------------------- procedure Insert_Sans_Hint (Tree : in out Tree_Type; New_Item : Element_Type; Node : out Node_Access) is function New_Node return Node_Access; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Unconditional_Insert is new Element_Keys.Generic_Unconditional_Insert (Insert_Post); -------------- -- New_Node -- -------------- function New_Node return Node_Access is Node : constant Node_Access := new Node_Type'(Parent => null, Left => null, Right => null, Color => Red_Black_Trees.Red, Element => New_Item); begin return Node; end New_Node; -- Start of processing for Insert_Sans_Hint begin Unconditional_Insert (Tree, New_Item, Node); end Insert_Sans_Hint; ---------------------- -- Insert_With_Hint -- ---------------------- procedure Insert_With_Hint (Dst_Tree : in out Tree_Type; Dst_Hint : Node_Access; Src_Node : Node_Access; Dst_Node : out Node_Access) is function New_Node return Node_Access; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Insert_Sans_Hint is new Element_Keys.Generic_Unconditional_Insert (Insert_Post); procedure Local_Insert_With_Hint is new Element_Keys.Generic_Unconditional_Insert_With_Hint (Insert_Post, Insert_Sans_Hint); -------------- -- New_Node -- -------------- function New_Node return Node_Access is Node : constant Node_Access := new Node_Type'(Parent => null, Left => null, Right => null, Color => Red, Element => Src_Node.Element); begin return Node; end New_Node; -- Start of processing for Insert_With_Hint begin Local_Insert_With_Hint (Dst_Tree, Dst_Hint, Src_Node.Element, Dst_Node); end Insert_With_Hint; ------------------ -- Intersection -- ------------------ procedure Intersection (Target : in out Set; Source : Set) is begin Set_Ops.Intersection (Target.Tree, Source.Tree); end Intersection; function Intersection (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Intersection (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Intersection; -------------- -- Is_Empty -- -------------- function Is_Empty (Container : Set) return Boolean is begin return Container.Tree.Length = 0; end Is_Empty; ------------------------ -- Is_Equal_Node_Node -- ------------------------ function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is begin return L.Element = R.Element; end Is_Equal_Node_Node; ----------------------------- -- Is_Greater_Element_Node -- ----------------------------- function Is_Greater_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean is begin -- e > node same as node < e return Right.Element < Left; end Is_Greater_Element_Node; -------------------------- -- Is_Less_Element_Node -- -------------------------- function Is_Less_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean is begin return Left < Right.Element; end Is_Less_Element_Node; ----------------------- -- Is_Less_Node_Node -- ----------------------- function Is_Less_Node_Node (L, R : Node_Access) return Boolean is begin return L.Element < R.Element; end Is_Less_Node_Node; --------------- -- Is_Subset -- --------------- function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is begin return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree); end Is_Subset; ------------- -- Iterate -- ------------- procedure Iterate (Container : Set; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Iterate is new Tree_Operations.Generic_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; T : Tree_Type renames Container.Tree'Unrestricted_Access.all; B : Natural renames T.Busy; -- Start of processing for Iterate begin B := B + 1; begin Local_Iterate (T); exception when others => B := B - 1; raise; end; B := B - 1; end Iterate; procedure Iterate (Container : Set; Item : Element_Type; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Iterate is new Element_Keys.Generic_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; T : Tree_Type renames Container.Tree'Unrestricted_Access.all; B : Natural renames T.Busy; -- Start of processing for Iterate begin B := B + 1; begin Local_Iterate (T, Item); exception when others => B := B - 1; raise; end; B := B - 1; end Iterate; function Iterate (Container : Set) return Set_Iterator_Interfaces.Reversible_Iterator'Class is S : constant Set_Access := Container'Unrestricted_Access; B : Natural renames S.Tree.Busy; begin -- The value of the Node component influences the behavior of the First -- and Last selector functions of the iterator object. When the Node -- component is null (as is the case here), this means the iterator -- object was constructed without a start expression. This is a complete -- iterator, meaning that the iteration starts from the (logical) -- beginning of the sequence of items. -- Note: For a forward iterator, Container.First is the beginning, and -- for a reverse iterator, Container.Last is the beginning. return It : constant Iterator := (Limited_Controlled with S, null) do B := B + 1; end return; end Iterate; function Iterate (Container : Set; Start : Cursor) return Set_Iterator_Interfaces.Reversible_Iterator'Class is S : constant Set_Access := Container'Unrestricted_Access; B : Natural renames S.Tree.Busy; begin -- It was formerly the case that when Start = No_Element, the partial -- iterator was defined to behave the same as for a complete iterator, -- and iterate over the entire sequence of items. However, those -- semantics were unintuitive and arguably error-prone (it is too easy -- to accidentally create an endless loop), and so they were changed, -- per the ARG meeting in Denver on 2011/11. However, there was no -- consensus about what positive meaning this corner case should have, -- and so it was decided to simply raise an exception. This does imply, -- however, that it is not possible to use a partial iterator to specify -- an empty sequence of items. if Start = No_Element then raise Constraint_Error with "Start position for iterator equals No_Element"; end if; if Start.Container /= Container'Unrestricted_Access then raise Program_Error with "Start cursor of Iterate designates wrong set"; end if; pragma Assert (Vet (Container.Tree, Start.Node), "Start cursor of Iterate is bad"); -- The value of the Node component influences the behavior of the First -- and Last selector functions of the iterator object. When the Node -- component is non-null (as is the case here), it means that this is a -- partial iteration, over a subset of the complete sequence of -- items. The iterator object was constructed with a start expression, -- indicating the position from which the iteration begins. Note that -- the start position has the same value irrespective of whether this is -- a forward or reverse iteration. return It : constant Iterator := (Limited_Controlled with S, Start.Node) do B := B + 1; end return; end Iterate; ---------- -- Last -- ---------- function Last (Container : Set) return Cursor is begin if Container.Tree.Last = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Container.Tree.Last); end Last; function Last (Object : Iterator) return Cursor is begin -- The value of the iterator object's Node component influences the -- behavior of the Last (and First) selector function. -- When the Node component is null, this means the iterator object was -- constructed without a start expression, in which case the (reverse) -- iteration starts from the (logical) beginning of the entire sequence -- (corresponding to Container.Last, for a reverse iterator). -- Otherwise, this is iteration over a partial sequence of items. When -- the Node component is non-null, the iterator object was constructed -- with a start expression, that specifies the position from which the -- (reverse) partial iteration begins. if Object.Node = null then return Object.Container.Last; else return Cursor'(Object.Container, Object.Node); end if; end Last; ------------------ -- Last_Element -- ------------------ function Last_Element (Container : Set) return Element_Type is begin if Container.Tree.Last = null then raise Constraint_Error with "set is empty"; end if; return Container.Tree.Last.Element; end Last_Element; ---------- -- Left -- ---------- function Left (Node : Node_Access) return Node_Access is begin return Node.Left; end Left; ------------ -- Length -- ------------ function Length (Container : Set) return Count_Type is begin return Container.Tree.Length; end Length; ---------- -- Move -- ---------- procedure Move is new Tree_Operations.Generic_Move (Clear); procedure Move (Target : in out Set; Source : in out Set) is begin Move (Target => Target.Tree, Source => Source.Tree); end Move; ---------- -- Next -- ---------- procedure Next (Position : in out Cursor) is begin Position := Next (Position); end Next; function Next (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "bad cursor in Next"); declare Node : constant Node_Access := Tree_Operations.Next (Position.Node); begin if Node = null then return No_Element; end if; return Cursor'(Position.Container, Node); end; end Next; function Next (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Position.Container /= Object.Container then raise Program_Error with "Position cursor of Next designates wrong set"; end if; return Next (Position); end Next; ------------- -- Overlap -- ------------- function Overlap (Left, Right : Set) return Boolean is begin return Set_Ops.Overlap (Left.Tree, Right.Tree); end Overlap; ------------ -- Parent -- ------------ function Parent (Node : Node_Access) return Node_Access is begin return Node.Parent; end Parent; -------------- -- Previous -- -------------- procedure Previous (Position : in out Cursor) is begin Position := Previous (Position); end Previous; function Previous (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "bad cursor in Previous"); declare Node : constant Node_Access := Tree_Operations.Previous (Position.Node); begin return (if Node = null then No_Element else Cursor'(Position.Container, Node)); end; end Previous; function Previous (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Position.Container /= Object.Container then raise Program_Error with "Position cursor of Previous designates wrong set"; end if; return Previous (Position); end Previous; ------------------- -- Query_Element -- ------------------- procedure Query_Element (Position : Cursor; Process : not null access procedure (Element : Element_Type)) is begin if Position.Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "bad cursor in Query_Element"); declare T : Tree_Type renames Position.Container.Tree; B : Natural renames T.Busy; L : Natural renames T.Lock; begin B := B + 1; L := L + 1; begin Process (Position.Node.Element); exception when others => L := L - 1; B := B - 1; raise; end; L := L - 1; B := B - 1; end; end Query_Element; ---------- -- Read -- ---------- procedure Read (Stream : not null access Root_Stream_Type'Class; Container : out Set) is function Read_Node (Stream : not null access Root_Stream_Type'Class) return Node_Access; pragma Inline (Read_Node); procedure Read is new Tree_Operations.Generic_Read (Clear, Read_Node); --------------- -- Read_Node -- --------------- function Read_Node (Stream : not null access Root_Stream_Type'Class) return Node_Access is Node : Node_Access := new Node_Type; begin Element_Type'Read (Stream, Node.Element); return Node; exception when others => Free (Node); -- Note that Free deallocates elem too raise; end Read_Node; -- Start of processing for Read begin Read (Stream, Container.Tree); end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Cursor) is begin raise Program_Error with "attempt to stream set cursor"; end Read; --------------------- -- Replace_Element -- --------------------- procedure Replace_Element (Tree : in out Tree_Type; Node : Node_Access; Item : Element_Type) is begin if Item < Node.Element or else Node.Element < Item then null; else if Tree.Lock > 0 then raise Program_Error with "attempt to tamper with elements (set is locked)"; end if; Node.Element := Item; return; end if; Tree_Operations.Delete_Node_Sans_Free (Tree, Node); -- Checks busy-bit Insert_New_Item : declare function New_Node return Node_Access; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Unconditional_Insert is new Element_Keys.Generic_Unconditional_Insert (Insert_Post); -------------- -- New_Node -- -------------- function New_Node return Node_Access is begin Node.Element := Item; Node.Color := Red_Black_Trees.Red; Node.Parent := null; Node.Left := null; Node.Right := null; return Node; end New_Node; Result : Node_Access; -- Start of processing for Insert_New_Item begin Unconditional_Insert (Tree => Tree, Key => Item, Node => Result); pragma Assert (Result = Node); end Insert_New_Item; end Replace_Element; procedure Replace_Element (Container : in out Set; Position : Cursor; New_Item : Element_Type) is begin if Position.Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong set"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "bad cursor in Replace_Element"); Replace_Element (Container.Tree, Position.Node, New_Item); end Replace_Element; --------------------- -- Reverse_Iterate -- --------------------- procedure Reverse_Iterate (Container : Set; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Reverse_Iterate is new Tree_Operations.Generic_Reverse_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; T : Tree_Type renames Container.Tree'Unrestricted_Access.all; B : Natural renames T.Busy; -- Start of processing for Reverse_Iterate begin B := B + 1; begin Local_Reverse_Iterate (T); exception when others => B := B - 1; raise; end; B := B - 1; end Reverse_Iterate; procedure Reverse_Iterate (Container : Set; Item : Element_Type; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Reverse_Iterate is new Element_Keys.Generic_Reverse_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; T : Tree_Type renames Container.Tree'Unrestricted_Access.all; B : Natural renames T.Busy; -- Start of processing for Reverse_Iterate begin B := B + 1; begin Local_Reverse_Iterate (T, Item); exception when others => B := B - 1; raise; end; B := B - 1; end Reverse_Iterate; ----------- -- Right -- ----------- function Right (Node : Node_Access) return Node_Access is begin return Node.Right; end Right; --------------- -- Set_Color -- --------------- procedure Set_Color (Node : Node_Access; Color : Color_Type) is begin Node.Color := Color; end Set_Color; -------------- -- Set_Left -- -------------- procedure Set_Left (Node : Node_Access; Left : Node_Access) is begin Node.Left := Left; end Set_Left; ---------------- -- Set_Parent -- ---------------- procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is begin Node.Parent := Parent; end Set_Parent; --------------- -- Set_Right -- --------------- procedure Set_Right (Node : Node_Access; Right : Node_Access) is begin Node.Right := Right; end Set_Right; -------------------------- -- Symmetric_Difference -- -------------------------- procedure Symmetric_Difference (Target : in out Set; Source : Set) is begin Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree); end Symmetric_Difference; function Symmetric_Difference (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Symmetric_Difference; ------------ -- To_Set -- ------------ function To_Set (New_Item : Element_Type) return Set is Tree : Tree_Type; Node : Node_Access; pragma Unreferenced (Node); begin Insert_Sans_Hint (Tree, New_Item, Node); return Set'(Controlled with Tree); end To_Set; ----------- -- Union -- ----------- procedure Union (Target : in out Set; Source : Set) is begin Set_Ops.Union (Target.Tree, Source.Tree); end Union; function Union (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Union (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Union; ----------- -- Write -- ----------- procedure Write (Stream : not null access Root_Stream_Type'Class; Container : Set) is procedure Write_Node (Stream : not null access Root_Stream_Type'Class; Node : Node_Access); pragma Inline (Write_Node); procedure Write is new Tree_Operations.Generic_Write (Write_Node); ---------------- -- Write_Node -- ---------------- procedure Write_Node (Stream : not null access Root_Stream_Type'Class; Node : Node_Access) is begin Element_Type'Write (Stream, Node.Element); end Write_Node; -- Start of processing for Write begin Write (Stream, Container.Tree); end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Cursor) is begin raise Program_Error with "attempt to stream set cursor"; end Write; end Ada.Containers.Ordered_Multisets;
Go to most recent revision | Compare with Previous | Blame | View Log