OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [a-rbtgbk.adb] - Rev 849

Go to most recent revision | Compare with Previous | Blame | View Log

------------------------------------------------------------------------------
--                                                                          --
--                         GNAT LIBRARY COMPONENTS                          --
--                                                                          --
--            ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_KEYS           --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2004-2011, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- This unit was originally developed by Matthew J Heaney.                  --
------------------------------------------------------------------------------
 
package body Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys is
 
   package Ops renames Tree_Operations;
 
   -------------
   -- Ceiling --
   -------------
 
   --  AKA Lower_Bound
 
   function Ceiling
     (Tree : Tree_Type'Class;
      Key  : Key_Type) return Count_Type
   is
      Y : Count_Type;
      X : Count_Type;
      N : Nodes_Type renames Tree.Nodes;
 
   begin
      Y := 0;
 
      X := Tree.Root;
      while X /= 0 loop
         if Is_Greater_Key_Node (Key, N (X)) then
            X := Ops.Right (N (X));
         else
            Y := X;
            X := Ops.Left (N (X));
         end if;
      end loop;
 
      return Y;
   end Ceiling;
 
   ----------
   -- Find --
   ----------
 
   function Find
     (Tree : Tree_Type'Class;
      Key  : Key_Type) return Count_Type
   is
      Y : Count_Type;
      X : Count_Type;
      N : Nodes_Type renames Tree.Nodes;
 
   begin
      Y := 0;
 
      X := Tree.Root;
      while X /= 0 loop
         if Is_Greater_Key_Node (Key, N (X)) then
            X := Ops.Right (N (X));
         else
            Y := X;
            X := Ops.Left (N (X));
         end if;
      end loop;
 
      if Y = 0 then
         return 0;
      end if;
 
      if Is_Less_Key_Node (Key, N (Y)) then
         return 0;
      end if;
 
      return Y;
   end Find;
 
   -----------
   -- Floor --
   -----------
 
   function Floor
     (Tree : Tree_Type'Class;
      Key  : Key_Type) return Count_Type
   is
      Y : Count_Type;
      X : Count_Type;
      N : Nodes_Type renames Tree.Nodes;
 
   begin
      Y := 0;
 
      X := Tree.Root;
      while X /= 0 loop
         if Is_Less_Key_Node (Key, N (X)) then
            X := Ops.Left (N (X));
         else
            Y := X;
            X := Ops.Right (N (X));
         end if;
      end loop;
 
      return Y;
   end Floor;
 
   --------------------------------
   -- Generic_Conditional_Insert --
   --------------------------------
 
   procedure Generic_Conditional_Insert
     (Tree     : in out Tree_Type'Class;
      Key      : Key_Type;
      Node     : out Count_Type;
      Inserted : out Boolean)
   is
      Y : Count_Type;
      X : Count_Type;
      N : Nodes_Type renames Tree.Nodes;
 
   begin
      --  This is a "conditional" insertion, meaning that the insertion request
      --  can "fail" in the sense that no new node is created. If the Key is
      --  equivalent to an existing node, then we return the existing node and
      --  Inserted is set to False. Otherwise, we allocate a new node (via
      --  Insert_Post) and Inserted is set to True.
 
      --  Note that we are testing for equivalence here, not equality. Key must
      --  be strictly less than its next neighbor, and strictly greater than
      --  its previous neighbor, in order for the conditional insertion to
      --  succeed.
 
      --  We search the tree to find the nearest neighbor of Key, which is
      --  either the smallest node greater than Key (Inserted is True), or the
      --  largest node less or equivalent to Key (Inserted is False).
 
      Y := 0;
      X := Tree.Root;
      Inserted := True;
      while X /= 0 loop
         Y := X;
         Inserted := Is_Less_Key_Node (Key, N (X));
         X := (if Inserted then Ops.Left (N (X)) else Ops.Right (N (X)));
      end loop;
 
      if Inserted then
 
         --  Either Tree is empty, or Key is less than Y. If Y is the first
         --  node in the tree, then there are no other nodes that we need to
         --  search for, and we insert a new node into the tree.
 
         if Y = Tree.First then
            Insert_Post (Tree, Y, True, Node);
            return;
         end if;
 
         --  Y is the next nearest-neighbor of Key. We know that Key is not
         --  equivalent to Y (because Key is strictly less than Y), so we move
         --  to the previous node, the nearest-neighbor just smaller or
         --  equivalent to Key.
 
         Node := Ops.Previous (Tree, Y);
 
      else
         --  Y is the previous nearest-neighbor of Key. We know that Key is not
         --  less than Y, which means either that Key is equivalent to Y, or
         --  greater than Y.
 
         Node := Y;
      end if;
 
      --  Key is equivalent to or greater than Node. We must resolve which is
      --  the case, to determine whether the conditional insertion succeeds.
 
      if Is_Greater_Key_Node (Key, N (Node)) then
 
         --  Key is strictly greater than Node, which means that Key is not
         --  equivalent to Node. In this case, the insertion succeeds, and we
         --  insert a new node into the tree.
 
         Insert_Post (Tree, Y, Inserted, Node);
         Inserted := True;
         return;
      end if;
 
      --  Key is equivalent to Node. This is a conditional insertion, so we do
      --  not insert a new node in this case. We return the existing node and
      --  report that no insertion has occurred.
 
      Inserted := False;
   end Generic_Conditional_Insert;
 
   ------------------------------------------
   -- Generic_Conditional_Insert_With_Hint --
   ------------------------------------------
 
   procedure Generic_Conditional_Insert_With_Hint
     (Tree      : in out Tree_Type'Class;
      Position  : Count_Type;
      Key       : Key_Type;
      Node      : out Count_Type;
      Inserted  : out Boolean)
   is
      N : Nodes_Type renames Tree.Nodes;
 
   begin
      --  The purpose of a hint is to avoid a search from the root of
      --  tree. If we have it hint it means we only need to traverse the
      --  subtree rooted at the hint to find the nearest neighbor. Note
      --  that finding the neighbor means merely walking the tree; this
      --  is not a search and the only comparisons that occur are with
      --  the hint and its neighbor.
 
      --  If Position is 0, this is interpreted to mean that Key is
      --  large relative to the nodes in the tree. If the tree is empty,
      --  or Key is greater than the last node in the tree, then we're
      --  done; otherwise the hint was "wrong" and we must search.
 
      if Position = 0 then  -- largest
         if Tree.Last = 0
           or else Is_Greater_Key_Node (Key, N (Tree.Last))
         then
            Insert_Post (Tree, Tree.Last, False, Node);
            Inserted := True;
         else
            Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
         end if;
 
         return;
      end if;
 
      pragma Assert (Tree.Length > 0);
 
      --  A hint can either name the node that immediately follows Key,
      --  or immediately precedes Key. We first test whether Key is
      --  less than the hint, and if so we compare Key to the node that
      --  precedes the hint. If Key is both less than the hint and
      --  greater than the hint's preceding neighbor, then we're done;
      --  otherwise we must search.
 
      --  Note also that a hint can either be an anterior node or a leaf
      --  node. A new node is always inserted at the bottom of the tree
      --  (at least prior to rebalancing), becoming the new left or
      --  right child of leaf node (which prior to the insertion must
      --  necessarily be null, since this is a leaf). If the hint names
      --  an anterior node then its neighbor must be a leaf, and so
      --  (here) we insert after the neighbor. If the hint names a leaf
      --  then its neighbor must be anterior and so we insert before the
      --  hint.
 
      if Is_Less_Key_Node (Key, N (Position)) then
         declare
            Before : constant Count_Type := Ops.Previous (Tree, Position);
 
         begin
            if Before = 0 then
               Insert_Post (Tree, Tree.First, True, Node);
               Inserted := True;
 
            elsif Is_Greater_Key_Node (Key, N (Before)) then
               if Ops.Right (N (Before)) = 0 then
                  Insert_Post (Tree, Before, False, Node);
               else
                  Insert_Post (Tree, Position, True, Node);
               end if;
 
               Inserted := True;
 
            else
               Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
            end if;
         end;
 
         return;
      end if;
 
      --  We know that Key isn't less than the hint so we try again,
      --  this time to see if it's greater than the hint. If so we
      --  compare Key to the node that follows the hint. If Key is both
      --  greater than the hint and less than the hint's next neighbor,
      --  then we're done; otherwise we must search.
 
      if Is_Greater_Key_Node (Key, N (Position)) then
         declare
            After : constant Count_Type := Ops.Next (Tree, Position);
 
         begin
            if After = 0 then
               Insert_Post (Tree, Tree.Last, False, Node);
               Inserted := True;
 
            elsif Is_Less_Key_Node (Key, N (After)) then
               if Ops.Right (N (Position)) = 0 then
                  Insert_Post (Tree, Position, False, Node);
               else
                  Insert_Post (Tree, After, True, Node);
               end if;
 
               Inserted := True;
 
            else
               Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
            end if;
         end;
 
         return;
      end if;
 
      --  We know that Key is neither less than the hint nor greater
      --  than the hint, and that's the definition of equivalence.
      --  There's nothing else we need to do, since a search would just
      --  reach the same conclusion.
 
      Node := Position;
      Inserted := False;
   end Generic_Conditional_Insert_With_Hint;
 
   -------------------------
   -- Generic_Insert_Post --
   -------------------------
 
   procedure Generic_Insert_Post
     (Tree   : in out Tree_Type'Class;
      Y      : Count_Type;
      Before : Boolean;
      Z      : out Count_Type)
   is
      N : Nodes_Type renames Tree.Nodes;
 
   begin
      if Tree.Length >= Tree.Capacity then
         raise Capacity_Error with "not enough capacity to insert new item";
      end if;
 
      if Tree.Busy > 0 then
         raise Program_Error with
           "attempt to tamper with cursors (container is busy)";
      end if;
 
      Z := New_Node;
      pragma Assert (Z /= 0);
 
      if Y = 0 then
         pragma Assert (Tree.Length = 0);
         pragma Assert (Tree.Root = 0);
         pragma Assert (Tree.First = 0);
         pragma Assert (Tree.Last = 0);
 
         Tree.Root := Z;
         Tree.First := Z;
         Tree.Last := Z;
 
      elsif Before then
         pragma Assert (Ops.Left (N (Y)) = 0);
 
         Ops.Set_Left (N (Y), Z);
 
         if Y = Tree.First then
            Tree.First := Z;
         end if;
 
      else
         pragma Assert (Ops.Right (N (Y)) = 0);
 
         Ops.Set_Right (N (Y), Z);
 
         if Y = Tree.Last then
            Tree.Last := Z;
         end if;
      end if;
 
      Ops.Set_Color (N (Z), Red);
      Ops.Set_Parent (N (Z), Y);
      Ops.Rebalance_For_Insert (Tree, Z);
      Tree.Length := Tree.Length + 1;
   end Generic_Insert_Post;
 
   -----------------------
   -- Generic_Iteration --
   -----------------------
 
   procedure Generic_Iteration
     (Tree : Tree_Type'Class;
      Key  : Key_Type)
   is
      procedure Iterate (Index : Count_Type);
 
      -------------
      -- Iterate --
      -------------
 
      procedure Iterate (Index : Count_Type) is
         J : Count_Type;
         N : Nodes_Type renames Tree.Nodes;
 
      begin
         J := Index;
         while J /= 0 loop
            if Is_Less_Key_Node (Key, N (J)) then
               J := Ops.Left (N (J));
            elsif Is_Greater_Key_Node (Key, N (J)) then
               J := Ops.Right (N (J));
            else
               Iterate (Ops.Left (N (J)));
               Process (J);
               J := Ops.Right (N (J));
            end if;
         end loop;
      end Iterate;
 
   --  Start of processing for Generic_Iteration
 
   begin
      Iterate (Tree.Root);
   end Generic_Iteration;
 
   -------------------------------
   -- Generic_Reverse_Iteration --
   -------------------------------
 
   procedure Generic_Reverse_Iteration
     (Tree : Tree_Type'Class;
      Key  : Key_Type)
   is
      procedure Iterate (Index : Count_Type);
 
      -------------
      -- Iterate --
      -------------
 
      procedure Iterate (Index : Count_Type) is
         J : Count_Type;
         N : Nodes_Type renames Tree.Nodes;
 
      begin
         J := Index;
         while J /= 0 loop
            if Is_Less_Key_Node (Key, N (J)) then
               J := Ops.Left (N (J));
            elsif Is_Greater_Key_Node (Key, N (J)) then
               J := Ops.Right (N (J));
            else
               Iterate (Ops.Right (N (J)));
               Process (J);
               J := Ops.Left (N (J));
            end if;
         end loop;
      end Iterate;
 
   --  Start of processing for Generic_Reverse_Iteration
 
   begin
      Iterate (Tree.Root);
   end Generic_Reverse_Iteration;
 
   ----------------------------------
   -- Generic_Unconditional_Insert --
   ----------------------------------
 
   procedure Generic_Unconditional_Insert
     (Tree : in out Tree_Type'Class;
      Key  : Key_Type;
      Node : out Count_Type)
   is
      Y : Count_Type;
      X : Count_Type;
      N : Nodes_Type renames Tree.Nodes;
 
      Before : Boolean;
 
   begin
      Y := 0;
      Before := False;
 
      X := Tree.Root;
      while X /= 0 loop
         Y := X;
         Before := Is_Less_Key_Node (Key, N (X));
         X := (if Before then Ops.Left (N (X)) else Ops.Right (N (X)));
      end loop;
 
      Insert_Post (Tree, Y, Before, Node);
   end Generic_Unconditional_Insert;
 
   --------------------------------------------
   -- Generic_Unconditional_Insert_With_Hint --
   --------------------------------------------
 
   procedure Generic_Unconditional_Insert_With_Hint
     (Tree : in out Tree_Type'Class;
      Hint : Count_Type;
      Key  : Key_Type;
      Node : out Count_Type)
   is
      N : Nodes_Type renames Tree.Nodes;
 
   begin
      --  There are fewer constraints for an unconditional insertion
      --  than for a conditional insertion, since we allow duplicate
      --  keys. So instead of having to check (say) whether Key is
      --  (strictly) greater than the hint's previous neighbor, here we
      --  allow Key to be equal to or greater than the previous node.
 
      --  There is the issue of what to do if Key is equivalent to the
      --  hint. Does the new node get inserted before or after the hint?
      --  We decide that it gets inserted after the hint, reasoning that
      --  this is consistent with behavior for non-hint insertion, which
      --  inserts a new node after existing nodes with equivalent keys.
 
      --  First we check whether the hint is null, which is interpreted
      --  to mean that Key is large relative to existing nodes.
      --  Following our rule above, if Key is equal to or greater than
      --  the last node, then we insert the new node immediately after
      --  last. (We don't have an operation for testing whether a key is
      --  "equal to or greater than" a node, so we must say instead "not
      --  less than", which is equivalent.)
 
      if Hint = 0 then  -- largest
         if Tree.Last = 0 then
            Insert_Post (Tree, 0, False, Node);
         elsif Is_Less_Key_Node (Key, N (Tree.Last)) then
            Unconditional_Insert_Sans_Hint (Tree, Key, Node);
         else
            Insert_Post (Tree, Tree.Last, False, Node);
         end if;
 
         return;
      end if;
 
      pragma Assert (Tree.Length > 0);
 
      --  We decide here whether to insert the new node prior to the
      --  hint. Key could be equivalent to the hint, so in theory we
      --  could write the following test as "not greater than" (same as
      --  "less than or equal to"). If Key were equivalent to the hint,
      --  that would mean that the new node gets inserted before an
      --  equivalent node. That wouldn't break any container invariants,
      --  but our rule above says that new nodes always get inserted
      --  after equivalent nodes. So here we test whether Key is both
      --  less than the hint and equal to or greater than the hint's
      --  previous neighbor, and if so insert it before the hint.
 
      if Is_Less_Key_Node (Key, N (Hint)) then
         declare
            Before : constant Count_Type := Ops.Previous (Tree, Hint);
         begin
            if Before = 0 then
               Insert_Post (Tree, Hint, True, Node);
            elsif Is_Less_Key_Node (Key, N (Before)) then
               Unconditional_Insert_Sans_Hint (Tree, Key, Node);
            elsif Ops.Right (N (Before)) = 0 then
               Insert_Post (Tree, Before, False, Node);
            else
               Insert_Post (Tree, Hint, True, Node);
            end if;
         end;
 
         return;
      end if;
 
      --  We know that Key isn't less than the hint, so it must be equal
      --  or greater. So we just test whether Key is less than or equal
      --  to (same as "not greater than") the hint's next neighbor, and
      --  if so insert it after the hint.
 
      declare
         After : constant Count_Type := Ops.Next (Tree, Hint);
      begin
         if After = 0 then
            Insert_Post (Tree, Hint, False, Node);
         elsif Is_Greater_Key_Node (Key, N (After)) then
            Unconditional_Insert_Sans_Hint (Tree, Key, Node);
         elsif Ops.Right (N (Hint)) = 0 then
            Insert_Post (Tree, Hint, False, Node);
         else
            Insert_Post (Tree, After, True, Node);
         end if;
      end;
   end Generic_Unconditional_Insert_With_Hint;
 
   -----------------
   -- Upper_Bound --
   -----------------
 
   function Upper_Bound
     (Tree : Tree_Type'Class;
      Key  : Key_Type) return Count_Type
   is
      Y : Count_Type;
      X : Count_Type;
      N : Nodes_Type renames Tree.Nodes;
 
   begin
      Y := 0;
 
      X := Tree.Root;
      while X /= 0 loop
         if Is_Less_Key_Node (Key, N (X)) then
            Y := X;
            X := Ops.Left (N (X));
         else
            X := Ops.Right (N (X));
         end if;
      end loop;
 
      return Y;
   end Upper_Bound;
 
end Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.