URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [cstand.adb] - Rev 728
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- C S T A N D -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2011, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Atree; use Atree; with Back_End; use Back_End; with Csets; use Csets; with Debug; use Debug; with Einfo; use Einfo; with Elists; use Elists; with Layout; use Layout; with Namet; use Namet; with Nlists; use Nlists; with Nmake; use Nmake; with Opt; use Opt; with Output; use Output; with Targparm; use Targparm; with Tbuild; use Tbuild; with Ttypes; use Ttypes; with Scn; with Sem_Mech; use Sem_Mech; with Sem_Util; use Sem_Util; with Sinfo; use Sinfo; with Snames; use Snames; with Stand; use Stand; with Uintp; use Uintp; with Urealp; use Urealp; package body CStand is Stloc : constant Source_Ptr := Standard_Location; Staloc : constant Source_Ptr := Standard_ASCII_Location; -- Standard abbreviations used throughout this package Back_End_Float_Types : Elist_Id := No_Elist; -- List used for any floating point supported by the back end. This needs -- to be at the library level, because the call back procedures retrieving -- this information are at that level. ----------------------- -- Local Subprograms -- ----------------------- procedure Build_Float_Type (E : Entity_Id; Siz : Int; Rep : Float_Rep_Kind; Digs : Int); -- Procedure to build standard predefined float base type. The first -- parameter is the entity for the type, and the second parameter is the -- size in bits. The third parameter indicates the kind of representation -- to be used. The fourth parameter is the digits value. Each type -- is added to the list of predefined floating point types. procedure Build_Signed_Integer_Type (E : Entity_Id; Siz : Int); -- Procedure to build standard predefined signed integer subtype. The -- first parameter is the entity for the subtype. The second parameter -- is the size in bits. The corresponding base type is not built by -- this routine but instead must be built by the caller where needed. procedure Copy_Float_Type (To : Entity_Id; From : Entity_Id); -- Build a floating point type, copying representation details from From. -- This is used to create predefined floating point types based on -- available types in the back end. procedure Create_Operators; -- Make entries for each of the predefined operators in Standard procedure Create_Unconstrained_Base_Type (E : Entity_Id; K : Entity_Kind); -- The predefined signed integer types are constrained subtypes which -- must have a corresponding unconstrained base type. This type is almost -- useless. The only place it has semantics is Subtypes_Statically_Match. -- Consequently, we arrange for it to be identical apart from the setting -- of the constrained bit. This routine takes an entity E for the Type, -- copies it to estabish the base type, then resets the Ekind of the -- original entity to K (the Ekind for the subtype). The Etype field of -- E is set by the call (to point to the created base type entity), and -- also the Is_Constrained flag of E is set. -- -- To understand the exact requirement for this, see RM 3.5.4(11) which -- makes it clear that Integer, for example, is constrained, with the -- constraint bounds matching the bounds of the (unconstrained) base -- type. The point is that Integer and Integer'Base have identical -- bounds, but do not statically match, since a subtype with constraints -- never matches a subtype with no constraints. function Find_Back_End_Float_Type (Name : String) return Entity_Id; -- Return the first float type in Back_End_Float_Types with the given name. -- Names of entities in back end types, are either type names of C -- predefined types (all lower case), or mode names (upper case). -- These are not generally valid identifier names. function Identifier_For (S : Standard_Entity_Type) return Node_Id; -- Returns an identifier node with the same name as the defining -- identifier corresponding to the given Standard_Entity_Type value procedure Make_Component (Rec : Entity_Id; Typ : Entity_Id; Nam : String); -- Build a record component with the given type and name, and append to -- the list of components of Rec. function Make_Formal (Typ : Entity_Id; Formal_Name : String) return Entity_Id; -- Construct entity for subprogram formal with given name and type function Make_Integer (V : Uint) return Node_Id; -- Builds integer literal with given value procedure Make_Name (Id : Entity_Id; Nam : String); -- Make an entry in the names table for Nam, and set as Chars field of Id function New_Operator (Op : Name_Id; Typ : Entity_Id) return Entity_Id; -- Build entity for standard operator with given name and type function New_Standard_Entity (New_Node_Kind : Node_Kind := N_Defining_Identifier) return Entity_Id; -- Builds a new entity for Standard procedure Print_Standard; -- Print representation of package Standard if switch set procedure Register_Float_Type (Name : C_String; -- Nul-terminated string with name of type Digs : Natural; -- Nr or digits for floating point, 0 otherwise Complex : Boolean; -- True iff type has real and imaginary parts Count : Natural; -- Number of elements in vector, 0 otherwise Float_Rep : Float_Rep_Kind; -- Representation used for fpt type Size : Positive; -- Size of representation in bits Alignment : Natural); -- Required alignment in bits pragma Convention (C, Register_Float_Type); -- Call back to allow the back end to register available types. -- This call back currently creates predefined floating point base types -- for any floating point types reported by the back end, and adds them -- to the list of predefined float types. procedure Set_Integer_Bounds (Id : Entity_Id; Typ : Entity_Id; Lb : Uint; Hb : Uint); -- Procedure to set bounds for integer type or subtype. Id is the entity -- whose bounds and type are to be set. The Typ parameter is the Etype -- value for the entity (which will be the same as Id for all predefined -- integer base types. The third and fourth parameters are the bounds. ---------------------- -- Build_Float_Type -- ---------------------- procedure Build_Float_Type (E : Entity_Id; Siz : Int; Rep : Float_Rep_Kind; Digs : Int) is begin Set_Type_Definition (Parent (E), Make_Floating_Point_Definition (Stloc, Digits_Expression => Make_Integer (UI_From_Int (Digs)))); Set_Ekind (E, E_Floating_Point_Type); Set_Etype (E, E); Set_Float_Rep (E, Rep); Init_Size (E, Siz); Set_Elem_Alignment (E); Init_Digits_Value (E, Digs); Set_Float_Bounds (E); Set_Is_Frozen (E); Set_Is_Public (E); Set_Size_Known_At_Compile_Time (E); end Build_Float_Type; ------------------------------ -- Find_Back_End_Float_Type -- ------------------------------ function Find_Back_End_Float_Type (Name : String) return Entity_Id is N : Elmt_Id; begin N := First_Elmt (Back_End_Float_Types); while Present (N) and then Get_Name_String (Chars (Node (N))) /= Name loop Next_Elmt (N); end loop; return Node (N); end Find_Back_End_Float_Type; ------------------------------- -- Build_Signed_Integer_Type -- ------------------------------- procedure Build_Signed_Integer_Type (E : Entity_Id; Siz : Int) is U2Siz1 : constant Uint := 2 ** (Siz - 1); Lbound : constant Uint := -U2Siz1; Ubound : constant Uint := U2Siz1 - 1; begin Set_Type_Definition (Parent (E), Make_Signed_Integer_Type_Definition (Stloc, Low_Bound => Make_Integer (Lbound), High_Bound => Make_Integer (Ubound))); Set_Ekind (E, E_Signed_Integer_Type); Set_Etype (E, E); Init_Size (E, Siz); Set_Elem_Alignment (E); Set_Integer_Bounds (E, E, Lbound, Ubound); Set_Is_Frozen (E); Set_Is_Public (E); Set_Is_Known_Valid (E); Set_Size_Known_At_Compile_Time (E); end Build_Signed_Integer_Type; --------------------- -- Copy_Float_Type -- --------------------- procedure Copy_Float_Type (To : Entity_Id; From : Entity_Id) is begin Build_Float_Type (To, UI_To_Int (Esize (From)), Float_Rep (From), UI_To_Int (Digits_Value (From))); end Copy_Float_Type; ---------------------- -- Create_Operators -- ---------------------- -- Each operator has an abbreviated signature. The formals have the names -- LEFT and RIGHT. Their types are not actually used for resolution. procedure Create_Operators is Op_Node : Entity_Id; -- The following tables define the binary and unary operators and their -- corresponding result type. Binary_Ops : constant array (S_Binary_Ops) of Name_Id := -- There is one entry here for each binary operator, except for the -- case of concatenation, where there are three entries, one for a -- String result, one for Wide_String, and one for Wide_Wide_String. (Name_Op_Add, Name_Op_And, Name_Op_Concat, Name_Op_Concat, Name_Op_Concat, Name_Op_Divide, Name_Op_Eq, Name_Op_Expon, Name_Op_Ge, Name_Op_Gt, Name_Op_Le, Name_Op_Lt, Name_Op_Mod, Name_Op_Multiply, Name_Op_Ne, Name_Op_Or, Name_Op_Rem, Name_Op_Subtract, Name_Op_Xor); Bin_Op_Types : constant array (S_Binary_Ops) of Entity_Id := -- This table has the corresponding result types. The entries are -- ordered so they correspond to the Binary_Ops array above. (Universal_Integer, -- Add Standard_Boolean, -- And Standard_String, -- Concat (String) Standard_Wide_String, -- Concat (Wide_String) Standard_Wide_Wide_String, -- Concat (Wide_Wide_String) Universal_Integer, -- Divide Standard_Boolean, -- Eq Universal_Integer, -- Expon Standard_Boolean, -- Ge Standard_Boolean, -- Gt Standard_Boolean, -- Le Standard_Boolean, -- Lt Universal_Integer, -- Mod Universal_Integer, -- Multiply Standard_Boolean, -- Ne Standard_Boolean, -- Or Universal_Integer, -- Rem Universal_Integer, -- Subtract Standard_Boolean); -- Xor Unary_Ops : constant array (S_Unary_Ops) of Name_Id := -- There is one entry here for each unary operator (Name_Op_Abs, Name_Op_Subtract, Name_Op_Not, Name_Op_Add); Unary_Op_Types : constant array (S_Unary_Ops) of Entity_Id := -- This table has the corresponding result types. The entries are -- ordered so they correspond to the Unary_Ops array above. (Universal_Integer, -- Abs Universal_Integer, -- Subtract Standard_Boolean, -- Not Universal_Integer); -- Add begin for J in S_Binary_Ops loop Op_Node := New_Operator (Binary_Ops (J), Bin_Op_Types (J)); SE (J) := Op_Node; Append_Entity (Make_Formal (Any_Type, "LEFT"), Op_Node); Append_Entity (Make_Formal (Any_Type, "RIGHT"), Op_Node); end loop; for J in S_Unary_Ops loop Op_Node := New_Operator (Unary_Ops (J), Unary_Op_Types (J)); SE (J) := Op_Node; Append_Entity (Make_Formal (Any_Type, "RIGHT"), Op_Node); end loop; -- For concatenation, we create a separate operator for each -- array type. This simplifies the resolution of the component- -- component concatenation operation. In Standard, we set the types -- of the formals for string, wide [wide]_string, concatenations. Set_Etype (First_Entity (Standard_Op_Concat), Standard_String); Set_Etype (Last_Entity (Standard_Op_Concat), Standard_String); Set_Etype (First_Entity (Standard_Op_Concatw), Standard_Wide_String); Set_Etype (Last_Entity (Standard_Op_Concatw), Standard_Wide_String); Set_Etype (First_Entity (Standard_Op_Concatww), Standard_Wide_Wide_String); Set_Etype (Last_Entity (Standard_Op_Concatww), Standard_Wide_Wide_String); end Create_Operators; --------------------- -- Create_Standard -- --------------------- -- The tree for the package Standard is prefixed to all compilations. -- Several entities required by semantic analysis are denoted by global -- variables that are initialized to point to the corresponding occurrences -- in Standard. The visible entities of Standard are created here. Special -- entities maybe created here as well or may be created from the semantics -- module. By not adding them to the Decls list of Standard they will not -- be visible to Ada programs. procedure Create_Standard is Decl_S : constant List_Id := New_List; -- List of declarations in Standard Decl_A : constant List_Id := New_List; -- List of declarations in ASCII Decl : Node_Id; Pspec : Node_Id; Tdef_Node : Node_Id; Ident_Node : Node_Id; Ccode : Char_Code; E_Id : Entity_Id; R_Node : Node_Id; B_Node : Node_Id; procedure Build_Exception (S : Standard_Entity_Type); -- Procedure to declare given entity as an exception procedure Create_Back_End_Float_Types; -- Initialize the Back_End_Float_Types list by having the back end -- enumerate all available types and building type entities for them. procedure Create_Float_Types; -- Creates entities for all predefined floating point types, and -- adds these to the Predefined_Float_Types list in package Standard. procedure Pack_String_Type (String_Type : Entity_Id); -- Generate proper tree for pragma Pack that applies to given type, and -- mark type as having the pragma. --------------------- -- Build_Exception -- --------------------- procedure Build_Exception (S : Standard_Entity_Type) is begin Set_Ekind (Standard_Entity (S), E_Exception); Set_Etype (Standard_Entity (S), Standard_Exception_Type); Set_Exception_Code (Standard_Entity (S), Uint_0); Set_Is_Public (Standard_Entity (S), True); Decl := Make_Exception_Declaration (Stloc, Defining_Identifier => Standard_Entity (S)); Append (Decl, Decl_S); end Build_Exception; --------------------------- -- Create_Back_End_Float_Types -- --------------------------- procedure Create_Back_End_Float_Types is begin Back_End_Float_Types := No_Elist; Register_Back_End_Types (Register_Float_Type'Access); end Create_Back_End_Float_Types; ------------------------ -- Create_Float_Types -- ------------------------ procedure Create_Float_Types is begin -- Create type definition nodes for predefined float types Copy_Float_Type (Standard_Short_Float, Find_Back_End_Float_Type ("float")); Set_Is_Implementation_Defined (Standard_Short_Float); Copy_Float_Type (Standard_Float, Standard_Short_Float); Copy_Float_Type (Standard_Long_Float, Find_Back_End_Float_Type ("double")); Predefined_Float_Types := New_Elmt_List; Append_Elmt (Standard_Short_Float, Predefined_Float_Types); Append_Elmt (Standard_Float, Predefined_Float_Types); Append_Elmt (Standard_Long_Float, Predefined_Float_Types); -- ??? For now, we don't have a good way to tell the widest float -- type with hardware support. Basically, GCC knows the size of that -- type, but on x86-64 there often are two or three 128-bit types, -- one double extended that has 18 decimal digits, a 128-bit quad -- precision type with 33 digits and possibly a 128-bit decimal float -- type with 34 digits. As a workaround, we define Long_Long_Float as -- C's "long double" if that type exists and has at most 18 digits, -- or otherwise the same as Long_Float. declare Max_HW_Digs : constant := 18; -- Maximum hardware digits supported LLF : Entity_Id := Find_Back_End_Float_Type ("long double"); -- Entity for long double type begin if No (LLF) or else Digits_Value (LLF) > Max_HW_Digs then LLF := Standard_Long_Float; end if; Set_Is_Implementation_Defined (Standard_Long_Long_Float); Copy_Float_Type (Standard_Long_Long_Float, LLF); Append_Elmt (Standard_Long_Long_Float, Predefined_Float_Types); end; -- Any other back end types are appended at the end of the list of -- predefined float types, and will only be selected if the none of -- the types in Standard is suitable, or if a specific named type is -- requested through a pragma Import. while not Is_Empty_Elmt_List (Back_End_Float_Types) loop declare E : constant Elmt_Id := First_Elmt (Back_End_Float_Types); begin Append_Elmt (Node (E), To => Predefined_Float_Types); Remove_Elmt (Back_End_Float_Types, E); end; end loop; end Create_Float_Types; ---------------------- -- Pack_String_Type -- ---------------------- procedure Pack_String_Type (String_Type : Entity_Id) is Prag : constant Node_Id := Make_Pragma (Stloc, Chars => Name_Pack, Pragma_Argument_Associations => New_List ( Make_Pragma_Argument_Association (Stloc, Expression => New_Occurrence_Of (String_Type, Stloc)))); begin Append (Prag, Decl_S); Record_Rep_Item (String_Type, Prag); Set_Has_Pragma_Pack (String_Type, True); end Pack_String_Type; -- Start of processing for Create_Standard begin -- Initialize scanner for internal scans of literals Scn.Initialize_Scanner (No_Unit, Internal_Source_File); -- First step is to create defining identifiers for each entity for S in Standard_Entity_Type loop declare S_Name : constant String := Standard_Entity_Type'Image (S); -- Name of entity (note we skip S_ at the start) Ident_Node : Node_Id; -- Defining identifier node begin Ident_Node := New_Standard_Entity; Make_Name (Ident_Node, S_Name (3 .. S_Name'Length)); Standard_Entity (S) := Ident_Node; end; end loop; -- Create package declaration node for package Standard Standard_Package_Node := New_Node (N_Package_Declaration, Stloc); Pspec := New_Node (N_Package_Specification, Stloc); Set_Specification (Standard_Package_Node, Pspec); Set_Defining_Unit_Name (Pspec, Standard_Standard); Set_Visible_Declarations (Pspec, Decl_S); Set_Ekind (Standard_Standard, E_Package); Set_Is_Pure (Standard_Standard); Set_Is_Compilation_Unit (Standard_Standard); -- Create type/subtype declaration nodes for standard types for S in S_Types loop -- Subtype declaration case if S = S_Natural or else S = S_Positive then Decl := New_Node (N_Subtype_Declaration, Stloc); Set_Subtype_Indication (Decl, New_Occurrence_Of (Standard_Integer, Stloc)); -- Full type declaration case else Decl := New_Node (N_Full_Type_Declaration, Stloc); end if; Set_Is_Frozen (Standard_Entity (S)); Set_Is_Public (Standard_Entity (S)); Set_Defining_Identifier (Decl, Standard_Entity (S)); Append (Decl, Decl_S); end loop; Create_Back_End_Float_Types; -- Create type definition node for type Boolean. The Size is set to -- 1 as required by Ada 95 and current ARG interpretations for Ada/83. -- Note: Object_Size of Boolean is 8. This means that we do NOT in -- general know that Boolean variables have valid values, so we do -- not set the Is_Known_Valid flag. Tdef_Node := New_Node (N_Enumeration_Type_Definition, Stloc); Set_Literals (Tdef_Node, New_List); Append (Standard_False, Literals (Tdef_Node)); Append (Standard_True, Literals (Tdef_Node)); Set_Type_Definition (Parent (Standard_Boolean), Tdef_Node); Set_Ekind (Standard_Boolean, E_Enumeration_Type); Set_First_Literal (Standard_Boolean, Standard_False); Set_Etype (Standard_Boolean, Standard_Boolean); Init_Esize (Standard_Boolean, Standard_Character_Size); Init_RM_Size (Standard_Boolean, 1); Set_Elem_Alignment (Standard_Boolean); Set_Is_Unsigned_Type (Standard_Boolean); Set_Size_Known_At_Compile_Time (Standard_Boolean); Set_Has_Pragma_Ordered (Standard_Boolean); Set_Ekind (Standard_True, E_Enumeration_Literal); Set_Etype (Standard_True, Standard_Boolean); Set_Enumeration_Pos (Standard_True, Uint_1); Set_Enumeration_Rep (Standard_True, Uint_1); Set_Is_Known_Valid (Standard_True, True); Set_Ekind (Standard_False, E_Enumeration_Literal); Set_Etype (Standard_False, Standard_Boolean); Set_Enumeration_Pos (Standard_False, Uint_0); Set_Enumeration_Rep (Standard_False, Uint_0); Set_Is_Known_Valid (Standard_False, True); -- For the bounds of Boolean, we create a range node corresponding to -- range False .. True -- where the occurrences of the literals must point to the -- corresponding definition. R_Node := New_Node (N_Range, Stloc); B_Node := New_Node (N_Identifier, Stloc); Set_Chars (B_Node, Chars (Standard_False)); Set_Entity (B_Node, Standard_False); Set_Etype (B_Node, Standard_Boolean); Set_Is_Static_Expression (B_Node); Set_Low_Bound (R_Node, B_Node); B_Node := New_Node (N_Identifier, Stloc); Set_Chars (B_Node, Chars (Standard_True)); Set_Entity (B_Node, Standard_True); Set_Etype (B_Node, Standard_Boolean); Set_Is_Static_Expression (B_Node); Set_High_Bound (R_Node, B_Node); Set_Scalar_Range (Standard_Boolean, R_Node); Set_Etype (R_Node, Standard_Boolean); Set_Parent (R_Node, Standard_Boolean); -- Record entity identifiers for boolean literals in the -- Boolean_Literals array, for easy reference during expansion. Boolean_Literals := (False => Standard_False, True => Standard_True); -- Create type definition nodes for predefined integer types Build_Signed_Integer_Type (Standard_Short_Short_Integer, Standard_Short_Short_Integer_Size); Build_Signed_Integer_Type (Standard_Short_Integer, Standard_Short_Integer_Size); Build_Signed_Integer_Type (Standard_Integer, Standard_Integer_Size); declare LIS : Nat; begin if Debug_Flag_M then LIS := 64; else LIS := Standard_Long_Integer_Size; end if; Build_Signed_Integer_Type (Standard_Long_Integer, LIS); end; Build_Signed_Integer_Type (Standard_Long_Long_Integer, Standard_Long_Long_Integer_Size); Set_Is_Implementation_Defined (Standard_Long_Long_Integer); Create_Unconstrained_Base_Type (Standard_Short_Short_Integer, E_Signed_Integer_Subtype); Set_Is_Implementation_Defined (Standard_Short_Short_Integer); Create_Unconstrained_Base_Type (Standard_Short_Integer, E_Signed_Integer_Subtype); Create_Unconstrained_Base_Type (Standard_Integer, E_Signed_Integer_Subtype); Create_Unconstrained_Base_Type (Standard_Long_Integer, E_Signed_Integer_Subtype); Create_Unconstrained_Base_Type (Standard_Long_Long_Integer, E_Signed_Integer_Subtype); Set_Is_Implementation_Defined (Standard_Short_Short_Integer); Create_Float_Types; -- Create type definition node for type Character. Note that we do not -- set the Literals field, since type Character is handled with special -- routine that do not need a literal list. Tdef_Node := New_Node (N_Enumeration_Type_Definition, Stloc); Set_Type_Definition (Parent (Standard_Character), Tdef_Node); Set_Ekind (Standard_Character, E_Enumeration_Type); Set_Etype (Standard_Character, Standard_Character); Init_Esize (Standard_Character, Standard_Character_Size); Init_RM_Size (Standard_Character, 8); Set_Elem_Alignment (Standard_Character); Set_Has_Pragma_Ordered (Standard_Character); Set_Is_Unsigned_Type (Standard_Character); Set_Is_Character_Type (Standard_Character); Set_Is_Known_Valid (Standard_Character); Set_Size_Known_At_Compile_Time (Standard_Character); -- Create the bounds for type Character R_Node := New_Node (N_Range, Stloc); -- Low bound for type Character (Standard.Nul) B_Node := New_Node (N_Character_Literal, Stloc); Set_Is_Static_Expression (B_Node); Set_Chars (B_Node, No_Name); Set_Char_Literal_Value (B_Node, Uint_0); Set_Entity (B_Node, Empty); Set_Etype (B_Node, Standard_Character); Set_Low_Bound (R_Node, B_Node); -- High bound for type Character B_Node := New_Node (N_Character_Literal, Stloc); Set_Is_Static_Expression (B_Node); Set_Chars (B_Node, No_Name); Set_Char_Literal_Value (B_Node, UI_From_Int (16#FF#)); Set_Entity (B_Node, Empty); Set_Etype (B_Node, Standard_Character); Set_High_Bound (R_Node, B_Node); Set_Scalar_Range (Standard_Character, R_Node); Set_Etype (R_Node, Standard_Character); Set_Parent (R_Node, Standard_Character); -- Create type definition for type Wide_Character. Note that we do not -- set the Literals field, since type Wide_Character is handled with -- special routines that do not need a literal list. Tdef_Node := New_Node (N_Enumeration_Type_Definition, Stloc); Set_Type_Definition (Parent (Standard_Wide_Character), Tdef_Node); Set_Ekind (Standard_Wide_Character, E_Enumeration_Type); Set_Etype (Standard_Wide_Character, Standard_Wide_Character); Init_Size (Standard_Wide_Character, Standard_Wide_Character_Size); Set_Elem_Alignment (Standard_Wide_Character); Set_Has_Pragma_Ordered (Standard_Wide_Character); Set_Is_Unsigned_Type (Standard_Wide_Character); Set_Is_Character_Type (Standard_Wide_Character); Set_Is_Known_Valid (Standard_Wide_Character); Set_Size_Known_At_Compile_Time (Standard_Wide_Character); -- Create the bounds for type Wide_Character R_Node := New_Node (N_Range, Stloc); -- Low bound for type Wide_Character B_Node := New_Node (N_Character_Literal, Stloc); Set_Is_Static_Expression (B_Node); Set_Chars (B_Node, No_Name); -- ??? Set_Char_Literal_Value (B_Node, Uint_0); Set_Entity (B_Node, Empty); Set_Etype (B_Node, Standard_Wide_Character); Set_Low_Bound (R_Node, B_Node); -- High bound for type Wide_Character B_Node := New_Node (N_Character_Literal, Stloc); Set_Is_Static_Expression (B_Node); Set_Chars (B_Node, No_Name); -- ??? Set_Char_Literal_Value (B_Node, UI_From_Int (16#FFFF#)); Set_Entity (B_Node, Empty); Set_Etype (B_Node, Standard_Wide_Character); Set_High_Bound (R_Node, B_Node); Set_Scalar_Range (Standard_Wide_Character, R_Node); Set_Etype (R_Node, Standard_Wide_Character); Set_Parent (R_Node, Standard_Wide_Character); -- Create type definition for type Wide_Wide_Character. Note that we -- do not set the Literals field, since type Wide_Wide_Character is -- handled with special routines that do not need a literal list. Tdef_Node := New_Node (N_Enumeration_Type_Definition, Stloc); Set_Type_Definition (Parent (Standard_Wide_Wide_Character), Tdef_Node); Set_Ekind (Standard_Wide_Wide_Character, E_Enumeration_Type); Set_Etype (Standard_Wide_Wide_Character, Standard_Wide_Wide_Character); Init_Size (Standard_Wide_Wide_Character, Standard_Wide_Wide_Character_Size); Set_Elem_Alignment (Standard_Wide_Wide_Character); Set_Has_Pragma_Ordered (Standard_Wide_Wide_Character); Set_Is_Unsigned_Type (Standard_Wide_Wide_Character); Set_Is_Character_Type (Standard_Wide_Wide_Character); Set_Is_Known_Valid (Standard_Wide_Wide_Character); Set_Size_Known_At_Compile_Time (Standard_Wide_Wide_Character); Set_Is_Ada_2005_Only (Standard_Wide_Wide_Character); -- Create the bounds for type Wide_Wide_Character R_Node := New_Node (N_Range, Stloc); -- Low bound for type Wide_Wide_Character B_Node := New_Node (N_Character_Literal, Stloc); Set_Is_Static_Expression (B_Node); Set_Chars (B_Node, No_Name); -- ??? Set_Char_Literal_Value (B_Node, Uint_0); Set_Entity (B_Node, Empty); Set_Etype (B_Node, Standard_Wide_Wide_Character); Set_Low_Bound (R_Node, B_Node); -- High bound for type Wide_Wide_Character B_Node := New_Node (N_Character_Literal, Stloc); Set_Is_Static_Expression (B_Node); Set_Chars (B_Node, No_Name); -- ??? Set_Char_Literal_Value (B_Node, UI_From_Int (16#7FFF_FFFF#)); Set_Entity (B_Node, Empty); Set_Etype (B_Node, Standard_Wide_Wide_Character); Set_High_Bound (R_Node, B_Node); Set_Scalar_Range (Standard_Wide_Wide_Character, R_Node); Set_Etype (R_Node, Standard_Wide_Wide_Character); Set_Parent (R_Node, Standard_Wide_Wide_Character); -- Create type definition node for type String Tdef_Node := New_Node (N_Unconstrained_Array_Definition, Stloc); declare CompDef_Node : Node_Id; begin CompDef_Node := New_Node (N_Component_Definition, Stloc); Set_Aliased_Present (CompDef_Node, False); Set_Access_Definition (CompDef_Node, Empty); Set_Subtype_Indication (CompDef_Node, Identifier_For (S_Character)); Set_Component_Definition (Tdef_Node, CompDef_Node); end; Set_Subtype_Marks (Tdef_Node, New_List); Append (Identifier_For (S_Positive), Subtype_Marks (Tdef_Node)); Set_Type_Definition (Parent (Standard_String), Tdef_Node); Set_Ekind (Standard_String, E_String_Type); Set_Etype (Standard_String, Standard_String); Set_Component_Type (Standard_String, Standard_Character); Set_Component_Size (Standard_String, Uint_8); Init_Size_Align (Standard_String); Set_Alignment (Standard_String, Uint_1); Pack_String_Type (Standard_String); -- On targets where a storage unit is larger than a byte (such as AAMP), -- pragma Pack has a real effect on the representation of type String, -- and the type must be marked as having a nonstandard representation. if System_Storage_Unit > Uint_8 then Set_Has_Non_Standard_Rep (Standard_String); Set_Has_Pragma_Pack (Standard_String); end if; -- Set index type of String E_Id := First (Subtype_Marks (Type_Definition (Parent (Standard_String)))); Set_First_Index (Standard_String, E_Id); Set_Entity (E_Id, Standard_Positive); Set_Etype (E_Id, Standard_Positive); -- Create type definition node for type Wide_String Tdef_Node := New_Node (N_Unconstrained_Array_Definition, Stloc); declare CompDef_Node : Node_Id; begin CompDef_Node := New_Node (N_Component_Definition, Stloc); Set_Aliased_Present (CompDef_Node, False); Set_Access_Definition (CompDef_Node, Empty); Set_Subtype_Indication (CompDef_Node, Identifier_For (S_Wide_Character)); Set_Component_Definition (Tdef_Node, CompDef_Node); end; Set_Subtype_Marks (Tdef_Node, New_List); Append (Identifier_For (S_Positive), Subtype_Marks (Tdef_Node)); Set_Type_Definition (Parent (Standard_Wide_String), Tdef_Node); Set_Ekind (Standard_Wide_String, E_String_Type); Set_Etype (Standard_Wide_String, Standard_Wide_String); Set_Component_Type (Standard_Wide_String, Standard_Wide_Character); Set_Component_Size (Standard_Wide_String, Uint_16); Init_Size_Align (Standard_Wide_String); Pack_String_Type (Standard_Wide_String); -- Set index type of Wide_String E_Id := First (Subtype_Marks (Type_Definition (Parent (Standard_Wide_String)))); Set_First_Index (Standard_Wide_String, E_Id); Set_Entity (E_Id, Standard_Positive); Set_Etype (E_Id, Standard_Positive); -- Create type definition node for type Wide_Wide_String Tdef_Node := New_Node (N_Unconstrained_Array_Definition, Stloc); declare CompDef_Node : Node_Id; begin CompDef_Node := New_Node (N_Component_Definition, Stloc); Set_Aliased_Present (CompDef_Node, False); Set_Access_Definition (CompDef_Node, Empty); Set_Subtype_Indication (CompDef_Node, Identifier_For (S_Wide_Wide_Character)); Set_Component_Definition (Tdef_Node, CompDef_Node); end; Set_Subtype_Marks (Tdef_Node, New_List); Append (Identifier_For (S_Positive), Subtype_Marks (Tdef_Node)); Set_Type_Definition (Parent (Standard_Wide_Wide_String), Tdef_Node); Set_Ekind (Standard_Wide_Wide_String, E_String_Type); Set_Etype (Standard_Wide_Wide_String, Standard_Wide_Wide_String); Set_Component_Type (Standard_Wide_Wide_String, Standard_Wide_Wide_Character); Set_Component_Size (Standard_Wide_Wide_String, Uint_32); Init_Size_Align (Standard_Wide_Wide_String); Set_Is_Ada_2005_Only (Standard_Wide_Wide_String); Pack_String_Type (Standard_Wide_Wide_String); -- Set index type of Wide_Wide_String E_Id := First (Subtype_Marks (Type_Definition (Parent (Standard_Wide_Wide_String)))); Set_First_Index (Standard_Wide_Wide_String, E_Id); Set_Entity (E_Id, Standard_Positive); Set_Etype (E_Id, Standard_Positive); -- Setup entity for Natural Set_Ekind (Standard_Natural, E_Signed_Integer_Subtype); Set_Etype (Standard_Natural, Base_Type (Standard_Integer)); Init_Esize (Standard_Natural, Standard_Integer_Size); Init_RM_Size (Standard_Natural, Standard_Integer_Size - 1); Set_Elem_Alignment (Standard_Natural); Set_Size_Known_At_Compile_Time (Standard_Natural); Set_Integer_Bounds (Standard_Natural, Typ => Base_Type (Standard_Integer), Lb => Uint_0, Hb => Intval (High_Bound (Scalar_Range (Standard_Integer)))); Set_Is_Constrained (Standard_Natural); -- Setup entity for Positive Set_Ekind (Standard_Positive, E_Signed_Integer_Subtype); Set_Etype (Standard_Positive, Base_Type (Standard_Integer)); Init_Esize (Standard_Positive, Standard_Integer_Size); Init_RM_Size (Standard_Positive, Standard_Integer_Size - 1); Set_Elem_Alignment (Standard_Positive); Set_Size_Known_At_Compile_Time (Standard_Positive); Set_Integer_Bounds (Standard_Positive, Typ => Base_Type (Standard_Integer), Lb => Uint_1, Hb => Intval (High_Bound (Scalar_Range (Standard_Integer)))); Set_Is_Constrained (Standard_Positive); -- Create declaration for package ASCII Decl := New_Node (N_Package_Declaration, Stloc); Append (Decl, Decl_S); Pspec := New_Node (N_Package_Specification, Stloc); Set_Specification (Decl, Pspec); Set_Defining_Unit_Name (Pspec, Standard_Entity (S_ASCII)); Set_Ekind (Standard_Entity (S_ASCII), E_Package); Set_Visible_Declarations (Pspec, Decl_A); -- Create control character definitions in package ASCII. Note that -- the character literal entries created here correspond to literal -- values that are impossible in the source, but can be represented -- internally with no difficulties. Ccode := 16#00#; for S in S_ASCII_Names loop Decl := New_Node (N_Object_Declaration, Staloc); Set_Constant_Present (Decl, True); declare A_Char : constant Entity_Id := Standard_Entity (S); Expr_Decl : Node_Id; begin Set_Sloc (A_Char, Staloc); Set_Ekind (A_Char, E_Constant); Set_Never_Set_In_Source (A_Char, True); Set_Is_True_Constant (A_Char, True); Set_Etype (A_Char, Standard_Character); Set_Scope (A_Char, Standard_Entity (S_ASCII)); Set_Is_Immediately_Visible (A_Char, False); Set_Is_Public (A_Char, True); Set_Is_Known_Valid (A_Char, True); Append_Entity (A_Char, Standard_Entity (S_ASCII)); Set_Defining_Identifier (Decl, A_Char); Set_Object_Definition (Decl, Identifier_For (S_Character)); Expr_Decl := New_Node (N_Character_Literal, Staloc); Set_Expression (Decl, Expr_Decl); Set_Is_Static_Expression (Expr_Decl); Set_Chars (Expr_Decl, No_Name); Set_Etype (Expr_Decl, Standard_Character); Set_Char_Literal_Value (Expr_Decl, UI_From_Int (Int (Ccode))); end; Append (Decl, Decl_A); -- Increment character code, dealing with non-contiguities Ccode := Ccode + 1; if Ccode = 16#20# then Ccode := 16#21#; elsif Ccode = 16#27# then Ccode := 16#3A#; elsif Ccode = 16#3C# then Ccode := 16#3F#; elsif Ccode = 16#41# then Ccode := 16#5B#; end if; end loop; -- Create semantic phase entities Standard_Void_Type := New_Standard_Entity; Set_Ekind (Standard_Void_Type, E_Void); Set_Etype (Standard_Void_Type, Standard_Void_Type); Set_Scope (Standard_Void_Type, Standard_Standard); Make_Name (Standard_Void_Type, "_void_type"); -- The type field of packages is set to void Set_Etype (Standard_Standard, Standard_Void_Type); Set_Etype (Standard_ASCII, Standard_Void_Type); -- Standard_A_String is actually used in generated code, so it has a -- type name that is reasonable, but does not overlap any Ada name. Standard_A_String := New_Standard_Entity; Set_Ekind (Standard_A_String, E_Access_Type); Set_Scope (Standard_A_String, Standard_Standard); Set_Etype (Standard_A_String, Standard_A_String); if Debug_Flag_6 then Init_Size (Standard_A_String, System_Address_Size); else Init_Size (Standard_A_String, System_Address_Size * 2); end if; Init_Alignment (Standard_A_String); Set_Directly_Designated_Type (Standard_A_String, Standard_String); Make_Name (Standard_A_String, "access_string"); Standard_A_Char := New_Standard_Entity; Set_Ekind (Standard_A_Char, E_Access_Type); Set_Scope (Standard_A_Char, Standard_Standard); Set_Etype (Standard_A_Char, Standard_A_String); Init_Size (Standard_A_Char, System_Address_Size); Set_Elem_Alignment (Standard_A_Char); Set_Directly_Designated_Type (Standard_A_Char, Standard_Character); Make_Name (Standard_A_Char, "access_character"); -- Standard_Debug_Renaming_Type is used for the special objects created -- to encode the names occurring in renaming declarations for use by the -- debugger (see exp_dbug.adb). The type is a zero-sized subtype of -- Standard.Integer. Standard_Debug_Renaming_Type := New_Standard_Entity; Set_Ekind (Standard_Debug_Renaming_Type, E_Signed_Integer_Subtype); Set_Scope (Standard_Debug_Renaming_Type, Standard_Standard); Set_Etype (Standard_Debug_Renaming_Type, Base_Type (Standard_Integer)); Init_Esize (Standard_Debug_Renaming_Type, 0); Init_RM_Size (Standard_Debug_Renaming_Type, 0); Set_Size_Known_At_Compile_Time (Standard_Debug_Renaming_Type); Set_Integer_Bounds (Standard_Debug_Renaming_Type, Typ => Base_Type (Standard_Debug_Renaming_Type), Lb => Uint_1, Hb => Uint_0); Set_Is_Constrained (Standard_Debug_Renaming_Type); Set_Has_Size_Clause (Standard_Debug_Renaming_Type); Make_Name (Standard_Debug_Renaming_Type, "_renaming_type"); -- Note on type names. The type names for the following special types -- are constructed so that they will look reasonable should they ever -- appear in error messages etc, although in practice the use of the -- special insertion character } for types results in special handling -- of these type names in any case. The blanks in these names would -- trouble in Gigi, but that's OK here, since none of these types -- should ever get through to Gigi! Attributes of these types are -- filled out to minimize problems with cascaded errors (for example, -- Any_Integer is given reasonable and consistent type and size values) Any_Type := New_Standard_Entity; Decl := New_Node (N_Full_Type_Declaration, Stloc); Set_Defining_Identifier (Decl, Any_Type); Set_Scope (Any_Type, Standard_Standard); Build_Signed_Integer_Type (Any_Type, Standard_Integer_Size); Make_Name (Any_Type, "any type"); Any_Id := New_Standard_Entity; Set_Ekind (Any_Id, E_Variable); Set_Scope (Any_Id, Standard_Standard); Set_Etype (Any_Id, Any_Type); Init_Esize (Any_Id); Init_Alignment (Any_Id); Make_Name (Any_Id, "any id"); Any_Access := New_Standard_Entity; Set_Ekind (Any_Access, E_Access_Type); Set_Scope (Any_Access, Standard_Standard); Set_Etype (Any_Access, Any_Access); Init_Size (Any_Access, System_Address_Size); Set_Elem_Alignment (Any_Access); Make_Name (Any_Access, "an access type"); Any_Character := New_Standard_Entity; Set_Ekind (Any_Character, E_Enumeration_Type); Set_Scope (Any_Character, Standard_Standard); Set_Etype (Any_Character, Any_Character); Set_Is_Unsigned_Type (Any_Character); Set_Is_Character_Type (Any_Character); Init_Esize (Any_Character, Standard_Character_Size); Init_RM_Size (Any_Character, 8); Set_Elem_Alignment (Any_Character); Set_Scalar_Range (Any_Character, Scalar_Range (Standard_Character)); Make_Name (Any_Character, "a character type"); Any_Array := New_Standard_Entity; Set_Ekind (Any_Array, E_String_Type); Set_Scope (Any_Array, Standard_Standard); Set_Etype (Any_Array, Any_Array); Set_Component_Type (Any_Array, Any_Character); Init_Size_Align (Any_Array); Make_Name (Any_Array, "an array type"); Any_Boolean := New_Standard_Entity; Set_Ekind (Any_Boolean, E_Enumeration_Type); Set_Scope (Any_Boolean, Standard_Standard); Set_Etype (Any_Boolean, Standard_Boolean); Init_Esize (Any_Boolean, Standard_Character_Size); Init_RM_Size (Any_Boolean, 1); Set_Elem_Alignment (Any_Boolean); Set_Is_Unsigned_Type (Any_Boolean); Set_Scalar_Range (Any_Boolean, Scalar_Range (Standard_Boolean)); Make_Name (Any_Boolean, "a boolean type"); Any_Composite := New_Standard_Entity; Set_Ekind (Any_Composite, E_Array_Type); Set_Scope (Any_Composite, Standard_Standard); Set_Etype (Any_Composite, Any_Composite); Set_Component_Size (Any_Composite, Uint_0); Set_Component_Type (Any_Composite, Standard_Integer); Init_Size_Align (Any_Composite); Make_Name (Any_Composite, "a composite type"); Any_Discrete := New_Standard_Entity; Set_Ekind (Any_Discrete, E_Signed_Integer_Type); Set_Scope (Any_Discrete, Standard_Standard); Set_Etype (Any_Discrete, Any_Discrete); Init_Size (Any_Discrete, Standard_Integer_Size); Set_Elem_Alignment (Any_Discrete); Make_Name (Any_Discrete, "a discrete type"); Any_Fixed := New_Standard_Entity; Set_Ekind (Any_Fixed, E_Ordinary_Fixed_Point_Type); Set_Scope (Any_Fixed, Standard_Standard); Set_Etype (Any_Fixed, Any_Fixed); Init_Size (Any_Fixed, Standard_Integer_Size); Set_Elem_Alignment (Any_Fixed); Make_Name (Any_Fixed, "a fixed-point type"); Any_Integer := New_Standard_Entity; Set_Ekind (Any_Integer, E_Signed_Integer_Type); Set_Scope (Any_Integer, Standard_Standard); Set_Etype (Any_Integer, Standard_Long_Long_Integer); Init_Size (Any_Integer, Standard_Long_Long_Integer_Size); Set_Elem_Alignment (Any_Integer); Set_Integer_Bounds (Any_Integer, Typ => Base_Type (Standard_Integer), Lb => Uint_0, Hb => Intval (High_Bound (Scalar_Range (Standard_Integer)))); Make_Name (Any_Integer, "an integer type"); Any_Modular := New_Standard_Entity; Set_Ekind (Any_Modular, E_Modular_Integer_Type); Set_Scope (Any_Modular, Standard_Standard); Set_Etype (Any_Modular, Standard_Long_Long_Integer); Init_Size (Any_Modular, Standard_Long_Long_Integer_Size); Set_Elem_Alignment (Any_Modular); Set_Is_Unsigned_Type (Any_Modular); Make_Name (Any_Modular, "a modular type"); Any_Numeric := New_Standard_Entity; Set_Ekind (Any_Numeric, E_Signed_Integer_Type); Set_Scope (Any_Numeric, Standard_Standard); Set_Etype (Any_Numeric, Standard_Long_Long_Integer); Init_Size (Any_Numeric, Standard_Long_Long_Integer_Size); Set_Elem_Alignment (Any_Numeric); Make_Name (Any_Numeric, "a numeric type"); Any_Real := New_Standard_Entity; Set_Ekind (Any_Real, E_Floating_Point_Type); Set_Scope (Any_Real, Standard_Standard); Set_Etype (Any_Real, Standard_Long_Long_Float); Init_Size (Any_Real, UI_To_Int (Esize (Standard_Long_Long_Float))); Set_Elem_Alignment (Any_Real); Make_Name (Any_Real, "a real type"); Any_Scalar := New_Standard_Entity; Set_Ekind (Any_Scalar, E_Signed_Integer_Type); Set_Scope (Any_Scalar, Standard_Standard); Set_Etype (Any_Scalar, Any_Scalar); Init_Size (Any_Scalar, Standard_Integer_Size); Set_Elem_Alignment (Any_Scalar); Make_Name (Any_Scalar, "a scalar type"); Any_String := New_Standard_Entity; Set_Ekind (Any_String, E_String_Type); Set_Scope (Any_String, Standard_Standard); Set_Etype (Any_String, Any_String); Set_Component_Type (Any_String, Any_Character); Init_Size_Align (Any_String); Make_Name (Any_String, "a string type"); declare Index : Node_Id; begin Index := Make_Range (Stloc, Low_Bound => Make_Integer (Uint_0), High_Bound => Make_Integer (Uint_2 ** Standard_Integer_Size)); Set_Etype (Index, Standard_Integer); Set_First_Index (Any_String, Index); end; Standard_Integer_8 := New_Standard_Entity; Decl := New_Node (N_Full_Type_Declaration, Stloc); Set_Defining_Identifier (Decl, Standard_Integer_8); Make_Name (Standard_Integer_8, "integer_8"); Set_Scope (Standard_Integer_8, Standard_Standard); Build_Signed_Integer_Type (Standard_Integer_8, 8); Standard_Integer_16 := New_Standard_Entity; Decl := New_Node (N_Full_Type_Declaration, Stloc); Set_Defining_Identifier (Decl, Standard_Integer_16); Make_Name (Standard_Integer_16, "integer_16"); Set_Scope (Standard_Integer_16, Standard_Standard); Build_Signed_Integer_Type (Standard_Integer_16, 16); Standard_Integer_32 := New_Standard_Entity; Decl := New_Node (N_Full_Type_Declaration, Stloc); Set_Defining_Identifier (Decl, Standard_Integer_32); Make_Name (Standard_Integer_32, "integer_32"); Set_Scope (Standard_Integer_32, Standard_Standard); Build_Signed_Integer_Type (Standard_Integer_32, 32); Standard_Integer_64 := New_Standard_Entity; Decl := New_Node (N_Full_Type_Declaration, Stloc); Set_Defining_Identifier (Decl, Standard_Integer_64); Make_Name (Standard_Integer_64, "integer_64"); Set_Scope (Standard_Integer_64, Standard_Standard); Build_Signed_Integer_Type (Standard_Integer_64, 64); Standard_Unsigned := New_Standard_Entity; Decl := New_Node (N_Full_Type_Declaration, Stloc); Set_Defining_Identifier (Decl, Standard_Unsigned); Make_Name (Standard_Unsigned, "unsigned"); Set_Ekind (Standard_Unsigned, E_Modular_Integer_Type); Set_Scope (Standard_Unsigned, Standard_Standard); Set_Etype (Standard_Unsigned, Standard_Unsigned); Init_Size (Standard_Unsigned, Standard_Integer_Size); Set_Elem_Alignment (Standard_Unsigned); Set_Modulus (Standard_Unsigned, Uint_2 ** Standard_Integer_Size); Set_Is_Unsigned_Type (Standard_Unsigned); Set_Size_Known_At_Compile_Time (Standard_Unsigned); Set_Is_Known_Valid (Standard_Unsigned, True); R_Node := New_Node (N_Range, Stloc); Set_Low_Bound (R_Node, Make_Integer (Uint_0)); Set_High_Bound (R_Node, Make_Integer (Modulus (Standard_Unsigned) - 1)); Set_Etype (Low_Bound (R_Node), Standard_Unsigned); Set_Etype (High_Bound (R_Node), Standard_Unsigned); Set_Scalar_Range (Standard_Unsigned, R_Node); -- Note: universal integer and universal real are constructed as fully -- formed signed numeric types, with parameters corresponding to the -- longest runtime types (Long_Long_Integer and Long_Long_Float). This -- allows Gigi to properly process references to universal types that -- are not folded at compile time. Universal_Integer := New_Standard_Entity; Decl := New_Node (N_Full_Type_Declaration, Stloc); Set_Defining_Identifier (Decl, Universal_Integer); Make_Name (Universal_Integer, "universal_integer"); Set_Scope (Universal_Integer, Standard_Standard); Build_Signed_Integer_Type (Universal_Integer, Standard_Long_Long_Integer_Size); Universal_Real := New_Standard_Entity; Decl := New_Node (N_Full_Type_Declaration, Stloc); Set_Defining_Identifier (Decl, Universal_Real); Make_Name (Universal_Real, "universal_real"); Set_Scope (Universal_Real, Standard_Standard); Copy_Float_Type (Universal_Real, Standard_Long_Long_Float); -- Note: universal fixed, unlike universal integer and universal real, -- is never used at runtime, so it does not need to have bounds set. Universal_Fixed := New_Standard_Entity; Decl := New_Node (N_Full_Type_Declaration, Stloc); Set_Defining_Identifier (Decl, Universal_Fixed); Make_Name (Universal_Fixed, "universal_fixed"); Set_Ekind (Universal_Fixed, E_Ordinary_Fixed_Point_Type); Set_Etype (Universal_Fixed, Universal_Fixed); Set_Scope (Universal_Fixed, Standard_Standard); Init_Size (Universal_Fixed, Standard_Long_Long_Integer_Size); Set_Elem_Alignment (Universal_Fixed); Set_Size_Known_At_Compile_Time (Universal_Fixed); -- Create type declaration for Duration, using a 64-bit size. The -- delta and size values depend on the mode set in system.ads. Build_Duration : declare Dlo : Uint; Dhi : Uint; Delta_Val : Ureal; begin -- In 32 bit mode, the size is 32 bits, and the delta and -- small values are set to 20 milliseconds (20.0*(10.0**(-3)). if Duration_32_Bits_On_Target then Dlo := Intval (Type_Low_Bound (Standard_Integer_32)); Dhi := Intval (Type_High_Bound (Standard_Integer_32)); Delta_Val := UR_From_Components (UI_From_Int (20), Uint_3, 10); -- In standard 64-bit mode, the size is 64-bits and the delta and -- small values are set to nanoseconds (1.0*(10.0**(-9)) else Dlo := Intval (Type_Low_Bound (Standard_Integer_64)); Dhi := Intval (Type_High_Bound (Standard_Integer_64)); Delta_Val := UR_From_Components (Uint_1, Uint_9, 10); end if; Tdef_Node := Make_Ordinary_Fixed_Point_Definition (Stloc, Delta_Expression => Make_Real_Literal (Stloc, Delta_Val), Real_Range_Specification => Make_Real_Range_Specification (Stloc, Low_Bound => Make_Real_Literal (Stloc, Realval => Dlo * Delta_Val), High_Bound => Make_Real_Literal (Stloc, Realval => Dhi * Delta_Val))); Set_Type_Definition (Parent (Standard_Duration), Tdef_Node); Set_Ekind (Standard_Duration, E_Ordinary_Fixed_Point_Type); Set_Etype (Standard_Duration, Standard_Duration); if Duration_32_Bits_On_Target then Init_Size (Standard_Duration, 32); else Init_Size (Standard_Duration, 64); end if; Set_Elem_Alignment (Standard_Duration); Set_Delta_Value (Standard_Duration, Delta_Val); Set_Small_Value (Standard_Duration, Delta_Val); Set_Scalar_Range (Standard_Duration, Real_Range_Specification (Type_Definition (Parent (Standard_Duration)))); -- Normally it does not matter that nodes in package Standard are -- not marked as analyzed. The Scalar_Range of the fixed-point -- type Standard_Duration is an exception, because of the special -- test made in Freeze.Freeze_Fixed_Point_Type. Set_Analyzed (Scalar_Range (Standard_Duration)); Set_Etype (Type_High_Bound (Standard_Duration), Standard_Duration); Set_Etype (Type_Low_Bound (Standard_Duration), Standard_Duration); Set_Is_Static_Expression (Type_High_Bound (Standard_Duration)); Set_Is_Static_Expression (Type_Low_Bound (Standard_Duration)); Set_Corresponding_Integer_Value (Type_High_Bound (Standard_Duration), Dhi); Set_Corresponding_Integer_Value (Type_Low_Bound (Standard_Duration), Dlo); Set_Size_Known_At_Compile_Time (Standard_Duration); end Build_Duration; -- Build standard exception type. Note that the type name here is -- actually used in the generated code, so it must be set correctly -- ??? Also note that the Import_Code component is now declared -- as a System.Standard_Library.Exception_Code to enforce run-time -- library implementation consistency. It's too early here to resort -- to rtsfind to get the proper node for that type, so we use the -- closest possible available type node at hand instead. We should -- probably be fixing this up at some point. Standard_Exception_Type := New_Standard_Entity; Set_Ekind (Standard_Exception_Type, E_Record_Type); Set_Etype (Standard_Exception_Type, Standard_Exception_Type); Set_Scope (Standard_Exception_Type, Standard_Standard); Set_Stored_Constraint (Standard_Exception_Type, No_Elist); Init_Size_Align (Standard_Exception_Type); Set_Size_Known_At_Compile_Time (Standard_Exception_Type, True); Make_Name (Standard_Exception_Type, "exception"); Make_Component (Standard_Exception_Type, Standard_Boolean, "Not_Handled_By_Others"); Make_Component (Standard_Exception_Type, Standard_Character, "Lang"); Make_Component (Standard_Exception_Type, Standard_Natural, "Name_Length"); Make_Component (Standard_Exception_Type, Standard_A_Char, "Full_Name"); Make_Component (Standard_Exception_Type, Standard_A_Char, "HTable_Ptr"); Make_Component (Standard_Exception_Type, Standard_Unsigned, "Import_Code"); Make_Component (Standard_Exception_Type, Standard_A_Char, "Raise_Hook"); -- Build tree for record declaration, for use by the back-end declare Comp_List : List_Id; Comp : Entity_Id; begin Comp := First_Entity (Standard_Exception_Type); Comp_List := New_List; while Present (Comp) loop Append ( Make_Component_Declaration (Stloc, Defining_Identifier => Comp, Component_Definition => Make_Component_Definition (Stloc, Aliased_Present => False, Subtype_Indication => New_Occurrence_Of (Etype (Comp), Stloc))), Comp_List); Next_Entity (Comp); end loop; Decl := Make_Full_Type_Declaration (Stloc, Defining_Identifier => Standard_Exception_Type, Type_Definition => Make_Record_Definition (Stloc, End_Label => Empty, Component_List => Make_Component_List (Stloc, Component_Items => Comp_List))); end; Append (Decl, Decl_S); Layout_Type (Standard_Exception_Type); -- Create declarations of standard exceptions Build_Exception (S_Constraint_Error); Build_Exception (S_Program_Error); Build_Exception (S_Storage_Error); Build_Exception (S_Tasking_Error); -- Numeric_Error is a normal exception in Ada 83, but in Ada 95 -- it is a renaming of Constraint_Error. Is this test too early??? if Ada_Version = Ada_83 then Build_Exception (S_Numeric_Error); else Decl := New_Node (N_Exception_Renaming_Declaration, Stloc); E_Id := Standard_Entity (S_Numeric_Error); Set_Ekind (E_Id, E_Exception); Set_Exception_Code (E_Id, Uint_0); Set_Etype (E_Id, Standard_Exception_Type); Set_Is_Public (E_Id); Set_Renamed_Entity (E_Id, Standard_Entity (S_Constraint_Error)); Set_Defining_Identifier (Decl, E_Id); Append (Decl, Decl_S); Ident_Node := New_Node (N_Identifier, Stloc); Set_Chars (Ident_Node, Chars (Standard_Entity (S_Constraint_Error))); Set_Entity (Ident_Node, Standard_Entity (S_Constraint_Error)); Set_Name (Decl, Ident_Node); end if; -- Abort_Signal is an entity that does not get made visible Abort_Signal := New_Standard_Entity; Set_Chars (Abort_Signal, Name_uAbort_Signal); Set_Ekind (Abort_Signal, E_Exception); Set_Exception_Code (Abort_Signal, Uint_0); Set_Etype (Abort_Signal, Standard_Exception_Type); Set_Scope (Abort_Signal, Standard_Standard); Set_Is_Public (Abort_Signal, True); Decl := Make_Exception_Declaration (Stloc, Defining_Identifier => Abort_Signal); -- Create defining identifiers for shift operator entities. Note -- that these entities are used only for marking shift operators -- generated internally, and hence need no structure, just a name -- and a unique identity. Standard_Op_Rotate_Left := New_Standard_Entity; Set_Chars (Standard_Op_Rotate_Left, Name_Rotate_Left); Set_Ekind (Standard_Op_Rotate_Left, E_Operator); Standard_Op_Rotate_Right := New_Standard_Entity; Set_Chars (Standard_Op_Rotate_Right, Name_Rotate_Right); Set_Ekind (Standard_Op_Rotate_Right, E_Operator); Standard_Op_Shift_Left := New_Standard_Entity; Set_Chars (Standard_Op_Shift_Left, Name_Shift_Left); Set_Ekind (Standard_Op_Shift_Left, E_Operator); Standard_Op_Shift_Right := New_Standard_Entity; Set_Chars (Standard_Op_Shift_Right, Name_Shift_Right); Set_Ekind (Standard_Op_Shift_Right, E_Operator); Standard_Op_Shift_Right_Arithmetic := New_Standard_Entity; Set_Chars (Standard_Op_Shift_Right_Arithmetic, Name_Shift_Right_Arithmetic); Set_Ekind (Standard_Op_Shift_Right_Arithmetic, E_Operator); -- Create standard operator declarations Create_Operators; -- Initialize visibility table with entities in Standard for E in Standard_Entity_Type loop if Ekind (Standard_Entity (E)) /= E_Operator then Set_Name_Entity_Id (Chars (Standard_Entity (E)), Standard_Entity (E)); Set_Homonym (Standard_Entity (E), Empty); end if; if E not in S_ASCII_Names then Set_Scope (Standard_Entity (E), Standard_Standard); Set_Is_Immediately_Visible (Standard_Entity (E)); end if; end loop; -- The predefined package Standard itself does not have a scope; -- it is the only entity in the system not to have one, and this -- is what identifies the package to Gigi. Set_Scope (Standard_Standard, Empty); -- Set global variables indicating last Id values and version Last_Standard_Node_Id := Last_Node_Id; Last_Standard_List_Id := Last_List_Id; -- The Error node has an Etype of Any_Type to help error recovery Set_Etype (Error, Any_Type); -- Print representation of standard if switch set if Opt.Print_Standard then Print_Standard; end if; end Create_Standard; ------------------------------------ -- Create_Unconstrained_Base_Type -- ------------------------------------ procedure Create_Unconstrained_Base_Type (E : Entity_Id; K : Entity_Kind) is New_Ent : constant Entity_Id := New_Copy (E); begin Set_Ekind (E, K); Set_Is_Constrained (E, True); Set_Is_First_Subtype (E, True); Set_Etype (E, New_Ent); Append_Entity (New_Ent, Standard_Standard); Set_Is_Constrained (New_Ent, False); Set_Etype (New_Ent, New_Ent); Set_Is_Known_Valid (New_Ent, True); if K = E_Signed_Integer_Subtype then Set_Etype (Low_Bound (Scalar_Range (E)), New_Ent); Set_Etype (High_Bound (Scalar_Range (E)), New_Ent); end if; end Create_Unconstrained_Base_Type; -------------------- -- Identifier_For -- -------------------- function Identifier_For (S : Standard_Entity_Type) return Node_Id is Ident_Node : Node_Id; begin Ident_Node := New_Node (N_Identifier, Stloc); Set_Chars (Ident_Node, Chars (Standard_Entity (S))); Set_Entity (Ident_Node, Standard_Entity (S)); return Ident_Node; end Identifier_For; -------------------- -- Make_Component -- -------------------- procedure Make_Component (Rec : Entity_Id; Typ : Entity_Id; Nam : String) is Id : constant Entity_Id := New_Standard_Entity; begin Set_Ekind (Id, E_Component); Set_Etype (Id, Typ); Set_Scope (Id, Rec); Init_Component_Location (Id); Set_Original_Record_Component (Id, Id); Make_Name (Id, Nam); Append_Entity (Id, Rec); end Make_Component; ----------------- -- Make_Formal -- ----------------- function Make_Formal (Typ : Entity_Id; Formal_Name : String) return Entity_Id is Formal : Entity_Id; begin Formal := New_Standard_Entity; Set_Ekind (Formal, E_In_Parameter); Set_Mechanism (Formal, Default_Mechanism); Set_Scope (Formal, Standard_Standard); Set_Etype (Formal, Typ); Make_Name (Formal, Formal_Name); return Formal; end Make_Formal; ------------------ -- Make_Integer -- ------------------ function Make_Integer (V : Uint) return Node_Id is N : constant Node_Id := Make_Integer_Literal (Stloc, V); begin Set_Is_Static_Expression (N); return N; end Make_Integer; --------------- -- Make_Name -- --------------- procedure Make_Name (Id : Entity_Id; Nam : String) is begin for J in 1 .. Nam'Length loop Name_Buffer (J) := Fold_Lower (Nam (Nam'First + (J - 1))); end loop; Name_Len := Nam'Length; Set_Chars (Id, Name_Find); end Make_Name; ------------------ -- New_Operator -- ------------------ function New_Operator (Op : Name_Id; Typ : Entity_Id) return Entity_Id is Ident_Node : Entity_Id; begin Ident_Node := Make_Defining_Identifier (Stloc, Op); Set_Is_Pure (Ident_Node, True); Set_Ekind (Ident_Node, E_Operator); Set_Etype (Ident_Node, Typ); Set_Scope (Ident_Node, Standard_Standard); Set_Homonym (Ident_Node, Get_Name_Entity_Id (Op)); Set_Convention (Ident_Node, Convention_Intrinsic); Set_Is_Immediately_Visible (Ident_Node, True); Set_Is_Intrinsic_Subprogram (Ident_Node, True); Set_Name_Entity_Id (Op, Ident_Node); Append_Entity (Ident_Node, Standard_Standard); return Ident_Node; end New_Operator; ------------------------- -- New_Standard_Entity -- ------------------------- function New_Standard_Entity (New_Node_Kind : Node_Kind := N_Defining_Identifier) return Entity_Id is E : constant Entity_Id := New_Entity (New_Node_Kind, Stloc); begin -- All standard entities are Pure and Public Set_Is_Pure (E); Set_Is_Public (E); -- All standard entity names are analyzed manually, and are thus -- frozen as soon as they are created. Set_Is_Frozen (E); -- Set debug information required for all standard types Set_Needs_Debug_Info (E); -- All standard entities are built with fully qualified names, so -- set the flag to prevent an abortive attempt at requalification! Set_Has_Qualified_Name (E); -- Return newly created entity to be completed by caller return E; end New_Standard_Entity; -------------------- -- Print_Standard -- -------------------- procedure Print_Standard is procedure P (Item : String) renames Output.Write_Line; -- Short-hand, since we do a lot of line writes here! procedure P_Int_Range (Size : Pos); -- Prints the range of an integer based on its Size procedure P_Float_Range (Id : Entity_Id); -- Prints the bounds range for the given float type entity procedure P_Float_Type (Id : Entity_Id); -- Prints the type declaration of the given float type entity procedure P_Mixed_Name (Id : Name_Id); -- Prints Id in mixed case ------------------- -- P_Float_Range -- ------------------- procedure P_Float_Range (Id : Entity_Id) is begin Write_Str (" range "); UR_Write (Realval (Type_Low_Bound (Id))); Write_Str (" .. "); UR_Write (Realval (Type_High_Bound (Id))); Write_Str (";"); Write_Eol; end P_Float_Range; ------------------ -- P_Float_Type -- ------------------ procedure P_Float_Type (Id : Entity_Id) is begin Write_Str (" type "); P_Mixed_Name (Chars (Id)); Write_Str (" is digits "); Write_Int (UI_To_Int (Digits_Value (Id))); Write_Eol; P_Float_Range (Id); Write_Str (" for "); P_Mixed_Name (Chars (Id)); Write_Str ("'Size use "); Write_Int (UI_To_Int (RM_Size (Id))); Write_Line (";"); Write_Eol; end P_Float_Type; ----------------- -- P_Int_Range -- ----------------- procedure P_Int_Range (Size : Pos) is begin Write_Str (" is range -(2 **"); Write_Int (Size - 1); Write_Str (")"); Write_Str (" .. +(2 **"); Write_Int (Size - 1); Write_Str (" - 1);"); Write_Eol; end P_Int_Range; ------------------ -- P_Mixed_Name -- ------------------ procedure P_Mixed_Name (Id : Name_Id) is begin Get_Name_String (Id); for J in 1 .. Name_Len loop if J = 1 or else Name_Buffer (J - 1) = '_' then Name_Buffer (J) := Fold_Upper (Name_Buffer (J)); end if; end loop; Write_Str (Name_Buffer (1 .. Name_Len)); end P_Mixed_Name; -- Start of processing for Print_Standard begin P ("-- Representation of package Standard"); Write_Eol; P ("-- This is not accurate Ada, since new base types cannot be "); P ("-- created, but the listing shows the target dependent"); P ("-- characteristics of the Standard types for this compiler"); Write_Eol; P ("package Standard is"); P ("pragma Pure (Standard);"); Write_Eol; P (" type Boolean is (False, True);"); P (" for Boolean'Size use 1;"); P (" for Boolean use (False => 0, True => 1);"); Write_Eol; -- Integer types Write_Str (" type Integer"); P_Int_Range (Standard_Integer_Size); Write_Str (" for Integer'Size use "); Write_Int (Standard_Integer_Size); P (";"); Write_Eol; P (" subtype Natural is Integer range 0 .. Integer'Last;"); P (" subtype Positive is Integer range 1 .. Integer'Last;"); Write_Eol; Write_Str (" type Short_Short_Integer"); P_Int_Range (Standard_Short_Short_Integer_Size); Write_Str (" for Short_Short_Integer'Size use "); Write_Int (Standard_Short_Short_Integer_Size); P (";"); Write_Eol; Write_Str (" type Short_Integer"); P_Int_Range (Standard_Short_Integer_Size); Write_Str (" for Short_Integer'Size use "); Write_Int (Standard_Short_Integer_Size); P (";"); Write_Eol; Write_Str (" type Long_Integer"); P_Int_Range (Standard_Long_Integer_Size); Write_Str (" for Long_Integer'Size use "); Write_Int (Standard_Long_Integer_Size); P (";"); Write_Eol; Write_Str (" type Long_Long_Integer"); P_Int_Range (Standard_Long_Long_Integer_Size); Write_Str (" for Long_Long_Integer'Size use "); Write_Int (Standard_Long_Long_Integer_Size); P (";"); Write_Eol; -- Floating point types P_Float_Type (Standard_Short_Float); P_Float_Type (Standard_Float); P_Float_Type (Standard_Long_Float); P_Float_Type (Standard_Long_Long_Float); P (" type Character is (...)"); Write_Str (" for Character'Size use "); Write_Int (Standard_Character_Size); P (";"); P (" -- See RM A.1(35) for details of this type"); Write_Eol; P (" type Wide_Character is (...)"); Write_Str (" for Wide_Character'Size use "); Write_Int (Standard_Wide_Character_Size); P (";"); P (" -- See RM A.1(36) for details of this type"); Write_Eol; P (" type Wide_Wide_Character is (...)"); Write_Str (" for Wide_Wide_Character'Size use "); Write_Int (Standard_Wide_Wide_Character_Size); P (";"); P (" -- See RM A.1(36) for details of this type"); P (" type String is array (Positive range <>) of Character;"); P (" pragma Pack (String);"); Write_Eol; P (" type Wide_String is array (Positive range <>)" & " of Wide_Character;"); P (" pragma Pack (Wide_String);"); Write_Eol; P (" type Wide_Wide_String is array (Positive range <>)" & " of Wide_Wide_Character;"); P (" pragma Pack (Wide_Wide_String);"); Write_Eol; -- We only have one representation each for 32-bit and 64-bit sizes, -- so select the right one based on Duration_32_Bits_On_Target. if Duration_32_Bits_On_Target then P (" type Duration is delta 0.020"); P (" range -((2 ** 31 - 1) * 0.020) .."); P (" +((2 ** 31 - 1) * 0.020);"); P (" for Duration'Small use 0.020;"); else P (" type Duration is delta 0.000000001"); P (" range -((2 ** 63 - 1) * 0.000000001) .."); P (" +((2 ** 63 - 1) * 0.000000001);"); P (" for Duration'Small use 0.000000001;"); end if; Write_Eol; P (" Constraint_Error : exception;"); P (" Program_Error : exception;"); P (" Storage_Error : exception;"); P (" Tasking_Error : exception;"); P (" Numeric_Error : exception renames Constraint_Error;"); Write_Eol; P ("end Standard;"); end Print_Standard; ------------------------- -- Register_Float_Type -- ------------------------- procedure Register_Float_Type (Name : C_String; Digs : Natural; Complex : Boolean; Count : Natural; Float_Rep : Float_Rep_Kind; Size : Positive; Alignment : Natural) is T : String (1 .. Name'Length); Last : Natural := 0; procedure Dump; -- Dump information given by the back end for the type to register procedure Dump is begin Write_Str ("type " & T (1 .. Last) & " is "); if Count > 0 then Write_Str ("array (1 .. "); Write_Int (Int (Count)); if Complex then Write_Str (", 1 .. 2"); end if; Write_Str (") of "); elsif Complex then Write_Str ("array (1 .. 2) of "); end if; if Digs > 0 then Write_Str ("digits "); Write_Int (Int (Digs)); Write_Line (";"); Write_Str ("pragma Float_Representation ("); case Float_Rep is when IEEE_Binary => Write_Str ("IEEE"); when VAX_Native => case Digs is when 6 => Write_Str ("VAXF"); when 9 => Write_Str ("VAXD"); when 15 => Write_Str ("VAXG"); when others => Write_Str ("VAX_"); Write_Int (Int (Digs)); end case; when AAMP => Write_Str ("AAMP"); end case; Write_Line (", " & T & ");"); else Write_Str ("mod 2**"); Write_Int (Int (Size / Positive'Max (1, Count))); Write_Line (";"); end if; Write_Str ("for " & T & "'Size use "); Write_Int (Int (Size)); Write_Line (";"); Write_Str ("for " & T & "'Alignment use "); Write_Int (Int (Alignment / 8)); Write_Line (";"); end Dump; begin for J in T'Range loop T (J) := Name (Name'First + J - 1); if T (J) = ASCII.NUL then Last := J - 1; exit; end if; end loop; if Debug_Flag_Dot_B then Dump; end if; if Digs > 0 and then not Complex and then Count = 0 then declare Ent : constant Entity_Id := New_Standard_Entity; Esize : constant Pos := Pos ((Size + Alignment - 1) / Alignment * Alignment); begin Set_Defining_Identifier (New_Node (N_Full_Type_Declaration, Stloc), Ent); Make_Name (Ent, T (1 .. Last)); Set_Scope (Ent, Standard_Standard); Build_Float_Type (Ent, Esize, Float_Rep, Pos (Digs)); Set_RM_Size (Ent, UI_From_Int (Int (Size))); Set_Alignment (Ent, UI_From_Int (Int (Alignment / 8))); if No (Back_End_Float_Types) then Back_End_Float_Types := New_Elmt_List; end if; Append_Elmt (Ent, Back_End_Float_Types); end; end if; end Register_Float_Type; ---------------------- -- Set_Float_Bounds -- ---------------------- procedure Set_Float_Bounds (Id : Entity_Id) is L : Node_Id; -- Low bound of literal value H : Node_Id; -- High bound of literal value R : Node_Id; -- Range specification Radix : constant Uint := Machine_Radix_Value (Id); Mantissa : constant Uint := Machine_Mantissa_Value (Id); Emax : constant Uint := Machine_Emax_Value (Id); Significand : constant Uint := Radix ** Mantissa - 1; Exponent : constant Uint := Emax - Mantissa; begin -- Note: for the call from Cstand to initially create the types in -- Standard, Float_Rep will never be VAX_Native. Circuitry in Sem_Vfpt -- will adjust these types appropriately VAX_Native if a pragma -- Float_Representation (VAX_Float) is used. H := Make_Float_Literal (Stloc, Radix, Significand, Exponent); L := Make_Float_Literal (Stloc, Radix, -Significand, Exponent); Set_Etype (L, Id); Set_Is_Static_Expression (L); Set_Etype (H, Id); Set_Is_Static_Expression (H); R := New_Node (N_Range, Stloc); Set_Low_Bound (R, L); Set_High_Bound (R, H); Set_Includes_Infinities (R, True); Set_Scalar_Range (Id, R); Set_Etype (R, Id); Set_Parent (R, Id); end Set_Float_Bounds; ------------------------ -- Set_Integer_Bounds -- ------------------------ procedure Set_Integer_Bounds (Id : Entity_Id; Typ : Entity_Id; Lb : Uint; Hb : Uint) is L : Node_Id; -- Low bound of literal value H : Node_Id; -- High bound of literal value R : Node_Id; -- Range specification begin L := Make_Integer (Lb); H := Make_Integer (Hb); Set_Etype (L, Typ); Set_Etype (H, Typ); R := New_Node (N_Range, Stloc); Set_Low_Bound (R, L); Set_High_Bound (R, H); Set_Scalar_Range (Id, R); Set_Etype (R, Typ); Set_Parent (R, Id); Set_Is_Unsigned_Type (Id, Lb >= 0); end Set_Integer_Bounds; end CStand;
Go to most recent revision | Compare with Previous | Blame | View Log