URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [g-altcon.adb] - Rev 706
Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- G N A T . A L T I V E C . C O N V E R S I O N S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2005-2009, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- <http://www.gnu.org/licenses/>. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Ada.Unchecked_Conversion; with System; use System; package body GNAT.Altivec.Conversions is -- All the vector/view conversions operate similarly: bare unchecked -- conversion on big endian targets, and elements permutation on little -- endian targets. We call "Mirroring" the elements permutation process. -- We would like to provide a generic version of the conversion routines -- and just have a set of "renaming as body" declarations to satisfy the -- public interface. This unfortunately prevents inlining, which we must -- preserve at least for the hard binding. -- We instead provide a generic version of facilities needed by all the -- conversion routines and use them repeatedly. generic type Vitem_Type is private; type Varray_Index_Type is range <>; type Varray_Type is array (Varray_Index_Type) of Vitem_Type; type Vector_Type is private; type View_Type is private; package Generic_Conversions is subtype Varray is Varray_Type; -- This provides an easy common way to refer to the type parameter -- in contexts where a specific instance of this package is "use"d. procedure Mirror (A : Varray_Type; Into : out Varray_Type); pragma Inline (Mirror); -- Mirror the elements of A into INTO, not touching the per-element -- internal ordering. -- A procedure with an out parameter is a bit heavier to use than a -- function but reduces the amount of temporary creations around the -- call. Instances are typically not front-end inlined. They can still -- be back-end inlined on request with the proper command-line option. -- Below are Unchecked Conversion routines for various purposes, -- relying on internal knowledge about the bits layout in the different -- types (all 128 value bits blocks). -- View<->Vector straight bitwise conversions on BE targets function UNC_To_Vector is new Ada.Unchecked_Conversion (View_Type, Vector_Type); function UNC_To_View is new Ada.Unchecked_Conversion (Vector_Type, View_Type); -- Varray->Vector/View for returning mirrored results on LE targets function UNC_To_Vector is new Ada.Unchecked_Conversion (Varray_Type, Vector_Type); function UNC_To_View is new Ada.Unchecked_Conversion (Varray_Type, View_Type); -- Vector/View->Varray for to-be-permuted source on LE targets function UNC_To_Varray is new Ada.Unchecked_Conversion (Vector_Type, Varray_Type); function UNC_To_Varray is new Ada.Unchecked_Conversion (View_Type, Varray_Type); end Generic_Conversions; package body Generic_Conversions is procedure Mirror (A : Varray_Type; Into : out Varray_Type) is begin for J in A'Range loop Into (J) := A (A'Last - J + A'First); end loop; end Mirror; end Generic_Conversions; -- Now we declare the instances and implement the interface function -- bodies simply calling the instantiated routines. --------------------- -- Char components -- --------------------- package SC_Conversions is new Generic_Conversions (signed_char, Vchar_Range, Varray_signed_char, VSC, VSC_View); function To_Vector (S : VSC_View) return VSC is use SC_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_Vector (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_Vector (M); end; end if; end To_Vector; function To_View (S : VSC) return VSC_View is use SC_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_View (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_View (M); end; end if; end To_View; -- package UC_Conversions is new Generic_Conversions (unsigned_char, Vchar_Range, Varray_unsigned_char, VUC, VUC_View); function To_Vector (S : VUC_View) return VUC is use UC_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_Vector (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_Vector (M); end; end if; end To_Vector; function To_View (S : VUC) return VUC_View is use UC_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_View (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_View (M); end; end if; end To_View; -- package BC_Conversions is new Generic_Conversions (bool_char, Vchar_Range, Varray_bool_char, VBC, VBC_View); function To_Vector (S : VBC_View) return VBC is use BC_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_Vector (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_Vector (M); end; end if; end To_Vector; function To_View (S : VBC) return VBC_View is use BC_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_View (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_View (M); end; end if; end To_View; ---------------------- -- Short components -- ---------------------- package SS_Conversions is new Generic_Conversions (signed_short, Vshort_Range, Varray_signed_short, VSS, VSS_View); function To_Vector (S : VSS_View) return VSS is use SS_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_Vector (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_Vector (M); end; end if; end To_Vector; function To_View (S : VSS) return VSS_View is use SS_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_View (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_View (M); end; end if; end To_View; -- package US_Conversions is new Generic_Conversions (unsigned_short, Vshort_Range, Varray_unsigned_short, VUS, VUS_View); function To_Vector (S : VUS_View) return VUS is use US_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_Vector (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_Vector (M); end; end if; end To_Vector; function To_View (S : VUS) return VUS_View is use US_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_View (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_View (M); end; end if; end To_View; -- package BS_Conversions is new Generic_Conversions (bool_short, Vshort_Range, Varray_bool_short, VBS, VBS_View); function To_Vector (S : VBS_View) return VBS is use BS_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_Vector (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_Vector (M); end; end if; end To_Vector; function To_View (S : VBS) return VBS_View is use BS_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_View (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_View (M); end; end if; end To_View; -------------------- -- Int components -- -------------------- package SI_Conversions is new Generic_Conversions (signed_int, Vint_Range, Varray_signed_int, VSI, VSI_View); function To_Vector (S : VSI_View) return VSI is use SI_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_Vector (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_Vector (M); end; end if; end To_Vector; function To_View (S : VSI) return VSI_View is use SI_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_View (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_View (M); end; end if; end To_View; -- package UI_Conversions is new Generic_Conversions (unsigned_int, Vint_Range, Varray_unsigned_int, VUI, VUI_View); function To_Vector (S : VUI_View) return VUI is use UI_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_Vector (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_Vector (M); end; end if; end To_Vector; function To_View (S : VUI) return VUI_View is use UI_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_View (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_View (M); end; end if; end To_View; -- package BI_Conversions is new Generic_Conversions (bool_int, Vint_Range, Varray_bool_int, VBI, VBI_View); function To_Vector (S : VBI_View) return VBI is use BI_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_Vector (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_Vector (M); end; end if; end To_Vector; function To_View (S : VBI) return VBI_View is use BI_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_View (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_View (M); end; end if; end To_View; ---------------------- -- Float components -- ---------------------- package F_Conversions is new Generic_Conversions (C_float, Vfloat_Range, Varray_float, VF, VF_View); function To_Vector (S : VF_View) return VF is use F_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_Vector (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_Vector (M); end; end if; end To_Vector; function To_View (S : VF) return VF_View is use F_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_View (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_View (M); end; end if; end To_View; ---------------------- -- Pixel components -- ---------------------- package P_Conversions is new Generic_Conversions (pixel, Vpixel_Range, Varray_pixel, VP, VP_View); function To_Vector (S : VP_View) return VP is use P_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_Vector (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_Vector (M); end; end if; end To_Vector; function To_View (S : VP) return VP_View is use P_Conversions; begin if Default_Bit_Order = High_Order_First then return UNC_To_View (S); else declare M : Varray; begin Mirror (UNC_To_Varray (S), Into => M); return UNC_To_View (M); end; end if; end To_View; end GNAT.Altivec.Conversions;