URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [gcc-interface/] [utils.c] - Rev 729
Go to most recent revision | Compare with Previous | Blame | View Log
/**************************************************************************** * * * GNAT COMPILER COMPONENTS * * * * U T I L S * * * * C Implementation File * * * * Copyright (C) 1992-2012, Free Software Foundation, Inc. * * * * GNAT is free software; you can redistribute it and/or modify it under * * terms of the GNU General Public License as published by the Free Soft- * * ware Foundation; either version 3, or (at your option) any later ver- * * sion. GNAT is distributed in the hope that it will be useful, but WITH- * * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * * for more details. You should have received a copy of the GNU General * * Public License along with GCC; see the file COPYING3. If not see * * <http://www.gnu.org/licenses/>. * * * * GNAT was originally developed by the GNAT team at New York University. * * Extensive contributions were provided by Ada Core Technologies Inc. * * * ****************************************************************************/ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "flags.h" #include "toplev.h" #include "diagnostic-core.h" #include "output.h" #include "ggc.h" #include "debug.h" #include "convert.h" #include "target.h" #include "common/common-target.h" #include "langhooks.h" #include "cgraph.h" #include "diagnostic.h" #include "tree-dump.h" #include "tree-inline.h" #include "tree-iterator.h" #include "ada.h" #include "types.h" #include "atree.h" #include "elists.h" #include "namet.h" #include "nlists.h" #include "stringt.h" #include "uintp.h" #include "fe.h" #include "sinfo.h" #include "einfo.h" #include "ada-tree.h" #include "gigi.h" #ifndef MAX_BITS_PER_WORD #define MAX_BITS_PER_WORD BITS_PER_WORD #endif /* If nonzero, pretend we are allocating at global level. */ int force_global; /* The default alignment of "double" floating-point types, i.e. floating point types whose size is equal to 64 bits, or 0 if this alignment is not specifically capped. */ int double_float_alignment; /* The default alignment of "double" or larger scalar types, i.e. scalar types whose size is greater or equal to 64 bits, or 0 if this alignment is not specifically capped. */ int double_scalar_alignment; /* Tree nodes for the various types and decls we create. */ tree gnat_std_decls[(int) ADT_LAST]; /* Functions to call for each of the possible raise reasons. */ tree gnat_raise_decls[(int) LAST_REASON_CODE + 1]; /* Likewise, but with extra info for each of the possible raise reasons. */ tree gnat_raise_decls_ext[(int) LAST_REASON_CODE + 1]; /* Forward declarations for handlers of attributes. */ static tree handle_const_attribute (tree *, tree, tree, int, bool *); static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *); static tree handle_pure_attribute (tree *, tree, tree, int, bool *); static tree handle_novops_attribute (tree *, tree, tree, int, bool *); static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *); static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *); static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *); static tree handle_leaf_attribute (tree *, tree, tree, int, bool *); static tree handle_malloc_attribute (tree *, tree, tree, int, bool *); static tree handle_type_generic_attribute (tree *, tree, tree, int, bool *); static tree handle_vector_size_attribute (tree *, tree, tree, int, bool *); static tree handle_vector_type_attribute (tree *, tree, tree, int, bool *); /* Fake handler for attributes we don't properly support, typically because they'd require dragging a lot of the common-c front-end circuitry. */ static tree fake_attribute_handler (tree *, tree, tree, int, bool *); /* Table of machine-independent internal attributes for Ada. We support this minimal set of attributes to accommodate the needs of builtins. */ const struct attribute_spec gnat_internal_attribute_table[] = { /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler, affects_type_identity } */ { "const", 0, 0, true, false, false, handle_const_attribute, false }, { "nothrow", 0, 0, true, false, false, handle_nothrow_attribute, false }, { "pure", 0, 0, true, false, false, handle_pure_attribute, false }, { "no vops", 0, 0, true, false, false, handle_novops_attribute, false }, { "nonnull", 0, -1, false, true, true, handle_nonnull_attribute, false }, { "sentinel", 0, 1, false, true, true, handle_sentinel_attribute, false }, { "noreturn", 0, 0, true, false, false, handle_noreturn_attribute, false }, { "leaf", 0, 0, true, false, false, handle_leaf_attribute, false }, { "malloc", 0, 0, true, false, false, handle_malloc_attribute, false }, { "type generic", 0, 0, false, true, true, handle_type_generic_attribute, false }, { "vector_size", 1, 1, false, true, false, handle_vector_size_attribute, false }, { "vector_type", 0, 0, false, true, false, handle_vector_type_attribute, false }, { "may_alias", 0, 0, false, true, false, NULL, false }, /* ??? format and format_arg are heavy and not supported, which actually prevents support for stdio builtins, which we however declare as part of the common builtins.def contents. */ { "format", 3, 3, false, true, true, fake_attribute_handler, false }, { "format_arg", 1, 1, false, true, true, fake_attribute_handler, false }, { NULL, 0, 0, false, false, false, NULL, false } }; /* Associates a GNAT tree node to a GCC tree node. It is used in `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation of `save_gnu_tree' for more info. */ static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu; #define GET_GNU_TREE(GNAT_ENTITY) \ associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] #define SET_GNU_TREE(GNAT_ENTITY,VAL) \ associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] = (VAL) #define PRESENT_GNU_TREE(GNAT_ENTITY) \ (associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE) /* Associates a GNAT entity to a GCC tree node used as a dummy, if any. */ static GTY((length ("max_gnat_nodes"))) tree *dummy_node_table; #define GET_DUMMY_NODE(GNAT_ENTITY) \ dummy_node_table[(GNAT_ENTITY) - First_Node_Id] #define SET_DUMMY_NODE(GNAT_ENTITY,VAL) \ dummy_node_table[(GNAT_ENTITY) - First_Node_Id] = (VAL) #define PRESENT_DUMMY_NODE(GNAT_ENTITY) \ (dummy_node_table[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE) /* This variable keeps a table for types for each precision so that we only allocate each of them once. Signed and unsigned types are kept separate. Note that these types are only used when fold-const requests something special. Perhaps we should NOT share these types; we'll see how it goes later. */ static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2]; /* Likewise for float types, but record these by mode. */ static GTY(()) tree float_types[NUM_MACHINE_MODES]; /* For each binding contour we allocate a binding_level structure to indicate the binding depth. */ struct GTY((chain_next ("%h.chain"))) gnat_binding_level { /* The binding level containing this one (the enclosing binding level). */ struct gnat_binding_level *chain; /* The BLOCK node for this level. */ tree block; /* If nonzero, the setjmp buffer that needs to be updated for any variable-sized definition within this context. */ tree jmpbuf_decl; }; /* The binding level currently in effect. */ static GTY(()) struct gnat_binding_level *current_binding_level; /* A chain of gnat_binding_level structures awaiting reuse. */ static GTY((deletable)) struct gnat_binding_level *free_binding_level; /* The context to be used for global declarations. */ static GTY(()) tree global_context; /* An array of global declarations. */ static GTY(()) VEC(tree,gc) *global_decls; /* An array of builtin function declarations. */ static GTY(()) VEC(tree,gc) *builtin_decls; /* An array of global renaming pointers. */ static GTY(()) VEC(tree,gc) *global_renaming_pointers; /* A chain of unused BLOCK nodes. */ static GTY((deletable)) tree free_block_chain; static tree merge_sizes (tree, tree, tree, bool, bool); static tree compute_related_constant (tree, tree); static tree split_plus (tree, tree *); static tree float_type_for_precision (int, enum machine_mode); static tree convert_to_fat_pointer (tree, tree); static tree convert_to_thin_pointer (tree, tree); static bool potential_alignment_gap (tree, tree, tree); static void process_attributes (tree, struct attrib *); /* Initialize the association of GNAT nodes to GCC trees. */ void init_gnat_to_gnu (void) { associate_gnat_to_gnu = ggc_alloc_cleared_vec_tree (max_gnat_nodes); } /* GNAT_ENTITY is a GNAT tree node for an entity. Associate GNU_DECL, a GCC tree node, with GNAT_ENTITY. If GNU_DECL is not a ..._DECL node, abort. If NO_CHECK is true, the latter check is suppressed. If GNU_DECL is zero, reset a previous association. */ void save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, bool no_check) { /* Check that GNAT_ENTITY is not already defined and that it is being set to something which is a decl. If that is not the case, this usually means GNAT_ENTITY is defined twice, but occasionally is due to some Gigi problem. */ gcc_assert (!(gnu_decl && (PRESENT_GNU_TREE (gnat_entity) || (!no_check && !DECL_P (gnu_decl))))); SET_GNU_TREE (gnat_entity, gnu_decl); } /* GNAT_ENTITY is a GNAT tree node for an entity. Return the GCC tree node that was associated with it. If there is no such tree node, abort. In some cases, such as delayed elaboration or expressions that need to be elaborated only once, GNAT_ENTITY is really not an entity. */ tree get_gnu_tree (Entity_Id gnat_entity) { gcc_assert (PRESENT_GNU_TREE (gnat_entity)); return GET_GNU_TREE (gnat_entity); } /* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */ bool present_gnu_tree (Entity_Id gnat_entity) { return PRESENT_GNU_TREE (gnat_entity); } /* Initialize the association of GNAT nodes to GCC trees as dummies. */ void init_dummy_type (void) { dummy_node_table = ggc_alloc_cleared_vec_tree (max_gnat_nodes); } /* Make a dummy type corresponding to GNAT_TYPE. */ tree make_dummy_type (Entity_Id gnat_type) { Entity_Id gnat_underlying = Gigi_Equivalent_Type (gnat_type); tree gnu_type; /* If there is an equivalent type, get its underlying type. */ if (Present (gnat_underlying)) gnat_underlying = Gigi_Equivalent_Type (Underlying_Type (gnat_underlying)); /* If there was no equivalent type (can only happen when just annotating types) or underlying type, go back to the original type. */ if (No (gnat_underlying)) gnat_underlying = gnat_type; /* If it there already a dummy type, use that one. Else make one. */ if (PRESENT_DUMMY_NODE (gnat_underlying)) return GET_DUMMY_NODE (gnat_underlying); /* If this is a record, make a RECORD_TYPE or UNION_TYPE; else make an ENUMERAL_TYPE. */ gnu_type = make_node (Is_Record_Type (gnat_underlying) ? tree_code_for_record_type (gnat_underlying) : ENUMERAL_TYPE); TYPE_NAME (gnu_type) = get_entity_name (gnat_type); TYPE_DUMMY_P (gnu_type) = 1; TYPE_STUB_DECL (gnu_type) = create_type_stub_decl (TYPE_NAME (gnu_type), gnu_type); if (Is_By_Reference_Type (gnat_underlying)) TYPE_BY_REFERENCE_P (gnu_type) = 1; SET_DUMMY_NODE (gnat_underlying, gnu_type); return gnu_type; } /* Return the dummy type that was made for GNAT_TYPE, if any. */ tree get_dummy_type (Entity_Id gnat_type) { return GET_DUMMY_NODE (gnat_type); } /* Build dummy fat and thin pointer types whose designated type is specified by GNAT_DESIG_TYPE/GNU_DESIG_TYPE and attach them to the latter. */ void build_dummy_unc_pointer_types (Entity_Id gnat_desig_type, tree gnu_desig_type) { tree gnu_template_type, gnu_ptr_template, gnu_array_type, gnu_ptr_array; tree gnu_fat_type, fields, gnu_object_type; gnu_template_type = make_node (RECORD_TYPE); TYPE_NAME (gnu_template_type) = create_concat_name (gnat_desig_type, "XUB"); TYPE_DUMMY_P (gnu_template_type) = 1; gnu_ptr_template = build_pointer_type (gnu_template_type); gnu_array_type = make_node (ENUMERAL_TYPE); TYPE_NAME (gnu_array_type) = create_concat_name (gnat_desig_type, "XUA"); TYPE_DUMMY_P (gnu_array_type) = 1; gnu_ptr_array = build_pointer_type (gnu_array_type); gnu_fat_type = make_node (RECORD_TYPE); /* Build a stub DECL to trigger the special processing for fat pointer types in gnat_pushdecl. */ TYPE_NAME (gnu_fat_type) = create_type_stub_decl (create_concat_name (gnat_desig_type, "XUP"), gnu_fat_type); fields = create_field_decl (get_identifier ("P_ARRAY"), gnu_ptr_array, gnu_fat_type, NULL_TREE, NULL_TREE, 0, 0); DECL_CHAIN (fields) = create_field_decl (get_identifier ("P_BOUNDS"), gnu_ptr_template, gnu_fat_type, NULL_TREE, NULL_TREE, 0, 0); finish_fat_pointer_type (gnu_fat_type, fields); SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_desig_type); /* Suppress debug info until after the type is completed. */ TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (gnu_fat_type)) = 1; gnu_object_type = make_node (RECORD_TYPE); TYPE_NAME (gnu_object_type) = create_concat_name (gnat_desig_type, "XUT"); TYPE_DUMMY_P (gnu_object_type) = 1; TYPE_POINTER_TO (gnu_desig_type) = gnu_fat_type; TYPE_OBJECT_RECORD_TYPE (gnu_desig_type) = gnu_object_type; } /* Return true if we are in the global binding level. */ bool global_bindings_p (void) { return force_global || current_function_decl == NULL_TREE; } /* Enter a new binding level. */ void gnat_pushlevel (void) { struct gnat_binding_level *newlevel = NULL; /* Reuse a struct for this binding level, if there is one. */ if (free_binding_level) { newlevel = free_binding_level; free_binding_level = free_binding_level->chain; } else newlevel = ggc_alloc_gnat_binding_level (); /* Use a free BLOCK, if any; otherwise, allocate one. */ if (free_block_chain) { newlevel->block = free_block_chain; free_block_chain = BLOCK_CHAIN (free_block_chain); BLOCK_CHAIN (newlevel->block) = NULL_TREE; } else newlevel->block = make_node (BLOCK); /* Point the BLOCK we just made to its parent. */ if (current_binding_level) BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block; BLOCK_VARS (newlevel->block) = NULL_TREE; BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE; TREE_USED (newlevel->block) = 1; /* Add this level to the front of the chain (stack) of active levels. */ newlevel->chain = current_binding_level; newlevel->jmpbuf_decl = NULL_TREE; current_binding_level = newlevel; } /* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL and point FNDECL to this BLOCK. */ void set_current_block_context (tree fndecl) { BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl; DECL_INITIAL (fndecl) = current_binding_level->block; set_block_for_group (current_binding_level->block); } /* Set the jmpbuf_decl for the current binding level to DECL. */ void set_block_jmpbuf_decl (tree decl) { current_binding_level->jmpbuf_decl = decl; } /* Get the jmpbuf_decl, if any, for the current binding level. */ tree get_block_jmpbuf_decl (void) { return current_binding_level->jmpbuf_decl; } /* Exit a binding level. Set any BLOCK into the current code group. */ void gnat_poplevel (void) { struct gnat_binding_level *level = current_binding_level; tree block = level->block; BLOCK_VARS (block) = nreverse (BLOCK_VARS (block)); BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block)); /* If this is a function-level BLOCK don't do anything. Otherwise, if there are no variables free the block and merge its subblocks into those of its parent block. Otherwise, add it to the list of its parent. */ if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL) ; else if (BLOCK_VARS (block) == NULL_TREE) { BLOCK_SUBBLOCKS (level->chain->block) = block_chainon (BLOCK_SUBBLOCKS (block), BLOCK_SUBBLOCKS (level->chain->block)); BLOCK_CHAIN (block) = free_block_chain; free_block_chain = block; } else { BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block); BLOCK_SUBBLOCKS (level->chain->block) = block; TREE_USED (block) = 1; set_block_for_group (block); } /* Free this binding structure. */ current_binding_level = level->chain; level->chain = free_binding_level; free_binding_level = level; } /* Exit a binding level and discard the associated BLOCK. */ void gnat_zaplevel (void) { struct gnat_binding_level *level = current_binding_level; tree block = level->block; BLOCK_CHAIN (block) = free_block_chain; free_block_chain = block; /* Free this binding structure. */ current_binding_level = level->chain; level->chain = free_binding_level; free_binding_level = level; } /* Record DECL as belonging to the current lexical scope and use GNAT_NODE for location information and flag propagation. */ void gnat_pushdecl (tree decl, Node_Id gnat_node) { /* If DECL is public external or at top level, it has global context. */ if ((TREE_PUBLIC (decl) && DECL_EXTERNAL (decl)) || global_bindings_p ()) { if (!global_context) global_context = build_translation_unit_decl (NULL_TREE); DECL_CONTEXT (decl) = global_context; } else { DECL_CONTEXT (decl) = current_function_decl; /* Functions imported in another function are not really nested. For really nested functions mark them initially as needing a static chain for uses of that flag before unnesting; lower_nested_functions will then recompute it. */ if (TREE_CODE (decl) == FUNCTION_DECL && !TREE_PUBLIC (decl)) DECL_STATIC_CHAIN (decl) = 1; } TREE_NO_WARNING (decl) = (No (gnat_node) || Warnings_Off (gnat_node)); /* Set the location of DECL and emit a declaration for it. */ if (Present (gnat_node)) Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl)); add_decl_expr (decl, gnat_node); /* Put the declaration on the list. The list of declarations is in reverse order. The list will be reversed later. Put global declarations in the globals list and local ones in the current block. But skip TYPE_DECLs for UNCONSTRAINED_ARRAY_TYPE in both cases, as they will cause trouble with the debugger and aren't needed anyway. */ if (!(TREE_CODE (decl) == TYPE_DECL && TREE_CODE (TREE_TYPE (decl)) == UNCONSTRAINED_ARRAY_TYPE)) { if (global_bindings_p ()) { VEC_safe_push (tree, gc, global_decls, decl); if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl)) VEC_safe_push (tree, gc, builtin_decls, decl); } else if (!DECL_EXTERNAL (decl)) { DECL_CHAIN (decl) = BLOCK_VARS (current_binding_level->block); BLOCK_VARS (current_binding_level->block) = decl; } } /* For the declaration of a type, set its name if it either is not already set or if the previous type name was not derived from a source name. We'd rather have the type named with a real name and all the pointer types to the same object have the same POINTER_TYPE node. Code in the equivalent function of c-decl.c makes a copy of the type node here, but that may cause us trouble with incomplete types. We make an exception for fat pointer types because the compiler automatically builds them for unconstrained array types and the debugger uses them to represent both these and pointers to these. */ if (TREE_CODE (decl) == TYPE_DECL && DECL_NAME (decl)) { tree t = TREE_TYPE (decl); if (!(TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)) { /* Array and pointer types aren't "tagged" types so we force the type to be associated with its typedef in the DWARF back-end, in order to make sure that the latter is always preserved. */ if (!DECL_ARTIFICIAL (decl) && (TREE_CODE (t) == ARRAY_TYPE || TREE_CODE (t) == POINTER_TYPE)) { tree tt = build_distinct_type_copy (t); if (TREE_CODE (t) == POINTER_TYPE) TYPE_NEXT_PTR_TO (t) = tt; TYPE_NAME (tt) = DECL_NAME (decl); TYPE_STUB_DECL (tt) = TYPE_STUB_DECL (t); DECL_ORIGINAL_TYPE (decl) = tt; } } else if (TYPE_IS_FAT_POINTER_P (t)) { /* We need a variant for the placeholder machinery to work. */ tree tt = build_variant_type_copy (t); TYPE_NAME (tt) = decl; TREE_USED (tt) = TREE_USED (t); TREE_TYPE (decl) = tt; if (DECL_ORIGINAL_TYPE (TYPE_NAME (t))) DECL_ORIGINAL_TYPE (decl) = DECL_ORIGINAL_TYPE (TYPE_NAME (t)); else DECL_ORIGINAL_TYPE (decl) = t; DECL_ARTIFICIAL (decl) = 0; t = NULL_TREE; } else if (DECL_ARTIFICIAL (TYPE_NAME (t)) && !DECL_ARTIFICIAL (decl)) ; else t = NULL_TREE; /* Propagate the name to all the anonymous variants. This is needed for the type qualifiers machinery to work properly. */ if (t) for (t = TYPE_MAIN_VARIANT (t); t; t = TYPE_NEXT_VARIANT (t)) if (!(TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)) TYPE_NAME (t) = decl; } } /* Record TYPE as a builtin type for Ada. NAME is the name of the type. ARTIFICIAL_P is true if it's a type that was generated by the compiler. */ void record_builtin_type (const char *name, tree type, bool artificial_p) { tree type_decl = build_decl (input_location, TYPE_DECL, get_identifier (name), type); DECL_ARTIFICIAL (type_decl) = artificial_p; TYPE_ARTIFICIAL (type) = artificial_p; gnat_pushdecl (type_decl, Empty); if (debug_hooks->type_decl) debug_hooks->type_decl (type_decl, false); } /* Given a record type RECORD_TYPE and a list of FIELD_DECL nodes FIELD_LIST, finish constructing the record type as a fat pointer type. */ void finish_fat_pointer_type (tree record_type, tree field_list) { /* Make sure we can put it into a register. */ TYPE_ALIGN (record_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE); /* Show what it really is. */ TYPE_FAT_POINTER_P (record_type) = 1; /* Do not emit debug info for it since the types of its fields may still be incomplete at this point. */ finish_record_type (record_type, field_list, 0, false); /* Force type_contains_placeholder_p to return true on it. Although the PLACEHOLDER_EXPRs are referenced only indirectly, this isn't a pointer type but the representation of the unconstrained array. */ TYPE_CONTAINS_PLACEHOLDER_INTERNAL (record_type) = 2; } /* Given a record type RECORD_TYPE and a list of FIELD_DECL nodes FIELD_LIST, finish constructing the record or union type. If REP_LEVEL is zero, this record has no representation clause and so will be entirely laid out here. If REP_LEVEL is one, this record has a representation clause and has been laid out already; only set the sizes and alignment. If REP_LEVEL is two, this record is derived from a parent record and thus inherits its layout; only make a pass on the fields to finalize them. DEBUG_INFO_P is true if we need to write debug information about this type. */ void finish_record_type (tree record_type, tree field_list, int rep_level, bool debug_info_p) { enum tree_code code = TREE_CODE (record_type); tree name = TYPE_NAME (record_type); tree ada_size = bitsize_zero_node; tree size = bitsize_zero_node; bool had_size = TYPE_SIZE (record_type) != 0; bool had_size_unit = TYPE_SIZE_UNIT (record_type) != 0; bool had_align = TYPE_ALIGN (record_type) != 0; tree field; TYPE_FIELDS (record_type) = field_list; /* Always attach the TYPE_STUB_DECL for a record type. It is required to generate debug info and have a parallel type. */ if (name && TREE_CODE (name) == TYPE_DECL) name = DECL_NAME (name); TYPE_STUB_DECL (record_type) = create_type_stub_decl (name, record_type); /* Globally initialize the record first. If this is a rep'ed record, that just means some initializations; otherwise, layout the record. */ if (rep_level > 0) { TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type)); if (!had_size_unit) TYPE_SIZE_UNIT (record_type) = size_zero_node; if (!had_size) TYPE_SIZE (record_type) = bitsize_zero_node; /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE out just like a UNION_TYPE, since the size will be fixed. */ else if (code == QUAL_UNION_TYPE) code = UNION_TYPE; } else { /* Ensure there isn't a size already set. There can be in an error case where there is a rep clause but all fields have errors and no longer have a position. */ TYPE_SIZE (record_type) = 0; layout_type (record_type); } /* At this point, the position and size of each field is known. It was either set before entry by a rep clause, or by laying out the type above. We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs) to compute the Ada size; the GCC size and alignment (for rep'ed records that are not padding types); and the mode (for rep'ed records). We also clear the DECL_BIT_FIELD indication for the cases we know have not been handled yet, and adjust DECL_NONADDRESSABLE_P accordingly. */ if (code == QUAL_UNION_TYPE) field_list = nreverse (field_list); for (field = field_list; field; field = DECL_CHAIN (field)) { tree type = TREE_TYPE (field); tree pos = bit_position (field); tree this_size = DECL_SIZE (field); tree this_ada_size; if (RECORD_OR_UNION_TYPE_P (type) && !TYPE_FAT_POINTER_P (type) && !TYPE_CONTAINS_TEMPLATE_P (type) && TYPE_ADA_SIZE (type)) this_ada_size = TYPE_ADA_SIZE (type); else this_ada_size = this_size; /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle. */ if (DECL_BIT_FIELD (field) && operand_equal_p (this_size, TYPE_SIZE (type), 0)) { unsigned int align = TYPE_ALIGN (type); /* In the general case, type alignment is required. */ if (value_factor_p (pos, align)) { /* The enclosing record type must be sufficiently aligned. Otherwise, if no alignment was specified for it and it has been laid out already, bump its alignment to the desired one if this is compatible with its size. */ if (TYPE_ALIGN (record_type) >= align) { DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align); DECL_BIT_FIELD (field) = 0; } else if (!had_align && rep_level == 0 && value_factor_p (TYPE_SIZE (record_type), align)) { TYPE_ALIGN (record_type) = align; DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align); DECL_BIT_FIELD (field) = 0; } } /* In the non-strict alignment case, only byte alignment is. */ if (!STRICT_ALIGNMENT && DECL_BIT_FIELD (field) && value_factor_p (pos, BITS_PER_UNIT)) DECL_BIT_FIELD (field) = 0; } /* If we still have DECL_BIT_FIELD set at this point, we know that the field is technically not addressable. Except that it can actually be addressed if it is BLKmode and happens to be properly aligned. */ if (DECL_BIT_FIELD (field) && !(DECL_MODE (field) == BLKmode && value_factor_p (pos, BITS_PER_UNIT))) DECL_NONADDRESSABLE_P (field) = 1; /* A type must be as aligned as its most aligned field that is not a bit-field. But this is already enforced by layout_type. */ if (rep_level > 0 && !DECL_BIT_FIELD (field)) TYPE_ALIGN (record_type) = MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field)); switch (code) { case UNION_TYPE: ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size); size = size_binop (MAX_EXPR, size, this_size); break; case QUAL_UNION_TYPE: ada_size = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field), this_ada_size, ada_size); size = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field), this_size, size); break; case RECORD_TYPE: /* Since we know here that all fields are sorted in order of increasing bit position, the size of the record is one higher than the ending bit of the last field processed unless we have a rep clause, since in that case we might have a field outside a QUAL_UNION_TYPE that has a higher ending position. So use a MAX in that case. Also, if this field is a QUAL_UNION_TYPE, we need to take into account the previous size in the case of empty variants. */ ada_size = merge_sizes (ada_size, pos, this_ada_size, TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0); size = merge_sizes (size, pos, this_size, TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0); break; default: gcc_unreachable (); } } if (code == QUAL_UNION_TYPE) nreverse (field_list); if (rep_level < 2) { /* If this is a padding record, we never want to make the size smaller than what was specified in it, if any. */ if (TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type)) size = TYPE_SIZE (record_type); /* Now set any of the values we've just computed that apply. */ if (!TYPE_FAT_POINTER_P (record_type) && !TYPE_CONTAINS_TEMPLATE_P (record_type)) SET_TYPE_ADA_SIZE (record_type, ada_size); if (rep_level > 0) { tree size_unit = had_size_unit ? TYPE_SIZE_UNIT (record_type) : convert (sizetype, size_binop (CEIL_DIV_EXPR, size, bitsize_unit_node)); unsigned int align = TYPE_ALIGN (record_type); TYPE_SIZE (record_type) = variable_size (round_up (size, align)); TYPE_SIZE_UNIT (record_type) = variable_size (round_up (size_unit, align / BITS_PER_UNIT)); compute_record_mode (record_type); } } if (debug_info_p) rest_of_record_type_compilation (record_type); } /* Wrap up compilation of RECORD_TYPE, i.e. output all the debug information associated with it. It need not be invoked directly in most cases since finish_record_type takes care of doing so, but this can be necessary if a parallel type is to be attached to the record type. */ void rest_of_record_type_compilation (tree record_type) { tree field_list = TYPE_FIELDS (record_type); tree field; enum tree_code code = TREE_CODE (record_type); bool var_size = false; for (field = field_list; field; field = DECL_CHAIN (field)) { /* We need to make an XVE/XVU record if any field has variable size, whether or not the record does. For example, if we have a union, it may be that all fields, rounded up to the alignment, have the same size, in which case we'll use that size. But the debug output routines (except Dwarf2) won't be able to output the fields, so we need to make the special record. */ if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST /* If a field has a non-constant qualifier, the record will have variable size too. */ || (code == QUAL_UNION_TYPE && TREE_CODE (DECL_QUALIFIER (field)) != INTEGER_CST)) { var_size = true; break; } } /* If this record is of variable size, rename it so that the debugger knows it is and make a new, parallel, record that tells the debugger how the record is laid out. See exp_dbug.ads. But don't do this for records that are padding since they confuse GDB. */ if (var_size && !TYPE_IS_PADDING_P (record_type)) { tree new_record_type = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE ? UNION_TYPE : TREE_CODE (record_type)); tree orig_name = TYPE_NAME (record_type), new_name; tree last_pos = bitsize_zero_node; tree old_field, prev_old_field = NULL_TREE; if (TREE_CODE (orig_name) == TYPE_DECL) orig_name = DECL_NAME (orig_name); new_name = concat_name (orig_name, TREE_CODE (record_type) == QUAL_UNION_TYPE ? "XVU" : "XVE"); TYPE_NAME (new_record_type) = new_name; TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT; TYPE_STUB_DECL (new_record_type) = create_type_stub_decl (new_name, new_record_type); DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type)) = DECL_IGNORED_P (TYPE_STUB_DECL (record_type)); TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type)); TYPE_SIZE_UNIT (new_record_type) = size_int (TYPE_ALIGN (record_type) / BITS_PER_UNIT); /* Now scan all the fields, replacing each field with a new field corresponding to the new encoding. */ for (old_field = TYPE_FIELDS (record_type); old_field; old_field = DECL_CHAIN (old_field)) { tree field_type = TREE_TYPE (old_field); tree field_name = DECL_NAME (old_field); tree new_field; tree curpos = bit_position (old_field); bool var = false; unsigned int align = 0; tree pos; /* See how the position was modified from the last position. There are two basic cases we support: a value was added to the last position or the last position was rounded to a boundary and they something was added. Check for the first case first. If not, see if there is any evidence of rounding. If so, round the last position and try again. If this is a union, the position can be taken as zero. */ /* Some computations depend on the shape of the position expression, so strip conversions to make sure it's exposed. */ curpos = remove_conversions (curpos, true); if (TREE_CODE (new_record_type) == UNION_TYPE) pos = bitsize_zero_node, align = 0; else pos = compute_related_constant (curpos, last_pos); if (!pos && TREE_CODE (curpos) == MULT_EXPR && host_integerp (TREE_OPERAND (curpos, 1), 1)) { tree offset = TREE_OPERAND (curpos, 0); align = tree_low_cst (TREE_OPERAND (curpos, 1), 1); /* An offset which is a bitwise AND with a negative power of 2 means an alignment corresponding to this power of 2. Note that, as sizetype is sign-extended but nonetheless unsigned, we don't directly use tree_int_cst_sgn. */ offset = remove_conversions (offset, true); if (TREE_CODE (offset) == BIT_AND_EXPR && host_integerp (TREE_OPERAND (offset, 1), 0) && TREE_INT_CST_HIGH (TREE_OPERAND (offset, 1)) < 0) { unsigned int pow = - tree_low_cst (TREE_OPERAND (offset, 1), 0); if (exact_log2 (pow) > 0) align *= pow; } pos = compute_related_constant (curpos, round_up (last_pos, align)); } else if (!pos && TREE_CODE (curpos) == PLUS_EXPR && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR && host_integerp (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1)) { align = tree_low_cst (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1); pos = compute_related_constant (curpos, round_up (last_pos, align)); } else if (potential_alignment_gap (prev_old_field, old_field, pos)) { align = TYPE_ALIGN (field_type); pos = compute_related_constant (curpos, round_up (last_pos, align)); } /* If we can't compute a position, set it to zero. ??? We really should abort here, but it's too much work to get this correct for all cases. */ if (!pos) pos = bitsize_zero_node; /* See if this type is variable-sized and make a pointer type and indicate the indirection if so. Beware that the debug back-end may adjust the position computed above according to the alignment of the field type, i.e. the pointer type in this case, if we don't preventively counter that. */ if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST) { field_type = build_pointer_type (field_type); if (align != 0 && TYPE_ALIGN (field_type) > align) { field_type = copy_node (field_type); TYPE_ALIGN (field_type) = align; } var = true; } /* Make a new field name, if necessary. */ if (var || align != 0) { char suffix[16]; if (align != 0) sprintf (suffix, "XV%c%u", var ? 'L' : 'A', align / BITS_PER_UNIT); else strcpy (suffix, "XVL"); field_name = concat_name (field_name, suffix); } new_field = create_field_decl (field_name, field_type, new_record_type, DECL_SIZE (old_field), pos, 0, 0); DECL_CHAIN (new_field) = TYPE_FIELDS (new_record_type); TYPE_FIELDS (new_record_type) = new_field; /* If old_field is a QUAL_UNION_TYPE, take its size as being zero. The only time it's not the last field of the record is when there are other components at fixed positions after it (meaning there was a rep clause for every field) and we want to be able to encode them. */ last_pos = size_binop (PLUS_EXPR, bit_position (old_field), (TREE_CODE (TREE_TYPE (old_field)) == QUAL_UNION_TYPE) ? bitsize_zero_node : DECL_SIZE (old_field)); prev_old_field = old_field; } TYPE_FIELDS (new_record_type) = nreverse (TYPE_FIELDS (new_record_type)); /* We used to explicitly invoke rest_of_type_decl_compilation on the parallel type for the sake of STABS. We don't do it any more, so as to ensure that the parallel type be processed after the type by the debug back-end and, thus, prevent it from interfering with the processing of a recursive type. */ add_parallel_type (TYPE_STUB_DECL (record_type), new_record_type); } rest_of_type_decl_compilation (TYPE_STUB_DECL (record_type)); } /* Append PARALLEL_TYPE on the chain of parallel types for decl. */ void add_parallel_type (tree decl, tree parallel_type) { tree d = decl; while (DECL_PARALLEL_TYPE (d)) d = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (d)); SET_DECL_PARALLEL_TYPE (d, parallel_type); } /* Utility function of above to merge LAST_SIZE, the previous size of a record with FIRST_BIT and SIZE that describe a field. SPECIAL is true if this represents a QUAL_UNION_TYPE in which case we must look for COND_EXPRs and replace a value of zero with the old size. If HAS_REP is true, we take the MAX of the end position of this field with LAST_SIZE. In all other cases, we use FIRST_BIT plus SIZE. Return an expression for the size. */ static tree merge_sizes (tree last_size, tree first_bit, tree size, bool special, bool has_rep) { tree type = TREE_TYPE (last_size); tree new_size; if (!special || TREE_CODE (size) != COND_EXPR) { new_size = size_binop (PLUS_EXPR, first_bit, size); if (has_rep) new_size = size_binop (MAX_EXPR, last_size, new_size); } else new_size = fold_build3 (COND_EXPR, type, TREE_OPERAND (size, 0), integer_zerop (TREE_OPERAND (size, 1)) ? last_size : merge_sizes (last_size, first_bit, TREE_OPERAND (size, 1), 1, has_rep), integer_zerop (TREE_OPERAND (size, 2)) ? last_size : merge_sizes (last_size, first_bit, TREE_OPERAND (size, 2), 1, has_rep)); /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially when fed through substitute_in_expr) into thinking that a constant size is not constant. */ while (TREE_CODE (new_size) == NON_LVALUE_EXPR) new_size = TREE_OPERAND (new_size, 0); return new_size; } /* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are related by the addition of a constant. Return that constant if so. */ static tree compute_related_constant (tree op0, tree op1) { tree op0_var, op1_var; tree op0_con = split_plus (op0, &op0_var); tree op1_con = split_plus (op1, &op1_var); tree result = size_binop (MINUS_EXPR, op0_con, op1_con); if (operand_equal_p (op0_var, op1_var, 0)) return result; else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0)) return result; else return 0; } /* Utility function of above to split a tree OP which may be a sum, into a constant part, which is returned, and a variable part, which is stored in *PVAR. *PVAR may be bitsize_zero_node. All operations must be of bitsizetype. */ static tree split_plus (tree in, tree *pvar) { /* Strip conversions in order to ease the tree traversal and maximize the potential for constant or plus/minus discovery. We need to be careful to always return and set *pvar to bitsizetype trees, but it's worth the effort. */ in = remove_conversions (in, false); *pvar = convert (bitsizetype, in); if (TREE_CODE (in) == INTEGER_CST) { *pvar = bitsize_zero_node; return convert (bitsizetype, in); } else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR) { tree lhs_var, rhs_var; tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var); tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var); if (lhs_var == TREE_OPERAND (in, 0) && rhs_var == TREE_OPERAND (in, 1)) return bitsize_zero_node; *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var); return size_binop (TREE_CODE (in), lhs_con, rhs_con); } else return bitsize_zero_node; } /* Return a FUNCTION_TYPE node. RETURN_TYPE is the type returned by the subprogram. If it is VOID_TYPE, then we are dealing with a procedure, otherwise we are dealing with a function. PARAM_DECL_LIST is a list of PARM_DECL nodes that are the subprogram parameters. CICO_LIST is the copy-in/copy-out list to be stored into the TYPE_CICO_LIST field. RETURN_UNCONSTRAINED_P is true if the function returns an unconstrained object. RETURN_BY_DIRECT_REF_P is true if the function returns by direct reference. RETURN_BY_INVISI_REF_P is true if the function returns by invisible reference. */ tree create_subprog_type (tree return_type, tree param_decl_list, tree cico_list, bool return_unconstrained_p, bool return_by_direct_ref_p, bool return_by_invisi_ref_p) { /* A list of the data type nodes of the subprogram formal parameters. This list is generated by traversing the input list of PARM_DECL nodes. */ VEC(tree,gc) *param_type_list = NULL; tree t, type; for (t = param_decl_list; t; t = DECL_CHAIN (t)) VEC_safe_push (tree, gc, param_type_list, TREE_TYPE (t)); type = build_function_type_vec (return_type, param_type_list); /* TYPE may have been shared since GCC hashes types. If it has a different CICO_LIST, make a copy. Likewise for the various flags. */ if (!fntype_same_flags_p (type, cico_list, return_unconstrained_p, return_by_direct_ref_p, return_by_invisi_ref_p)) { type = copy_type (type); TYPE_CI_CO_LIST (type) = cico_list; TYPE_RETURN_UNCONSTRAINED_P (type) = return_unconstrained_p; TYPE_RETURN_BY_DIRECT_REF_P (type) = return_by_direct_ref_p; TREE_ADDRESSABLE (type) = return_by_invisi_ref_p; } return type; } /* Return a copy of TYPE but safe to modify in any way. */ tree copy_type (tree type) { tree new_type = copy_node (type); /* Unshare the language-specific data. */ if (TYPE_LANG_SPECIFIC (type)) { TYPE_LANG_SPECIFIC (new_type) = NULL; SET_TYPE_LANG_SPECIFIC (new_type, GET_TYPE_LANG_SPECIFIC (type)); } /* And the contents of the language-specific slot if needed. */ if ((INTEGRAL_TYPE_P (type) || TREE_CODE (type) == REAL_TYPE) && TYPE_RM_VALUES (type)) { TYPE_RM_VALUES (new_type) = NULL_TREE; SET_TYPE_RM_SIZE (new_type, TYPE_RM_SIZE (type)); SET_TYPE_RM_MIN_VALUE (new_type, TYPE_RM_MIN_VALUE (type)); SET_TYPE_RM_MAX_VALUE (new_type, TYPE_RM_MAX_VALUE (type)); } /* copy_node clears this field instead of copying it, because it is aliased with TREE_CHAIN. */ TYPE_STUB_DECL (new_type) = TYPE_STUB_DECL (type); TYPE_POINTER_TO (new_type) = 0; TYPE_REFERENCE_TO (new_type) = 0; TYPE_MAIN_VARIANT (new_type) = new_type; TYPE_NEXT_VARIANT (new_type) = 0; return new_type; } /* Return a subtype of sizetype with range MIN to MAX and whose TYPE_INDEX_TYPE is INDEX. GNAT_NODE is used for the position of the associated TYPE_DECL. */ tree create_index_type (tree min, tree max, tree index, Node_Id gnat_node) { /* First build a type for the desired range. */ tree type = build_nonshared_range_type (sizetype, min, max); /* Then set the index type. */ SET_TYPE_INDEX_TYPE (type, index); create_type_decl (NULL_TREE, type, NULL, true, false, gnat_node); return type; } /* Return a subtype of TYPE with range MIN to MAX. If TYPE is NULL, sizetype is used. */ tree create_range_type (tree type, tree min, tree max) { tree range_type; if (type == NULL_TREE) type = sizetype; /* First build a type with the base range. */ range_type = build_nonshared_range_type (type, TYPE_MIN_VALUE (type), TYPE_MAX_VALUE (type)); /* Then set the actual range. */ SET_TYPE_RM_MIN_VALUE (range_type, convert (type, min)); SET_TYPE_RM_MAX_VALUE (range_type, convert (type, max)); return range_type; } /* Return a TYPE_DECL node suitable for the TYPE_STUB_DECL field of a type. TYPE_NAME gives the name of the type and TYPE is a ..._TYPE node giving its data type. */ tree create_type_stub_decl (tree type_name, tree type) { /* Using a named TYPE_DECL ensures that a type name marker is emitted in STABS while setting DECL_ARTIFICIAL ensures that no DW_TAG_typedef is emitted in DWARF. */ tree type_decl = build_decl (input_location, TYPE_DECL, type_name, type); DECL_ARTIFICIAL (type_decl) = 1; TYPE_ARTIFICIAL (type) = 1; return type_decl; } /* Return a TYPE_DECL node. TYPE_NAME gives the name of the type and TYPE is a ..._TYPE node giving its data type. ARTIFICIAL_P is true if this is a declaration that was generated by the compiler. DEBUG_INFO_P is true if we need to write debug information about this type. GNAT_NODE is used for the position of the decl. */ tree create_type_decl (tree type_name, tree type, struct attrib *attr_list, bool artificial_p, bool debug_info_p, Node_Id gnat_node) { enum tree_code code = TREE_CODE (type); bool named = TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL; tree type_decl; /* Only the builtin TYPE_STUB_DECL should be used for dummy types. */ gcc_assert (!TYPE_IS_DUMMY_P (type)); /* If the type hasn't been named yet, we're naming it; preserve an existing TYPE_STUB_DECL that has been attached to it for some purpose. */ if (!named && TYPE_STUB_DECL (type)) { type_decl = TYPE_STUB_DECL (type); DECL_NAME (type_decl) = type_name; } else type_decl = build_decl (input_location, TYPE_DECL, type_name, type); DECL_ARTIFICIAL (type_decl) = artificial_p; TYPE_ARTIFICIAL (type) = artificial_p; /* Add this decl to the current binding level. */ gnat_pushdecl (type_decl, gnat_node); process_attributes (type_decl, attr_list); /* If we're naming the type, equate the TYPE_STUB_DECL to the name. This causes the name to be also viewed as a "tag" by the debug back-end, with the advantage that no DW_TAG_typedef is emitted for artificial "tagged" types in DWARF. */ if (!named) TYPE_STUB_DECL (type) = type_decl; /* Pass the type declaration to the debug back-end unless this is an UNCONSTRAINED_ARRAY_TYPE that the back-end does not support, or a type for which debugging information was not requested, or else an ENUMERAL_TYPE or RECORD_TYPE (except for fat pointers) which are handled separately. And do not pass dummy types either. */ if (code == UNCONSTRAINED_ARRAY_TYPE || !debug_info_p) DECL_IGNORED_P (type_decl) = 1; else if (code != ENUMERAL_TYPE && (code != RECORD_TYPE || TYPE_FAT_POINTER_P (type)) && !((code == POINTER_TYPE || code == REFERENCE_TYPE) && TYPE_IS_DUMMY_P (TREE_TYPE (type))) && !(code == RECORD_TYPE && TYPE_IS_DUMMY_P (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (type)))))) rest_of_type_decl_compilation (type_decl); return type_decl; } /* Return a VAR_DECL or CONST_DECL node. VAR_NAME gives the name of the variable. ASM_NAME is its assembler name (if provided). TYPE is its data type (a GCC ..._TYPE node). VAR_INIT is the GCC tree for an optional initial expression; NULL_TREE if none. CONST_FLAG is true if this variable is constant, in which case we might return a CONST_DECL node unless CONST_DECL_ALLOWED_P is false. PUBLIC_FLAG is true if this is for a reference to a public entity or for a definition to be made visible outside of the current compilation unit, for instance variable definitions in a package specification. EXTERN_FLAG is true when processing an external variable declaration (as opposed to a definition: no storage is to be allocated for the variable). STATIC_FLAG is only relevant when not at top level. In that case it indicates whether to always allocate storage to the variable. GNAT_NODE is used for the position of the decl. */ tree create_var_decl_1 (tree var_name, tree asm_name, tree type, tree var_init, bool const_flag, bool public_flag, bool extern_flag, bool static_flag, bool const_decl_allowed_p, struct attrib *attr_list, Node_Id gnat_node) { /* Whether the initializer is a constant initializer. At the global level or for an external object or an object to be allocated in static memory, we check that it is a valid constant expression for use in initializing a static variable; otherwise, we only check that it is constant. */ bool init_const = (var_init != 0 && gnat_types_compatible_p (type, TREE_TYPE (var_init)) && (global_bindings_p () || extern_flag || static_flag ? initializer_constant_valid_p (var_init, TREE_TYPE (var_init)) != 0 : TREE_CONSTANT (var_init))); /* Whether we will make TREE_CONSTANT the DECL we produce here, in which case the initializer may be used in-lieu of the DECL node (as done in Identifier_to_gnu). This is useful to prevent the need of elaboration code when an identifier for which such a decl is made is in turn used as an initializer. We used to rely on CONST vs VAR_DECL for this purpose, but extra constraints apply to this choice (see below) and are not relevant to the distinction we wish to make. */ bool constant_p = const_flag && init_const; /* The actual DECL node. CONST_DECL was initially intended for enumerals and may be used for scalars in general but not for aggregates. */ tree var_decl = build_decl (input_location, (constant_p && const_decl_allowed_p && !AGGREGATE_TYPE_P (type)) ? CONST_DECL : VAR_DECL, var_name, type); /* If this is external, throw away any initializations (they will be done elsewhere) unless this is a constant for which we would like to remain able to get the initializer. If we are defining a global here, leave a constant initialization and save any variable elaborations for the elaboration routine. If we are just annotating types, throw away the initialization if it isn't a constant. */ if ((extern_flag && !constant_p) || (type_annotate_only && var_init && !TREE_CONSTANT (var_init))) var_init = NULL_TREE; /* At the global level, an initializer requiring code to be generated produces elaboration statements. Check that such statements are allowed, that is, not violating a No_Elaboration_Code restriction. */ if (global_bindings_p () && var_init != 0 && !init_const) Check_Elaboration_Code_Allowed (gnat_node); DECL_INITIAL (var_decl) = var_init; TREE_READONLY (var_decl) = const_flag; DECL_EXTERNAL (var_decl) = extern_flag; TREE_PUBLIC (var_decl) = public_flag || extern_flag; TREE_CONSTANT (var_decl) = constant_p; TREE_THIS_VOLATILE (var_decl) = TREE_SIDE_EFFECTS (var_decl) = TYPE_VOLATILE (type); /* Ada doesn't feature Fortran-like COMMON variables so we shouldn't try to fiddle with DECL_COMMON. However, on platforms that don't support global BSS sections, uninitialized global variables would go in DATA instead, thus increasing the size of the executable. */ if (!flag_no_common && TREE_CODE (var_decl) == VAR_DECL && TREE_PUBLIC (var_decl) && !have_global_bss_p ()) DECL_COMMON (var_decl) = 1; /* At the global binding level, we need to allocate static storage for the variable if it isn't external. Otherwise, we allocate automatic storage unless requested not to. */ TREE_STATIC (var_decl) = !extern_flag && (static_flag || global_bindings_p ()); /* For an external constant whose initializer is not absolute, do not emit debug info. In DWARF this would mean a global relocation in a read-only section which runs afoul of the PE-COFF run-time relocation mechanism. */ if (extern_flag && constant_p && var_init && initializer_constant_valid_p (var_init, TREE_TYPE (var_init)) != null_pointer_node) DECL_IGNORED_P (var_decl) = 1; /* Add this decl to the current binding level. */ gnat_pushdecl (var_decl, gnat_node); if (TREE_SIDE_EFFECTS (var_decl)) TREE_ADDRESSABLE (var_decl) = 1; if (TREE_CODE (var_decl) == VAR_DECL) { if (asm_name) SET_DECL_ASSEMBLER_NAME (var_decl, asm_name); process_attributes (var_decl, attr_list); if (global_bindings_p ()) rest_of_decl_compilation (var_decl, true, 0); } else expand_decl (var_decl); return var_decl; } /* Return true if TYPE, an aggregate type, contains (or is) an array. */ static bool aggregate_type_contains_array_p (tree type) { switch (TREE_CODE (type)) { case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { tree field; for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) if (AGGREGATE_TYPE_P (TREE_TYPE (field)) && aggregate_type_contains_array_p (TREE_TYPE (field))) return true; return false; } case ARRAY_TYPE: return true; default: gcc_unreachable (); } } /* Return a FIELD_DECL node. FIELD_NAME is the field's name, FIELD_TYPE is its type and RECORD_TYPE is the type of the enclosing record. If SIZE is nonzero, it is the specified size of the field. If POS is nonzero, it is the bit position. PACKED is 1 if the enclosing record is packed, -1 if it has Component_Alignment of Storage_Unit. If ADDRESSABLE is nonzero, it means we are allowed to take the address of the field; if it is negative, we should not make a bitfield, which is used by make_aligning_type. */ tree create_field_decl (tree field_name, tree field_type, tree record_type, tree size, tree pos, int packed, int addressable) { tree field_decl = build_decl (input_location, FIELD_DECL, field_name, field_type); DECL_CONTEXT (field_decl) = record_type; TREE_READONLY (field_decl) = TYPE_READONLY (field_type); /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a byte boundary since GCC cannot handle less-aligned BLKmode bitfields. Likewise for an aggregate without specified position that contains an array, because in this case slices of variable length of this array must be handled by GCC and variable-sized objects need to be aligned to at least a byte boundary. */ if (packed && (TYPE_MODE (field_type) == BLKmode || (!pos && AGGREGATE_TYPE_P (field_type) && aggregate_type_contains_array_p (field_type)))) DECL_ALIGN (field_decl) = BITS_PER_UNIT; /* If a size is specified, use it. Otherwise, if the record type is packed compute a size to use, which may differ from the object's natural size. We always set a size in this case to trigger the checks for bitfield creation below, which is typically required when no position has been specified. */ if (size) size = convert (bitsizetype, size); else if (packed == 1) { size = rm_size (field_type); if (TYPE_MODE (field_type) == BLKmode) size = round_up (size, BITS_PER_UNIT); } /* If we may, according to ADDRESSABLE, make a bitfield if a size is specified for two reasons: first if the size differs from the natural size. Second, if the alignment is insufficient. There are a number of ways the latter can be true. We never make a bitfield if the type of the field has a nonconstant size, because no such entity requiring bitfield operations should reach here. We do *preventively* make a bitfield when there might be the need for it but we don't have all the necessary information to decide, as is the case of a field with no specified position in a packed record. We also don't look at STRICT_ALIGNMENT here, and rely on later processing in layout_decl or finish_record_type to clear the bit_field indication if it is in fact not needed. */ if (addressable >= 0 && size && TREE_CODE (size) == INTEGER_CST && TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST && (!tree_int_cst_equal (size, TYPE_SIZE (field_type)) || (pos && !value_factor_p (pos, TYPE_ALIGN (field_type))) || packed || (TYPE_ALIGN (record_type) != 0 && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type)))) { DECL_BIT_FIELD (field_decl) = 1; DECL_SIZE (field_decl) = size; if (!packed && !pos) { if (TYPE_ALIGN (record_type) != 0 && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type)) DECL_ALIGN (field_decl) = TYPE_ALIGN (record_type); else DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type); } } DECL_PACKED (field_decl) = pos ? DECL_BIT_FIELD (field_decl) : packed; /* Bump the alignment if need be, either for bitfield/packing purposes or to satisfy the type requirements if no such consideration applies. When we get the alignment from the type, indicate if this is from an explicit user request, which prevents stor-layout from lowering it later on. */ { unsigned int bit_align = (DECL_BIT_FIELD (field_decl) ? 1 : packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT : 0); if (bit_align > DECL_ALIGN (field_decl)) DECL_ALIGN (field_decl) = bit_align; else if (!bit_align && TYPE_ALIGN (field_type) > DECL_ALIGN (field_decl)) { DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type); DECL_USER_ALIGN (field_decl) = TYPE_USER_ALIGN (field_type); } } if (pos) { /* We need to pass in the alignment the DECL is known to have. This is the lowest-order bit set in POS, but no more than the alignment of the record, if one is specified. Note that an alignment of 0 is taken as infinite. */ unsigned int known_align; if (host_integerp (pos, 1)) known_align = tree_low_cst (pos, 1) & - tree_low_cst (pos, 1); else known_align = BITS_PER_UNIT; if (TYPE_ALIGN (record_type) && (known_align == 0 || known_align > TYPE_ALIGN (record_type))) known_align = TYPE_ALIGN (record_type); layout_decl (field_decl, known_align); SET_DECL_OFFSET_ALIGN (field_decl, host_integerp (pos, 1) ? BIGGEST_ALIGNMENT : BITS_PER_UNIT); pos_from_bit (&DECL_FIELD_OFFSET (field_decl), &DECL_FIELD_BIT_OFFSET (field_decl), DECL_OFFSET_ALIGN (field_decl), pos); } /* In addition to what our caller says, claim the field is addressable if we know that its type is not suitable. The field may also be "technically" nonaddressable, meaning that even if we attempt to take the field's address we will actually get the address of a copy. This is the case for true bitfields, but the DECL_BIT_FIELD value we have at this point is not accurate enough, so we don't account for this here and let finish_record_type decide. */ if (!addressable && !type_for_nonaliased_component_p (field_type)) addressable = 1; DECL_NONADDRESSABLE_P (field_decl) = !addressable; return field_decl; } /* Return a PARM_DECL node. PARAM_NAME is the name of the parameter and PARAM_TYPE is its type. READONLY is true if the parameter is readonly (either an In parameter or an address of a pass-by-ref parameter). */ tree create_param_decl (tree param_name, tree param_type, bool readonly) { tree param_decl = build_decl (input_location, PARM_DECL, param_name, param_type); /* Honor TARGET_PROMOTE_PROTOTYPES like the C compiler, as not doing so can lead to various ABI violations. */ if (targetm.calls.promote_prototypes (NULL_TREE) && INTEGRAL_TYPE_P (param_type) && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node)) { /* We have to be careful about biased types here. Make a subtype of integer_type_node with the proper biasing. */ if (TREE_CODE (param_type) == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (param_type)) { tree subtype = make_unsigned_type (TYPE_PRECISION (integer_type_node)); TREE_TYPE (subtype) = integer_type_node; TYPE_BIASED_REPRESENTATION_P (subtype) = 1; SET_TYPE_RM_MIN_VALUE (subtype, TYPE_MIN_VALUE (param_type)); SET_TYPE_RM_MAX_VALUE (subtype, TYPE_MAX_VALUE (param_type)); param_type = subtype; } else param_type = integer_type_node; } DECL_ARG_TYPE (param_decl) = param_type; TREE_READONLY (param_decl) = readonly; return param_decl; } /* Given a DECL and ATTR_LIST, process the listed attributes. */ static void process_attributes (tree decl, struct attrib *attr_list) { for (; attr_list; attr_list = attr_list->next) switch (attr_list->type) { case ATTR_MACHINE_ATTRIBUTE: input_location = DECL_SOURCE_LOCATION (decl); decl_attributes (&decl, tree_cons (attr_list->name, attr_list->args, NULL_TREE), ATTR_FLAG_TYPE_IN_PLACE); break; case ATTR_LINK_ALIAS: if (! DECL_EXTERNAL (decl)) { TREE_STATIC (decl) = 1; assemble_alias (decl, attr_list->name); } break; case ATTR_WEAK_EXTERNAL: if (SUPPORTS_WEAK) declare_weak (decl); else post_error ("?weak declarations not supported on this target", attr_list->error_point); break; case ATTR_LINK_SECTION: if (targetm_common.have_named_sections) { DECL_SECTION_NAME (decl) = build_string (IDENTIFIER_LENGTH (attr_list->name), IDENTIFIER_POINTER (attr_list->name)); DECL_COMMON (decl) = 0; } else post_error ("?section attributes are not supported for this target", attr_list->error_point); break; case ATTR_LINK_CONSTRUCTOR: DECL_STATIC_CONSTRUCTOR (decl) = 1; TREE_USED (decl) = 1; break; case ATTR_LINK_DESTRUCTOR: DECL_STATIC_DESTRUCTOR (decl) = 1; TREE_USED (decl) = 1; break; case ATTR_THREAD_LOCAL_STORAGE: DECL_TLS_MODEL (decl) = decl_default_tls_model (decl); DECL_COMMON (decl) = 0; break; } } /* Record DECL as a global renaming pointer. */ void record_global_renaming_pointer (tree decl) { gcc_assert (!DECL_LOOP_PARM_P (decl) && DECL_RENAMED_OBJECT (decl)); VEC_safe_push (tree, gc, global_renaming_pointers, decl); } /* Invalidate the global renaming pointers. */ void invalidate_global_renaming_pointers (void) { unsigned int i; tree iter; FOR_EACH_VEC_ELT (tree, global_renaming_pointers, i, iter) SET_DECL_RENAMED_OBJECT (iter, NULL_TREE); VEC_free (tree, gc, global_renaming_pointers); } /* Return true if VALUE is a known to be a multiple of FACTOR, which must be a power of 2. */ bool value_factor_p (tree value, HOST_WIDE_INT factor) { if (host_integerp (value, 1)) return tree_low_cst (value, 1) % factor == 0; if (TREE_CODE (value) == MULT_EXPR) return (value_factor_p (TREE_OPERAND (value, 0), factor) || value_factor_p (TREE_OPERAND (value, 1), factor)); return false; } /* Given two consecutive field decls PREV_FIELD and CURR_FIELD, return true unless we can prove these 2 fields are laid out in such a way that no gap exist between the end of PREV_FIELD and the beginning of CURR_FIELD. OFFSET is the distance in bits between the end of PREV_FIELD and the starting position of CURR_FIELD. It is ignored if null. */ static bool potential_alignment_gap (tree prev_field, tree curr_field, tree offset) { /* If this is the first field of the record, there cannot be any gap */ if (!prev_field) return false; /* If the previous field is a union type, then return False: The only time when such a field is not the last field of the record is when there are other components at fixed positions after it (meaning there was a rep clause for every field), in which case we don't want the alignment constraint to override them. */ if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE) return false; /* If the distance between the end of prev_field and the beginning of curr_field is constant, then there is a gap if the value of this constant is not null. */ if (offset && host_integerp (offset, 1)) return !integer_zerop (offset); /* If the size and position of the previous field are constant, then check the sum of this size and position. There will be a gap iff it is not multiple of the current field alignment. */ if (host_integerp (DECL_SIZE (prev_field), 1) && host_integerp (bit_position (prev_field), 1)) return ((tree_low_cst (bit_position (prev_field), 1) + tree_low_cst (DECL_SIZE (prev_field), 1)) % DECL_ALIGN (curr_field) != 0); /* If both the position and size of the previous field are multiples of the current field alignment, there cannot be any gap. */ if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field)) && value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field))) return false; /* Fallback, return that there may be a potential gap */ return true; } /* Return a LABEL_DECL with LABEL_NAME. GNAT_NODE is used for the position of the decl. */ tree create_label_decl (tree label_name, Node_Id gnat_node) { tree label_decl = build_decl (input_location, LABEL_DECL, label_name, void_type_node); DECL_MODE (label_decl) = VOIDmode; /* Add this decl to the current binding level. */ gnat_pushdecl (label_decl, gnat_node); return label_decl; } /* Return a FUNCTION_DECL node. SUBPROG_NAME is the name of the subprogram, ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of PARM_DECL nodes chained through the DECL_CHAIN field). INLINE_FLAG, PUBLIC_FLAG, EXTERN_FLAG, ARTIFICIAL_FLAG and ATTR_LIST are used to set the appropriate fields in the FUNCTION_DECL. GNAT_NODE is used for the position of the decl. */ tree create_subprog_decl (tree subprog_name, tree asm_name, tree subprog_type, tree param_decl_list, bool inline_flag, bool public_flag, bool extern_flag, bool artificial_flag, struct attrib *attr_list, Node_Id gnat_node) { tree subprog_decl = build_decl (input_location, FUNCTION_DECL, subprog_name, subprog_type); tree result_decl = build_decl (input_location, RESULT_DECL, NULL_TREE, TREE_TYPE (subprog_type)); DECL_ARGUMENTS (subprog_decl) = param_decl_list; /* If this is a non-inline function nested inside an inlined external function, we cannot honor both requests without cloning the nested function in the current unit since it is private to the other unit. We could inline the nested function as well but it's probably better to err on the side of too little inlining. */ if (!inline_flag && !public_flag && current_function_decl && DECL_DECLARED_INLINE_P (current_function_decl) && DECL_EXTERNAL (current_function_decl)) DECL_DECLARED_INLINE_P (current_function_decl) = 0; DECL_ARTIFICIAL (subprog_decl) = artificial_flag; DECL_EXTERNAL (subprog_decl) = extern_flag; DECL_DECLARED_INLINE_P (subprog_decl) = inline_flag; DECL_NO_INLINE_WARNING_P (subprog_decl) = inline_flag && artificial_flag; TREE_PUBLIC (subprog_decl) = public_flag; TREE_READONLY (subprog_decl) = TYPE_READONLY (subprog_type); TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type); TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type); DECL_ARTIFICIAL (result_decl) = 1; DECL_IGNORED_P (result_decl) = 1; DECL_BY_REFERENCE (result_decl) = TREE_ADDRESSABLE (subprog_type); DECL_RESULT (subprog_decl) = result_decl; if (asm_name) { SET_DECL_ASSEMBLER_NAME (subprog_decl, asm_name); /* The expand_main_function circuitry expects "main_identifier_node" to designate the DECL_NAME of the 'main' entry point, in turn expected to be declared as the "main" function literally by default. Ada program entry points are typically declared with a different name within the binder generated file, exported as 'main' to satisfy the system expectations. Force main_identifier_node in this case. */ if (asm_name == main_identifier_node) DECL_NAME (subprog_decl) = main_identifier_node; } /* Add this decl to the current binding level. */ gnat_pushdecl (subprog_decl, gnat_node); process_attributes (subprog_decl, attr_list); /* Output the assembler code and/or RTL for the declaration. */ rest_of_decl_compilation (subprog_decl, global_bindings_p (), 0); return subprog_decl; } /* Set up the framework for generating code for SUBPROG_DECL, a subprogram body. This routine needs to be invoked before processing the declarations appearing in the subprogram. */ void begin_subprog_body (tree subprog_decl) { tree param_decl; announce_function (subprog_decl); /* This function is being defined. */ TREE_STATIC (subprog_decl) = 1; current_function_decl = subprog_decl; /* Enter a new binding level and show that all the parameters belong to this function. */ gnat_pushlevel (); for (param_decl = DECL_ARGUMENTS (subprog_decl); param_decl; param_decl = DECL_CHAIN (param_decl)) DECL_CONTEXT (param_decl) = subprog_decl; make_decl_rtl (subprog_decl); } /* Finish translating the current subprogram and set its BODY. */ void end_subprog_body (tree body) { tree fndecl = current_function_decl; /* Attach the BLOCK for this level to the function and pop the level. */ BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl; DECL_INITIAL (fndecl) = current_binding_level->block; gnat_poplevel (); /* Mark the RESULT_DECL as being in this subprogram. */ DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl; /* The body should be a BIND_EXPR whose BLOCK is the top-level one. */ if (TREE_CODE (body) == BIND_EXPR) { BLOCK_SUPERCONTEXT (BIND_EXPR_BLOCK (body)) = fndecl; DECL_INITIAL (fndecl) = BIND_EXPR_BLOCK (body); } DECL_SAVED_TREE (fndecl) = body; current_function_decl = decl_function_context (fndecl); } /* Wrap up compilation of SUBPROG_DECL, a subprogram body. */ void rest_of_subprog_body_compilation (tree subprog_decl) { /* We cannot track the location of errors past this point. */ error_gnat_node = Empty; /* If we're only annotating types, don't actually compile this function. */ if (type_annotate_only) return; /* Dump functions before gimplification. */ dump_function (TDI_original, subprog_decl); /* ??? This special handling of nested functions is probably obsolete. */ if (!decl_function_context (subprog_decl)) cgraph_finalize_function (subprog_decl, false); else /* Register this function with cgraph just far enough to get it added to our parent's nested function list. */ (void) cgraph_get_create_node (subprog_decl); } tree gnat_builtin_function (tree decl) { gnat_pushdecl (decl, Empty); return decl; } /* Return an integer type with the number of bits of precision given by PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise it is a signed type. */ tree gnat_type_for_size (unsigned precision, int unsignedp) { tree t; char type_name[20]; if (precision <= 2 * MAX_BITS_PER_WORD && signed_and_unsigned_types[precision][unsignedp]) return signed_and_unsigned_types[precision][unsignedp]; if (unsignedp) t = make_unsigned_type (precision); else t = make_signed_type (precision); if (precision <= 2 * MAX_BITS_PER_WORD) signed_and_unsigned_types[precision][unsignedp] = t; if (!TYPE_NAME (t)) { sprintf (type_name, "%sSIGNED_%d", unsignedp ? "UN" : "", precision); TYPE_NAME (t) = get_identifier (type_name); } return t; } /* Likewise for floating-point types. */ static tree float_type_for_precision (int precision, enum machine_mode mode) { tree t; char type_name[20]; if (float_types[(int) mode]) return float_types[(int) mode]; float_types[(int) mode] = t = make_node (REAL_TYPE); TYPE_PRECISION (t) = precision; layout_type (t); gcc_assert (TYPE_MODE (t) == mode); if (!TYPE_NAME (t)) { sprintf (type_name, "FLOAT_%d", precision); TYPE_NAME (t) = get_identifier (type_name); } return t; } /* Return a data type that has machine mode MODE. UNSIGNEDP selects an unsigned type; otherwise a signed type is returned. */ tree gnat_type_for_mode (enum machine_mode mode, int unsignedp) { if (mode == BLKmode) return NULL_TREE; if (mode == VOIDmode) return void_type_node; if (COMPLEX_MODE_P (mode)) return NULL_TREE; if (SCALAR_FLOAT_MODE_P (mode)) return float_type_for_precision (GET_MODE_PRECISION (mode), mode); if (SCALAR_INT_MODE_P (mode)) return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp); if (VECTOR_MODE_P (mode)) { enum machine_mode inner_mode = GET_MODE_INNER (mode); tree inner_type = gnat_type_for_mode (inner_mode, unsignedp); if (inner_type) return build_vector_type_for_mode (inner_type, mode); } return NULL_TREE; } /* Return the unsigned version of a TYPE_NODE, a scalar type. */ tree gnat_unsigned_type (tree type_node) { tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 1); if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node)) { type = copy_node (type); TREE_TYPE (type) = type_node; } else if (TREE_TYPE (type_node) && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE && TYPE_MODULAR_P (TREE_TYPE (type_node))) { type = copy_node (type); TREE_TYPE (type) = TREE_TYPE (type_node); } return type; } /* Return the signed version of a TYPE_NODE, a scalar type. */ tree gnat_signed_type (tree type_node) { tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 0); if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node)) { type = copy_node (type); TREE_TYPE (type) = type_node; } else if (TREE_TYPE (type_node) && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE && TYPE_MODULAR_P (TREE_TYPE (type_node))) { type = copy_node (type); TREE_TYPE (type) = TREE_TYPE (type_node); } return type; } /* Return 1 if the types T1 and T2 are compatible, i.e. if they can be transparently converted to each other. */ int gnat_types_compatible_p (tree t1, tree t2) { enum tree_code code; /* This is the default criterion. */ if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2)) return 1; /* We only check structural equivalence here. */ if ((code = TREE_CODE (t1)) != TREE_CODE (t2)) return 0; /* Vector types are also compatible if they have the same number of subparts and the same form of (scalar) element type. */ if (code == VECTOR_TYPE && TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2) && TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2)) && TYPE_PRECISION (TREE_TYPE (t1)) == TYPE_PRECISION (TREE_TYPE (t2))) return 1; /* Array types are also compatible if they are constrained and have the same domain(s) and the same component type. */ if (code == ARRAY_TYPE && (TYPE_DOMAIN (t1) == TYPE_DOMAIN (t2) || (TYPE_DOMAIN (t1) && TYPE_DOMAIN (t2) && tree_int_cst_equal (TYPE_MIN_VALUE (TYPE_DOMAIN (t1)), TYPE_MIN_VALUE (TYPE_DOMAIN (t2))) && tree_int_cst_equal (TYPE_MAX_VALUE (TYPE_DOMAIN (t1)), TYPE_MAX_VALUE (TYPE_DOMAIN (t2))))) && (TREE_TYPE (t1) == TREE_TYPE (t2) || (TREE_CODE (TREE_TYPE (t1)) == ARRAY_TYPE && gnat_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))))) return 1; /* Padding record types are also compatible if they pad the same type and have the same constant size. */ if (code == RECORD_TYPE && TYPE_PADDING_P (t1) && TYPE_PADDING_P (t2) && TREE_TYPE (TYPE_FIELDS (t1)) == TREE_TYPE (TYPE_FIELDS (t2)) && tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2))) return 1; return 0; } /* Return true if EXPR is a useless type conversion. */ bool gnat_useless_type_conversion (tree expr) { if (CONVERT_EXPR_P (expr) || TREE_CODE (expr) == VIEW_CONVERT_EXPR || TREE_CODE (expr) == NON_LVALUE_EXPR) return gnat_types_compatible_p (TREE_TYPE (expr), TREE_TYPE (TREE_OPERAND (expr, 0))); return false; } /* Return true if T, a FUNCTION_TYPE, has the specified list of flags. */ bool fntype_same_flags_p (const_tree t, tree cico_list, bool return_unconstrained_p, bool return_by_direct_ref_p, bool return_by_invisi_ref_p) { return TYPE_CI_CO_LIST (t) == cico_list && TYPE_RETURN_UNCONSTRAINED_P (t) == return_unconstrained_p && TYPE_RETURN_BY_DIRECT_REF_P (t) == return_by_direct_ref_p && TREE_ADDRESSABLE (t) == return_by_invisi_ref_p; } /* EXP is an expression for the size of an object. If this size contains discriminant references, replace them with the maximum (if MAX_P) or minimum (if !MAX_P) possible value of the discriminant. */ tree max_size (tree exp, bool max_p) { enum tree_code code = TREE_CODE (exp); tree type = TREE_TYPE (exp); switch (TREE_CODE_CLASS (code)) { case tcc_declaration: case tcc_constant: return exp; case tcc_vl_exp: if (code == CALL_EXPR) { tree t, *argarray; int n, i; t = maybe_inline_call_in_expr (exp); if (t) return max_size (t, max_p); n = call_expr_nargs (exp); gcc_assert (n > 0); argarray = XALLOCAVEC (tree, n); for (i = 0; i < n; i++) argarray[i] = max_size (CALL_EXPR_ARG (exp, i), max_p); return build_call_array (type, CALL_EXPR_FN (exp), n, argarray); } break; case tcc_reference: /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to modify. Otherwise, we treat it like a variable. */ if (!CONTAINS_PLACEHOLDER_P (exp)) return exp; type = TREE_TYPE (TREE_OPERAND (exp, 1)); return max_size (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type), true); case tcc_comparison: return max_p ? size_one_node : size_zero_node; case tcc_unary: case tcc_binary: case tcc_expression: switch (TREE_CODE_LENGTH (code)) { case 1: if (code == SAVE_EXPR) return exp; else if (code == NON_LVALUE_EXPR) return max_size (TREE_OPERAND (exp, 0), max_p); else return fold_build1 (code, type, max_size (TREE_OPERAND (exp, 0), code == NEGATE_EXPR ? !max_p : max_p)); case 2: if (code == COMPOUND_EXPR) return max_size (TREE_OPERAND (exp, 1), max_p); { tree lhs = max_size (TREE_OPERAND (exp, 0), max_p); tree rhs = max_size (TREE_OPERAND (exp, 1), code == MINUS_EXPR ? !max_p : max_p); /* Special-case wanting the maximum value of a MIN_EXPR. In that case, if one side overflows, return the other. sizetype is signed, but we know sizes are non-negative. Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS overflowing and the RHS a variable. */ if (max_p && code == MIN_EXPR && TREE_CODE (rhs) == INTEGER_CST && TREE_OVERFLOW (rhs)) return lhs; else if (max_p && code == MIN_EXPR && TREE_CODE (lhs) == INTEGER_CST && TREE_OVERFLOW (lhs)) return rhs; else if ((code == MINUS_EXPR || code == PLUS_EXPR) && TREE_CODE (lhs) == INTEGER_CST && TREE_OVERFLOW (lhs) && !TREE_CONSTANT (rhs)) return lhs; else return fold_build2 (code, type, lhs, rhs); } case 3: if (code == COND_EXPR) return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type, max_size (TREE_OPERAND (exp, 1), max_p), max_size (TREE_OPERAND (exp, 2), max_p)); } /* Other tree classes cannot happen. */ default: break; } gcc_unreachable (); } /* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE. EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs. Return a constructor for the template. */ tree build_template (tree template_type, tree array_type, tree expr) { VEC(constructor_elt,gc) *template_elts = NULL; tree bound_list = NULL_TREE; tree field; while (TREE_CODE (array_type) == RECORD_TYPE && (TYPE_PADDING_P (array_type) || TYPE_JUSTIFIED_MODULAR_P (array_type))) array_type = TREE_TYPE (TYPE_FIELDS (array_type)); if (TREE_CODE (array_type) == ARRAY_TYPE || (TREE_CODE (array_type) == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (array_type))) bound_list = TYPE_ACTUAL_BOUNDS (array_type); /* First make the list for a CONSTRUCTOR for the template. Go down the field list of the template instead of the type chain because this array might be an Ada array of arrays and we can't tell where the nested arrays stop being the underlying object. */ for (field = TYPE_FIELDS (template_type); field; (bound_list ? (bound_list = TREE_CHAIN (bound_list)) : (array_type = TREE_TYPE (array_type))), field = DECL_CHAIN (DECL_CHAIN (field))) { tree bounds, min, max; /* If we have a bound list, get the bounds from there. Likewise for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template. This will give us a maximum range. */ if (bound_list) bounds = TREE_VALUE (bound_list); else if (TREE_CODE (array_type) == ARRAY_TYPE) bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type)); else if (expr && TREE_CODE (expr) == PARM_DECL && DECL_BY_COMPONENT_PTR_P (expr)) bounds = TREE_TYPE (field); else gcc_unreachable (); min = convert (TREE_TYPE (field), TYPE_MIN_VALUE (bounds)); max = convert (TREE_TYPE (DECL_CHAIN (field)), TYPE_MAX_VALUE (bounds)); /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must substitute it from OBJECT. */ min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr); max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr); CONSTRUCTOR_APPEND_ELT (template_elts, field, min); CONSTRUCTOR_APPEND_ELT (template_elts, DECL_CHAIN (field), max); } return gnat_build_constructor (template_type, template_elts); } /* Helper routine to make a descriptor field. FIELD_LIST is the list of decls being built; the new decl is chained on to the front of the list. */ static tree make_descriptor_field (const char *name, tree type, tree rec_type, tree initial, tree field_list) { tree field = create_field_decl (get_identifier (name), type, rec_type, NULL_TREE, NULL_TREE, 0, 0); DECL_INITIAL (field) = initial; DECL_CHAIN (field) = field_list; return field; } /* Build a 32-bit VMS descriptor from a Mechanism_Type, which must specify a descriptor type, and the GCC type of an object. Each FIELD_DECL in the type contains in its DECL_INITIAL the expression to use when a constructor is made for the type. GNAT_ENTITY is an entity used to print out an error message if the mechanism cannot be applied to an object of that type and also for the name. */ tree build_vms_descriptor32 (tree type, Mechanism_Type mech, Entity_Id gnat_entity) { tree record_type = make_node (RECORD_TYPE); tree pointer32_type, pointer64_type; tree field_list = NULL_TREE; int klass, ndim, i, dtype = 0; tree inner_type, tem; tree *idx_arr; /* If TYPE is an unconstrained array, use the underlying array type. */ if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE) type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type)))); /* If this is an array, compute the number of dimensions in the array, get the index types, and point to the inner type. */ if (TREE_CODE (type) != ARRAY_TYPE) ndim = 0; else for (ndim = 1, inner_type = type; TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type)); ndim++, inner_type = TREE_TYPE (inner_type)) ; idx_arr = XALLOCAVEC (tree, ndim); if (mech != By_Descriptor_NCA && mech != By_Short_Descriptor_NCA && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type)) for (i = ndim - 1, inner_type = type; i >= 0; i--, inner_type = TREE_TYPE (inner_type)) idx_arr[i] = TYPE_DOMAIN (inner_type); else for (i = 0, inner_type = type; i < ndim; i++, inner_type = TREE_TYPE (inner_type)) idx_arr[i] = TYPE_DOMAIN (inner_type); /* Now get the DTYPE value. */ switch (TREE_CODE (type)) { case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: if (TYPE_VAX_FLOATING_POINT_P (type)) switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1)) { case 6: dtype = 10; break; case 9: dtype = 11; break; case 15: dtype = 27; break; } else switch (GET_MODE_BITSIZE (TYPE_MODE (type))) { case 8: dtype = TYPE_UNSIGNED (type) ? 2 : 6; break; case 16: dtype = TYPE_UNSIGNED (type) ? 3 : 7; break; case 32: dtype = TYPE_UNSIGNED (type) ? 4 : 8; break; case 64: dtype = TYPE_UNSIGNED (type) ? 5 : 9; break; case 128: dtype = TYPE_UNSIGNED (type) ? 25 : 26; break; } break; case REAL_TYPE: dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53; break; case COMPLEX_TYPE: if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE && TYPE_VAX_FLOATING_POINT_P (type)) switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1)) { case 6: dtype = 12; break; case 9: dtype = 13; break; case 15: dtype = 29; } else dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55; break; case ARRAY_TYPE: dtype = 14; break; default: break; } /* Get the CLASS value. */ switch (mech) { case By_Descriptor_A: case By_Short_Descriptor_A: klass = 4; break; case By_Descriptor_NCA: case By_Short_Descriptor_NCA: klass = 10; break; case By_Descriptor_SB: case By_Short_Descriptor_SB: klass = 15; break; case By_Descriptor: case By_Short_Descriptor: case By_Descriptor_S: case By_Short_Descriptor_S: default: klass = 1; break; } /* Make the type for a descriptor for VMS. The first four fields are the same for all types. */ field_list = make_descriptor_field ("LENGTH", gnat_type_for_size (16, 1), record_type, size_in_bytes ((mech == By_Descriptor_A || mech == By_Short_Descriptor_A) ? inner_type : type), field_list); field_list = make_descriptor_field ("DTYPE", gnat_type_for_size (8, 1), record_type, size_int (dtype), field_list); field_list = make_descriptor_field ("CLASS", gnat_type_for_size (8, 1), record_type, size_int (klass), field_list); pointer32_type = build_pointer_type_for_mode (type, SImode, false); pointer64_type = build_pointer_type_for_mode (type, DImode, false); /* Ensure that only 32-bit pointers are passed in 32-bit descriptors. Note that we cannot build a template call to the CE routine as it would get a wrong source location; instead we use a second placeholder for it. */ tem = build_unary_op (ADDR_EXPR, pointer64_type, build0 (PLACEHOLDER_EXPR, type)); tem = build3 (COND_EXPR, pointer32_type, Pmode != SImode ? build_binary_op (GE_EXPR, boolean_type_node, tem, build_int_cstu (pointer64_type, 0x80000000)) : boolean_false_node, build0 (PLACEHOLDER_EXPR, void_type_node), convert (pointer32_type, tem)); field_list = make_descriptor_field ("POINTER", pointer32_type, record_type, tem, field_list); switch (mech) { case By_Descriptor: case By_Short_Descriptor: case By_Descriptor_S: case By_Short_Descriptor_S: break; case By_Descriptor_SB: case By_Short_Descriptor_SB: field_list = make_descriptor_field ("SB_L1", gnat_type_for_size (32, 1), record_type, (TREE_CODE (type) == ARRAY_TYPE ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node), field_list); field_list = make_descriptor_field ("SB_U1", gnat_type_for_size (32, 1), record_type, (TREE_CODE (type) == ARRAY_TYPE ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node), field_list); break; case By_Descriptor_A: case By_Short_Descriptor_A: case By_Descriptor_NCA: case By_Short_Descriptor_NCA: field_list = make_descriptor_field ("SCALE", gnat_type_for_size (8, 1), record_type, size_zero_node, field_list); field_list = make_descriptor_field ("DIGITS", gnat_type_for_size (8, 1), record_type, size_zero_node, field_list); field_list = make_descriptor_field ("AFLAGS", gnat_type_for_size (8, 1), record_type, size_int ((mech == By_Descriptor_NCA || mech == By_Short_Descriptor_NCA) ? 0 /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */ : (TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type) ? 224 : 192)), field_list); field_list = make_descriptor_field ("DIMCT", gnat_type_for_size (8, 1), record_type, size_int (ndim), field_list); field_list = make_descriptor_field ("ARSIZE", gnat_type_for_size (32, 1), record_type, size_in_bytes (type), field_list); /* Now build a pointer to the 0,0,0... element. */ tem = build0 (PLACEHOLDER_EXPR, type); for (i = 0, inner_type = type; i < ndim; i++, inner_type = TREE_TYPE (inner_type)) tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem, convert (TYPE_DOMAIN (inner_type), size_zero_node), NULL_TREE, NULL_TREE); field_list = make_descriptor_field ("A0", pointer32_type, record_type, build1 (ADDR_EXPR, pointer32_type, tem), field_list); /* Next come the addressing coefficients. */ tem = size_one_node; for (i = 0; i < ndim; i++) { char fname[3]; tree idx_length = size_binop (MULT_EXPR, tem, size_binop (PLUS_EXPR, size_binop (MINUS_EXPR, TYPE_MAX_VALUE (idx_arr[i]), TYPE_MIN_VALUE (idx_arr[i])), size_int (1))); fname[0] = ((mech == By_Descriptor_NCA || mech == By_Short_Descriptor_NCA) ? 'S' : 'M'); fname[1] = '0' + i, fname[2] = 0; field_list = make_descriptor_field (fname, gnat_type_for_size (32, 1), record_type, idx_length, field_list); if (mech == By_Descriptor_NCA || mech == By_Short_Descriptor_NCA) tem = idx_length; } /* Finally here are the bounds. */ for (i = 0; i < ndim; i++) { char fname[3]; fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0; field_list = make_descriptor_field (fname, gnat_type_for_size (32, 1), record_type, TYPE_MIN_VALUE (idx_arr[i]), field_list); fname[0] = 'U'; field_list = make_descriptor_field (fname, gnat_type_for_size (32, 1), record_type, TYPE_MAX_VALUE (idx_arr[i]), field_list); } break; default: post_error ("unsupported descriptor type for &", gnat_entity); } TYPE_NAME (record_type) = create_concat_name (gnat_entity, "DESC"); finish_record_type (record_type, nreverse (field_list), 0, false); return record_type; } /* Build a 64-bit VMS descriptor from a Mechanism_Type, which must specify a descriptor type, and the GCC type of an object. Each FIELD_DECL in the type contains in its DECL_INITIAL the expression to use when a constructor is made for the type. GNAT_ENTITY is an entity used to print out an error message if the mechanism cannot be applied to an object of that type and also for the name. */ tree build_vms_descriptor (tree type, Mechanism_Type mech, Entity_Id gnat_entity) { tree record_type = make_node (RECORD_TYPE); tree pointer64_type; tree field_list = NULL_TREE; int klass, ndim, i, dtype = 0; tree inner_type, tem; tree *idx_arr; /* If TYPE is an unconstrained array, use the underlying array type. */ if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE) type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type)))); /* If this is an array, compute the number of dimensions in the array, get the index types, and point to the inner type. */ if (TREE_CODE (type) != ARRAY_TYPE) ndim = 0; else for (ndim = 1, inner_type = type; TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type)); ndim++, inner_type = TREE_TYPE (inner_type)) ; idx_arr = XALLOCAVEC (tree, ndim); if (mech != By_Descriptor_NCA && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type)) for (i = ndim - 1, inner_type = type; i >= 0; i--, inner_type = TREE_TYPE (inner_type)) idx_arr[i] = TYPE_DOMAIN (inner_type); else for (i = 0, inner_type = type; i < ndim; i++, inner_type = TREE_TYPE (inner_type)) idx_arr[i] = TYPE_DOMAIN (inner_type); /* Now get the DTYPE value. */ switch (TREE_CODE (type)) { case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: if (TYPE_VAX_FLOATING_POINT_P (type)) switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1)) { case 6: dtype = 10; break; case 9: dtype = 11; break; case 15: dtype = 27; break; } else switch (GET_MODE_BITSIZE (TYPE_MODE (type))) { case 8: dtype = TYPE_UNSIGNED (type) ? 2 : 6; break; case 16: dtype = TYPE_UNSIGNED (type) ? 3 : 7; break; case 32: dtype = TYPE_UNSIGNED (type) ? 4 : 8; break; case 64: dtype = TYPE_UNSIGNED (type) ? 5 : 9; break; case 128: dtype = TYPE_UNSIGNED (type) ? 25 : 26; break; } break; case REAL_TYPE: dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53; break; case COMPLEX_TYPE: if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE && TYPE_VAX_FLOATING_POINT_P (type)) switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1)) { case 6: dtype = 12; break; case 9: dtype = 13; break; case 15: dtype = 29; } else dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55; break; case ARRAY_TYPE: dtype = 14; break; default: break; } /* Get the CLASS value. */ switch (mech) { case By_Descriptor_A: klass = 4; break; case By_Descriptor_NCA: klass = 10; break; case By_Descriptor_SB: klass = 15; break; case By_Descriptor: case By_Descriptor_S: default: klass = 1; break; } /* Make the type for a 64-bit descriptor for VMS. The first six fields are the same for all types. */ field_list = make_descriptor_field ("MBO", gnat_type_for_size (16, 1), record_type, size_int (1), field_list); field_list = make_descriptor_field ("DTYPE", gnat_type_for_size (8, 1), record_type, size_int (dtype), field_list); field_list = make_descriptor_field ("CLASS", gnat_type_for_size (8, 1), record_type, size_int (klass), field_list); field_list = make_descriptor_field ("MBMO", gnat_type_for_size (32, 1), record_type, ssize_int (-1), field_list); field_list = make_descriptor_field ("LENGTH", gnat_type_for_size (64, 1), record_type, size_in_bytes (mech == By_Descriptor_A ? inner_type : type), field_list); pointer64_type = build_pointer_type_for_mode (type, DImode, false); field_list = make_descriptor_field ("POINTER", pointer64_type, record_type, build_unary_op (ADDR_EXPR, pointer64_type, build0 (PLACEHOLDER_EXPR, type)), field_list); switch (mech) { case By_Descriptor: case By_Descriptor_S: break; case By_Descriptor_SB: field_list = make_descriptor_field ("SB_L1", gnat_type_for_size (64, 1), record_type, (TREE_CODE (type) == ARRAY_TYPE ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node), field_list); field_list = make_descriptor_field ("SB_U1", gnat_type_for_size (64, 1), record_type, (TREE_CODE (type) == ARRAY_TYPE ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node), field_list); break; case By_Descriptor_A: case By_Descriptor_NCA: field_list = make_descriptor_field ("SCALE", gnat_type_for_size (8, 1), record_type, size_zero_node, field_list); field_list = make_descriptor_field ("DIGITS", gnat_type_for_size (8, 1), record_type, size_zero_node, field_list); dtype = (mech == By_Descriptor_NCA ? 0 /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */ : (TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type) ? 224 : 192)); field_list = make_descriptor_field ("AFLAGS", gnat_type_for_size (8, 1), record_type, size_int (dtype), field_list); field_list = make_descriptor_field ("DIMCT", gnat_type_for_size (8, 1), record_type, size_int (ndim), field_list); field_list = make_descriptor_field ("MBZ", gnat_type_for_size (32, 1), record_type, size_int (0), field_list); field_list = make_descriptor_field ("ARSIZE", gnat_type_for_size (64, 1), record_type, size_in_bytes (type), field_list); /* Now build a pointer to the 0,0,0... element. */ tem = build0 (PLACEHOLDER_EXPR, type); for (i = 0, inner_type = type; i < ndim; i++, inner_type = TREE_TYPE (inner_type)) tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem, convert (TYPE_DOMAIN (inner_type), size_zero_node), NULL_TREE, NULL_TREE); field_list = make_descriptor_field ("A0", pointer64_type, record_type, build1 (ADDR_EXPR, pointer64_type, tem), field_list); /* Next come the addressing coefficients. */ tem = size_one_node; for (i = 0; i < ndim; i++) { char fname[3]; tree idx_length = size_binop (MULT_EXPR, tem, size_binop (PLUS_EXPR, size_binop (MINUS_EXPR, TYPE_MAX_VALUE (idx_arr[i]), TYPE_MIN_VALUE (idx_arr[i])), size_int (1))); fname[0] = (mech == By_Descriptor_NCA ? 'S' : 'M'); fname[1] = '0' + i, fname[2] = 0; field_list = make_descriptor_field (fname, gnat_type_for_size (64, 1), record_type, idx_length, field_list); if (mech == By_Descriptor_NCA) tem = idx_length; } /* Finally here are the bounds. */ for (i = 0; i < ndim; i++) { char fname[3]; fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0; field_list = make_descriptor_field (fname, gnat_type_for_size (64, 1), record_type, TYPE_MIN_VALUE (idx_arr[i]), field_list); fname[0] = 'U'; field_list = make_descriptor_field (fname, gnat_type_for_size (64, 1), record_type, TYPE_MAX_VALUE (idx_arr[i]), field_list); } break; default: post_error ("unsupported descriptor type for &", gnat_entity); } TYPE_NAME (record_type) = create_concat_name (gnat_entity, "DESC64"); finish_record_type (record_type, nreverse (field_list), 0, false); return record_type; } /* Fill in a VMS descriptor of GNU_TYPE for GNU_EXPR and return the result. GNAT_ACTUAL is the actual parameter for which the descriptor is built. */ tree fill_vms_descriptor (tree gnu_type, tree gnu_expr, Node_Id gnat_actual) { VEC(constructor_elt,gc) *v = NULL; tree field; gnu_expr = maybe_unconstrained_array (gnu_expr); gnu_expr = gnat_protect_expr (gnu_expr); gnat_mark_addressable (gnu_expr); /* We may need to substitute both GNU_EXPR and a CALL_EXPR to the raise CE routine in case we have a 32-bit descriptor. */ gnu_expr = build2 (COMPOUND_EXPR, void_type_node, build_call_raise (CE_Range_Check_Failed, gnat_actual, N_Raise_Constraint_Error), gnu_expr); for (field = TYPE_FIELDS (gnu_type); field; field = DECL_CHAIN (field)) { tree value = convert (TREE_TYPE (field), SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_INITIAL (field), gnu_expr)); CONSTRUCTOR_APPEND_ELT (v, field, value); } return gnat_build_constructor (gnu_type, v); } /* Convert GNU_EXPR, a pointer to a 64bit VMS descriptor, to GNU_TYPE, a regular pointer or fat pointer type. GNAT_SUBPROG is the subprogram to which the VMS descriptor is passed. */ static tree convert_vms_descriptor64 (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog) { tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr)); tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr); /* The CLASS field is the 3rd field in the descriptor. */ tree klass = DECL_CHAIN (DECL_CHAIN (TYPE_FIELDS (desc_type))); /* The POINTER field is the 6th field in the descriptor. */ tree pointer = DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (klass))); /* Retrieve the value of the POINTER field. */ tree gnu_expr64 = build3 (COMPONENT_REF, TREE_TYPE (pointer), desc, pointer, NULL_TREE); if (POINTER_TYPE_P (gnu_type)) return convert (gnu_type, gnu_expr64); else if (TYPE_IS_FAT_POINTER_P (gnu_type)) { tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type)); tree p_bounds_type = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_type))); tree template_type = TREE_TYPE (p_bounds_type); tree min_field = TYPE_FIELDS (template_type); tree max_field = DECL_CHAIN (TYPE_FIELDS (template_type)); tree template_tree, template_addr, aflags, dimct, t, u; /* See the head comment of build_vms_descriptor. */ int iklass = TREE_INT_CST_LOW (DECL_INITIAL (klass)); tree lfield, ufield; VEC(constructor_elt,gc) *v; /* Convert POINTER to the pointer-to-array type. */ gnu_expr64 = convert (p_array_type, gnu_expr64); switch (iklass) { case 1: /* Class S */ case 15: /* Class SB */ /* Build {1, LENGTH} template; LENGTH64 is the 5th field. */ v = VEC_alloc (constructor_elt, gc, 2); t = DECL_CHAIN (DECL_CHAIN (klass)); t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); CONSTRUCTOR_APPEND_ELT (v, min_field, convert (TREE_TYPE (min_field), integer_one_node)); CONSTRUCTOR_APPEND_ELT (v, max_field, convert (TREE_TYPE (max_field), t)); template_tree = gnat_build_constructor (template_type, v); template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template_tree); /* For class S, we are done. */ if (iklass == 1) break; /* Test that we really have a SB descriptor, like DEC Ada. */ t = build3 (COMPONENT_REF, TREE_TYPE (klass), desc, klass, NULL); u = convert (TREE_TYPE (klass), DECL_INITIAL (klass)); u = build_binary_op (EQ_EXPR, boolean_type_node, t, u); /* If so, there is already a template in the descriptor and it is located right after the POINTER field. The fields are 64bits so they must be repacked. */ t = DECL_CHAIN (pointer); lfield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); lfield = convert (TREE_TYPE (TYPE_FIELDS (template_type)), lfield); t = DECL_CHAIN (t); ufield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); ufield = convert (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (template_type))), ufield); /* Build the template in the form of a constructor. */ v = VEC_alloc (constructor_elt, gc, 2); CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (template_type), lfield); CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (template_type)), ufield); template_tree = gnat_build_constructor (template_type, v); /* Otherwise use the {1, LENGTH} template we build above. */ template_addr = build3 (COND_EXPR, p_bounds_type, u, build_unary_op (ADDR_EXPR, p_bounds_type, template_tree), template_addr); break; case 4: /* Class A */ /* The AFLAGS field is the 3rd field after the pointer in the descriptor. */ t = DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (pointer))); aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); /* The DIMCT field is the next field in the descriptor after aflags. */ t = DECL_CHAIN (t); dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); /* Raise CONSTRAINT_ERROR if either more than 1 dimension or FL_COEFF or FL_BOUNDS not set. */ u = build_int_cst (TREE_TYPE (aflags), 192); u = build_binary_op (TRUTH_OR_EXPR, boolean_type_node, build_binary_op (NE_EXPR, boolean_type_node, dimct, convert (TREE_TYPE (dimct), size_one_node)), build_binary_op (NE_EXPR, boolean_type_node, build2 (BIT_AND_EXPR, TREE_TYPE (aflags), aflags, u), u)); /* There is already a template in the descriptor and it is located in block 3. The fields are 64bits so they must be repacked. */ t = DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (t))))); lfield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); lfield = convert (TREE_TYPE (TYPE_FIELDS (template_type)), lfield); t = DECL_CHAIN (t); ufield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); ufield = convert (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (template_type))), ufield); /* Build the template in the form of a constructor. */ v = VEC_alloc (constructor_elt, gc, 2); CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (template_type), lfield); CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (template_type)), ufield); template_tree = gnat_build_constructor (template_type, v); template_tree = build3 (COND_EXPR, template_type, u, build_call_raise (CE_Length_Check_Failed, Empty, N_Raise_Constraint_Error), template_tree); template_addr = build_unary_op (ADDR_EXPR, p_bounds_type, template_tree); break; case 10: /* Class NCA */ default: post_error ("unsupported descriptor type for &", gnat_subprog); template_addr = integer_zero_node; break; } /* Build the fat pointer in the form of a constructor. */ v = VEC_alloc (constructor_elt, gc, 2); CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (gnu_type), gnu_expr64); CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (gnu_type)), template_addr); return gnat_build_constructor (gnu_type, v); } else gcc_unreachable (); } /* Convert GNU_EXPR, a pointer to a 32bit VMS descriptor, to GNU_TYPE, a regular pointer or fat pointer type. GNAT_SUBPROG is the subprogram to which the VMS descriptor is passed. */ static tree convert_vms_descriptor32 (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog) { tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr)); tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr); /* The CLASS field is the 3rd field in the descriptor. */ tree klass = DECL_CHAIN (DECL_CHAIN (TYPE_FIELDS (desc_type))); /* The POINTER field is the 4th field in the descriptor. */ tree pointer = DECL_CHAIN (klass); /* Retrieve the value of the POINTER field. */ tree gnu_expr32 = build3 (COMPONENT_REF, TREE_TYPE (pointer), desc, pointer, NULL_TREE); if (POINTER_TYPE_P (gnu_type)) return convert (gnu_type, gnu_expr32); else if (TYPE_IS_FAT_POINTER_P (gnu_type)) { tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type)); tree p_bounds_type = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_type))); tree template_type = TREE_TYPE (p_bounds_type); tree min_field = TYPE_FIELDS (template_type); tree max_field = DECL_CHAIN (TYPE_FIELDS (template_type)); tree template_tree, template_addr, aflags, dimct, t, u; /* See the head comment of build_vms_descriptor. */ int iklass = TREE_INT_CST_LOW (DECL_INITIAL (klass)); VEC(constructor_elt,gc) *v; /* Convert POINTER to the pointer-to-array type. */ gnu_expr32 = convert (p_array_type, gnu_expr32); switch (iklass) { case 1: /* Class S */ case 15: /* Class SB */ /* Build {1, LENGTH} template; LENGTH is the 1st field. */ v = VEC_alloc (constructor_elt, gc, 2); t = TYPE_FIELDS (desc_type); t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); CONSTRUCTOR_APPEND_ELT (v, min_field, convert (TREE_TYPE (min_field), integer_one_node)); CONSTRUCTOR_APPEND_ELT (v, max_field, convert (TREE_TYPE (max_field), t)); template_tree = gnat_build_constructor (template_type, v); template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template_tree); /* For class S, we are done. */ if (iklass == 1) break; /* Test that we really have a SB descriptor, like DEC Ada. */ t = build3 (COMPONENT_REF, TREE_TYPE (klass), desc, klass, NULL); u = convert (TREE_TYPE (klass), DECL_INITIAL (klass)); u = build_binary_op (EQ_EXPR, boolean_type_node, t, u); /* If so, there is already a template in the descriptor and it is located right after the POINTER field. */ t = DECL_CHAIN (pointer); template_tree = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); /* Otherwise use the {1, LENGTH} template we build above. */ template_addr = build3 (COND_EXPR, p_bounds_type, u, build_unary_op (ADDR_EXPR, p_bounds_type, template_tree), template_addr); break; case 4: /* Class A */ /* The AFLAGS field is the 7th field in the descriptor. */ t = DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (pointer))); aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); /* The DIMCT field is the 8th field in the descriptor. */ t = DECL_CHAIN (t); dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); /* Raise CONSTRAINT_ERROR if either more than 1 dimension or FL_COEFF or FL_BOUNDS not set. */ u = build_int_cst (TREE_TYPE (aflags), 192); u = build_binary_op (TRUTH_OR_EXPR, boolean_type_node, build_binary_op (NE_EXPR, boolean_type_node, dimct, convert (TREE_TYPE (dimct), size_one_node)), build_binary_op (NE_EXPR, boolean_type_node, build2 (BIT_AND_EXPR, TREE_TYPE (aflags), aflags, u), u)); /* There is already a template in the descriptor and it is located at the start of block 3 (12th field). */ t = DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (t)))); template_tree = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); template_tree = build3 (COND_EXPR, TREE_TYPE (t), u, build_call_raise (CE_Length_Check_Failed, Empty, N_Raise_Constraint_Error), template_tree); template_addr = build_unary_op (ADDR_EXPR, p_bounds_type, template_tree); break; case 10: /* Class NCA */ default: post_error ("unsupported descriptor type for &", gnat_subprog); template_addr = integer_zero_node; break; } /* Build the fat pointer in the form of a constructor. */ v = VEC_alloc (constructor_elt, gc, 2); CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (gnu_type), gnu_expr32); CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (gnu_type)), template_addr); return gnat_build_constructor (gnu_type, v); } else gcc_unreachable (); } /* Convert GNU_EXPR, a pointer to a VMS descriptor, to GNU_TYPE, a regular pointer or fat pointer type. GNU_EXPR_ALT_TYPE is the alternate (32-bit) pointer type of GNU_EXPR. BY_REF is true if the result is to be used by reference. GNAT_SUBPROG is the subprogram to which the VMS descriptor is passed. */ tree convert_vms_descriptor (tree gnu_type, tree gnu_expr, tree gnu_expr_alt_type, bool by_ref, Entity_Id gnat_subprog) { tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr)); tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr); tree mbo = TYPE_FIELDS (desc_type); const char *mbostr = IDENTIFIER_POINTER (DECL_NAME (mbo)); tree mbmo = DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (mbo))); tree real_type, is64bit, gnu_expr32, gnu_expr64; if (by_ref) real_type = TREE_TYPE (gnu_type); else real_type = gnu_type; /* If the field name is not MBO, it must be 32-bit and no alternate. Otherwise primary must be 64-bit and alternate 32-bit. */ if (strcmp (mbostr, "MBO") != 0) { tree ret = convert_vms_descriptor32 (real_type, gnu_expr, gnat_subprog); if (by_ref) ret = build_unary_op (ADDR_EXPR, gnu_type, ret); return ret; } /* Build the test for 64-bit descriptor. */ mbo = build3 (COMPONENT_REF, TREE_TYPE (mbo), desc, mbo, NULL_TREE); mbmo = build3 (COMPONENT_REF, TREE_TYPE (mbmo), desc, mbmo, NULL_TREE); is64bit = build_binary_op (TRUTH_ANDIF_EXPR, boolean_type_node, build_binary_op (EQ_EXPR, boolean_type_node, convert (integer_type_node, mbo), integer_one_node), build_binary_op (EQ_EXPR, boolean_type_node, convert (integer_type_node, mbmo), integer_minus_one_node)); /* Build the 2 possible end results. */ gnu_expr64 = convert_vms_descriptor64 (real_type, gnu_expr, gnat_subprog); if (by_ref) gnu_expr64 = build_unary_op (ADDR_EXPR, gnu_type, gnu_expr64); gnu_expr = fold_convert (gnu_expr_alt_type, gnu_expr); gnu_expr32 = convert_vms_descriptor32 (real_type, gnu_expr, gnat_subprog); if (by_ref) gnu_expr32 = build_unary_op (ADDR_EXPR, gnu_type, gnu_expr32); return build3 (COND_EXPR, gnu_type, is64bit, gnu_expr64, gnu_expr32); } /* Build a type to be used to represent an aliased object whose nominal type is an unconstrained array. This consists of a RECORD_TYPE containing a field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an ARRAY_TYPE. If ARRAY_TYPE is that of an unconstrained array, this is used to represent an arbitrary unconstrained object. Use NAME as the name of the record. DEBUG_INFO_P is true if we need to write debug information for the type. */ tree build_unc_object_type (tree template_type, tree object_type, tree name, bool debug_info_p) { tree type = make_node (RECORD_TYPE); tree template_field = create_field_decl (get_identifier ("BOUNDS"), template_type, type, NULL_TREE, NULL_TREE, 0, 1); tree array_field = create_field_decl (get_identifier ("ARRAY"), object_type, type, NULL_TREE, NULL_TREE, 0, 1); TYPE_NAME (type) = name; TYPE_CONTAINS_TEMPLATE_P (type) = 1; DECL_CHAIN (template_field) = array_field; finish_record_type (type, template_field, 0, true); /* Declare it now since it will never be declared otherwise. This is necessary to ensure that its subtrees are properly marked. */ create_type_decl (name, type, NULL, true, debug_info_p, Empty); return type; } /* Same, taking a thin or fat pointer type instead of a template type. */ tree build_unc_object_type_from_ptr (tree thin_fat_ptr_type, tree object_type, tree name, bool debug_info_p) { tree template_type; gcc_assert (TYPE_IS_FAT_OR_THIN_POINTER_P (thin_fat_ptr_type)); template_type = (TYPE_IS_FAT_POINTER_P (thin_fat_ptr_type) ? TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (thin_fat_ptr_type)))) : TREE_TYPE (TYPE_FIELDS (TREE_TYPE (thin_fat_ptr_type)))); return build_unc_object_type (template_type, object_type, name, debug_info_p); } /* Shift the component offsets within an unconstrained object TYPE to make it suitable for use as a designated type for thin pointers. */ void shift_unc_components_for_thin_pointers (tree type) { /* Thin pointer values designate the ARRAY data of an unconstrained object, allocated past the BOUNDS template. The designated type is adjusted to have ARRAY at position zero and the template at a negative offset, so that COMPONENT_REFs on (*thin_ptr) designate the proper location. */ tree bounds_field = TYPE_FIELDS (type); tree array_field = DECL_CHAIN (TYPE_FIELDS (type)); DECL_FIELD_OFFSET (bounds_field) = size_binop (MINUS_EXPR, size_zero_node, byte_position (array_field)); DECL_FIELD_OFFSET (array_field) = size_zero_node; DECL_FIELD_BIT_OFFSET (array_field) = bitsize_zero_node; } /* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE. In the normal case this is just two adjustments, but we have more to do if NEW_TYPE is an UNCONSTRAINED_ARRAY_TYPE. */ void update_pointer_to (tree old_type, tree new_type) { tree ptr = TYPE_POINTER_TO (old_type); tree ref = TYPE_REFERENCE_TO (old_type); tree t; /* If this is the main variant, process all the other variants first. */ if (TYPE_MAIN_VARIANT (old_type) == old_type) for (t = TYPE_NEXT_VARIANT (old_type); t; t = TYPE_NEXT_VARIANT (t)) update_pointer_to (t, new_type); /* If no pointers and no references, we are done. */ if (!ptr && !ref) return; /* Merge the old type qualifiers in the new type. Each old variant has qualifiers for specific reasons, and the new designated type as well. Each set of qualifiers represents useful information grabbed at some point, and merging the two simply unifies these inputs into the final type description. Consider for instance a volatile type frozen after an access to constant type designating it; after the designated type's freeze, we get here with a volatile NEW_TYPE and a dummy OLD_TYPE with a readonly variant, created when the access type was processed. We will make a volatile and readonly designated type, because that's what it really is. We might also get here for a non-dummy OLD_TYPE variant with different qualifiers than those of NEW_TYPE, for instance in some cases of pointers to private record type elaboration (see the comments around the call to this routine in gnat_to_gnu_entity <E_Access_Type>). We have to merge the qualifiers in those cases too, to avoid accidentally discarding the initial set, and will often end up with OLD_TYPE == NEW_TYPE then. */ new_type = build_qualified_type (new_type, TYPE_QUALS (old_type) | TYPE_QUALS (new_type)); /* If old type and new type are identical, there is nothing to do. */ if (old_type == new_type) return; /* Otherwise, first handle the simple case. */ if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE) { tree new_ptr, new_ref; /* If pointer or reference already points to new type, nothing to do. This can happen as update_pointer_to can be invoked multiple times on the same couple of types because of the type variants. */ if ((ptr && TREE_TYPE (ptr) == new_type) || (ref && TREE_TYPE (ref) == new_type)) return; /* Chain PTR and its variants at the end. */ new_ptr = TYPE_POINTER_TO (new_type); if (new_ptr) { while (TYPE_NEXT_PTR_TO (new_ptr)) new_ptr = TYPE_NEXT_PTR_TO (new_ptr); TYPE_NEXT_PTR_TO (new_ptr) = ptr; } else TYPE_POINTER_TO (new_type) = ptr; /* Now adjust them. */ for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr)) for (t = TYPE_MAIN_VARIANT (ptr); t; t = TYPE_NEXT_VARIANT (t)) { TREE_TYPE (t) = new_type; if (TYPE_NULL_BOUNDS (t)) TREE_TYPE (TREE_OPERAND (TYPE_NULL_BOUNDS (t), 0)) = new_type; } /* If we have adjusted named types, finalize them. This is necessary since we had forced a DWARF typedef for them in gnat_pushdecl. */ for (ptr = TYPE_POINTER_TO (old_type); ptr; ptr = TYPE_NEXT_PTR_TO (ptr)) if (TYPE_NAME (ptr) && TREE_CODE (TYPE_NAME (ptr)) == TYPE_DECL) rest_of_type_decl_compilation (TYPE_NAME (ptr)); /* Chain REF and its variants at the end. */ new_ref = TYPE_REFERENCE_TO (new_type); if (new_ref) { while (TYPE_NEXT_REF_TO (new_ref)) new_ref = TYPE_NEXT_REF_TO (new_ref); TYPE_NEXT_REF_TO (new_ref) = ref; } else TYPE_REFERENCE_TO (new_type) = ref; /* Now adjust them. */ for (; ref; ref = TYPE_NEXT_REF_TO (ref)) for (t = TYPE_MAIN_VARIANT (ref); t; t = TYPE_NEXT_VARIANT (t)) TREE_TYPE (t) = new_type; TYPE_POINTER_TO (old_type) = NULL_TREE; TYPE_REFERENCE_TO (old_type) = NULL_TREE; } /* Now deal with the unconstrained array case. In this case the pointer is actually a record where both fields are pointers to dummy nodes. Turn them into pointers to the correct types using update_pointer_to. Likewise for the pointer to the object record (thin pointer). */ else { tree new_ptr = TYPE_POINTER_TO (new_type); gcc_assert (TYPE_IS_FAT_POINTER_P (ptr)); /* If PTR already points to NEW_TYPE, nothing to do. This can happen since update_pointer_to can be invoked multiple times on the same couple of types because of the type variants. */ if (TYPE_UNCONSTRAINED_ARRAY (ptr) == new_type) return; update_pointer_to (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))), TREE_TYPE (TREE_TYPE (TYPE_FIELDS (new_ptr)))); update_pointer_to (TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (ptr)))), TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (new_ptr))))); update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type), TYPE_OBJECT_RECORD_TYPE (new_type)); TYPE_POINTER_TO (old_type) = NULL_TREE; } } /* Convert EXPR, a pointer to a constrained array, into a pointer to an unconstrained one. This involves making or finding a template. */ static tree convert_to_fat_pointer (tree type, tree expr) { tree template_type = TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)))); tree p_array_type = TREE_TYPE (TYPE_FIELDS (type)); tree etype = TREE_TYPE (expr); tree template_tree; VEC(constructor_elt,gc) *v = VEC_alloc (constructor_elt, gc, 2); /* If EXPR is null, make a fat pointer that contains a null pointer to the array (compare_fat_pointers ensures that this is the full discriminant) and a valid pointer to the bounds. This latter property is necessary since the compiler can hoist the load of the bounds done through it. */ if (integer_zerop (expr)) { tree ptr_template_type = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type))); tree null_bounds, t; if (TYPE_NULL_BOUNDS (ptr_template_type)) null_bounds = TYPE_NULL_BOUNDS (ptr_template_type); else { /* The template type can still be dummy at this point so we build an empty constructor. The middle-end will fill it in with zeros. */ t = build_constructor (template_type, NULL); TREE_CONSTANT (t) = TREE_STATIC (t) = 1; null_bounds = build_unary_op (ADDR_EXPR, NULL_TREE, t); SET_TYPE_NULL_BOUNDS (ptr_template_type, null_bounds); } CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type), fold_convert (p_array_type, null_pointer_node)); CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)), null_bounds); t = build_constructor (type, v); /* Do not set TREE_CONSTANT so as to force T to static memory. */ TREE_CONSTANT (t) = 0; TREE_STATIC (t) = 1; return t; } /* If EXPR is a thin pointer, make template and data from the record.. */ else if (TYPE_IS_THIN_POINTER_P (etype)) { tree fields = TYPE_FIELDS (TREE_TYPE (etype)); expr = gnat_protect_expr (expr); if (TREE_CODE (expr) == ADDR_EXPR) expr = TREE_OPERAND (expr, 0); else expr = build1 (INDIRECT_REF, TREE_TYPE (etype), expr); template_tree = build_component_ref (expr, NULL_TREE, fields, false); expr = build_unary_op (ADDR_EXPR, NULL_TREE, build_component_ref (expr, NULL_TREE, DECL_CHAIN (fields), false)); } /* Otherwise, build the constructor for the template. */ else template_tree = build_template (template_type, TREE_TYPE (etype), expr); /* The final result is a constructor for the fat pointer. If EXPR is an argument of a foreign convention subprogram, the type it points to is directly the component type. In this case, the expression type may not match the corresponding FIELD_DECL type at this point, so we call "convert" here to fix that up if necessary. This type consistency is required, for instance because it ensures that possible later folding of COMPONENT_REFs against this constructor always yields something of the same type as the initial reference. Note that the call to "build_template" above is still fine because it will only refer to the provided TEMPLATE_TYPE in this case. */ CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type), convert (p_array_type, expr)); CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)), build_unary_op (ADDR_EXPR, NULL_TREE, template_tree)); return gnat_build_constructor (type, v); } /* Convert to a thin pointer type, TYPE. The only thing we know how to convert is something that is a fat pointer, so convert to it first if it EXPR is not already a fat pointer. */ static tree convert_to_thin_pointer (tree type, tree expr) { if (!TYPE_IS_FAT_POINTER_P (TREE_TYPE (expr))) expr = convert_to_fat_pointer (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))), expr); /* We get the pointer to the data and use a NOP_EXPR to make it the proper GCC type. */ expr = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (TREE_TYPE (expr)), false); expr = build1 (NOP_EXPR, type, expr); return expr; } /* Create an expression whose value is that of EXPR, converted to type TYPE. The TREE_TYPE of the value is always TYPE. This function implements all reasonable conversions; callers should filter out those that are not permitted by the language being compiled. */ tree convert (tree type, tree expr) { tree etype = TREE_TYPE (expr); enum tree_code ecode = TREE_CODE (etype); enum tree_code code = TREE_CODE (type); /* If the expression is already of the right type, we are done. */ if (etype == type) return expr; /* If both input and output have padding and are of variable size, do this as an unchecked conversion. Likewise if one is a mere variant of the other, so we avoid a pointless unpad/repad sequence. */ else if (code == RECORD_TYPE && ecode == RECORD_TYPE && TYPE_PADDING_P (type) && TYPE_PADDING_P (etype) && (!TREE_CONSTANT (TYPE_SIZE (type)) || !TREE_CONSTANT (TYPE_SIZE (etype)) || gnat_types_compatible_p (type, etype) || TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type))) == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (etype))))) ; /* If the output type has padding, convert to the inner type and make a constructor to build the record, unless a variable size is involved. */ else if (code == RECORD_TYPE && TYPE_PADDING_P (type)) { VEC(constructor_elt,gc) *v; /* If we previously converted from another type and our type is of variable size, remove the conversion to avoid the need for variable-sized temporaries. Likewise for a conversion between original and packable version. */ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR && (!TREE_CONSTANT (TYPE_SIZE (type)) || (ecode == RECORD_TYPE && TYPE_NAME (etype) == TYPE_NAME (TREE_TYPE (TREE_OPERAND (expr, 0)))))) expr = TREE_OPERAND (expr, 0); /* If we are just removing the padding from expr, convert the original object if we have variable size in order to avoid the need for some variable-sized temporaries. Likewise if the padding is a variant of the other, so we avoid a pointless unpad/repad sequence. */ if (TREE_CODE (expr) == COMPONENT_REF && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0))) && (!TREE_CONSTANT (TYPE_SIZE (type)) || gnat_types_compatible_p (type, TREE_TYPE (TREE_OPERAND (expr, 0))) || (ecode == RECORD_TYPE && TYPE_NAME (etype) == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type)))))) return convert (type, TREE_OPERAND (expr, 0)); /* If the inner type is of self-referential size and the expression type is a record, do this as an unchecked conversion. But first pad the expression if possible to have the same size on both sides. */ if (ecode == RECORD_TYPE && CONTAINS_PLACEHOLDER_P (DECL_SIZE (TYPE_FIELDS (type)))) { if (TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST) expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty, false, false, false, true), expr); return unchecked_convert (type, expr, false); } /* If we are converting between array types with variable size, do the final conversion as an unchecked conversion, again to avoid the need for some variable-sized temporaries. If valid, this conversion is very likely purely technical and without real effects. */ if (ecode == ARRAY_TYPE && TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == ARRAY_TYPE && !TREE_CONSTANT (TYPE_SIZE (etype)) && !TREE_CONSTANT (TYPE_SIZE (type))) return unchecked_convert (type, convert (TREE_TYPE (TYPE_FIELDS (type)), expr), false); v = VEC_alloc (constructor_elt, gc, 1); CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type), convert (TREE_TYPE (TYPE_FIELDS (type)), expr)); return gnat_build_constructor (type, v); } /* If the input type has padding, remove it and convert to the output type. The conditions ordering is arranged to ensure that the output type is not a padding type here, as it is not clear whether the conversion would always be correct if this was to happen. */ else if (ecode == RECORD_TYPE && TYPE_PADDING_P (etype)) { tree unpadded; /* If we have just converted to this padded type, just get the inner expression. */ if (TREE_CODE (expr) == CONSTRUCTOR && !VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (expr)) && VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->index == TYPE_FIELDS (etype)) unpadded = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->value; /* Otherwise, build an explicit component reference. */ else unpadded = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (etype), false); return convert (type, unpadded); } /* If the input is a biased type, adjust first. */ if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype)) return convert (type, fold_build2 (PLUS_EXPR, TREE_TYPE (etype), fold_convert (TREE_TYPE (etype), expr), TYPE_MIN_VALUE (etype))); /* If the input is a justified modular type, we need to extract the actual object before converting it to any other type with the exceptions of an unconstrained array or of a mere type variant. It is useful to avoid the extraction and conversion in the type variant case because it could end up replacing a VAR_DECL expr by a constructor and we might be about the take the address of the result. */ if (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype) && code != UNCONSTRAINED_ARRAY_TYPE && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (etype)) return convert (type, build_component_ref (expr, NULL_TREE, TYPE_FIELDS (etype), false)); /* If converting to a type that contains a template, convert to the data type and then build the template. */ if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type)) { tree obj_type = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type))); VEC(constructor_elt,gc) *v = VEC_alloc (constructor_elt, gc, 2); /* If the source already has a template, get a reference to the associated array only, as we are going to rebuild a template for the target type anyway. */ expr = maybe_unconstrained_array (expr); CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type), build_template (TREE_TYPE (TYPE_FIELDS (type)), obj_type, NULL_TREE)); CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)), convert (obj_type, expr)); return gnat_build_constructor (type, v); } /* There are some cases of expressions that we process specially. */ switch (TREE_CODE (expr)) { case ERROR_MARK: return expr; case NULL_EXPR: /* Just set its type here. For TRANSFORM_EXPR, we will do the actual conversion in gnat_expand_expr. NULL_EXPR does not represent and actual value, so no conversion is needed. */ expr = copy_node (expr); TREE_TYPE (expr) = type; return expr; case STRING_CST: /* If we are converting a STRING_CST to another constrained array type, just make a new one in the proper type. */ if (code == ecode && AGGREGATE_TYPE_P (etype) && !(TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)) { expr = copy_node (expr); TREE_TYPE (expr) = type; return expr; } break; case VECTOR_CST: /* If we are converting a VECTOR_CST to a mere variant type, just make a new one in the proper type. */ if (code == ecode && gnat_types_compatible_p (type, etype)) { expr = copy_node (expr); TREE_TYPE (expr) = type; return expr; } case CONSTRUCTOR: /* If we are converting a CONSTRUCTOR to a mere variant type, just make a new one in the proper type. */ if (code == ecode && gnat_types_compatible_p (type, etype)) { expr = copy_node (expr); TREE_TYPE (expr) = type; return expr; } /* Likewise for a conversion between original and packable version, or conversion between types of the same size and with the same list of fields, but we have to work harder to preserve type consistency. */ if (code == ecode && code == RECORD_TYPE && (TYPE_NAME (type) == TYPE_NAME (etype) || tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (etype)))) { VEC(constructor_elt,gc) *e = CONSTRUCTOR_ELTS (expr); unsigned HOST_WIDE_INT len = VEC_length (constructor_elt, e); VEC(constructor_elt,gc) *v = VEC_alloc (constructor_elt, gc, len); tree efield = TYPE_FIELDS (etype), field = TYPE_FIELDS (type); unsigned HOST_WIDE_INT idx; tree index, value; /* Whether we need to clear TREE_CONSTANT et al. on the output constructor when we convert in place. */ bool clear_constant = false; FOR_EACH_CONSTRUCTOR_ELT(e, idx, index, value) { constructor_elt *elt; /* We expect only simple constructors. */ if (!SAME_FIELD_P (index, efield)) break; /* The field must be the same. */ if (!SAME_FIELD_P (efield, field)) break; elt = VEC_quick_push (constructor_elt, v, NULL); elt->index = field; elt->value = convert (TREE_TYPE (field), value); /* If packing has made this field a bitfield and the input value couldn't be emitted statically any more, we need to clear TREE_CONSTANT on our output. */ if (!clear_constant && TREE_CONSTANT (expr) && !CONSTRUCTOR_BITFIELD_P (efield) && CONSTRUCTOR_BITFIELD_P (field) && !initializer_constant_valid_for_bitfield_p (value)) clear_constant = true; efield = DECL_CHAIN (efield); field = DECL_CHAIN (field); } /* If we have been able to match and convert all the input fields to their output type, convert in place now. We'll fallback to a view conversion downstream otherwise. */ if (idx == len) { expr = copy_node (expr); TREE_TYPE (expr) = type; CONSTRUCTOR_ELTS (expr) = v; if (clear_constant) TREE_CONSTANT (expr) = TREE_STATIC (expr) = 0; return expr; } } /* Likewise for a conversion between array type and vector type with a compatible representative array. */ else if (code == VECTOR_TYPE && ecode == ARRAY_TYPE && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type), etype)) { VEC(constructor_elt,gc) *e = CONSTRUCTOR_ELTS (expr); unsigned HOST_WIDE_INT len = VEC_length (constructor_elt, e); VEC(constructor_elt,gc) *v; unsigned HOST_WIDE_INT ix; tree value; /* Build a VECTOR_CST from a *constant* array constructor. */ if (TREE_CONSTANT (expr)) { bool constant_p = true; /* Iterate through elements and check if all constructor elements are *_CSTs. */ FOR_EACH_CONSTRUCTOR_VALUE (e, ix, value) if (!CONSTANT_CLASS_P (value)) { constant_p = false; break; } if (constant_p) return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (expr)); } /* Otherwise, build a regular vector constructor. */ v = VEC_alloc (constructor_elt, gc, len); FOR_EACH_CONSTRUCTOR_VALUE (e, ix, value) { constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL); elt->index = NULL_TREE; elt->value = value; } expr = copy_node (expr); TREE_TYPE (expr) = type; CONSTRUCTOR_ELTS (expr) = v; return expr; } break; case UNCONSTRAINED_ARRAY_REF: /* First retrieve the underlying array. */ expr = maybe_unconstrained_array (expr); etype = TREE_TYPE (expr); ecode = TREE_CODE (etype); break; case VIEW_CONVERT_EXPR: { /* GCC 4.x is very sensitive to type consistency overall, and view conversions thus are very frequent. Even though just "convert"ing the inner operand to the output type is fine in most cases, it might expose unexpected input/output type mismatches in special circumstances so we avoid such recursive calls when we can. */ tree op0 = TREE_OPERAND (expr, 0); /* If we are converting back to the original type, we can just lift the input conversion. This is a common occurrence with switches back-and-forth amongst type variants. */ if (type == TREE_TYPE (op0)) return op0; /* Otherwise, if we're converting between two aggregate or vector types, we might be allowed to substitute the VIEW_CONVERT_EXPR target type in place or to just convert the inner expression. */ if ((AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype)) || (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (etype))) { /* If we are converting between mere variants, we can just substitute the VIEW_CONVERT_EXPR in place. */ if (gnat_types_compatible_p (type, etype)) return build1 (VIEW_CONVERT_EXPR, type, op0); /* Otherwise, we may just bypass the input view conversion unless one of the types is a fat pointer, which is handled by specialized code below which relies on exact type matching. */ else if (!TYPE_IS_FAT_POINTER_P (type) && !TYPE_IS_FAT_POINTER_P (etype)) return convert (type, op0); } break; } default: break; } /* Check for converting to a pointer to an unconstrained array. */ if (TYPE_IS_FAT_POINTER_P (type) && !TYPE_IS_FAT_POINTER_P (etype)) return convert_to_fat_pointer (type, expr); /* If we are converting between two aggregate or vector types that are mere variants, just make a VIEW_CONVERT_EXPR. Likewise when we are converting to a vector type from its representative array type. */ else if ((code == ecode && (AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)) && gnat_types_compatible_p (type, etype)) || (code == VECTOR_TYPE && ecode == ARRAY_TYPE && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type), etype))) return build1 (VIEW_CONVERT_EXPR, type, expr); /* If we are converting between tagged types, try to upcast properly. */ else if (ecode == RECORD_TYPE && code == RECORD_TYPE && TYPE_ALIGN_OK (etype) && TYPE_ALIGN_OK (type)) { tree child_etype = etype; do { tree field = TYPE_FIELDS (child_etype); if (DECL_NAME (field) == parent_name_id && TREE_TYPE (field) == type) return build_component_ref (expr, NULL_TREE, field, false); child_etype = TREE_TYPE (field); } while (TREE_CODE (child_etype) == RECORD_TYPE); } /* If we are converting from a smaller form of record type back to it, just make a VIEW_CONVERT_EXPR. But first pad the expression to have the same size on both sides. */ else if (ecode == RECORD_TYPE && code == RECORD_TYPE && smaller_form_type_p (etype, type)) { expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty, false, false, false, true), expr); return build1 (VIEW_CONVERT_EXPR, type, expr); } /* In all other cases of related types, make a NOP_EXPR. */ else if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype)) return fold_convert (type, expr); switch (code) { case VOID_TYPE: return fold_build1 (CONVERT_EXPR, type, expr); case INTEGER_TYPE: if (TYPE_HAS_ACTUAL_BOUNDS_P (type) && (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype)))) return unchecked_convert (type, expr, false); else if (TYPE_BIASED_REPRESENTATION_P (type)) return fold_convert (type, fold_build2 (MINUS_EXPR, TREE_TYPE (type), convert (TREE_TYPE (type), expr), TYPE_MIN_VALUE (type))); /* ... fall through ... */ case ENUMERAL_TYPE: case BOOLEAN_TYPE: /* If we are converting an additive expression to an integer type with lower precision, be wary of the optimization that can be applied by convert_to_integer. There are 2 problematic cases: - if the first operand was originally of a biased type, because we could be recursively called to convert it to an intermediate type and thus rematerialize the additive operator endlessly, - if the expression contains a placeholder, because an intermediate conversion that changes the sign could be inserted and thus introduce an artificial overflow at compile time when the placeholder is substituted. */ if (code == INTEGER_TYPE && ecode == INTEGER_TYPE && TYPE_PRECISION (type) < TYPE_PRECISION (etype) && (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR)) { tree op0 = get_unwidened (TREE_OPERAND (expr, 0), type); if ((TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (TREE_TYPE (op0))) || CONTAINS_PLACEHOLDER_P (expr)) return build1 (NOP_EXPR, type, expr); } return fold (convert_to_integer (type, expr)); case POINTER_TYPE: case REFERENCE_TYPE: /* If converting between two pointers to records denoting both a template and type, adjust if needed to account for any differing offsets, since one might be negative. */ if (TYPE_IS_THIN_POINTER_P (etype) && TYPE_IS_THIN_POINTER_P (type)) { tree bit_diff = size_diffop (bit_position (TYPE_FIELDS (TREE_TYPE (etype))), bit_position (TYPE_FIELDS (TREE_TYPE (type)))); tree byte_diff = size_binop (CEIL_DIV_EXPR, bit_diff, sbitsize_unit_node); expr = build1 (NOP_EXPR, type, expr); TREE_CONSTANT (expr) = TREE_CONSTANT (TREE_OPERAND (expr, 0)); if (integer_zerop (byte_diff)) return expr; return build_binary_op (POINTER_PLUS_EXPR, type, expr, fold (convert (sizetype, byte_diff))); } /* If converting to a thin pointer, handle specially. */ if (TYPE_IS_THIN_POINTER_P (type) && TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))) return convert_to_thin_pointer (type, expr); /* If converting fat pointer to normal pointer, get the pointer to the array and then convert it. */ else if (TYPE_IS_FAT_POINTER_P (etype)) expr = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (etype), false); return fold (convert_to_pointer (type, expr)); case REAL_TYPE: return fold (convert_to_real (type, expr)); case RECORD_TYPE: if (TYPE_JUSTIFIED_MODULAR_P (type) && !AGGREGATE_TYPE_P (etype)) { VEC(constructor_elt,gc) *v = VEC_alloc (constructor_elt, gc, 1); CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type), convert (TREE_TYPE (TYPE_FIELDS (type)), expr)); return gnat_build_constructor (type, v); } /* ... fall through ... */ case ARRAY_TYPE: /* In these cases, assume the front-end has validated the conversion. If the conversion is valid, it will be a bit-wise conversion, so it can be viewed as an unchecked conversion. */ return unchecked_convert (type, expr, false); case UNION_TYPE: /* This is a either a conversion between a tagged type and some subtype, which we have to mark as a UNION_TYPE because of overlapping fields or a conversion of an Unchecked_Union. */ return unchecked_convert (type, expr, false); case UNCONSTRAINED_ARRAY_TYPE: /* If the input is a VECTOR_TYPE, convert to the representative array type first. */ if (ecode == VECTOR_TYPE) { expr = convert (TYPE_REPRESENTATIVE_ARRAY (etype), expr); etype = TREE_TYPE (expr); ecode = TREE_CODE (etype); } /* If EXPR is a constrained array, take its address, convert it to a fat pointer, and then dereference it. Likewise if EXPR is a record containing both a template and a constrained array. Note that a record representing a justified modular type always represents a packed constrained array. */ if (ecode == ARRAY_TYPE || (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype)) || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype)) || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype))) return build_unary_op (INDIRECT_REF, NULL_TREE, convert_to_fat_pointer (TREE_TYPE (type), build_unary_op (ADDR_EXPR, NULL_TREE, expr))); /* Do something very similar for converting one unconstrained array to another. */ else if (ecode == UNCONSTRAINED_ARRAY_TYPE) return build_unary_op (INDIRECT_REF, NULL_TREE, convert (TREE_TYPE (type), build_unary_op (ADDR_EXPR, NULL_TREE, expr))); else gcc_unreachable (); case COMPLEX_TYPE: return fold (convert_to_complex (type, expr)); default: gcc_unreachable (); } } /* Create an expression whose value is that of EXPR converted to the common index type, which is sizetype. EXPR is supposed to be in the base type of the GNAT index type. Calling it is equivalent to doing convert (sizetype, expr) but we try to distribute the type conversion with the knowledge that EXPR cannot overflow in its type. This is a best-effort approach and we fall back to the above expression as soon as difficulties are encountered. This is necessary to overcome issues that arise when the GNAT base index type and the GCC common index type (sizetype) don't have the same size, which is quite frequent on 64-bit architectures. In this case, and if the GNAT base index type is signed but the iteration type of the loop has been forced to unsigned, the loop scalar evolution engine cannot compute a simple evolution for the general induction variables associated with the array indices, because it will preserve the wrap-around semantics in the unsigned type of their "inner" part. As a result, many loop optimizations are blocked. The solution is to use a special (basic) induction variable that is at least as large as sizetype, and to express the aforementioned general induction variables in terms of this induction variable, eliminating the problematic intermediate truncation to the GNAT base index type. This is possible as long as the original expression doesn't overflow and if the middle-end hasn't introduced artificial overflows in the course of the various simplification it can make to the expression. */ tree convert_to_index_type (tree expr) { enum tree_code code = TREE_CODE (expr); tree type = TREE_TYPE (expr); /* If the type is unsigned, overflow is allowed so we cannot be sure that EXPR doesn't overflow. Keep it simple if optimization is disabled. */ if (TYPE_UNSIGNED (type) || !optimize) return convert (sizetype, expr); switch (code) { case VAR_DECL: /* The main effect of the function: replace a loop parameter with its associated special induction variable. */ if (DECL_LOOP_PARM_P (expr) && DECL_INDUCTION_VAR (expr)) expr = DECL_INDUCTION_VAR (expr); break; CASE_CONVERT: { tree otype = TREE_TYPE (TREE_OPERAND (expr, 0)); /* Bail out as soon as we suspect some sort of type frobbing. */ if (TYPE_PRECISION (type) != TYPE_PRECISION (otype) || TYPE_UNSIGNED (type) != TYPE_UNSIGNED (otype)) break; } /* ... fall through ... */ case NON_LVALUE_EXPR: return fold_build1 (code, sizetype, convert_to_index_type (TREE_OPERAND (expr, 0))); case PLUS_EXPR: case MINUS_EXPR: case MULT_EXPR: return fold_build2 (code, sizetype, convert_to_index_type (TREE_OPERAND (expr, 0)), convert_to_index_type (TREE_OPERAND (expr, 1))); case COMPOUND_EXPR: return fold_build2 (code, sizetype, TREE_OPERAND (expr, 0), convert_to_index_type (TREE_OPERAND (expr, 1))); case COND_EXPR: return fold_build3 (code, sizetype, TREE_OPERAND (expr, 0), convert_to_index_type (TREE_OPERAND (expr, 1)), convert_to_index_type (TREE_OPERAND (expr, 2))); default: break; } return convert (sizetype, expr); } /* Remove all conversions that are done in EXP. This includes converting from a padded type or to a justified modular type. If TRUE_ADDRESS is true, always return the address of the containing object even if the address is not bit-aligned. */ tree remove_conversions (tree exp, bool true_address) { switch (TREE_CODE (exp)) { case CONSTRUCTOR: if (true_address && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (TREE_TYPE (exp))) return remove_conversions (VEC_index (constructor_elt, CONSTRUCTOR_ELTS (exp), 0)->value, true); break; case COMPONENT_REF: if (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0)))) return remove_conversions (TREE_OPERAND (exp, 0), true_address); break; CASE_CONVERT: case VIEW_CONVERT_EXPR: case NON_LVALUE_EXPR: return remove_conversions (TREE_OPERAND (exp, 0), true_address); default: break; } return exp; } /* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that refers to the underlying array. If it has TYPE_CONTAINS_TEMPLATE_P, likewise return an expression pointing to the underlying array. */ tree maybe_unconstrained_array (tree exp) { enum tree_code code = TREE_CODE (exp); tree type = TREE_TYPE (exp); switch (TREE_CODE (type)) { case UNCONSTRAINED_ARRAY_TYPE: if (code == UNCONSTRAINED_ARRAY_REF) { const bool read_only = TREE_READONLY (exp); const bool no_trap = TREE_THIS_NOTRAP (exp); exp = TREE_OPERAND (exp, 0); type = TREE_TYPE (exp); if (TREE_CODE (exp) == COND_EXPR) { tree op1 = build_unary_op (INDIRECT_REF, NULL_TREE, build_component_ref (TREE_OPERAND (exp, 1), NULL_TREE, TYPE_FIELDS (type), false)); tree op2 = build_unary_op (INDIRECT_REF, NULL_TREE, build_component_ref (TREE_OPERAND (exp, 2), NULL_TREE, TYPE_FIELDS (type), false)); exp = build3 (COND_EXPR, TREE_TYPE (TREE_TYPE (TYPE_FIELDS (type))), TREE_OPERAND (exp, 0), op1, op2); } else { exp = build_unary_op (INDIRECT_REF, NULL_TREE, build_component_ref (exp, NULL_TREE, TYPE_FIELDS (type), false)); TREE_READONLY (exp) = read_only; TREE_THIS_NOTRAP (exp) = no_trap; } } else if (code == NULL_EXPR) exp = build1 (NULL_EXPR, TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type)))), TREE_OPERAND (exp, 0)); break; case RECORD_TYPE: /* If this is a padded type and it contains a template, convert to the unpadded type first. */ if (TYPE_PADDING_P (type) && TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (TYPE_FIELDS (type)))) { exp = convert (TREE_TYPE (TYPE_FIELDS (type)), exp); type = TREE_TYPE (exp); } if (TYPE_CONTAINS_TEMPLATE_P (type)) { exp = build_component_ref (exp, NULL_TREE, DECL_CHAIN (TYPE_FIELDS (type)), false); type = TREE_TYPE (exp); /* If the array type is padded, convert to the unpadded type. */ if (TYPE_IS_PADDING_P (type)) exp = convert (TREE_TYPE (TYPE_FIELDS (type)), exp); } break; default: break; } return exp; } /* If EXP's type is a VECTOR_TYPE, return EXP converted to the associated TYPE_REPRESENTATIVE_ARRAY. */ tree maybe_vector_array (tree exp) { tree etype = TREE_TYPE (exp); if (VECTOR_TYPE_P (etype)) exp = convert (TYPE_REPRESENTATIVE_ARRAY (etype), exp); return exp; } /* Return true if EXPR is an expression that can be folded as an operand of a VIEW_CONVERT_EXPR. See ada-tree.h for a complete rationale. */ static bool can_fold_for_view_convert_p (tree expr) { tree t1, t2; /* The folder will fold NOP_EXPRs between integral types with the same precision (in the middle-end's sense). We cannot allow it if the types don't have the same precision in the Ada sense as well. */ if (TREE_CODE (expr) != NOP_EXPR) return true; t1 = TREE_TYPE (expr); t2 = TREE_TYPE (TREE_OPERAND (expr, 0)); /* Defer to the folder for non-integral conversions. */ if (!(INTEGRAL_TYPE_P (t1) && INTEGRAL_TYPE_P (t2))) return true; /* Only fold conversions that preserve both precisions. */ if (TYPE_PRECISION (t1) == TYPE_PRECISION (t2) && operand_equal_p (rm_size (t1), rm_size (t2), 0)) return true; return false; } /* Return an expression that does an unchecked conversion of EXPR to TYPE. If NOTRUNC_P is true, truncation operations should be suppressed. Special care is required with (source or target) integral types whose precision is not equal to their size, to make sure we fetch or assign the value bits whose location might depend on the endianness, e.g. Rmsize : constant := 8; subtype Int is Integer range 0 .. 2 ** Rmsize - 1; type Bit_Array is array (1 .. Rmsize) of Boolean; pragma Pack (Bit_Array); function To_Bit_Array is new Unchecked_Conversion (Int, Bit_Array); Value : Int := 2#1000_0001#; Vbits : Bit_Array := To_Bit_Array (Value); we expect the 8 bits at Vbits'Address to always contain Value, while their original location depends on the endianness, at Value'Address on a little-endian architecture but not on a big-endian one. */ tree unchecked_convert (tree type, tree expr, bool notrunc_p) { tree etype = TREE_TYPE (expr); enum tree_code ecode = TREE_CODE (etype); enum tree_code code = TREE_CODE (type); int c; /* If the expression is already of the right type, we are done. */ if (etype == type) return expr; /* If both types types are integral just do a normal conversion. Likewise for a conversion to an unconstrained array. */ if ((((INTEGRAL_TYPE_P (type) && !(code == INTEGER_TYPE && TYPE_VAX_FLOATING_POINT_P (type))) || (POINTER_TYPE_P (type) && ! TYPE_IS_THIN_POINTER_P (type)) || (code == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (type))) && ((INTEGRAL_TYPE_P (etype) && !(ecode == INTEGER_TYPE && TYPE_VAX_FLOATING_POINT_P (etype))) || (POINTER_TYPE_P (etype) && !TYPE_IS_THIN_POINTER_P (etype)) || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)))) || code == UNCONSTRAINED_ARRAY_TYPE) { if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype)) { tree ntype = copy_type (etype); TYPE_BIASED_REPRESENTATION_P (ntype) = 0; TYPE_MAIN_VARIANT (ntype) = ntype; expr = build1 (NOP_EXPR, ntype, expr); } if (code == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (type)) { tree rtype = copy_type (type); TYPE_BIASED_REPRESENTATION_P (rtype) = 0; TYPE_MAIN_VARIANT (rtype) = rtype; expr = convert (rtype, expr); expr = build1 (NOP_EXPR, type, expr); } else expr = convert (type, expr); } /* If we are converting to an integral type whose precision is not equal to its size, first unchecked convert to a record type that contains an field of the given precision. Then extract the field. */ else if (INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type) && 0 != compare_tree_int (TYPE_RM_SIZE (type), GET_MODE_BITSIZE (TYPE_MODE (type)))) { tree rec_type = make_node (RECORD_TYPE); unsigned HOST_WIDE_INT prec = TREE_INT_CST_LOW (TYPE_RM_SIZE (type)); tree field_type, field; if (TYPE_UNSIGNED (type)) field_type = make_unsigned_type (prec); else field_type = make_signed_type (prec); SET_TYPE_RM_SIZE (field_type, TYPE_RM_SIZE (type)); field = create_field_decl (get_identifier ("OBJ"), field_type, rec_type, NULL_TREE, NULL_TREE, 1, 0); TYPE_FIELDS (rec_type) = field; layout_type (rec_type); expr = unchecked_convert (rec_type, expr, notrunc_p); expr = build_component_ref (expr, NULL_TREE, field, false); expr = fold_build1 (NOP_EXPR, type, expr); } /* Similarly if we are converting from an integral type whose precision is not equal to its size, first copy into a field of the given precision and unchecked convert the record type. */ else if (INTEGRAL_TYPE_P (etype) && TYPE_RM_SIZE (etype) && 0 != compare_tree_int (TYPE_RM_SIZE (etype), GET_MODE_BITSIZE (TYPE_MODE (etype)))) { tree rec_type = make_node (RECORD_TYPE); unsigned HOST_WIDE_INT prec = TREE_INT_CST_LOW (TYPE_RM_SIZE (etype)); VEC(constructor_elt,gc) *v = VEC_alloc (constructor_elt, gc, 1); tree field_type, field; if (TYPE_UNSIGNED (etype)) field_type = make_unsigned_type (prec); else field_type = make_signed_type (prec); SET_TYPE_RM_SIZE (field_type, TYPE_RM_SIZE (etype)); field = create_field_decl (get_identifier ("OBJ"), field_type, rec_type, NULL_TREE, NULL_TREE, 1, 0); TYPE_FIELDS (rec_type) = field; layout_type (rec_type); expr = fold_build1 (NOP_EXPR, field_type, expr); CONSTRUCTOR_APPEND_ELT (v, field, expr); expr = gnat_build_constructor (rec_type, v); expr = unchecked_convert (type, expr, notrunc_p); } /* If we are converting from a scalar type to a type with a different size, we need to pad to have the same size on both sides. ??? We cannot do it unconditionally because unchecked conversions are used liberally by the front-end to implement polymorphism, e.g. in: S191s : constant ada__tags__addr_ptr := ada__tags__addr_ptr!(S190s); return p___size__4 (p__object!(S191s.all)); so we skip all expressions that are references. */ else if (!REFERENCE_CLASS_P (expr) && !AGGREGATE_TYPE_P (etype) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (c = tree_int_cst_compare (TYPE_SIZE (etype), TYPE_SIZE (type)))) { if (c < 0) { expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty, false, false, false, true), expr); expr = unchecked_convert (type, expr, notrunc_p); } else { tree rec_type = maybe_pad_type (type, TYPE_SIZE (etype), 0, Empty, false, false, false, true); expr = unchecked_convert (rec_type, expr, notrunc_p); expr = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (rec_type), false); } } /* We have a special case when we are converting between two unconstrained array types. In that case, take the address, convert the fat pointer types, and dereference. */ else if (ecode == code && code == UNCONSTRAINED_ARRAY_TYPE) expr = build_unary_op (INDIRECT_REF, NULL_TREE, build1 (VIEW_CONVERT_EXPR, TREE_TYPE (type), build_unary_op (ADDR_EXPR, NULL_TREE, expr))); /* Another special case is when we are converting to a vector type from its representative array type; this a regular conversion. */ else if (code == VECTOR_TYPE && ecode == ARRAY_TYPE && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type), etype)) expr = convert (type, expr); else { expr = maybe_unconstrained_array (expr); etype = TREE_TYPE (expr); ecode = TREE_CODE (etype); if (can_fold_for_view_convert_p (expr)) expr = fold_build1 (VIEW_CONVERT_EXPR, type, expr); else expr = build1 (VIEW_CONVERT_EXPR, type, expr); } /* If the result is an integral type whose precision is not equal to its size, sign- or zero-extend the result. We need not do this if the input is an integral type of the same precision and signedness or if the output is a biased type or if both the input and output are unsigned. */ if (!notrunc_p && INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type) && !(code == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (type)) && 0 != compare_tree_int (TYPE_RM_SIZE (type), GET_MODE_BITSIZE (TYPE_MODE (type))) && !(INTEGRAL_TYPE_P (etype) && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (etype) && operand_equal_p (TYPE_RM_SIZE (type), (TYPE_RM_SIZE (etype) != 0 ? TYPE_RM_SIZE (etype) : TYPE_SIZE (etype)), 0)) && !(TYPE_UNSIGNED (type) && TYPE_UNSIGNED (etype))) { tree base_type = gnat_type_for_mode (TYPE_MODE (type), TYPE_UNSIGNED (type)); tree shift_expr = convert (base_type, size_binop (MINUS_EXPR, bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type))), TYPE_RM_SIZE (type))); expr = convert (type, build_binary_op (RSHIFT_EXPR, base_type, build_binary_op (LSHIFT_EXPR, base_type, convert (base_type, expr), shift_expr), shift_expr)); } /* An unchecked conversion should never raise Constraint_Error. The code below assumes that GCC's conversion routines overflow the same way that the underlying hardware does. This is probably true. In the rare case when it is false, we can rely on the fact that such conversions are erroneous anyway. */ if (TREE_CODE (expr) == INTEGER_CST) TREE_OVERFLOW (expr) = 0; /* If the sizes of the types differ and this is an VIEW_CONVERT_EXPR, show no longer constant. */ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR && !operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype), OEP_ONLY_CONST)) TREE_CONSTANT (expr) = 0; return expr; } /* Return the appropriate GCC tree code for the specified GNAT_TYPE, the latter being a record type as predicated by Is_Record_Type. */ enum tree_code tree_code_for_record_type (Entity_Id gnat_type) { Node_Id component_list, component; /* Return UNION_TYPE if it's an Unchecked_Union whose non-discriminant fields are all in the variant part. Otherwise, return RECORD_TYPE. */ if (!Is_Unchecked_Union (gnat_type)) return RECORD_TYPE; gnat_type = Implementation_Base_Type (gnat_type); component_list = Component_List (Type_Definition (Declaration_Node (gnat_type))); for (component = First_Non_Pragma (Component_Items (component_list)); Present (component); component = Next_Non_Pragma (component)) if (Ekind (Defining_Entity (component)) == E_Component) return RECORD_TYPE; return UNION_TYPE; } /* Return true if GNAT_TYPE is a "double" floating-point type, i.e. whose size is equal to 64 bits, or an array of such a type. Set ALIGN_CLAUSE according to the presence of an alignment clause on the type or, if it is an array, on the component type. */ bool is_double_float_or_array (Entity_Id gnat_type, bool *align_clause) { gnat_type = Underlying_Type (gnat_type); *align_clause = Present (Alignment_Clause (gnat_type)); if (Is_Array_Type (gnat_type)) { gnat_type = Underlying_Type (Component_Type (gnat_type)); if (Present (Alignment_Clause (gnat_type))) *align_clause = true; } if (!Is_Floating_Point_Type (gnat_type)) return false; if (UI_To_Int (Esize (gnat_type)) != 64) return false; return true; } /* Return true if GNAT_TYPE is a "double" or larger scalar type, i.e. whose size is greater or equal to 64 bits, or an array of such a type. Set ALIGN_CLAUSE according to the presence of an alignment clause on the type or, if it is an array, on the component type. */ bool is_double_scalar_or_array (Entity_Id gnat_type, bool *align_clause) { gnat_type = Underlying_Type (gnat_type); *align_clause = Present (Alignment_Clause (gnat_type)); if (Is_Array_Type (gnat_type)) { gnat_type = Underlying_Type (Component_Type (gnat_type)); if (Present (Alignment_Clause (gnat_type))) *align_clause = true; } if (!Is_Scalar_Type (gnat_type)) return false; if (UI_To_Int (Esize (gnat_type)) < 64) return false; return true; } /* Return true if GNU_TYPE is suitable as the type of a non-aliased component of an aggregate type. */ bool type_for_nonaliased_component_p (tree gnu_type) { /* If the type is passed by reference, we may have pointers to the component so it cannot be made non-aliased. */ if (must_pass_by_ref (gnu_type) || default_pass_by_ref (gnu_type)) return false; /* We used to say that any component of aggregate type is aliased because the front-end may take 'Reference of it. The front-end has been enhanced in the meantime so as to use a renaming instead in most cases, but the back-end can probably take the address of such a component too so we go for the conservative stance. For instance, we might need the address of any array type, even if normally passed by copy, to construct a fat pointer if the component is used as an actual for an unconstrained formal. Likewise for record types: even if a specific record subtype is passed by copy, the parent type might be passed by ref (e.g. if it's of variable size) and we might take the address of a child component to pass to a parent formal. We have no way to check for such conditions here. */ if (AGGREGATE_TYPE_P (gnu_type)) return false; return true; } /* Return true if TYPE is a smaller form of ORIG_TYPE. */ bool smaller_form_type_p (tree type, tree orig_type) { tree size, osize; /* We're not interested in variants here. */ if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig_type)) return false; /* Like a variant, a packable version keeps the original TYPE_NAME. */ if (TYPE_NAME (type) != TYPE_NAME (orig_type)) return false; size = TYPE_SIZE (type); osize = TYPE_SIZE (orig_type); if (!(TREE_CODE (size) == INTEGER_CST && TREE_CODE (osize) == INTEGER_CST)) return false; return tree_int_cst_lt (size, osize) != 0; } /* Perform final processing on global variables. */ static GTY (()) tree dummy_global; void gnat_write_global_declarations (void) { unsigned int i; tree iter; /* If we have declared types as used at the global level, insert them in the global hash table. We use a dummy variable for this purpose. */ if (!VEC_empty (tree, types_used_by_cur_var_decl)) { struct varpool_node *node; dummy_global = build_decl (BUILTINS_LOCATION, VAR_DECL, NULL_TREE, void_type_node); TREE_STATIC (dummy_global) = 1; TREE_ASM_WRITTEN (dummy_global) = 1; node = varpool_node (dummy_global); node->force_output = 1; varpool_mark_needed_node (node); while (!VEC_empty (tree, types_used_by_cur_var_decl)) { tree t = VEC_pop (tree, types_used_by_cur_var_decl); types_used_by_var_decl_insert (t, dummy_global); } } /* Output debug information for all global type declarations first. This ensures that global types whose compilation hasn't been finalized yet, for example pointers to Taft amendment types, have their compilation finalized in the right context. */ FOR_EACH_VEC_ELT (tree, global_decls, i, iter) if (TREE_CODE (iter) == TYPE_DECL) debug_hooks->global_decl (iter); /* Proceed to optimize and emit assembly. FIXME: shouldn't be the front end's responsibility to call this. */ cgraph_finalize_compilation_unit (); /* After cgraph has had a chance to emit everything that's going to be emitted, output debug information for the rest of globals. */ if (!seen_error ()) { timevar_push (TV_SYMOUT); FOR_EACH_VEC_ELT (tree, global_decls, i, iter) if (TREE_CODE (iter) != TYPE_DECL) debug_hooks->global_decl (iter); timevar_pop (TV_SYMOUT); } } /* ************************************************************************ * * GCC builtins support * * ************************************************************************ */ /* The general scheme is fairly simple: For each builtin function/type to be declared, gnat_install_builtins calls internal facilities which eventually get to gnat_push_decl, which in turn tracks the so declared builtin function decls in the 'builtin_decls' global datastructure. When an Intrinsic subprogram declaration is processed, we search this global datastructure to retrieve the associated BUILT_IN DECL node. */ /* Search the chain of currently available builtin declarations for a node corresponding to function NAME (an IDENTIFIER_NODE). Return the first node found, if any, or NULL_TREE otherwise. */ tree builtin_decl_for (tree name) { unsigned i; tree decl; FOR_EACH_VEC_ELT (tree, builtin_decls, i, decl) if (DECL_NAME (decl) == name) return decl; return NULL_TREE; } /* The code below eventually exposes gnat_install_builtins, which declares the builtin types and functions we might need, either internally or as user accessible facilities. ??? This is a first implementation shot, still in rough shape. It is heavily inspired from the "C" family implementation, with chunks copied verbatim from there. Two obvious TODO candidates are o Use a more efficient name/decl mapping scheme o Devise a middle-end infrastructure to avoid having to copy pieces between front-ends. */ /* ----------------------------------------------------------------------- * * BUILTIN ELEMENTARY TYPES * * ----------------------------------------------------------------------- */ /* Standard data types to be used in builtin argument declarations. */ enum c_tree_index { CTI_SIGNED_SIZE_TYPE, /* For format checking only. */ CTI_STRING_TYPE, CTI_CONST_STRING_TYPE, CTI_MAX }; static tree c_global_trees[CTI_MAX]; #define signed_size_type_node c_global_trees[CTI_SIGNED_SIZE_TYPE] #define string_type_node c_global_trees[CTI_STRING_TYPE] #define const_string_type_node c_global_trees[CTI_CONST_STRING_TYPE] /* ??? In addition some attribute handlers, we currently don't support a (small) number of builtin-types, which in turns inhibits support for a number of builtin functions. */ #define wint_type_node void_type_node #define intmax_type_node void_type_node #define uintmax_type_node void_type_node /* Build the void_list_node (void_type_node having been created). */ static tree build_void_list_node (void) { tree t = build_tree_list (NULL_TREE, void_type_node); return t; } /* Used to help initialize the builtin-types.def table. When a type of the correct size doesn't exist, use error_mark_node instead of NULL. The later results in segfaults even when a decl using the type doesn't get invoked. */ static tree builtin_type_for_size (int size, bool unsignedp) { tree type = gnat_type_for_size (size, unsignedp); return type ? type : error_mark_node; } /* Build/push the elementary type decls that builtin functions/types will need. */ static void install_builtin_elementary_types (void) { signed_size_type_node = gnat_signed_type (size_type_node); pid_type_node = integer_type_node; void_list_node = build_void_list_node (); string_type_node = build_pointer_type (char_type_node); const_string_type_node = build_pointer_type (build_qualified_type (char_type_node, TYPE_QUAL_CONST)); } /* ----------------------------------------------------------------------- * * BUILTIN FUNCTION TYPES * * ----------------------------------------------------------------------- */ /* Now, builtin function types per se. */ enum c_builtin_type { #define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME, #define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME, #define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME, #define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME, #define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME, #define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME, #define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME, #define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6) NAME, #define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7) NAME, #define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME, #define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME, #define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME, #define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME, #define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME, #define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG6) \ NAME, #define DEF_POINTER_TYPE(NAME, TYPE) NAME, #include "builtin-types.def" #undef DEF_PRIMITIVE_TYPE #undef DEF_FUNCTION_TYPE_0 #undef DEF_FUNCTION_TYPE_1 #undef DEF_FUNCTION_TYPE_2 #undef DEF_FUNCTION_TYPE_3 #undef DEF_FUNCTION_TYPE_4 #undef DEF_FUNCTION_TYPE_5 #undef DEF_FUNCTION_TYPE_6 #undef DEF_FUNCTION_TYPE_7 #undef DEF_FUNCTION_TYPE_VAR_0 #undef DEF_FUNCTION_TYPE_VAR_1 #undef DEF_FUNCTION_TYPE_VAR_2 #undef DEF_FUNCTION_TYPE_VAR_3 #undef DEF_FUNCTION_TYPE_VAR_4 #undef DEF_FUNCTION_TYPE_VAR_5 #undef DEF_POINTER_TYPE BT_LAST }; typedef enum c_builtin_type builtin_type; /* A temporary array used in communication with def_fn_type. */ static GTY(()) tree builtin_types[(int) BT_LAST + 1]; /* A helper function for install_builtin_types. Build function type for DEF with return type RET and N arguments. If VAR is true, then the function should be variadic after those N arguments. Takes special care not to ICE if any of the types involved are error_mark_node, which indicates that said type is not in fact available (see builtin_type_for_size). In which case the function type as a whole should be error_mark_node. */ static void def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...) { tree t; tree *args = XALLOCAVEC (tree, n); va_list list; int i; va_start (list, n); for (i = 0; i < n; ++i) { builtin_type a = (builtin_type) va_arg (list, int); t = builtin_types[a]; if (t == error_mark_node) goto egress; args[i] = t; } t = builtin_types[ret]; if (t == error_mark_node) goto egress; if (var) t = build_varargs_function_type_array (t, n, args); else t = build_function_type_array (t, n, args); egress: builtin_types[def] = t; va_end (list); } /* Build the builtin function types and install them in the builtin_types array for later use in builtin function decls. */ static void install_builtin_function_types (void) { tree va_list_ref_type_node; tree va_list_arg_type_node; if (TREE_CODE (va_list_type_node) == ARRAY_TYPE) { va_list_arg_type_node = va_list_ref_type_node = build_pointer_type (TREE_TYPE (va_list_type_node)); } else { va_list_arg_type_node = va_list_type_node; va_list_ref_type_node = build_reference_type (va_list_type_node); } #define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \ builtin_types[ENUM] = VALUE; #define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \ def_fn_type (ENUM, RETURN, 0, 0); #define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \ def_fn_type (ENUM, RETURN, 0, 1, ARG1); #define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \ def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2); #define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \ def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3); #define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \ def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4); #define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \ def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5); #define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \ ARG6) \ def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6); #define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \ ARG6, ARG7) \ def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7); #define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \ def_fn_type (ENUM, RETURN, 1, 0); #define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \ def_fn_type (ENUM, RETURN, 1, 1, ARG1); #define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \ def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2); #define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \ def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3); #define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \ def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4); #define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \ def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5); #define DEF_POINTER_TYPE(ENUM, TYPE) \ builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]); #include "builtin-types.def" #undef DEF_PRIMITIVE_TYPE #undef DEF_FUNCTION_TYPE_1 #undef DEF_FUNCTION_TYPE_2 #undef DEF_FUNCTION_TYPE_3 #undef DEF_FUNCTION_TYPE_4 #undef DEF_FUNCTION_TYPE_5 #undef DEF_FUNCTION_TYPE_6 #undef DEF_FUNCTION_TYPE_VAR_0 #undef DEF_FUNCTION_TYPE_VAR_1 #undef DEF_FUNCTION_TYPE_VAR_2 #undef DEF_FUNCTION_TYPE_VAR_3 #undef DEF_FUNCTION_TYPE_VAR_4 #undef DEF_FUNCTION_TYPE_VAR_5 #undef DEF_POINTER_TYPE builtin_types[(int) BT_LAST] = NULL_TREE; } /* ----------------------------------------------------------------------- * * BUILTIN ATTRIBUTES * * ----------------------------------------------------------------------- */ enum built_in_attribute { #define DEF_ATTR_NULL_TREE(ENUM) ENUM, #define DEF_ATTR_INT(ENUM, VALUE) ENUM, #define DEF_ATTR_IDENT(ENUM, STRING) ENUM, #define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM, #include "builtin-attrs.def" #undef DEF_ATTR_NULL_TREE #undef DEF_ATTR_INT #undef DEF_ATTR_IDENT #undef DEF_ATTR_TREE_LIST ATTR_LAST }; static GTY(()) tree built_in_attributes[(int) ATTR_LAST]; static void install_builtin_attributes (void) { /* Fill in the built_in_attributes array. */ #define DEF_ATTR_NULL_TREE(ENUM) \ built_in_attributes[(int) ENUM] = NULL_TREE; #define DEF_ATTR_INT(ENUM, VALUE) \ built_in_attributes[(int) ENUM] = build_int_cst (NULL_TREE, VALUE); #define DEF_ATTR_IDENT(ENUM, STRING) \ built_in_attributes[(int) ENUM] = get_identifier (STRING); #define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \ built_in_attributes[(int) ENUM] \ = tree_cons (built_in_attributes[(int) PURPOSE], \ built_in_attributes[(int) VALUE], \ built_in_attributes[(int) CHAIN]); #include "builtin-attrs.def" #undef DEF_ATTR_NULL_TREE #undef DEF_ATTR_INT #undef DEF_ATTR_IDENT #undef DEF_ATTR_TREE_LIST } /* Handle a "const" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_const_attribute (tree *node, tree ARG_UNUSED (name), tree ARG_UNUSED (args), int ARG_UNUSED (flags), bool *no_add_attrs) { if (TREE_CODE (*node) == FUNCTION_DECL) TREE_READONLY (*node) = 1; else *no_add_attrs = true; return NULL_TREE; } /* Handle a "nothrow" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_nothrow_attribute (tree *node, tree ARG_UNUSED (name), tree ARG_UNUSED (args), int ARG_UNUSED (flags), bool *no_add_attrs) { if (TREE_CODE (*node) == FUNCTION_DECL) TREE_NOTHROW (*node) = 1; else *no_add_attrs = true; return NULL_TREE; } /* Handle a "pure" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_pure_attribute (tree *node, tree name, tree ARG_UNUSED (args), int ARG_UNUSED (flags), bool *no_add_attrs) { if (TREE_CODE (*node) == FUNCTION_DECL) DECL_PURE_P (*node) = 1; /* ??? TODO: Support types. */ else { warning (OPT_Wattributes, "%qs attribute ignored", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } return NULL_TREE; } /* Handle a "no vops" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_novops_attribute (tree *node, tree ARG_UNUSED (name), tree ARG_UNUSED (args), int ARG_UNUSED (flags), bool *ARG_UNUSED (no_add_attrs)) { gcc_assert (TREE_CODE (*node) == FUNCTION_DECL); DECL_IS_NOVOPS (*node) = 1; return NULL_TREE; } /* Helper for nonnull attribute handling; fetch the operand number from the attribute argument list. */ static bool get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp) { /* Verify the arg number is a constant. */ if (TREE_CODE (arg_num_expr) != INTEGER_CST || TREE_INT_CST_HIGH (arg_num_expr) != 0) return false; *valp = TREE_INT_CST_LOW (arg_num_expr); return true; } /* Handle the "nonnull" attribute. */ static tree handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name), tree args, int ARG_UNUSED (flags), bool *no_add_attrs) { tree type = *node; unsigned HOST_WIDE_INT attr_arg_num; /* If no arguments are specified, all pointer arguments should be non-null. Verify a full prototype is given so that the arguments will have the correct types when we actually check them later. */ if (!args) { if (!prototype_p (type)) { error ("nonnull attribute without arguments on a non-prototype"); *no_add_attrs = true; } return NULL_TREE; } /* Argument list specified. Verify that each argument number references a pointer argument. */ for (attr_arg_num = 1; args; args = TREE_CHAIN (args)) { unsigned HOST_WIDE_INT arg_num = 0, ck_num; if (!get_nonnull_operand (TREE_VALUE (args), &arg_num)) { error ("nonnull argument has invalid operand number (argument %lu)", (unsigned long) attr_arg_num); *no_add_attrs = true; return NULL_TREE; } if (prototype_p (type)) { function_args_iterator iter; tree argument; function_args_iter_init (&iter, type); for (ck_num = 1; ; ck_num++, function_args_iter_next (&iter)) { argument = function_args_iter_cond (&iter); if (!argument || ck_num == arg_num) break; } if (!argument || TREE_CODE (argument) == VOID_TYPE) { error ("nonnull argument with out-of-range operand number " "(argument %lu, operand %lu)", (unsigned long) attr_arg_num, (unsigned long) arg_num); *no_add_attrs = true; return NULL_TREE; } if (TREE_CODE (argument) != POINTER_TYPE) { error ("nonnull argument references non-pointer operand " "(argument %lu, operand %lu)", (unsigned long) attr_arg_num, (unsigned long) arg_num); *no_add_attrs = true; return NULL_TREE; } } } return NULL_TREE; } /* Handle a "sentinel" attribute. */ static tree handle_sentinel_attribute (tree *node, tree name, tree args, int ARG_UNUSED (flags), bool *no_add_attrs) { if (!prototype_p (*node)) { warning (OPT_Wattributes, "%qs attribute requires prototypes with named arguments", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } else { if (!stdarg_p (*node)) { warning (OPT_Wattributes, "%qs attribute only applies to variadic functions", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } } if (args) { tree position = TREE_VALUE (args); if (TREE_CODE (position) != INTEGER_CST) { warning (0, "requested position is not an integer constant"); *no_add_attrs = true; } else { if (tree_int_cst_lt (position, integer_zero_node)) { warning (0, "requested position is less than zero"); *no_add_attrs = true; } } } return NULL_TREE; } /* Handle a "noreturn" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_noreturn_attribute (tree *node, tree name, tree ARG_UNUSED (args), int ARG_UNUSED (flags), bool *no_add_attrs) { tree type = TREE_TYPE (*node); /* See FIXME comment in c_common_attribute_table. */ if (TREE_CODE (*node) == FUNCTION_DECL) TREE_THIS_VOLATILE (*node) = 1; else if (TREE_CODE (type) == POINTER_TYPE && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE) TREE_TYPE (*node) = build_pointer_type (build_type_variant (TREE_TYPE (type), TYPE_READONLY (TREE_TYPE (type)), 1)); else { warning (OPT_Wattributes, "%qs attribute ignored", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } return NULL_TREE; } /* Handle a "leaf" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_leaf_attribute (tree *node, tree name, tree ARG_UNUSED (args), int ARG_UNUSED (flags), bool *no_add_attrs) { if (TREE_CODE (*node) != FUNCTION_DECL) { warning (OPT_Wattributes, "%qE attribute ignored", name); *no_add_attrs = true; } if (!TREE_PUBLIC (*node)) { warning (OPT_Wattributes, "%qE attribute has no effect", name); *no_add_attrs = true; } return NULL_TREE; } /* Handle a "malloc" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_malloc_attribute (tree *node, tree name, tree ARG_UNUSED (args), int ARG_UNUSED (flags), bool *no_add_attrs) { if (TREE_CODE (*node) == FUNCTION_DECL && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (*node)))) DECL_IS_MALLOC (*node) = 1; else { warning (OPT_Wattributes, "%qs attribute ignored", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } return NULL_TREE; } /* Fake handler for attributes we don't properly support. */ tree fake_attribute_handler (tree * ARG_UNUSED (node), tree ARG_UNUSED (name), tree ARG_UNUSED (args), int ARG_UNUSED (flags), bool * ARG_UNUSED (no_add_attrs)) { return NULL_TREE; } /* Handle a "type_generic" attribute. */ static tree handle_type_generic_attribute (tree *node, tree ARG_UNUSED (name), tree ARG_UNUSED (args), int ARG_UNUSED (flags), bool * ARG_UNUSED (no_add_attrs)) { /* Ensure we have a function type. */ gcc_assert (TREE_CODE (*node) == FUNCTION_TYPE); /* Ensure we have a variadic function. */ gcc_assert (!prototype_p (*node) || stdarg_p (*node)); return NULL_TREE; } /* Handle a "vector_size" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_vector_size_attribute (tree *node, tree name, tree args, int ARG_UNUSED (flags), bool *no_add_attrs) { unsigned HOST_WIDE_INT vecsize, nunits; enum machine_mode orig_mode; tree type = *node, new_type, size; *no_add_attrs = true; size = TREE_VALUE (args); if (!host_integerp (size, 1)) { warning (OPT_Wattributes, "%qs attribute ignored", IDENTIFIER_POINTER (name)); return NULL_TREE; } /* Get the vector size (in bytes). */ vecsize = tree_low_cst (size, 1); /* We need to provide for vector pointers, vector arrays, and functions returning vectors. For example: __attribute__((vector_size(16))) short *foo; In this case, the mode is SI, but the type being modified is HI, so we need to look further. */ while (POINTER_TYPE_P (type) || TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == ARRAY_TYPE) type = TREE_TYPE (type); /* Get the mode of the type being modified. */ orig_mode = TYPE_MODE (type); if ((!INTEGRAL_TYPE_P (type) && !SCALAR_FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type)) || (!SCALAR_FLOAT_MODE_P (orig_mode) && GET_MODE_CLASS (orig_mode) != MODE_INT && !ALL_SCALAR_FIXED_POINT_MODE_P (orig_mode)) || !host_integerp (TYPE_SIZE_UNIT (type), 1) || TREE_CODE (type) == BOOLEAN_TYPE) { error ("invalid vector type for attribute %qs", IDENTIFIER_POINTER (name)); return NULL_TREE; } if (vecsize % tree_low_cst (TYPE_SIZE_UNIT (type), 1)) { error ("vector size not an integral multiple of component size"); return NULL; } if (vecsize == 0) { error ("zero vector size"); return NULL; } /* Calculate how many units fit in the vector. */ nunits = vecsize / tree_low_cst (TYPE_SIZE_UNIT (type), 1); if (nunits & (nunits - 1)) { error ("number of components of the vector not a power of two"); return NULL_TREE; } new_type = build_vector_type (type, nunits); /* Build back pointers if needed. */ *node = reconstruct_complex_type (*node, new_type); return NULL_TREE; } /* Handle a "vector_type" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_vector_type_attribute (tree *node, tree name, tree ARG_UNUSED (args), int ARG_UNUSED (flags), bool *no_add_attrs) { /* Vector representative type and size. */ tree rep_type = *node; tree rep_size = TYPE_SIZE_UNIT (rep_type); tree rep_name; /* Vector size in bytes and number of units. */ unsigned HOST_WIDE_INT vec_bytes, vec_units; /* Vector element type and mode. */ tree elem_type; enum machine_mode elem_mode; *no_add_attrs = true; /* Get the representative array type, possibly nested within a padding record e.g. for alignment purposes. */ if (TYPE_IS_PADDING_P (rep_type)) rep_type = TREE_TYPE (TYPE_FIELDS (rep_type)); if (TREE_CODE (rep_type) != ARRAY_TYPE) { error ("attribute %qs applies to array types only", IDENTIFIER_POINTER (name)); return NULL_TREE; } /* Silently punt on variable sizes. We can't make vector types for them, need to ignore them on front-end generated subtypes of unconstrained bases, and this attribute is for binding implementors, not end-users, so we should never get there from legitimate explicit uses. */ if (!host_integerp (rep_size, 1)) return NULL_TREE; /* Get the element type/mode and check this is something we know how to make vectors of. */ elem_type = TREE_TYPE (rep_type); elem_mode = TYPE_MODE (elem_type); if ((!INTEGRAL_TYPE_P (elem_type) && !SCALAR_FLOAT_TYPE_P (elem_type) && !FIXED_POINT_TYPE_P (elem_type)) || (!SCALAR_FLOAT_MODE_P (elem_mode) && GET_MODE_CLASS (elem_mode) != MODE_INT && !ALL_SCALAR_FIXED_POINT_MODE_P (elem_mode)) || !host_integerp (TYPE_SIZE_UNIT (elem_type), 1)) { error ("invalid element type for attribute %qs", IDENTIFIER_POINTER (name)); return NULL_TREE; } /* Sanity check the vector size and element type consistency. */ vec_bytes = tree_low_cst (rep_size, 1); if (vec_bytes % tree_low_cst (TYPE_SIZE_UNIT (elem_type), 1)) { error ("vector size not an integral multiple of component size"); return NULL; } if (vec_bytes == 0) { error ("zero vector size"); return NULL; } vec_units = vec_bytes / tree_low_cst (TYPE_SIZE_UNIT (elem_type), 1); if (vec_units & (vec_units - 1)) { error ("number of components of the vector not a power of two"); return NULL_TREE; } /* Build the vector type and replace. */ *node = build_vector_type (elem_type, vec_units); rep_name = TYPE_NAME (rep_type); if (TREE_CODE (rep_name) == TYPE_DECL) rep_name = DECL_NAME (rep_name); TYPE_NAME (*node) = rep_name; TYPE_REPRESENTATIVE_ARRAY (*node) = rep_type; return NULL_TREE; } /* ----------------------------------------------------------------------- * * BUILTIN FUNCTIONS * * ----------------------------------------------------------------------- */ /* Worker for DEF_BUILTIN. Possibly define a builtin function with one or two names. Does not declare a non-__builtin_ function if flag_no_builtin, or if nonansi_p and flag_no_nonansi_builtin. */ static void def_builtin_1 (enum built_in_function fncode, const char *name, enum built_in_class fnclass, tree fntype, tree libtype, bool both_p, bool fallback_p, bool nonansi_p ATTRIBUTE_UNUSED, tree fnattrs, bool implicit_p) { tree decl; const char *libname; /* Preserve an already installed decl. It most likely was setup in advance (e.g. as part of the internal builtins) for specific reasons. */ if (builtin_decl_explicit (fncode) != NULL_TREE) return; gcc_assert ((!both_p && !fallback_p) || !strncmp (name, "__builtin_", strlen ("__builtin_"))); libname = name + strlen ("__builtin_"); decl = add_builtin_function (name, fntype, fncode, fnclass, (fallback_p ? libname : NULL), fnattrs); if (both_p) /* ??? This is normally further controlled by command-line options like -fno-builtin, but we don't have them for Ada. */ add_builtin_function (libname, libtype, fncode, fnclass, NULL, fnattrs); set_builtin_decl (fncode, decl, implicit_p); } static int flag_isoc94 = 0; static int flag_isoc99 = 0; /* Install what the common builtins.def offers. */ static void install_builtin_functions (void) { #define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \ NONANSI_P, ATTRS, IMPLICIT, COND) \ if (NAME && COND) \ def_builtin_1 (ENUM, NAME, CLASS, \ builtin_types[(int) TYPE], \ builtin_types[(int) LIBTYPE], \ BOTH_P, FALLBACK_P, NONANSI_P, \ built_in_attributes[(int) ATTRS], IMPLICIT); #include "builtins.def" #undef DEF_BUILTIN } /* ----------------------------------------------------------------------- * * BUILTIN FUNCTIONS * * ----------------------------------------------------------------------- */ /* Install the builtin functions we might need. */ void gnat_install_builtins (void) { install_builtin_elementary_types (); install_builtin_function_types (); install_builtin_attributes (); /* Install builtins used by generic middle-end pieces first. Some of these know about internal specificities and control attributes accordingly, for instance __builtin_alloca vs no-throw and -fstack-check. We will ignore the generic definition from builtins.def. */ build_common_builtin_nodes (); /* Now, install the target specific builtins, such as the AltiVec family on ppc, and the common set as exposed by builtins.def. */ targetm.init_builtins (); install_builtin_functions (); } #include "gt-ada-utils.h" #include "gtype-ada.h"
Go to most recent revision | Compare with Previous | Blame | View Log