URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [s-fatgen.adb] - Rev 774
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- S Y S T E M . F A T _ G E N -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2010, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- <http://www.gnu.org/licenses/>. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ -- The implementation here is portable to any IEEE implementation. It does -- not handle non-binary radix, and also assumes that model numbers and -- machine numbers are basically identical, which is not true of all possible -- floating-point implementations. On a non-IEEE machine, this body must be -- specialized appropriately, or better still, its generic instantiations -- should be replaced by efficient machine-specific code. with Ada.Unchecked_Conversion; with System; package body System.Fat_Gen is Float_Radix : constant T := T (T'Machine_Radix); Radix_To_M_Minus_1 : constant T := Float_Radix ** (T'Machine_Mantissa - 1); pragma Assert (T'Machine_Radix = 2); -- This version does not handle radix 16 -- Constants for Decompose and Scaling Rad : constant T := T (T'Machine_Radix); Invrad : constant T := 1.0 / Rad; subtype Expbits is Integer range 0 .. 6; -- 2 ** (2 ** 7) might overflow. How big can radix-16 exponents get? Log_Power : constant array (Expbits) of Integer := (1, 2, 4, 8, 16, 32, 64); R_Power : constant array (Expbits) of T := (Rad ** 1, Rad ** 2, Rad ** 4, Rad ** 8, Rad ** 16, Rad ** 32, Rad ** 64); R_Neg_Power : constant array (Expbits) of T := (Invrad ** 1, Invrad ** 2, Invrad ** 4, Invrad ** 8, Invrad ** 16, Invrad ** 32, Invrad ** 64); ----------------------- -- Local Subprograms -- ----------------------- procedure Decompose (XX : T; Frac : out T; Expo : out UI); -- Decomposes a floating-point number into fraction and exponent parts. -- Both results are signed, with Frac having the sign of XX, and UI has -- the sign of the exponent. The absolute value of Frac is in the range -- 0.0 <= Frac < 1.0. If Frac = 0.0 or -0.0, then Expo is always zero. function Gradual_Scaling (Adjustment : UI) return T; -- Like Scaling with a first argument of 1.0, but returns the smallest -- denormal rather than zero when the adjustment is smaller than -- Machine_Emin. Used for Succ and Pred. -------------- -- Adjacent -- -------------- function Adjacent (X, Towards : T) return T is begin if Towards = X then return X; elsif Towards > X then return Succ (X); else return Pred (X); end if; end Adjacent; ------------- -- Ceiling -- ------------- function Ceiling (X : T) return T is XT : constant T := Truncation (X); begin if X <= 0.0 then return XT; elsif X = XT then return X; else return XT + 1.0; end if; end Ceiling; ------------- -- Compose -- ------------- function Compose (Fraction : T; Exponent : UI) return T is Arg_Frac : T; Arg_Exp : UI; pragma Unreferenced (Arg_Exp); begin Decompose (Fraction, Arg_Frac, Arg_Exp); return Scaling (Arg_Frac, Exponent); end Compose; --------------- -- Copy_Sign -- --------------- function Copy_Sign (Value, Sign : T) return T is Result : T; function Is_Negative (V : T) return Boolean; pragma Import (Intrinsic, Is_Negative); begin Result := abs Value; if Is_Negative (Sign) then return -Result; else return Result; end if; end Copy_Sign; --------------- -- Decompose -- --------------- procedure Decompose (XX : T; Frac : out T; Expo : out UI) is X : constant T := T'Machine (XX); begin if X = 0.0 then -- The normalized exponent of zero is zero, see RM A.5.2(15) Frac := X; Expo := 0; -- Check for infinities, transfinites, whatnot elsif X > T'Safe_Last then Frac := Invrad; Expo := T'Machine_Emax + 1; elsif X < T'Safe_First then Frac := -Invrad; Expo := T'Machine_Emax + 2; -- how many extra negative values? else -- Case of nonzero finite x. Essentially, we just multiply -- by Rad ** (+-2**N) to reduce the range. declare Ax : T := abs X; Ex : UI := 0; -- Ax * Rad ** Ex is invariant begin if Ax >= 1.0 then while Ax >= R_Power (Expbits'Last) loop Ax := Ax * R_Neg_Power (Expbits'Last); Ex := Ex + Log_Power (Expbits'Last); end loop; -- Ax < Rad ** 64 for N in reverse Expbits'First .. Expbits'Last - 1 loop if Ax >= R_Power (N) then Ax := Ax * R_Neg_Power (N); Ex := Ex + Log_Power (N); end if; -- Ax < R_Power (N) end loop; -- 1 <= Ax < Rad Ax := Ax * Invrad; Ex := Ex + 1; else -- 0 < ax < 1 while Ax < R_Neg_Power (Expbits'Last) loop Ax := Ax * R_Power (Expbits'Last); Ex := Ex - Log_Power (Expbits'Last); end loop; -- Rad ** -64 <= Ax < 1 for N in reverse Expbits'First .. Expbits'Last - 1 loop if Ax < R_Neg_Power (N) then Ax := Ax * R_Power (N); Ex := Ex - Log_Power (N); end if; -- R_Neg_Power (N) <= Ax < 1 end loop; end if; Frac := (if X > 0.0 then Ax else -Ax); Expo := Ex; end; end if; end Decompose; -------------- -- Exponent -- -------------- function Exponent (X : T) return UI is X_Frac : T; X_Exp : UI; pragma Unreferenced (X_Frac); begin Decompose (X, X_Frac, X_Exp); return X_Exp; end Exponent; ----------- -- Floor -- ----------- function Floor (X : T) return T is XT : constant T := Truncation (X); begin if X >= 0.0 then return XT; elsif XT = X then return X; else return XT - 1.0; end if; end Floor; -------------- -- Fraction -- -------------- function Fraction (X : T) return T is X_Frac : T; X_Exp : UI; pragma Unreferenced (X_Exp); begin Decompose (X, X_Frac, X_Exp); return X_Frac; end Fraction; --------------------- -- Gradual_Scaling -- --------------------- function Gradual_Scaling (Adjustment : UI) return T is Y : T; Y1 : T; Ex : UI := Adjustment; begin if Adjustment < T'Machine_Emin - 1 then Y := 2.0 ** T'Machine_Emin; Y1 := Y; Ex := Ex - T'Machine_Emin; while Ex < 0 loop Y := T'Machine (Y / 2.0); if Y = 0.0 then return Y1; end if; Ex := Ex + 1; Y1 := Y; end loop; return Y1; else return Scaling (1.0, Adjustment); end if; end Gradual_Scaling; ------------------ -- Leading_Part -- ------------------ function Leading_Part (X : T; Radix_Digits : UI) return T is L : UI; Y, Z : T; begin if Radix_Digits >= T'Machine_Mantissa then return X; elsif Radix_Digits <= 0 then raise Constraint_Error; else L := Exponent (X) - Radix_Digits; Y := Truncation (Scaling (X, -L)); Z := Scaling (Y, L); return Z; end if; end Leading_Part; ------------- -- Machine -- ------------- -- The trick with Machine is to force the compiler to store the result -- in memory so that we do not have extra precision used. The compiler -- is clever, so we have to outwit its possible optimizations! We do -- this by using an intermediate pragma Volatile location. function Machine (X : T) return T is Temp : T; pragma Volatile (Temp); begin Temp := X; return Temp; end Machine; ---------------------- -- Machine_Rounding -- ---------------------- -- For now, the implementation is identical to that of Rounding, which is -- a permissible behavior, but is not the most efficient possible approach. function Machine_Rounding (X : T) return T is Result : T; Tail : T; begin Result := Truncation (abs X); Tail := abs X - Result; if Tail >= 0.5 then Result := Result + 1.0; end if; if X > 0.0 then return Result; elsif X < 0.0 then return -Result; -- For zero case, make sure sign of zero is preserved else return X; end if; end Machine_Rounding; ----------- -- Model -- ----------- -- We treat Model as identical to Machine. This is true of IEEE and other -- nice floating-point systems, but not necessarily true of all systems. function Model (X : T) return T is begin return Machine (X); end Model; ---------- -- Pred -- ---------- -- Subtract from the given number a number equivalent to the value of its -- least significant bit. Given that the most significant bit represents -- a value of 1.0 * radix ** (exp - 1), the value we want is obtained by -- shifting this by (mantissa-1) bits to the right, i.e. decreasing the -- exponent by that amount. -- Zero has to be treated specially, since its exponent is zero function Pred (X : T) return T is X_Frac : T; X_Exp : UI; begin if X = 0.0 then return -Succ (X); else Decompose (X, X_Frac, X_Exp); -- A special case, if the number we had was a positive power of -- two, then we want to subtract half of what we would otherwise -- subtract, since the exponent is going to be reduced. -- Note that X_Frac has the same sign as X, so if X_Frac is 0.5, -- then we know that we have a positive number (and hence a -- positive power of 2). if X_Frac = 0.5 then return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1); -- Otherwise the exponent is unchanged else return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa); end if; end if; end Pred; --------------- -- Remainder -- --------------- function Remainder (X, Y : T) return T is A : T; B : T; Arg : T; P : T; P_Frac : T; Sign_X : T; IEEE_Rem : T; Arg_Exp : UI; P_Exp : UI; K : UI; P_Even : Boolean; Arg_Frac : T; pragma Unreferenced (Arg_Frac); begin if Y = 0.0 then raise Constraint_Error; end if; if X > 0.0 then Sign_X := 1.0; Arg := X; else Sign_X := -1.0; Arg := -X; end if; P := abs Y; if Arg < P then P_Even := True; IEEE_Rem := Arg; P_Exp := Exponent (P); else Decompose (Arg, Arg_Frac, Arg_Exp); Decompose (P, P_Frac, P_Exp); P := Compose (P_Frac, Arg_Exp); K := Arg_Exp - P_Exp; P_Even := True; IEEE_Rem := Arg; for Cnt in reverse 0 .. K loop if IEEE_Rem >= P then P_Even := False; IEEE_Rem := IEEE_Rem - P; else P_Even := True; end if; P := P * 0.5; end loop; end if; -- That completes the calculation of modulus remainder. The final -- step is get the IEEE remainder. Here we need to compare Rem with -- (abs Y) / 2. We must be careful of unrepresentable Y/2 value -- caused by subnormal numbers if P_Exp >= 0 then A := IEEE_Rem; B := abs Y * 0.5; else A := IEEE_Rem * 2.0; B := abs Y; end if; if A > B or else (A = B and then not P_Even) then IEEE_Rem := IEEE_Rem - abs Y; end if; return Sign_X * IEEE_Rem; end Remainder; -------------- -- Rounding -- -------------- function Rounding (X : T) return T is Result : T; Tail : T; begin Result := Truncation (abs X); Tail := abs X - Result; if Tail >= 0.5 then Result := Result + 1.0; end if; if X > 0.0 then return Result; elsif X < 0.0 then return -Result; -- For zero case, make sure sign of zero is preserved else return X; end if; end Rounding; ------------- -- Scaling -- ------------- -- Return x * rad ** adjustment quickly, or quietly underflow to zero, -- or overflow naturally. function Scaling (X : T; Adjustment : UI) return T is begin if X = 0.0 or else Adjustment = 0 then return X; end if; -- Nonzero x essentially, just multiply repeatedly by Rad ** (+-2**n) declare Y : T := X; Ex : UI := Adjustment; -- Y * Rad ** Ex is invariant begin if Ex < 0 then while Ex <= -Log_Power (Expbits'Last) loop Y := Y * R_Neg_Power (Expbits'Last); Ex := Ex + Log_Power (Expbits'Last); end loop; -- -64 < Ex <= 0 for N in reverse Expbits'First .. Expbits'Last - 1 loop if Ex <= -Log_Power (N) then Y := Y * R_Neg_Power (N); Ex := Ex + Log_Power (N); end if; -- -Log_Power (N) < Ex <= 0 end loop; -- Ex = 0 else -- Ex >= 0 while Ex >= Log_Power (Expbits'Last) loop Y := Y * R_Power (Expbits'Last); Ex := Ex - Log_Power (Expbits'Last); end loop; -- 0 <= Ex < 64 for N in reverse Expbits'First .. Expbits'Last - 1 loop if Ex >= Log_Power (N) then Y := Y * R_Power (N); Ex := Ex - Log_Power (N); end if; -- 0 <= Ex < Log_Power (N) end loop; -- Ex = 0 end if; return Y; end; end Scaling; ---------- -- Succ -- ---------- -- Similar computation to that of Pred: find value of least significant -- bit of given number, and add. Zero has to be treated specially since -- the exponent can be zero, and also we want the smallest denormal if -- denormals are supported. function Succ (X : T) return T is X_Frac : T; X_Exp : UI; X1, X2 : T; begin if X = 0.0 then X1 := 2.0 ** T'Machine_Emin; -- Following loop generates smallest denormal loop X2 := T'Machine (X1 / 2.0); exit when X2 = 0.0; X1 := X2; end loop; return X1; else Decompose (X, X_Frac, X_Exp); -- A special case, if the number we had was a negative power of two, -- then we want to add half of what we would otherwise add, since the -- exponent is going to be reduced. -- Note that X_Frac has the same sign as X, so if X_Frac is -0.5, -- then we know that we have a negative number (and hence a negative -- power of 2). if X_Frac = -0.5 then return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1); -- Otherwise the exponent is unchanged else return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa); end if; end if; end Succ; ---------------- -- Truncation -- ---------------- -- The basic approach is to compute -- T'Machine (RM1 + N) - RM1 -- where N >= 0.0 and RM1 = radix ** (mantissa - 1) -- This works provided that the intermediate result (RM1 + N) does not -- have extra precision (which is why we call Machine). When we compute -- RM1 + N, the exponent of N will be normalized and the mantissa shifted -- shifted appropriately so the lower order bits, which cannot contribute -- to the integer part of N, fall off on the right. When we subtract RM1 -- again, the significant bits of N are shifted to the left, and what we -- have is an integer, because only the first e bits are different from -- zero (assuming binary radix here). function Truncation (X : T) return T is Result : T; begin Result := abs X; if Result >= Radix_To_M_Minus_1 then return Machine (X); else Result := Machine (Radix_To_M_Minus_1 + Result) - Radix_To_M_Minus_1; if Result > abs X then Result := Result - 1.0; end if; if X > 0.0 then return Result; elsif X < 0.0 then return -Result; -- For zero case, make sure sign of zero is preserved else return X; end if; end if; end Truncation; ----------------------- -- Unbiased_Rounding -- ----------------------- function Unbiased_Rounding (X : T) return T is Abs_X : constant T := abs X; Result : T; Tail : T; begin Result := Truncation (Abs_X); Tail := Abs_X - Result; if Tail > 0.5 then Result := Result + 1.0; elsif Tail = 0.5 then Result := 2.0 * Truncation ((Result / 2.0) + 0.5); end if; if X > 0.0 then return Result; elsif X < 0.0 then return -Result; -- For zero case, make sure sign of zero is preserved else return X; end if; end Unbiased_Rounding; ----------- -- Valid -- ----------- -- Note: this routine does not work for VAX float. We compensate for this -- in Exp_Attr by using the Valid functions in Vax_Float_Operations rather -- than the corresponding instantiation of this function. function Valid (X : not null access T) return Boolean is IEEE_Emin : constant Integer := T'Machine_Emin - 1; IEEE_Emax : constant Integer := T'Machine_Emax - 1; IEEE_Bias : constant Integer := -(IEEE_Emin - 1); subtype IEEE_Exponent_Range is Integer range IEEE_Emin - 1 .. IEEE_Emax + 1; -- The implementation of this floating point attribute uses a -- representation type Float_Rep that allows direct access to the -- exponent and mantissa parts of a floating point number. -- The Float_Rep type is an array of Float_Word elements. This -- representation is chosen to make it possible to size the type based -- on a generic parameter. Since the array size is known at compile -- time, efficient code can still be generated. The size of Float_Word -- elements should be large enough to allow accessing the exponent in -- one read, but small enough so that all floating point object sizes -- are a multiple of the Float_Word'Size. -- The following conditions must be met for all possible instantiations -- of the attributes package: -- - T'Size is an integral multiple of Float_Word'Size -- - The exponent and sign are completely contained in a single -- component of Float_Rep, named Most_Significant_Word (MSW). -- - The sign occupies the most significant bit of the MSW and the -- exponent is in the following bits. Unused bits (if any) are in -- the least significant part. type Float_Word is mod 2**Positive'Min (System.Word_Size, 32); type Rep_Index is range 0 .. 7; Rep_Words : constant Positive := (T'Size + Float_Word'Size - 1) / Float_Word'Size; Rep_Last : constant Rep_Index := Rep_Index'Min (Rep_Index (Rep_Words - 1), (T'Mantissa + 16) / Float_Word'Size); -- Determine the number of Float_Words needed for representing the -- entire floating-point value. Do not take into account excessive -- padding, as occurs on IA-64 where 80 bits floats get padded to 128 -- bits. In general, the exponent field cannot be larger than 15 bits, -- even for 128-bit floating-point types, so the final format size -- won't be larger than T'Mantissa + 16. type Float_Rep is array (Rep_Index range 0 .. Rep_Index (Rep_Words - 1)) of Float_Word; pragma Suppress_Initialization (Float_Rep); -- This pragma suppresses the generation of an initialization procedure -- for type Float_Rep when operating in Initialize/Normalize_Scalars -- mode. This is not just a matter of efficiency, but of functionality, -- since Valid has a pragma Inline_Always, which is not permitted if -- there are nested subprograms present. Most_Significant_Word : constant Rep_Index := Rep_Last * Standard'Default_Bit_Order; -- Finding the location of the Exponent_Word is a bit tricky. In general -- we assume Word_Order = Bit_Order. This expression needs to be refined -- for VMS. Exponent_Factor : constant Float_Word := 2**(Float_Word'Size - 1) / Float_Word (IEEE_Emax - IEEE_Emin + 3) * Boolean'Pos (Most_Significant_Word /= 2) + Boolean'Pos (Most_Significant_Word = 2); -- Factor that the extracted exponent needs to be divided by to be in -- range 0 .. IEEE_Emax - IEEE_Emin + 2. Special kludge: Exponent_Factor -- is 1 for x86/IA64 double extended as GCC adds unused bits to the -- type. Exponent_Mask : constant Float_Word := Float_Word (IEEE_Emax - IEEE_Emin + 2) * Exponent_Factor; -- Value needed to mask out the exponent field. This assumes that the -- range IEEE_Emin - 1 .. IEEE_Emax + contains 2**N values, for some N -- in Natural. function To_Float is new Ada.Unchecked_Conversion (Float_Rep, T); type Float_Access is access all T; function To_Address is new Ada.Unchecked_Conversion (Float_Access, System.Address); XA : constant System.Address := To_Address (Float_Access (X)); R : Float_Rep; pragma Import (Ada, R); for R'Address use XA; -- R is a view of the input floating-point parameter. Note that we -- must avoid copying the actual bits of this parameter in float -- form (since it may be a signalling NaN. E : constant IEEE_Exponent_Range := Integer ((R (Most_Significant_Word) and Exponent_Mask) / Exponent_Factor) - IEEE_Bias; -- Mask/Shift T to only get bits from the exponent. Then convert biased -- value to integer value. SR : Float_Rep; -- Float_Rep representation of significant of X.all begin if T'Denorm then -- All denormalized numbers are valid, so the only invalid numbers -- are overflows and NaNs, both with exponent = Emax + 1. return E /= IEEE_Emax + 1; end if; -- All denormalized numbers except 0.0 are invalid -- Set exponent of X to zero, so we end up with the significand, which -- definitely is a valid number and can be converted back to a float. SR := R; SR (Most_Significant_Word) := (SR (Most_Significant_Word) and not Exponent_Mask) + Float_Word (IEEE_Bias) * Exponent_Factor; return (E in IEEE_Emin .. IEEE_Emax) or else ((E = IEEE_Emin - 1) and then abs To_Float (SR) = 1.0); end Valid; --------------------- -- Unaligned_Valid -- --------------------- function Unaligned_Valid (A : System.Address) return Boolean is subtype FS is String (1 .. T'Size / Character'Size); type FSP is access FS; function To_FSP is new Ada.Unchecked_Conversion (Address, FSP); Local_T : aliased T; begin -- Note that we have to be sure that we do not load the value into a -- floating-point register, since a signalling NaN may cause a trap. -- The following assignment is what does the actual alignment, since -- we know that the target Local_T is aligned. To_FSP (Local_T'Address).all := To_FSP (A).all; -- Now that we have an aligned value, we can use the normal aligned -- version of Valid to obtain the required result. return Valid (Local_T'Access); end Unaligned_Valid; end System.Fat_Gen;
Go to most recent revision | Compare with Previous | Blame | View Log