URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [s-gearop.adb] - Rev 706
Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- S Y S T E M . G E N E R I C _ A R R A Y _ O P E R A T I O N S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2006-2012, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- <http://www.gnu.org/licenses/>. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Ada.Numerics; use Ada.Numerics; package body System.Generic_Array_Operations is -- The local function Check_Unit_Last computes the index of the last -- element returned by Unit_Vector or Unit_Matrix. A separate function is -- needed to allow raising Constraint_Error before declaring the function -- result variable. The result variable needs to be declared first, to -- allow front-end inlining. function Check_Unit_Last (Index : Integer; Order : Positive; First : Integer) return Integer; pragma Inline_Always (Check_Unit_Last); -------------- -- Diagonal -- -------------- function Diagonal (A : Matrix) return Vector is N : constant Natural := Natural'Min (A'Length (1), A'Length (2)); R : Vector (A'First (1) .. A'First (1) + N - 1); begin for J in 0 .. N - 1 loop R (R'First + J) := A (A'First (1) + J, A'First (2) + J); end loop; return R; end Diagonal; -------------------------- -- Square_Matrix_Length -- -------------------------- function Square_Matrix_Length (A : Matrix) return Natural is begin if A'Length (1) /= A'Length (2) then raise Constraint_Error with "matrix is not square"; end if; return A'Length (1); end Square_Matrix_Length; --------------------- -- Check_Unit_Last -- --------------------- function Check_Unit_Last (Index : Integer; Order : Positive; First : Integer) return Integer is begin -- Order the tests carefully to avoid overflow if Index < First or else First > Integer'Last - Order + 1 or else Index > First + (Order - 1) then raise Constraint_Error; end if; return First + (Order - 1); end Check_Unit_Last; --------------------- -- Back_Substitute -- --------------------- procedure Back_Substitute (M, N : in out Matrix) is pragma Assert (M'First (1) = N'First (1) and then M'Last (1) = N'Last (1)); procedure Sub_Row (M : in out Matrix; Target : Integer; Source : Integer; Factor : Scalar); -- Elementary row operation that subtracts Factor * M (Source, <>) from -- M (Target, <>) procedure Sub_Row (M : in out Matrix; Target : Integer; Source : Integer; Factor : Scalar) is begin for J in M'Range (2) loop M (Target, J) := M (Target, J) - Factor * M (Source, J); end loop; end Sub_Row; -- Local declarations Max_Col : Integer := M'Last (2); -- Start of processing for Back_Substitute begin Do_Rows : for Row in reverse M'Range (1) loop Find_Non_Zero : for Col in reverse M'First (2) .. Max_Col loop if Is_Non_Zero (M (Row, Col)) then -- Found first non-zero element, so subtract a multiple of this -- element from all higher rows, to reduce all other elements -- in this column to zero. declare -- We can't use a for loop, as we'd need to iterate to -- Row - 1, but that expression will overflow if M'First -- equals Integer'First, which is true for aggregates -- without explicit bounds.. J : Integer := M'First (1); begin while J < Row loop Sub_Row (N, J, Row, (M (J, Col) / M (Row, Col))); Sub_Row (M, J, Row, (M (J, Col) / M (Row, Col))); J := J + 1; end loop; end; -- Avoid potential overflow in the subtraction below exit Do_Rows when Col = M'First (2); Max_Col := Col - 1; exit Find_Non_Zero; end if; end loop Find_Non_Zero; end loop Do_Rows; end Back_Substitute; ----------------------- -- Forward_Eliminate -- ----------------------- procedure Forward_Eliminate (M : in out Matrix; N : in out Matrix; Det : out Scalar) is pragma Assert (M'First (1) = N'First (1) and then M'Last (1) = N'Last (1)); -- The following are variations of the elementary matrix row operations: -- row switching, row multiplication and row addition. Because in this -- algorithm the addition factor is always a negated value, we chose to -- use row subtraction instead. Similarly, instead of multiplying by -- a reciprocal, we divide. procedure Sub_Row (M : in out Matrix; Target : Integer; Source : Integer; Factor : Scalar); -- Subtrace Factor * M (Source, <>) from M (Target, <>) procedure Divide_Row (M, N : in out Matrix; Row : Integer; Scale : Scalar); -- Divide M (Row) and N (Row) by Scale, and update Det procedure Switch_Row (M, N : in out Matrix; Row_1 : Integer; Row_2 : Integer); -- Exchange M (Row_1) and N (Row_1) with M (Row_2) and N (Row_2), -- negating Det in the process. ------------- -- Sub_Row -- ------------- procedure Sub_Row (M : in out Matrix; Target : Integer; Source : Integer; Factor : Scalar) is begin for J in M'Range (2) loop M (Target, J) := M (Target, J) - Factor * M (Source, J); end loop; end Sub_Row; ---------------- -- Divide_Row -- ---------------- procedure Divide_Row (M, N : in out Matrix; Row : Integer; Scale : Scalar) is begin Det := Det * Scale; for J in M'Range (2) loop M (Row, J) := M (Row, J) / Scale; end loop; for J in N'Range (2) loop N (Row - M'First (1) + N'First (1), J) := N (Row - M'First (1) + N'First (1), J) / Scale; end loop; end Divide_Row; ---------------- -- Switch_Row -- ---------------- procedure Switch_Row (M, N : in out Matrix; Row_1 : Integer; Row_2 : Integer) is procedure Swap (X, Y : in out Scalar); -- Exchange the values of X and Y procedure Swap (X, Y : in out Scalar) is T : constant Scalar := X; begin X := Y; Y := T; end Swap; -- Start of processing for Switch_Row begin if Row_1 /= Row_2 then Det := Zero - Det; for J in M'Range (2) loop Swap (M (Row_1, J), M (Row_2, J)); end loop; for J in N'Range (2) loop Swap (N (Row_1 - M'First (1) + N'First (1), J), N (Row_2 - M'First (1) + N'First (1), J)); end loop; end if; end Switch_Row; -- Local declarations Row : Integer := M'First (1); -- Start of processing for Forward_Eliminate begin Det := One; for J in M'Range (2) loop declare Max_Row : Integer := Row; Max_Abs : Real'Base := 0.0; begin -- Find best pivot in column J, starting in row Row for K in Row .. M'Last (1) loop declare New_Abs : constant Real'Base := abs M (K, J); begin if Max_Abs < New_Abs then Max_Abs := New_Abs; Max_Row := K; end if; end; end loop; if Max_Abs > 0.0 then Switch_Row (M, N, Row, Max_Row); -- The temporaries below are necessary to force a copy of the -- value and avoid improper aliasing. declare Scale : constant Scalar := M (Row, J); begin Divide_Row (M, N, Row, Scale); end; for U in Row + 1 .. M'Last (1) loop declare Factor : constant Scalar := M (U, J); begin Sub_Row (N, U, Row, Factor); Sub_Row (M, U, Row, Factor); end; end loop; exit when Row >= M'Last (1); Row := Row + 1; else -- Set zero (note that we do not have literals) Det := Zero; end if; end; end loop; end Forward_Eliminate; ------------------- -- Inner_Product -- ------------------- function Inner_Product (Left : Left_Vector; Right : Right_Vector) return Result_Scalar is R : Result_Scalar := Zero; begin if Left'Length /= Right'Length then raise Constraint_Error with "vectors are of different length in inner product"; end if; for J in Left'Range loop R := R + Left (J) * Right (J - Left'First + Right'First); end loop; return R; end Inner_Product; ------------- -- L2_Norm -- ------------- function L2_Norm (X : X_Vector) return Result_Real'Base is Sum : Result_Real'Base := 0.0; begin for J in X'Range loop Sum := Sum + Result_Real'Base (abs X (J))**2; end loop; return Sqrt (Sum); end L2_Norm; ---------------------------------- -- Matrix_Elementwise_Operation -- ---------------------------------- function Matrix_Elementwise_Operation (X : X_Matrix) return Result_Matrix is R : Result_Matrix (X'Range (1), X'Range (2)); begin for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Operation (X (J, K)); end loop; end loop; return R; end Matrix_Elementwise_Operation; ---------------------------------- -- Vector_Elementwise_Operation -- ---------------------------------- function Vector_Elementwise_Operation (X : X_Vector) return Result_Vector is R : Result_Vector (X'Range); begin for J in R'Range loop R (J) := Operation (X (J)); end loop; return R; end Vector_Elementwise_Operation; ----------------------------------------- -- Matrix_Matrix_Elementwise_Operation -- ----------------------------------------- function Matrix_Matrix_Elementwise_Operation (Left : Left_Matrix; Right : Right_Matrix) return Result_Matrix is R : Result_Matrix (Left'Range (1), Left'Range (2)); begin if Left'Length (1) /= Right'Length (1) or else Left'Length (2) /= Right'Length (2) then raise Constraint_Error with "matrices are of different dimension in elementwise operation"; end if; for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Operation (Left (J, K), Right (J - R'First (1) + Right'First (1), K - R'First (2) + Right'First (2))); end loop; end loop; return R; end Matrix_Matrix_Elementwise_Operation; ------------------------------------------------ -- Matrix_Matrix_Scalar_Elementwise_Operation -- ------------------------------------------------ function Matrix_Matrix_Scalar_Elementwise_Operation (X : X_Matrix; Y : Y_Matrix; Z : Z_Scalar) return Result_Matrix is R : Result_Matrix (X'Range (1), X'Range (2)); begin if X'Length (1) /= Y'Length (1) or else X'Length (2) /= Y'Length (2) then raise Constraint_Error with "matrices are of different dimension in elementwise operation"; end if; for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Operation (X (J, K), Y (J - R'First (1) + Y'First (1), K - R'First (2) + Y'First (2)), Z); end loop; end loop; return R; end Matrix_Matrix_Scalar_Elementwise_Operation; ----------------------------------------- -- Vector_Vector_Elementwise_Operation -- ----------------------------------------- function Vector_Vector_Elementwise_Operation (Left : Left_Vector; Right : Right_Vector) return Result_Vector is R : Result_Vector (Left'Range); begin if Left'Length /= Right'Length then raise Constraint_Error with "vectors are of different length in elementwise operation"; end if; for J in R'Range loop R (J) := Operation (Left (J), Right (J - R'First + Right'First)); end loop; return R; end Vector_Vector_Elementwise_Operation; ------------------------------------------------ -- Vector_Vector_Scalar_Elementwise_Operation -- ------------------------------------------------ function Vector_Vector_Scalar_Elementwise_Operation (X : X_Vector; Y : Y_Vector; Z : Z_Scalar) return Result_Vector is R : Result_Vector (X'Range); begin if X'Length /= Y'Length then raise Constraint_Error with "vectors are of different length in elementwise operation"; end if; for J in R'Range loop R (J) := Operation (X (J), Y (J - X'First + Y'First), Z); end loop; return R; end Vector_Vector_Scalar_Elementwise_Operation; ----------------------------------------- -- Matrix_Scalar_Elementwise_Operation -- ----------------------------------------- function Matrix_Scalar_Elementwise_Operation (Left : Left_Matrix; Right : Right_Scalar) return Result_Matrix is R : Result_Matrix (Left'Range (1), Left'Range (2)); begin for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Operation (Left (J, K), Right); end loop; end loop; return R; end Matrix_Scalar_Elementwise_Operation; ----------------------------------------- -- Vector_Scalar_Elementwise_Operation -- ----------------------------------------- function Vector_Scalar_Elementwise_Operation (Left : Left_Vector; Right : Right_Scalar) return Result_Vector is R : Result_Vector (Left'Range); begin for J in R'Range loop R (J) := Operation (Left (J), Right); end loop; return R; end Vector_Scalar_Elementwise_Operation; ----------------------------------------- -- Scalar_Matrix_Elementwise_Operation -- ----------------------------------------- function Scalar_Matrix_Elementwise_Operation (Left : Left_Scalar; Right : Right_Matrix) return Result_Matrix is R : Result_Matrix (Right'Range (1), Right'Range (2)); begin for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Operation (Left, Right (J, K)); end loop; end loop; return R; end Scalar_Matrix_Elementwise_Operation; ----------------------------------------- -- Scalar_Vector_Elementwise_Operation -- ----------------------------------------- function Scalar_Vector_Elementwise_Operation (Left : Left_Scalar; Right : Right_Vector) return Result_Vector is R : Result_Vector (Right'Range); begin for J in R'Range loop R (J) := Operation (Left, Right (J)); end loop; return R; end Scalar_Vector_Elementwise_Operation; ---------- -- Sqrt -- ---------- function Sqrt (X : Real'Base) return Real'Base is Root, Next : Real'Base; begin -- Be defensive: any comparisons with NaN values will yield False. if not (X > 0.0) then if X = 0.0 then return X; else raise Argument_Error; end if; elsif X > Real'Base'Last then -- X is infinity, which is its own square root return X; end if; -- Compute an initial estimate based on: -- X = M * R**E and Sqrt (X) = Sqrt (M) * R**(E / 2.0), -- where M is the mantissa, R is the radix and E the exponent. -- By ignoring the mantissa and ignoring the case of an odd -- exponent, we get a final error that is at most R. In other words, -- the result has about a single bit precision. Root := Real'Base (Real'Machine_Radix) ** (Real'Exponent (X) / 2); -- Because of the poor initial estimate, use the Babylonian method of -- computing the square root, as it is stable for all inputs. Every step -- will roughly double the precision of the result. Just a few steps -- suffice in most cases. Eight iterations should give about 2**8 bits -- of precision. for J in 1 .. 8 loop Next := (Root + X / Root) / 2.0; exit when Root = Next; Root := Next; end loop; return Root; end Sqrt; --------------------------- -- Matrix_Matrix_Product -- --------------------------- function Matrix_Matrix_Product (Left : Left_Matrix; Right : Right_Matrix) return Result_Matrix is R : Result_Matrix (Left'Range (1), Right'Range (2)); begin if Left'Length (2) /= Right'Length (1) then raise Constraint_Error with "incompatible dimensions in matrix multiplication"; end if; for J in R'Range (1) loop for K in R'Range (2) loop declare S : Result_Scalar := Zero; begin for M in Left'Range (2) loop S := S + Left (J, M) * Right (M - Left'First (2) + Right'First (1), K); end loop; R (J, K) := S; end; end loop; end loop; return R; end Matrix_Matrix_Product; ---------------------------- -- Matrix_Vector_Solution -- ---------------------------- function Matrix_Vector_Solution (A : Matrix; X : Vector) return Vector is N : constant Natural := A'Length (1); MA : Matrix := A; MX : Matrix (A'Range (1), 1 .. 1); R : Vector (A'Range (2)); Det : Scalar; begin if A'Length (2) /= N then raise Constraint_Error with "matrix is not square"; end if; if X'Length /= N then raise Constraint_Error with "incompatible vector length"; end if; for J in 0 .. MX'Length (1) - 1 loop MX (MX'First (1) + J, 1) := X (X'First + J); end loop; Forward_Eliminate (MA, MX, Det); Back_Substitute (MA, MX); for J in 0 .. R'Length - 1 loop R (R'First + J) := MX (MX'First (1) + J, 1); end loop; return R; end Matrix_Vector_Solution; ---------------------------- -- Matrix_Matrix_Solution -- ---------------------------- function Matrix_Matrix_Solution (A, X : Matrix) return Matrix is N : constant Natural := A'Length (1); MA : Matrix (A'Range (2), A'Range (2)); MB : Matrix (A'Range (2), X'Range (2)); Det : Scalar; begin if A'Length (2) /= N then raise Constraint_Error with "matrix is not square"; end if; if X'Length (1) /= N then raise Constraint_Error with "matrices have unequal number of rows"; end if; for J in 0 .. A'Length (1) - 1 loop for K in MA'Range (2) loop MA (MA'First (1) + J, K) := A (A'First (1) + J, K); end loop; for K in MB'Range (2) loop MB (MB'First (1) + J, K) := X (X'First (1) + J, K); end loop; end loop; Forward_Eliminate (MA, MB, Det); Back_Substitute (MA, MB); return MB; end Matrix_Matrix_Solution; --------------------------- -- Matrix_Vector_Product -- --------------------------- function Matrix_Vector_Product (Left : Matrix; Right : Right_Vector) return Result_Vector is R : Result_Vector (Left'Range (1)); begin if Left'Length (2) /= Right'Length then raise Constraint_Error with "incompatible dimensions in matrix-vector multiplication"; end if; for J in Left'Range (1) loop declare S : Result_Scalar := Zero; begin for K in Left'Range (2) loop S := S + Left (J, K) * Right (K - Left'First (2) + Right'First); end loop; R (J) := S; end; end loop; return R; end Matrix_Vector_Product; ------------------- -- Outer_Product -- ------------------- function Outer_Product (Left : Left_Vector; Right : Right_Vector) return Matrix is R : Matrix (Left'Range, Right'Range); begin for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Left (J) * Right (K); end loop; end loop; return R; end Outer_Product; ----------------- -- Swap_Column -- ----------------- procedure Swap_Column (A : in out Matrix; Left, Right : Integer) is Temp : Scalar; begin for J in A'Range (1) loop Temp := A (J, Left); A (J, Left) := A (J, Right); A (J, Right) := Temp; end loop; end Swap_Column; --------------- -- Transpose -- --------------- procedure Transpose (A : Matrix; R : out Matrix) is begin for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := A (K - R'First (2) + A'First (1), J - R'First (1) + A'First (2)); end loop; end loop; end Transpose; ------------------------------- -- Update_Matrix_With_Matrix -- ------------------------------- procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is begin if X'Length (1) /= Y'Length (1) or else X'Length (2) /= Y'Length (2) then raise Constraint_Error with "matrices are of different dimension in update operation"; end if; for J in X'Range (1) loop for K in X'Range (2) loop Update (X (J, K), Y (J - X'First (1) + Y'First (1), K - X'First (2) + Y'First (2))); end loop; end loop; end Update_Matrix_With_Matrix; ------------------------------- -- Update_Vector_With_Vector -- ------------------------------- procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is begin if X'Length /= Y'Length then raise Constraint_Error with "vectors are of different length in update operation"; end if; for J in X'Range loop Update (X (J), Y (J - X'First + Y'First)); end loop; end Update_Vector_With_Vector; ----------------- -- Unit_Matrix -- ----------------- function Unit_Matrix (Order : Positive; First_1 : Integer := 1; First_2 : Integer := 1) return Matrix is R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1), First_2 .. Check_Unit_Last (First_2, Order, First_2)); begin R := (others => (others => Zero)); for J in 0 .. Order - 1 loop R (First_1 + J, First_2 + J) := One; end loop; return R; end Unit_Matrix; ----------------- -- Unit_Vector -- ----------------- function Unit_Vector (Index : Integer; Order : Positive; First : Integer := 1) return Vector is R : Vector (First .. Check_Unit_Last (Index, Order, First)); begin R := (others => Zero); R (Index) := One; return R; end Unit_Vector; --------------------------- -- Vector_Matrix_Product -- --------------------------- function Vector_Matrix_Product (Left : Left_Vector; Right : Matrix) return Result_Vector is R : Result_Vector (Right'Range (2)); begin if Left'Length /= Right'Length (2) then raise Constraint_Error with "incompatible dimensions in vector-matrix multiplication"; end if; for J in Right'Range (2) loop declare S : Result_Scalar := Zero; begin for K in Right'Range (1) loop S := S + Left (J - Right'First (1) + Left'First) * Right (K, J); end loop; R (J) := S; end; end loop; return R; end Vector_Matrix_Product; end System.Generic_Array_Operations;