OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [s-gearop.adb] - Rev 849

Go to most recent revision | Compare with Previous | Blame | View Log

------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--       S Y S T E M . G E N E R I C _ A R R A Y _ O P E R A T I O N S      --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--         Copyright (C) 2006-2012, Free Software Foundation, Inc.          --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------
 
with Ada.Numerics; use Ada.Numerics;
 
package body System.Generic_Array_Operations is
 
   --  The local function Check_Unit_Last computes the index of the last
   --  element returned by Unit_Vector or Unit_Matrix. A separate function is
   --  needed to allow raising Constraint_Error before declaring the function
   --  result variable. The result variable needs to be declared first, to
   --  allow front-end inlining.
 
   function Check_Unit_Last
     (Index : Integer;
      Order : Positive;
      First : Integer) return Integer;
   pragma Inline_Always (Check_Unit_Last);
 
   --------------
   -- Diagonal --
   --------------
 
   function Diagonal (A : Matrix) return Vector is
      N : constant Natural := Natural'Min (A'Length (1), A'Length (2));
      R : Vector (A'First (1) .. A'First (1) + N - 1);
 
   begin
      for J in 0 .. N - 1 loop
         R (R'First + J) := A (A'First (1) + J, A'First (2) + J);
      end loop;
 
      return R;
   end Diagonal;
 
   --------------------------
   -- Square_Matrix_Length --
   --------------------------
 
   function Square_Matrix_Length (A : Matrix) return Natural is
   begin
      if A'Length (1) /= A'Length (2) then
         raise Constraint_Error with "matrix is not square";
      end if;
 
      return A'Length (1);
   end Square_Matrix_Length;
 
   ---------------------
   -- Check_Unit_Last --
   ---------------------
 
   function Check_Unit_Last
      (Index : Integer;
       Order : Positive;
       First : Integer) return Integer
   is
   begin
      --  Order the tests carefully to avoid overflow
 
      if Index < First
        or else First > Integer'Last - Order + 1
        or else Index > First + (Order - 1)
      then
         raise Constraint_Error;
      end if;
 
      return First + (Order - 1);
   end Check_Unit_Last;
 
   ---------------------
   -- Back_Substitute --
   ---------------------
 
   procedure Back_Substitute (M, N : in out Matrix) is
      pragma Assert (M'First (1) = N'First (1)
                       and then
                     M'Last  (1) = N'Last (1));
 
      procedure Sub_Row
        (M      : in out Matrix;
         Target : Integer;
         Source : Integer;
         Factor : Scalar);
      --  Elementary row operation that subtracts Factor * M (Source, <>) from
      --  M (Target, <>)
 
      procedure Sub_Row
        (M      : in out Matrix;
         Target : Integer;
         Source : Integer;
         Factor : Scalar)
      is
      begin
         for J in M'Range (2) loop
            M (Target, J) := M (Target, J) - Factor * M (Source, J);
         end loop;
      end Sub_Row;
 
      --  Local declarations
 
      Max_Col : Integer := M'Last (2);
 
   --  Start of processing for Back_Substitute
 
   begin
      Do_Rows : for Row in reverse M'Range (1) loop
         Find_Non_Zero : for Col in reverse M'First (2) .. Max_Col loop
            if Is_Non_Zero (M (Row, Col)) then
 
               --  Found first non-zero element, so subtract a multiple of this
               --  element  from all higher rows, to reduce all other elements
               --  in this column to zero.
 
               declare
                  --  We can't use a for loop, as we'd need to iterate to
                  --  Row - 1, but that expression will overflow if M'First
                  --  equals Integer'First, which is true for aggregates
                  --  without explicit bounds..
 
                  J : Integer := M'First (1);
 
               begin
                  while J < Row loop
                     Sub_Row (N, J, Row, (M (J, Col) / M (Row, Col)));
                     Sub_Row (M, J, Row, (M (J, Col) / M (Row, Col)));
                     J := J + 1;
                  end loop;
               end;
 
               --  Avoid potential overflow in the subtraction below
 
               exit Do_Rows when Col = M'First (2);
 
               Max_Col := Col - 1;
 
               exit Find_Non_Zero;
            end if;
         end loop Find_Non_Zero;
      end loop Do_Rows;
   end Back_Substitute;
 
   -----------------------
   -- Forward_Eliminate --
   -----------------------
 
   procedure Forward_Eliminate
     (M   : in out Matrix;
      N   : in out Matrix;
      Det : out Scalar)
   is
      pragma Assert (M'First (1) = N'First (1)
                       and then
                     M'Last  (1) = N'Last (1));
 
      --  The following are variations of the elementary matrix row operations:
      --  row switching, row multiplication and row addition. Because in this
      --  algorithm the addition factor is always a negated value, we chose to
      --  use  row subtraction instead. Similarly, instead of multiplying by
      --  a reciprocal, we divide.
 
      procedure Sub_Row
        (M      : in out Matrix;
         Target : Integer;
         Source : Integer;
         Factor : Scalar);
      --  Subtrace Factor * M (Source, <>) from M (Target, <>)
 
      procedure Divide_Row
        (M, N  : in out Matrix;
         Row   : Integer;
         Scale : Scalar);
      --  Divide M (Row) and N (Row) by Scale, and update Det
 
      procedure Switch_Row
        (M, N  : in out Matrix;
         Row_1 : Integer;
         Row_2 : Integer);
      --  Exchange M (Row_1) and N (Row_1) with M (Row_2) and N (Row_2),
      --  negating Det in the process.
 
      -------------
      -- Sub_Row --
      -------------
 
      procedure Sub_Row
        (M      : in out Matrix;
         Target : Integer;
         Source : Integer;
         Factor : Scalar)
      is
      begin
         for J in M'Range (2) loop
            M (Target, J) := M (Target, J) - Factor * M (Source, J);
         end loop;
      end Sub_Row;
 
      ----------------
      -- Divide_Row --
      ----------------
 
      procedure Divide_Row
        (M, N  : in out Matrix;
         Row   : Integer;
         Scale : Scalar)
      is
      begin
         Det := Det * Scale;
 
         for J in M'Range (2) loop
            M (Row, J) := M (Row, J) / Scale;
         end loop;
 
         for J in N'Range (2) loop
            N (Row - M'First (1) + N'First (1), J) :=
              N (Row - M'First (1) + N'First (1), J) / Scale;
         end loop;
      end Divide_Row;
 
      ----------------
      -- Switch_Row --
      ----------------
 
      procedure Switch_Row
        (M, N  : in out Matrix;
         Row_1 : Integer;
         Row_2 : Integer)
      is
         procedure Swap (X, Y : in out Scalar);
         --  Exchange the values of X and Y
 
         procedure Swap (X, Y : in out Scalar) is
            T : constant Scalar := X;
         begin
            X := Y;
            Y := T;
         end Swap;
 
      --  Start of processing for Switch_Row
 
      begin
         if Row_1 /= Row_2 then
            Det := Zero - Det;
 
            for J in M'Range (2) loop
               Swap (M (Row_1, J), M (Row_2, J));
            end loop;
 
            for J in N'Range (2) loop
               Swap (N (Row_1 - M'First (1) + N'First (1), J),
                     N (Row_2 - M'First (1) + N'First (1), J));
            end loop;
         end if;
      end Switch_Row;
 
      --  Local declarations
 
      Row : Integer := M'First (1);
 
   --  Start of processing for Forward_Eliminate
 
   begin
      Det := One;
 
      for J in M'Range (2) loop
         declare
            Max_Row : Integer := Row;
            Max_Abs : Real'Base := 0.0;
 
         begin
            --  Find best pivot in column J, starting in row Row
 
            for K in Row .. M'Last (1) loop
               declare
                  New_Abs : constant Real'Base := abs M (K, J);
               begin
                  if Max_Abs < New_Abs then
                     Max_Abs := New_Abs;
                     Max_Row := K;
                  end if;
               end;
            end loop;
 
            if Max_Abs > 0.0 then
               Switch_Row (M, N, Row, Max_Row);
 
               --  The temporaries below are necessary to force a copy of the
               --  value and avoid improper aliasing.
 
               declare
                  Scale : constant Scalar := M (Row, J);
               begin
                  Divide_Row (M, N, Row, Scale);
               end;
 
               for U in Row + 1 .. M'Last (1) loop
                  declare
                     Factor : constant Scalar := M (U, J);
                  begin
                     Sub_Row (N, U, Row, Factor);
                     Sub_Row (M, U, Row, Factor);
                  end;
               end loop;
 
               exit when Row >= M'Last (1);
 
               Row := Row + 1;
 
            else
               --  Set zero (note that we do not have literals)
 
               Det := Zero;
            end if;
         end;
      end loop;
   end Forward_Eliminate;
 
   -------------------
   -- Inner_Product --
   -------------------
 
   function Inner_Product
     (Left  : Left_Vector;
      Right : Right_Vector) return  Result_Scalar
   is
      R : Result_Scalar := Zero;
 
   begin
      if Left'Length /= Right'Length then
         raise Constraint_Error with
            "vectors are of different length in inner product";
      end if;
 
      for J in Left'Range loop
         R := R + Left (J) * Right (J - Left'First + Right'First);
      end loop;
 
      return R;
   end Inner_Product;
 
   -------------
   -- L2_Norm --
   -------------
 
   function L2_Norm (X : X_Vector) return Result_Real'Base is
      Sum : Result_Real'Base := 0.0;
 
   begin
      for J in X'Range loop
         Sum := Sum + Result_Real'Base (abs X (J))**2;
      end loop;
 
      return Sqrt (Sum);
   end L2_Norm;
 
   ----------------------------------
   -- Matrix_Elementwise_Operation --
   ----------------------------------
 
   function Matrix_Elementwise_Operation (X : X_Matrix) return Result_Matrix is
      R : Result_Matrix (X'Range (1), X'Range (2));
 
   begin
      for J in R'Range (1) loop
         for K in R'Range (2) loop
            R (J, K) := Operation (X (J, K));
         end loop;
      end loop;
 
      return R;
   end Matrix_Elementwise_Operation;
 
   ----------------------------------
   -- Vector_Elementwise_Operation --
   ----------------------------------
 
   function Vector_Elementwise_Operation (X : X_Vector) return Result_Vector is
      R : Result_Vector (X'Range);
 
   begin
      for J in R'Range loop
         R (J) := Operation (X (J));
      end loop;
 
      return R;
   end Vector_Elementwise_Operation;
 
   -----------------------------------------
   -- Matrix_Matrix_Elementwise_Operation --
   -----------------------------------------
 
   function Matrix_Matrix_Elementwise_Operation
     (Left  : Left_Matrix;
      Right : Right_Matrix) return Result_Matrix
   is
      R : Result_Matrix (Left'Range (1), Left'Range (2));
 
   begin
      if Left'Length (1) /= Right'Length (1)
           or else
         Left'Length (2) /= Right'Length (2)
      then
         raise Constraint_Error with
           "matrices are of different dimension in elementwise operation";
      end if;
 
      for J in R'Range (1) loop
         for K in R'Range (2) loop
            R (J, K) :=
              Operation
                (Left (J, K),
                 Right
                   (J - R'First (1) + Right'First (1),
                    K - R'First (2) + Right'First (2)));
         end loop;
      end loop;
 
      return R;
   end Matrix_Matrix_Elementwise_Operation;
 
   ------------------------------------------------
   -- Matrix_Matrix_Scalar_Elementwise_Operation --
   ------------------------------------------------
 
   function Matrix_Matrix_Scalar_Elementwise_Operation
     (X    : X_Matrix;
      Y    : Y_Matrix;
      Z    : Z_Scalar) return Result_Matrix
   is
      R : Result_Matrix (X'Range (1), X'Range (2));
 
   begin
      if X'Length (1) /= Y'Length (1)
           or else
         X'Length (2) /= Y'Length (2)
      then
         raise Constraint_Error with
           "matrices are of different dimension in elementwise operation";
      end if;
 
      for J in R'Range (1) loop
         for K in R'Range (2) loop
            R (J, K) :=
              Operation
                (X (J, K),
                 Y (J - R'First (1) + Y'First (1),
                    K - R'First (2) + Y'First (2)),
                 Z);
         end loop;
      end loop;
 
      return R;
   end Matrix_Matrix_Scalar_Elementwise_Operation;
 
   -----------------------------------------
   -- Vector_Vector_Elementwise_Operation --
   -----------------------------------------
 
   function Vector_Vector_Elementwise_Operation
     (Left  : Left_Vector;
      Right : Right_Vector) return Result_Vector
   is
      R : Result_Vector (Left'Range);
 
   begin
      if Left'Length /= Right'Length then
         raise Constraint_Error with
           "vectors are of different length in elementwise operation";
      end if;
 
      for J in R'Range loop
         R (J) := Operation (Left (J), Right (J - R'First + Right'First));
      end loop;
 
      return R;
   end Vector_Vector_Elementwise_Operation;
 
   ------------------------------------------------
   -- Vector_Vector_Scalar_Elementwise_Operation --
   ------------------------------------------------
 
   function Vector_Vector_Scalar_Elementwise_Operation
     (X : X_Vector;
      Y : Y_Vector;
      Z : Z_Scalar) return Result_Vector
   is
      R : Result_Vector (X'Range);
 
   begin
      if X'Length /= Y'Length then
         raise Constraint_Error with
           "vectors are of different length in elementwise operation";
      end if;
 
      for J in R'Range loop
         R (J) := Operation (X (J), Y (J - X'First + Y'First), Z);
      end loop;
 
      return R;
   end Vector_Vector_Scalar_Elementwise_Operation;
 
   -----------------------------------------
   -- Matrix_Scalar_Elementwise_Operation --
   -----------------------------------------
 
   function Matrix_Scalar_Elementwise_Operation
     (Left  : Left_Matrix;
      Right : Right_Scalar) return Result_Matrix
   is
      R : Result_Matrix (Left'Range (1), Left'Range (2));
 
   begin
      for J in R'Range (1) loop
         for K in R'Range (2) loop
            R (J, K) := Operation (Left (J, K), Right);
         end loop;
      end loop;
 
      return R;
   end Matrix_Scalar_Elementwise_Operation;
 
   -----------------------------------------
   -- Vector_Scalar_Elementwise_Operation --
   -----------------------------------------
 
   function Vector_Scalar_Elementwise_Operation
     (Left  : Left_Vector;
      Right : Right_Scalar) return Result_Vector
   is
      R : Result_Vector (Left'Range);
 
   begin
      for J in R'Range loop
         R (J) := Operation (Left (J), Right);
      end loop;
 
      return R;
   end Vector_Scalar_Elementwise_Operation;
 
   -----------------------------------------
   -- Scalar_Matrix_Elementwise_Operation --
   -----------------------------------------
 
   function Scalar_Matrix_Elementwise_Operation
     (Left  : Left_Scalar;
      Right : Right_Matrix) return Result_Matrix
   is
      R : Result_Matrix (Right'Range (1), Right'Range (2));
 
   begin
      for J in R'Range (1) loop
         for K in R'Range (2) loop
            R (J, K) := Operation (Left, Right (J, K));
         end loop;
      end loop;
 
      return R;
   end Scalar_Matrix_Elementwise_Operation;
 
   -----------------------------------------
   -- Scalar_Vector_Elementwise_Operation --
   -----------------------------------------
 
   function Scalar_Vector_Elementwise_Operation
     (Left  : Left_Scalar;
      Right : Right_Vector) return Result_Vector
   is
      R : Result_Vector (Right'Range);
 
   begin
      for J in R'Range loop
         R (J) := Operation (Left, Right (J));
      end loop;
 
      return R;
   end Scalar_Vector_Elementwise_Operation;
 
   ----------
   -- Sqrt --
   ----------
 
   function Sqrt (X : Real'Base) return Real'Base is
      Root, Next : Real'Base;
 
   begin
      --  Be defensive: any comparisons with NaN values will yield False.
 
      if not (X > 0.0) then
         if X = 0.0 then
            return X;
         else
            raise Argument_Error;
         end if;
 
      elsif X > Real'Base'Last then
 
         --  X is infinity, which is its own square root
 
         return X;
      end if;
 
      --  Compute an initial estimate based on:
 
      --     X = M * R**E and Sqrt (X) = Sqrt (M) * R**(E / 2.0),
 
      --  where M is the mantissa, R is the radix and E the exponent.
 
      --  By ignoring the mantissa and ignoring the case of an odd
      --  exponent, we get a final error that is at most R. In other words,
      --  the result has about a single bit precision.
 
      Root := Real'Base (Real'Machine_Radix) ** (Real'Exponent (X) / 2);
 
      --  Because of the poor initial estimate, use the Babylonian method of
      --  computing the square root, as it is stable for all inputs. Every step
      --  will roughly double the precision of the result. Just a few steps
      --  suffice in most cases. Eight iterations should give about 2**8 bits
      --  of precision.
 
      for J in 1 .. 8 loop
         Next := (Root + X / Root) / 2.0;
         exit when Root = Next;
         Root := Next;
      end loop;
 
      return Root;
   end Sqrt;
 
   ---------------------------
   -- Matrix_Matrix_Product --
   ---------------------------
 
   function Matrix_Matrix_Product
     (Left  : Left_Matrix;
      Right : Right_Matrix) return Result_Matrix
   is
      R : Result_Matrix (Left'Range (1), Right'Range (2));
 
   begin
      if Left'Length (2) /= Right'Length (1) then
         raise Constraint_Error with
           "incompatible dimensions in matrix multiplication";
      end if;
 
      for J in R'Range (1) loop
         for K in R'Range (2) loop
            declare
               S : Result_Scalar := Zero;
 
            begin
               for M in Left'Range (2) loop
                  S := S + Left (J, M) *
                             Right (M - Left'First (2) + Right'First (1), K);
               end loop;
 
               R (J, K) := S;
            end;
         end loop;
      end loop;
 
      return R;
   end  Matrix_Matrix_Product;
 
   ----------------------------
   -- Matrix_Vector_Solution --
   ----------------------------
 
   function Matrix_Vector_Solution (A : Matrix; X : Vector) return Vector is
      N   : constant Natural := A'Length (1);
      MA  : Matrix := A;
      MX  : Matrix (A'Range (1), 1 .. 1);
      R   : Vector (A'Range (2));
      Det : Scalar;
 
   begin
      if A'Length (2) /= N then
         raise Constraint_Error with "matrix is not square";
      end if;
 
      if X'Length /= N then
         raise Constraint_Error with "incompatible vector length";
      end if;
 
      for J in 0 .. MX'Length (1) - 1 loop
         MX (MX'First (1) + J, 1) := X (X'First + J);
      end loop;
 
      Forward_Eliminate (MA, MX, Det);
      Back_Substitute (MA, MX);
 
      for J in 0 .. R'Length - 1 loop
         R (R'First + J) := MX (MX'First (1) + J, 1);
      end loop;
 
      return R;
   end Matrix_Vector_Solution;
 
   ----------------------------
   -- Matrix_Matrix_Solution --
   ----------------------------
 
   function Matrix_Matrix_Solution (A, X : Matrix) return Matrix is
      N   : constant Natural := A'Length (1);
      MA  : Matrix (A'Range (2), A'Range (2));
      MB  : Matrix (A'Range (2), X'Range (2));
      Det : Scalar;
 
   begin
      if A'Length (2) /= N then
         raise Constraint_Error with "matrix is not square";
      end if;
 
      if X'Length (1) /= N then
         raise Constraint_Error with "matrices have unequal number of rows";
      end if;
 
      for J in 0 .. A'Length (1) - 1 loop
         for K in MA'Range (2) loop
            MA (MA'First (1) + J, K) := A (A'First (1) + J, K);
         end loop;
 
         for K in MB'Range (2) loop
            MB (MB'First (1) + J, K) := X (X'First (1) + J, K);
         end loop;
      end loop;
 
      Forward_Eliminate (MA, MB, Det);
      Back_Substitute (MA, MB);
 
      return MB;
   end Matrix_Matrix_Solution;
 
   ---------------------------
   -- Matrix_Vector_Product --
   ---------------------------
 
   function Matrix_Vector_Product
     (Left  : Matrix;
      Right : Right_Vector) return Result_Vector
   is
      R : Result_Vector (Left'Range (1));
 
   begin
      if Left'Length (2) /= Right'Length then
         raise Constraint_Error with
            "incompatible dimensions in matrix-vector multiplication";
      end if;
 
      for J in Left'Range (1) loop
         declare
            S : Result_Scalar := Zero;
 
         begin
            for K in Left'Range (2) loop
               S := S + Left (J, K) * Right (K - Left'First (2) + Right'First);
            end loop;
 
            R (J) := S;
         end;
      end loop;
 
      return R;
   end Matrix_Vector_Product;
 
   -------------------
   -- Outer_Product --
   -------------------
 
   function Outer_Product
     (Left  : Left_Vector;
      Right : Right_Vector) return Matrix
   is
      R : Matrix (Left'Range, Right'Range);
 
   begin
      for J in R'Range (1) loop
         for K in R'Range (2) loop
            R (J, K) := Left (J) * Right (K);
         end loop;
      end loop;
 
      return R;
   end Outer_Product;
 
   -----------------
   -- Swap_Column --
   -----------------
 
   procedure Swap_Column (A : in out Matrix; Left, Right : Integer) is
      Temp : Scalar;
   begin
      for J in A'Range (1) loop
         Temp := A (J, Left);
         A (J, Left) := A (J, Right);
         A (J, Right) := Temp;
      end loop;
   end Swap_Column;
 
   ---------------
   -- Transpose --
   ---------------
 
   procedure Transpose (A : Matrix; R : out Matrix) is
   begin
      for J in R'Range (1) loop
         for K in R'Range (2) loop
            R (J, K) := A (K - R'First (2) + A'First (1),
                           J - R'First (1) + A'First (2));
         end loop;
      end loop;
   end Transpose;
 
   -------------------------------
   -- Update_Matrix_With_Matrix --
   -------------------------------
 
   procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is
   begin
      if X'Length (1) /= Y'Length (1)
        or else X'Length (2) /= Y'Length (2)
      then
         raise Constraint_Error with
           "matrices are of different dimension in update operation";
      end if;
 
      for J in X'Range (1) loop
         for K in X'Range (2) loop
            Update (X (J, K), Y (J - X'First (1) + Y'First (1),
                                 K - X'First (2) + Y'First (2)));
         end loop;
      end loop;
   end Update_Matrix_With_Matrix;
 
   -------------------------------
   -- Update_Vector_With_Vector --
   -------------------------------
 
   procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is
   begin
      if X'Length /= Y'Length then
         raise Constraint_Error with
           "vectors are of different length in update operation";
      end if;
 
      for J in X'Range loop
         Update (X (J), Y (J - X'First + Y'First));
      end loop;
   end Update_Vector_With_Vector;
 
   -----------------
   -- Unit_Matrix --
   -----------------
 
   function Unit_Matrix
     (Order   : Positive;
      First_1 : Integer := 1;
      First_2 : Integer := 1) return Matrix
   is
      R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1),
                  First_2 .. Check_Unit_Last (First_2, Order, First_2));
 
   begin
      R := (others => (others => Zero));
 
      for J in 0 .. Order - 1 loop
         R (First_1 + J, First_2 + J) := One;
      end loop;
 
      return R;
   end Unit_Matrix;
 
   -----------------
   -- Unit_Vector --
   -----------------
 
   function Unit_Vector
     (Index : Integer;
      Order : Positive;
      First : Integer := 1) return Vector
   is
      R : Vector (First .. Check_Unit_Last (Index, Order, First));
   begin
      R := (others => Zero);
      R (Index) := One;
      return R;
   end Unit_Vector;
 
   ---------------------------
   -- Vector_Matrix_Product --
   ---------------------------
 
   function Vector_Matrix_Product
     (Left  : Left_Vector;
      Right : Matrix) return Result_Vector
   is
      R : Result_Vector (Right'Range (2));
 
   begin
      if Left'Length /= Right'Length (2) then
         raise Constraint_Error with
           "incompatible dimensions in vector-matrix multiplication";
      end if;
 
      for J in Right'Range (2) loop
         declare
            S : Result_Scalar := Zero;
 
         begin
            for K in Right'Range (1) loop
               S := S + Left (J - Right'First (1) + Left'First) * Right (K, J);
            end loop;
 
            R (J) := S;
         end;
      end loop;
 
      return R;
   end Vector_Matrix_Product;
 
end System.Generic_Array_Operations;
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.