URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [s-vaflop.adb] - Rev 774
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- S Y S T E M . V A X _ F L O A T _ O P E R A T I O N S -- -- -- -- B o d y -- -- -- -- Copyright (C) 1997-2009, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- <http://www.gnu.org/licenses/>. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ -- This is a dummy body for use on non-Alpha systems so that the library -- can compile. This dummy version uses ordinary conversions and other -- arithmetic operations. It is used only for testing purposes in the -- case where the -gnatdm switch is used to force testing of VMS features -- on non-VMS systems. with System.IO; package body System.Vax_Float_Operations is pragma Warnings (Off); -- Warnings about infinite recursion when the -gnatdm switch is used ----------- -- Abs_F -- ----------- function Abs_F (X : F) return F is begin return abs X; end Abs_F; ----------- -- Abs_G -- ----------- function Abs_G (X : G) return G is begin return abs X; end Abs_G; ----------- -- Add_F -- ----------- function Add_F (X, Y : F) return F is begin return X + Y; end Add_F; ----------- -- Add_G -- ----------- function Add_G (X, Y : G) return G is begin return X + Y; end Add_G; ------------ -- D_To_G -- ------------ function D_To_G (X : D) return G is begin return G (X); end D_To_G; -------------------- -- Debug_Output_D -- -------------------- procedure Debug_Output_D (Arg : D) is begin System.IO.Put (D'Image (Arg)); end Debug_Output_D; -------------------- -- Debug_Output_F -- -------------------- procedure Debug_Output_F (Arg : F) is begin System.IO.Put (F'Image (Arg)); end Debug_Output_F; -------------------- -- Debug_Output_G -- -------------------- procedure Debug_Output_G (Arg : G) is begin System.IO.Put (G'Image (Arg)); end Debug_Output_G; -------------------- -- Debug_String_D -- -------------------- Debug_String_Buffer : String (1 .. 32); -- Buffer used by all Debug_String_x routines for returning result function Debug_String_D (Arg : D) return System.Address is Image_String : constant String := D'Image (Arg) & ASCII.NUL; Image_Size : constant Integer := Image_String'Length; begin Debug_String_Buffer (1 .. Image_Size) := Image_String; return Debug_String_Buffer (1)'Address; end Debug_String_D; -------------------- -- Debug_String_F -- -------------------- function Debug_String_F (Arg : F) return System.Address is Image_String : constant String := F'Image (Arg) & ASCII.NUL; Image_Size : constant Integer := Image_String'Length; begin Debug_String_Buffer (1 .. Image_Size) := Image_String; return Debug_String_Buffer (1)'Address; end Debug_String_F; -------------------- -- Debug_String_G -- -------------------- function Debug_String_G (Arg : G) return System.Address is Image_String : constant String := G'Image (Arg) & ASCII.NUL; Image_Size : constant Integer := Image_String'Length; begin Debug_String_Buffer (1 .. Image_Size) := Image_String; return Debug_String_Buffer (1)'Address; end Debug_String_G; ----------- -- Div_F -- ----------- function Div_F (X, Y : F) return F is begin return X / Y; end Div_F; ----------- -- Div_G -- ----------- function Div_G (X, Y : G) return G is begin return X / Y; end Div_G; ---------- -- Eq_F -- ---------- function Eq_F (X, Y : F) return Boolean is begin return X = Y; end Eq_F; ---------- -- Eq_G -- ---------- function Eq_G (X, Y : G) return Boolean is begin return X = Y; end Eq_G; ------------ -- F_To_G -- ------------ function F_To_G (X : F) return G is begin return G (X); end F_To_G; ------------ -- F_To_Q -- ------------ function F_To_Q (X : F) return Q is begin return Q (X); end F_To_Q; ------------ -- F_To_S -- ------------ function F_To_S (X : F) return S is begin return S (X); end F_To_S; ------------ -- G_To_D -- ------------ function G_To_D (X : G) return D is begin return D (X); end G_To_D; ------------ -- G_To_F -- ------------ function G_To_F (X : G) return F is begin return F (X); end G_To_F; ------------ -- G_To_Q -- ------------ function G_To_Q (X : G) return Q is begin return Q (X); end G_To_Q; ------------ -- G_To_T -- ------------ function G_To_T (X : G) return T is begin return T (X); end G_To_T; ---------- -- Le_F -- ---------- function Le_F (X, Y : F) return Boolean is begin return X <= Y; end Le_F; ---------- -- Le_G -- ---------- function Le_G (X, Y : G) return Boolean is begin return X <= Y; end Le_G; ---------- -- Lt_F -- ---------- function Lt_F (X, Y : F) return Boolean is begin return X < Y; end Lt_F; ---------- -- Lt_G -- ---------- function Lt_G (X, Y : G) return Boolean is begin return X < Y; end Lt_G; ----------- -- Mul_F -- ----------- function Mul_F (X, Y : F) return F is begin return X * Y; end Mul_F; ----------- -- Mul_G -- ----------- function Mul_G (X, Y : G) return G is begin return X * Y; end Mul_G; ---------- -- Ne_F -- ---------- function Ne_F (X, Y : F) return Boolean is begin return X /= Y; end Ne_F; ---------- -- Ne_G -- ---------- function Ne_G (X, Y : G) return Boolean is begin return X /= Y; end Ne_G; ----------- -- Neg_F -- ----------- function Neg_F (X : F) return F is begin return -X; end Neg_F; ----------- -- Neg_G -- ----------- function Neg_G (X : G) return G is begin return -X; end Neg_G; -------- -- pd -- -------- procedure pd (Arg : D) is begin System.IO.Put_Line (D'Image (Arg)); end pd; -------- -- pf -- -------- procedure pf (Arg : F) is begin System.IO.Put_Line (F'Image (Arg)); end pf; -------- -- pg -- -------- procedure pg (Arg : G) is begin System.IO.Put_Line (G'Image (Arg)); end pg; ------------ -- Q_To_F -- ------------ function Q_To_F (X : Q) return F is begin return F (X); end Q_To_F; ------------ -- Q_To_G -- ------------ function Q_To_G (X : Q) return G is begin return G (X); end Q_To_G; ------------ -- S_To_F -- ------------ function S_To_F (X : S) return F is begin return F (X); end S_To_F; -------------- -- Return_D -- -------------- function Return_D (X : D) return D is begin return X; end Return_D; -------------- -- Return_F -- -------------- function Return_F (X : F) return F is begin return X; end Return_F; -------------- -- Return_G -- -------------- function Return_G (X : G) return G is begin return X; end Return_G; ----------- -- Sub_F -- ----------- function Sub_F (X, Y : F) return F is begin return X - Y; end Sub_F; ----------- -- Sub_G -- ----------- function Sub_G (X, Y : G) return G is begin return X - Y; end Sub_G; ------------ -- T_To_D -- ------------ function T_To_D (X : T) return D is begin return G_To_D (T_To_G (X)); end T_To_D; ------------ -- T_To_G -- ------------ function T_To_G (X : T) return G is begin return G (X); end T_To_G; ------------- -- Valid_D -- ------------- -- For now, convert to IEEE and do Valid test on result. This is not quite -- accurate, but is good enough in practice. function Valid_D (Arg : D) return Boolean is Val : constant T := G_To_T (D_To_G (Arg)); begin return Val'Valid; end Valid_D; ------------- -- Valid_F -- ------------- -- For now, convert to IEEE and do Valid test on result. This is not quite -- accurate, but is good enough in practice. function Valid_F (Arg : F) return Boolean is Val : constant S := F_To_S (Arg); begin return Val'Valid; end Valid_F; ------------- -- Valid_G -- ------------- -- For now, convert to IEEE and do Valid test on result. This is not quite -- accurate, but is good enough in practice. function Valid_G (Arg : G) return Boolean is Val : constant T := G_To_T (Arg); begin return Val'Valid; end Valid_G; end System.Vax_Float_Operations;
Go to most recent revision | Compare with Previous | Blame | View Log