URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [sem_ch11.adb] - Rev 724
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- S E M _ C H 1 1 -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2011, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Atree; use Atree; with Checks; use Checks; with Einfo; use Einfo; with Errout; use Errout; with Lib; use Lib; with Lib.Xref; use Lib.Xref; with Namet; use Namet; with Nlists; use Nlists; with Nmake; use Nmake; with Opt; use Opt; with Restrict; use Restrict; with Rident; use Rident; with Rtsfind; use Rtsfind; with Sem; use Sem; with Sem_Ch5; use Sem_Ch5; with Sem_Ch8; use Sem_Ch8; with Sem_Ch13; use Sem_Ch13; with Sem_Res; use Sem_Res; with Sem_Util; use Sem_Util; with Sem_Warn; use Sem_Warn; with Sinfo; use Sinfo; with Stand; use Stand; with Uintp; use Uintp; package body Sem_Ch11 is ----------------------------------- -- Analyze_Exception_Declaration -- ----------------------------------- procedure Analyze_Exception_Declaration (N : Node_Id) is Id : constant Entity_Id := Defining_Identifier (N); PF : constant Boolean := Is_Pure (Current_Scope); begin Generate_Definition (Id); Enter_Name (Id); Set_Ekind (Id, E_Exception); Set_Exception_Code (Id, Uint_0); Set_Etype (Id, Standard_Exception_Type); Set_Is_Statically_Allocated (Id); Set_Is_Pure (Id, PF); if Has_Aspects (N) then Analyze_Aspect_Specifications (N, Id); end if; end Analyze_Exception_Declaration; -------------------------------- -- Analyze_Exception_Handlers -- -------------------------------- procedure Analyze_Exception_Handlers (L : List_Id) is Handler : Node_Id; Choice : Entity_Id; Id : Node_Id; H_Scope : Entity_Id := Empty; procedure Check_Duplication (Id : Node_Id); -- Iterate through the identifiers in each handler to find duplicates function Others_Present return Boolean; -- Returns True if others handler is present ----------------------- -- Check_Duplication -- ----------------------- procedure Check_Duplication (Id : Node_Id) is Handler : Node_Id; Id1 : Node_Id; Id_Entity : Entity_Id := Entity (Id); begin if Present (Renamed_Entity (Id_Entity)) then Id_Entity := Renamed_Entity (Id_Entity); end if; Handler := First_Non_Pragma (L); while Present (Handler) loop Id1 := First (Exception_Choices (Handler)); while Present (Id1) loop -- Only check against the exception choices which precede -- Id in the handler, since the ones that follow Id have not -- been analyzed yet and will be checked in a subsequent call. if Id = Id1 then return; elsif Nkind (Id1) /= N_Others_Choice and then (Id_Entity = Entity (Id1) or else (Id_Entity = Renamed_Entity (Entity (Id1)))) then if Handler /= Parent (Id) then Error_Msg_Sloc := Sloc (Id1); Error_Msg_NE ("exception choice duplicates &#", Id, Id1); else if Ada_Version = Ada_83 and then Comes_From_Source (Id) then Error_Msg_N ("(Ada 83): duplicate exception choice&", Id); end if; end if; end if; Next_Non_Pragma (Id1); end loop; Next (Handler); end loop; end Check_Duplication; -------------------- -- Others_Present -- -------------------- function Others_Present return Boolean is H : Node_Id; begin H := First (L); while Present (H) loop if Nkind (H) /= N_Pragma and then Nkind (First (Exception_Choices (H))) = N_Others_Choice then return True; end if; Next (H); end loop; return False; end Others_Present; -- Start of processing for Analyze_Exception_Handlers begin Handler := First (L); Check_Restriction (No_Exceptions, Handler); Check_Restriction (No_Exception_Handlers, Handler); -- Kill current remembered values, since we don't know where we were -- when the exception was raised. Kill_Current_Values; -- Loop through handlers (which can include pragmas) while Present (Handler) loop -- If pragma just analyze it if Nkind (Handler) = N_Pragma then Analyze (Handler); -- Otherwise we have a real exception handler else -- Deal with choice parameter. The exception handler is a -- declarative part for the choice parameter, so it constitutes a -- scope for visibility purposes. We create an entity to denote -- the whole exception part, and use it as the scope of all the -- choices, which may even have the same name without conflict. -- This scope plays no other role in expansion or code generation. Choice := Choice_Parameter (Handler); if Present (Choice) then Set_Local_Raise_Not_OK (Handler); if Comes_From_Source (Choice) then Check_Restriction (No_Exception_Propagation, Choice); end if; if No (H_Scope) then H_Scope := New_Internal_Entity (E_Block, Current_Scope, Sloc (Choice), 'E'); end if; Push_Scope (H_Scope); Set_Etype (H_Scope, Standard_Void_Type); Enter_Name (Choice); Set_Ekind (Choice, E_Variable); if RTE_Available (RE_Exception_Occurrence) then Set_Etype (Choice, RTE (RE_Exception_Occurrence)); end if; Generate_Definition (Choice); -- Indicate that choice has an initial value, since in effect -- this field is assigned an initial value by the exception. -- We also consider that it is modified in the source. Set_Has_Initial_Value (Choice, True); Set_Never_Set_In_Source (Choice, False); end if; Id := First (Exception_Choices (Handler)); while Present (Id) loop if Nkind (Id) = N_Others_Choice then if Present (Next (Id)) or else Present (Next (Handler)) or else Present (Prev (Id)) then Error_Msg_N ("OTHERS must appear alone and last", Id); end if; else Analyze (Id); -- In most cases the choice has already been analyzed in -- Analyze_Handled_Statement_Sequence, in order to expand -- local handlers. This advance analysis does not take into -- account the case in which a choice has the same name as -- the choice parameter of the handler, which may hide an -- outer exception. This pathological case appears in ACATS -- B80001_3.adb, and requires an explicit check to verify -- that the id is not hidden. if not Is_Entity_Name (Id) or else Ekind (Entity (Id)) /= E_Exception or else (Nkind (Id) = N_Identifier and then Chars (Id) = Chars (Choice)) then Error_Msg_N ("exception name expected", Id); else -- Emit a warning at the declaration level when a local -- exception is never raised explicitly. if Warn_On_Redundant_Constructs and then not Is_Raised (Entity (Id)) and then Scope (Entity (Id)) = Current_Scope then Error_Msg_NE ("?exception & is never raised", Entity (Id), Id); end if; if Present (Renamed_Entity (Entity (Id))) then if Entity (Id) = Standard_Numeric_Error then Check_Restriction (No_Obsolescent_Features, Id); if Warn_On_Obsolescent_Feature then Error_Msg_N ("Numeric_Error is an " & "obsolescent feature (RM J.6(1))?", Id); Error_Msg_N ("\use Constraint_Error instead?", Id); end if; end if; end if; Check_Duplication (Id); -- Check for exception declared within generic formal -- package (which is illegal, see RM 11.2(8)) declare Ent : Entity_Id := Entity (Id); Scop : Entity_Id; begin if Present (Renamed_Entity (Ent)) then Ent := Renamed_Entity (Ent); end if; Scop := Scope (Ent); while Scop /= Standard_Standard and then Ekind (Scop) = E_Package loop if Nkind (Declaration_Node (Scop)) = N_Package_Specification and then Nkind (Original_Node (Parent (Declaration_Node (Scop)))) = N_Formal_Package_Declaration then Error_Msg_NE ("exception& is declared in " & "generic formal package", Id, Ent); Error_Msg_N ("\and therefore cannot appear in " & "handler (RM 11.2(8))", Id); exit; -- If the exception is declared in an inner -- instance, nothing else to check. elsif Is_Generic_Instance (Scop) then exit; end if; Scop := Scope (Scop); end loop; end; end if; end if; Next (Id); end loop; -- Check for redundant handler (has only raise statement) and is -- either an others handler, or is a specific handler when no -- others handler is present. if Warn_On_Redundant_Constructs and then List_Length (Statements (Handler)) = 1 and then Nkind (First (Statements (Handler))) = N_Raise_Statement and then No (Name (First (Statements (Handler)))) and then (not Others_Present or else Nkind (First (Exception_Choices (Handler))) = N_Others_Choice) then Error_Msg_N ("useless handler contains only a reraise statement?", Handler); end if; -- Now analyze the statements of this handler Analyze_Statements (Statements (Handler)); -- If a choice was present, we created a special scope for it, -- so this is where we pop that special scope to get rid of it. if Present (Choice) then End_Scope; end if; end if; Next (Handler); end loop; end Analyze_Exception_Handlers; -------------------------------- -- Analyze_Handled_Statements -- -------------------------------- procedure Analyze_Handled_Statements (N : Node_Id) is Handlers : constant List_Id := Exception_Handlers (N); Handler : Node_Id; Choice : Node_Id; begin if Present (Handlers) then Kill_All_Checks; end if; -- We are now going to analyze the statements and then the exception -- handlers. We certainly need to do things in this order to get the -- proper sequential semantics for various warnings. -- However, there is a glitch. When we process raise statements, an -- optimization is to look for local handlers and specialize the code -- in this case. -- In order to detect if a handler is matching, we must have at least -- analyzed the choices in the proper scope so that proper visibility -- analysis is performed. Hence we analyze just the choices first, -- before we analyze the statement sequence. Handler := First_Non_Pragma (Handlers); while Present (Handler) loop Choice := First_Non_Pragma (Exception_Choices (Handler)); while Present (Choice) loop Analyze (Choice); Next_Non_Pragma (Choice); end loop; Next_Non_Pragma (Handler); end loop; -- Analyze statements in sequence Analyze_Statements (Statements (N)); -- If the current scope is a subprogram, then this is the right place to -- check for hanging useless assignments from the statement sequence of -- the subprogram body. if Is_Subprogram (Current_Scope) then Warn_On_Useless_Assignments (Current_Scope); end if; -- Deal with handlers or AT END proc if Present (Handlers) then Analyze_Exception_Handlers (Handlers); elsif Present (At_End_Proc (N)) then Analyze (At_End_Proc (N)); end if; end Analyze_Handled_Statements; ----------------------------- -- Analyze_Raise_Statement -- ----------------------------- procedure Analyze_Raise_Statement (N : Node_Id) is Exception_Id : constant Node_Id := Name (N); Exception_Name : Entity_Id := Empty; P : Node_Id; Par : Node_Id; begin Check_SPARK_Restriction ("raise statement is not allowed", N); Check_Unreachable_Code (N); -- Check exception restrictions on the original source if Comes_From_Source (N) then Check_Restriction (No_Exceptions, N); end if; -- Check for useless assignment to OUT or IN OUT scalar preceding the -- raise. Right now we only look at assignment statements, we could do -- more. if Is_List_Member (N) then declare P : Node_Id; L : Node_Id; begin P := Prev (N); -- Skip past null statements and pragmas while Present (P) and then Nkind_In (P, N_Null_Statement, N_Pragma) loop P := Prev (P); end loop; -- See if preceding statement is an assignment if Present (P) and then Nkind (P) = N_Assignment_Statement then L := Name (P); -- Give warning for assignment to scalar formal if Is_Scalar_Type (Etype (L)) and then Is_Entity_Name (L) and then Is_Formal (Entity (L)) then -- Don't give warning if we are covered by an exception -- handler, since this may result in false positives, since -- the handler may handle the exception and return normally. -- First find the enclosing handled sequence of statements -- (note, we could also look for a handler in an outer block -- but currently we don't, and in that case we'll emit the -- warning). Par := N; loop Par := Parent (Par); exit when Nkind (Par) = N_Handled_Sequence_Of_Statements; end loop; -- See if there is a handler, give message if not if No (Exception_Handlers (Par)) then Error_Msg_N ("?assignment to pass-by-copy formal " & "may have no effect", P); Error_Msg_N ("\?RAISE statement may result in abnormal return" & " (RM 6.4.1(17))", P); end if; end if; end if; end; end if; -- Reraise statement if No (Exception_Id) then P := Parent (N); while not Nkind_In (P, N_Exception_Handler, N_Subprogram_Body, N_Package_Body, N_Task_Body, N_Entry_Body) loop P := Parent (P); end loop; if Nkind (P) /= N_Exception_Handler then Error_Msg_N ("reraise statement must appear directly in a handler", N); -- If a handler has a reraise, it cannot be the target of a local -- raise (goto optimization is impossible), and if the no exception -- propagation restriction is set, this is a violation. else Set_Local_Raise_Not_OK (P); -- Do not check the restriction if the reraise statement is part -- of the code generated for an AT-END handler. That's because -- if the restriction is actually active, we never generate this -- raise anyway, so the apparent violation is bogus. if not From_At_End (N) then Check_Restriction (No_Exception_Propagation, N); end if; end if; -- Normal case with exception id present else Analyze (Exception_Id); if Is_Entity_Name (Exception_Id) then Exception_Name := Entity (Exception_Id); end if; if No (Exception_Name) or else Ekind (Exception_Name) /= E_Exception then Error_Msg_N ("exception name expected in raise statement", Exception_Id); else Set_Is_Raised (Exception_Name); end if; -- Deal with RAISE WITH case if Present (Expression (N)) then Check_Compiler_Unit (Expression (N)); Analyze_And_Resolve (Expression (N), Standard_String); end if; end if; -- Check obsolescent use of Numeric_Error if Exception_Name = Standard_Numeric_Error then Check_Restriction (No_Obsolescent_Features, Exception_Id); end if; -- Kill last assignment indication Kill_Current_Values (Last_Assignment_Only => True); end Analyze_Raise_Statement; ----------------------------- -- Analyze_Raise_xxx_Error -- ----------------------------- -- Normally, the Etype is already set (when this node is used within -- an expression, since it is copied from the node which it rewrites). -- If this node is used in a statement context, then we set the type -- Standard_Void_Type. This is used both by Gigi and by the front end -- to distinguish the statement use and the subexpression use. -- The only other required processing is to take care of the Condition -- field if one is present. procedure Analyze_Raise_xxx_Error (N : Node_Id) is function Same_Expression (C1, C2 : Node_Id) return Boolean; -- It often occurs that two identical raise statements are generated in -- succession (for example when dynamic elaboration checks take place on -- separate expressions in a call). If the two statements are identical -- according to the simple criterion that follows, the raise is -- converted into a null statement. --------------------- -- Same_Expression -- --------------------- function Same_Expression (C1, C2 : Node_Id) return Boolean is begin if No (C1) and then No (C2) then return True; elsif Is_Entity_Name (C1) and then Is_Entity_Name (C2) then return Entity (C1) = Entity (C2); elsif Nkind (C1) /= Nkind (C2) then return False; elsif Nkind (C1) in N_Unary_Op then return Same_Expression (Right_Opnd (C1), Right_Opnd (C2)); elsif Nkind (C1) in N_Binary_Op then return Same_Expression (Left_Opnd (C1), Left_Opnd (C2)) and then Same_Expression (Right_Opnd (C1), Right_Opnd (C2)); elsif Nkind (C1) = N_Null then return True; else return False; end if; end Same_Expression; -- Start of processing for Analyze_Raise_xxx_Error begin Check_SPARK_Restriction ("raise statement is not allowed", N); if No (Etype (N)) then Set_Etype (N, Standard_Void_Type); end if; if Present (Condition (N)) then Analyze_And_Resolve (Condition (N), Standard_Boolean); end if; -- Deal with static cases in obvious manner if Nkind (Condition (N)) = N_Identifier then if Entity (Condition (N)) = Standard_True then Set_Condition (N, Empty); elsif Entity (Condition (N)) = Standard_False then Rewrite (N, Make_Null_Statement (Sloc (N))); end if; end if; -- Remove duplicate raise statements. Note that the previous one may -- already have been removed as well. if not Comes_From_Source (N) and then Nkind (N) /= N_Null_Statement and then Is_List_Member (N) and then Present (Prev (N)) and then Nkind (N) = Nkind (Original_Node (Prev (N))) and then Same_Expression (Condition (N), Condition (Original_Node (Prev (N)))) then Rewrite (N, Make_Null_Statement (Sloc (N))); end if; end Analyze_Raise_xxx_Error; ----------------------------- -- Analyze_Subprogram_Info -- ----------------------------- procedure Analyze_Subprogram_Info (N : Node_Id) is begin Set_Etype (N, RTE (RE_Code_Loc)); end Analyze_Subprogram_Info; end Sem_Ch11;
Go to most recent revision | Compare with Previous | Blame | View Log