OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [sem_ch12.adb] - Rev 750

Go to most recent revision | Compare with Previous | Blame | View Log

------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                             S E M _ C H 1 2                              --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------
 
with Aspects;  use Aspects;
with Atree;    use Atree;
with Einfo;    use Einfo;
with Elists;   use Elists;
with Errout;   use Errout;
with Expander; use Expander;
with Exp_Disp; use Exp_Disp;
with Fname;    use Fname;
with Fname.UF; use Fname.UF;
with Freeze;   use Freeze;
with Hostparm;
with Itypes;   use Itypes;
with Lib;      use Lib;
with Lib.Load; use Lib.Load;
with Lib.Xref; use Lib.Xref;
with Nlists;   use Nlists;
with Namet;    use Namet;
with Nmake;    use Nmake;
with Opt;      use Opt;
with Rident;   use Rident;
with Restrict; use Restrict;
with Rtsfind;  use Rtsfind;
with Sem;      use Sem;
with Sem_Aux;  use Sem_Aux;
with Sem_Cat;  use Sem_Cat;
with Sem_Ch3;  use Sem_Ch3;
with Sem_Ch6;  use Sem_Ch6;
with Sem_Ch7;  use Sem_Ch7;
with Sem_Ch8;  use Sem_Ch8;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch13; use Sem_Ch13;
with Sem_Dim;  use Sem_Dim;
with Sem_Disp; use Sem_Disp;
with Sem_Elab; use Sem_Elab;
with Sem_Elim; use Sem_Elim;
with Sem_Eval; use Sem_Eval;
with Sem_Prag; use Sem_Prag;
with Sem_Res;  use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Stand;    use Stand;
with Sinfo;    use Sinfo;
with Sinfo.CN; use Sinfo.CN;
with Sinput;   use Sinput;
with Sinput.L; use Sinput.L;
with Snames;   use Snames;
with Stringt;  use Stringt;
with Uname;    use Uname;
with Table;
with Tbuild;   use Tbuild;
with Uintp;    use Uintp;
with Urealp;   use Urealp;
 
with GNAT.HTable;
 
package body Sem_Ch12 is
 
   ----------------------------------------------------------
   -- Implementation of Generic Analysis and Instantiation --
   ----------------------------------------------------------
 
   --  GNAT implements generics by macro expansion. No attempt is made to share
   --  generic instantiations (for now). Analysis of a generic definition does
   --  not perform any expansion action, but the expander must be called on the
   --  tree for each instantiation, because the expansion may of course depend
   --  on the generic actuals. All of this is best achieved as follows:
   --
   --  a) Semantic analysis of a generic unit is performed on a copy of the
   --  tree for the generic unit. All tree modifications that follow analysis
   --  do not affect the original tree. Links are kept between the original
   --  tree and the copy, in order to recognize non-local references within
   --  the generic, and propagate them to each instance (recall that name
   --  resolution is done on the generic declaration: generics are not really
   --  macros!). This is summarized in the following diagram:
 
   --              .-----------.               .----------.
   --              |  semantic |<--------------|  generic |
   --              |    copy   |               |    unit  |
   --              |           |==============>|          |
   --              |___________|    global     |__________|
   --                             references     |   |  |
   --                                            |   |  |
   --                                          .-----|--|.
   --                                          |  .-----|---.
   --                                          |  |  .----------.
   --                                          |  |  |  generic |
   --                                          |__|  |          |
   --                                             |__| instance |
   --                                                |__________|
 
   --  b) Each instantiation copies the original tree, and inserts into it a
   --  series of declarations that describe the mapping between generic formals
   --  and actuals. For example, a generic In OUT parameter is an object
   --  renaming of the corresponding actual, etc. Generic IN parameters are
   --  constant declarations.
 
   --  c) In order to give the right visibility for these renamings, we use
   --  a different scheme for package and subprogram instantiations. For
   --  packages, the list of renamings is inserted into the package
   --  specification, before the visible declarations of the package. The
   --  renamings are analyzed before any of the text of the instance, and are
   --  thus visible at the right place. Furthermore, outside of the instance,
   --  the generic parameters are visible and denote their corresponding
   --  actuals.
 
   --  For subprograms, we create a container package to hold the renamings
   --  and the subprogram instance itself. Analysis of the package makes the
   --  renaming declarations visible to the subprogram. After analyzing the
   --  package, the defining entity for the subprogram is touched-up so that
   --  it appears declared in the current scope, and not inside the container
   --  package.
 
   --  If the instantiation is a compilation unit, the container package is
   --  given the same name as the subprogram instance. This ensures that
   --  the elaboration procedure called by the binder, using the compilation
   --  unit name, calls in fact the elaboration procedure for the package.
 
   --  Not surprisingly, private types complicate this approach. By saving in
   --  the original generic object the non-local references, we guarantee that
   --  the proper entities are referenced at the point of instantiation.
   --  However, for private types, this by itself does not insure that the
   --  proper VIEW of the entity is used (the full type may be visible at the
   --  point of generic definition, but not at instantiation, or vice-versa).
   --  In  order to reference the proper view, we special-case any reference
   --  to private types in the generic object, by saving both views, one in
   --  the generic and one in the semantic copy. At time of instantiation, we
   --  check whether the two views are consistent, and exchange declarations if
   --  necessary, in order to restore the correct visibility. Similarly, if
   --  the instance view is private when the generic view was not, we perform
   --  the exchange. After completing the instantiation, we restore the
   --  current visibility. The flag Has_Private_View marks identifiers in the
   --  the generic unit that require checking.
 
   --  Visibility within nested generic units requires special handling.
   --  Consider the following scheme:
 
   --  type Global is ...         --  outside of generic unit.
   --  generic ...
   --  package Outer is
   --     ...
   --     type Semi_Global is ... --  global to inner.
 
   --     generic ...                                         -- 1
   --     procedure inner (X1 : Global;  X2 : Semi_Global);
 
   --     procedure in2 is new inner (...);                   -- 4
   --  end Outer;
 
   --  package New_Outer is new Outer (...);                  -- 2
   --  procedure New_Inner is new New_Outer.Inner (...);      -- 3
 
   --  The semantic analysis of Outer captures all occurrences of Global.
   --  The semantic analysis of Inner (at 1) captures both occurrences of
   --  Global and Semi_Global.
 
   --  At point 2 (instantiation of Outer), we also produce a generic copy
   --  of Inner, even though Inner is, at that point, not being instantiated.
   --  (This is just part of the semantic analysis of New_Outer).
 
   --  Critically, references to Global within Inner must be preserved, while
   --  references to Semi_Global should not preserved, because they must now
   --  resolve to an entity within New_Outer. To distinguish between these, we
   --  use a global variable, Current_Instantiated_Parent, which is set when
   --  performing a generic copy during instantiation (at 2). This variable is
   --  used when performing a generic copy that is not an instantiation, but
   --  that is nested within one, as the occurrence of 1 within 2. The analysis
   --  of a nested generic only preserves references that are global to the
   --  enclosing Current_Instantiated_Parent. We use the Scope_Depth value to
   --  determine whether a reference is external to the given parent.
 
   --  The instantiation at point 3 requires no special treatment. The method
   --  works as well for further nestings of generic units, but of course the
   --  variable Current_Instantiated_Parent must be stacked because nested
   --  instantiations can occur, e.g. the occurrence of 4 within 2.
 
   --  The instantiation of package and subprogram bodies is handled in a
   --  similar manner, except that it is delayed until after semantic
   --  analysis is complete. In this fashion complex cross-dependencies
   --  between several package declarations and bodies containing generics
   --  can be compiled which otherwise would diagnose spurious circularities.
 
   --  For example, it is possible to compile two packages A and B that
   --  have the following structure:
 
   --    package A is                         package B is
   --       generic ...                          generic ...
   --       package G_A is                       package G_B is
 
   --    with B;                              with A;
   --    package body A is                    package body B is
   --       package N_B is new G_B (..)          package N_A is new G_A (..)
 
   --  The table Pending_Instantiations in package Inline is used to keep
   --  track of body instantiations that are delayed in this manner. Inline
   --  handles the actual calls to do the body instantiations. This activity
   --  is part of Inline, since the processing occurs at the same point, and
   --  for essentially the same reason, as the handling of inlined routines.
 
   ----------------------------------------------
   -- Detection of Instantiation Circularities --
   ----------------------------------------------
 
   --  If we have a chain of instantiations that is circular, this is static
   --  error which must be detected at compile time. The detection of these
   --  circularities is carried out at the point that we insert a generic
   --  instance spec or body. If there is a circularity, then the analysis of
   --  the offending spec or body will eventually result in trying to load the
   --  same unit again, and we detect this problem as we analyze the package
   --  instantiation for the second time.
 
   --  At least in some cases after we have detected the circularity, we get
   --  into trouble if we try to keep going. The following flag is set if a
   --  circularity is detected, and used to abandon compilation after the
   --  messages have been posted.
 
   Circularity_Detected : Boolean := False;
   --  This should really be reset on encountering a new main unit, but in
   --  practice we are not using multiple main units so it is not critical.
 
   -------------------------------------------------
   -- Formal packages and partial parametrization --
   -------------------------------------------------
 
   --  When compiling a generic, a formal package is a local instantiation. If
   --  declared with a box, its generic formals are visible in the enclosing
   --  generic. If declared with a partial list of actuals, those actuals that
   --  are defaulted (covered by an Others clause, or given an explicit box
   --  initialization) are also visible in the enclosing generic, while those
   --  that have a corresponding actual are not.
 
   --  In our source model of instantiation, the same visibility must be
   --  present in the spec and body of an instance: the names of the formals
   --  that are defaulted must be made visible within the instance, and made
   --  invisible (hidden) after the instantiation is complete, so that they
   --  are not accessible outside of the instance.
 
   --  In a generic, a formal package is treated like a special instantiation.
   --  Our Ada 95 compiler handled formals with and without box in different
   --  ways. With partial parametrization, we use a single model for both.
   --  We create a package declaration that consists of the specification of
   --  the generic package, and a set of declarations that map the actuals
   --  into local renamings, just as we do for bona fide instantiations. For
   --  defaulted parameters and formals with a box, we copy directly the
   --  declarations of the formal into this local package. The result is a
   --  a package whose visible declarations may include generic formals. This
   --  package is only used for type checking and visibility analysis, and
   --  never reaches the back-end, so it can freely violate the placement
   --  rules for generic formal declarations.
 
   --  The list of declarations (renamings and copies of formals) is built
   --  by Analyze_Associations, just as for regular instantiations.
 
   --  At the point of instantiation, conformance checking must be applied only
   --  to those parameters that were specified in the formal. We perform this
   --  checking by creating another internal instantiation, this one including
   --  only the renamings and the formals (the rest of the package spec is not
   --  relevant to conformance checking). We can then traverse two lists: the
   --  list of actuals in the instance that corresponds to the formal package,
   --  and the list of actuals produced for this bogus instantiation. We apply
   --  the conformance rules to those actuals that are not defaulted (i.e.
   --  which still appear as generic formals.
 
   --  When we compile an instance body we must make the right parameters
   --  visible again. The predicate Is_Generic_Formal indicates which of the
   --  formals should have its Is_Hidden flag reset.
 
   -----------------------
   -- Local subprograms --
   -----------------------
 
   procedure Abandon_Instantiation (N : Node_Id);
   pragma No_Return (Abandon_Instantiation);
   --  Posts an error message "instantiation abandoned" at the indicated node
   --  and then raises the exception Instantiation_Error to do it.
 
   procedure Analyze_Formal_Array_Type
     (T   : in out Entity_Id;
      Def : Node_Id);
   --  A formal array type is treated like an array type declaration, and
   --  invokes Array_Type_Declaration (sem_ch3) whose first parameter is
   --  in-out, because in the case of an anonymous type the entity is
   --  actually created in the procedure.
 
   --  The following procedures treat other kinds of formal parameters
 
   procedure Analyze_Formal_Derived_Interface_Type
     (N   : Node_Id;
      T   : Entity_Id;
      Def : Node_Id);
 
   procedure Analyze_Formal_Derived_Type
     (N   : Node_Id;
      T   : Entity_Id;
      Def : Node_Id);
 
   procedure Analyze_Formal_Interface_Type
     (N   : Node_Id;
      T   : Entity_Id;
      Def : Node_Id);
 
   --  The following subprograms create abbreviated declarations for formal
   --  scalar types. We introduce an anonymous base of the proper class for
   --  each of them, and define the formals as constrained first subtypes of
   --  their bases. The bounds are expressions that are non-static in the
   --  generic.
 
   procedure Analyze_Formal_Decimal_Fixed_Point_Type
                                                (T : Entity_Id; Def : Node_Id);
   procedure Analyze_Formal_Discrete_Type       (T : Entity_Id; Def : Node_Id);
   procedure Analyze_Formal_Floating_Type       (T : Entity_Id; Def : Node_Id);
   procedure Analyze_Formal_Signed_Integer_Type (T : Entity_Id; Def : Node_Id);
   procedure Analyze_Formal_Modular_Type        (T : Entity_Id; Def : Node_Id);
   procedure Analyze_Formal_Ordinary_Fixed_Point_Type
                                                (T : Entity_Id; Def : Node_Id);
 
   procedure Analyze_Formal_Private_Type
     (N   : Node_Id;
      T   : Entity_Id;
      Def : Node_Id);
   --  Creates a new private type, which does not require completion
 
   procedure Analyze_Formal_Incomplete_Type (T : Entity_Id; Def : Node_Id);
   --  Ada 2012: Creates a new incomplete type whose actual does not freeze
 
   procedure Analyze_Generic_Formal_Part (N : Node_Id);
   --  Analyze generic formal part
 
   procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id);
   --  Create a new access type with the given designated type
 
   function Analyze_Associations
     (I_Node  : Node_Id;
      Formals : List_Id;
      F_Copy  : List_Id) return List_Id;
   --  At instantiation time, build the list of associations between formals
   --  and actuals. Each association becomes a renaming declaration for the
   --  formal entity. F_Copy is the analyzed list of formals in the generic
   --  copy. It is used to apply legality checks to the actuals. I_Node is the
   --  instantiation node itself.
 
   procedure Analyze_Subprogram_Instantiation
     (N : Node_Id;
      K : Entity_Kind);
 
   procedure Build_Instance_Compilation_Unit_Nodes
     (N        : Node_Id;
      Act_Body : Node_Id;
      Act_Decl : Node_Id);
   --  This procedure is used in the case where the generic instance of a
   --  subprogram body or package body is a library unit. In this case, the
   --  original library unit node for the generic instantiation must be
   --  replaced by the resulting generic body, and a link made to a new
   --  compilation unit node for the generic declaration. The argument N is
   --  the original generic instantiation. Act_Body and Act_Decl are the body
   --  and declaration of the instance (either package body and declaration
   --  nodes or subprogram body and declaration nodes depending on the case).
   --  On return, the node N has been rewritten with the actual body.
 
   procedure Check_Access_Definition (N : Node_Id);
   --  Subsidiary routine to null exclusion processing. Perform an assertion
   --  check on Ada version and the presence of an access definition in N.
 
   procedure Check_Formal_Packages (P_Id : Entity_Id);
   --  Apply the following to all formal packages in generic associations
 
   procedure Check_Formal_Package_Instance
     (Formal_Pack : Entity_Id;
      Actual_Pack : Entity_Id);
   --  Verify that the actuals of the actual instance match the actuals of
   --  the template for a formal package that is not declared with a box.
 
   procedure Check_Forward_Instantiation (Decl : Node_Id);
   --  If the generic is a local entity and the corresponding body has not
   --  been seen yet, flag enclosing packages to indicate that it will be
   --  elaborated after the generic body. Subprograms declared in the same
   --  package cannot be inlined by the front-end because front-end inlining
   --  requires a strict linear order of elaboration.
 
   function Check_Hidden_Primitives (Assoc_List : List_Id) return Elist_Id;
   --  Check if some association between formals and actuals requires to make
   --  visible primitives of a tagged type, and make those primitives visible.
   --  Return the list of primitives whose visibility is modified (to restore
   --  their visibility later through Restore_Hidden_Primitives). If no
   --  candidate is found then return No_Elist.
 
   procedure Check_Hidden_Child_Unit
     (N           : Node_Id;
      Gen_Unit    : Entity_Id;
      Act_Decl_Id : Entity_Id);
   --  If the generic unit is an implicit child instance within a parent
   --  instance, we need to make an explicit test that it is not hidden by
   --  a child instance of the same name and parent.
 
   procedure Check_Generic_Actuals
     (Instance      : Entity_Id;
      Is_Formal_Box : Boolean);
   --  Similar to previous one. Check the actuals in the instantiation,
   --  whose views can change between the point of instantiation and the point
   --  of instantiation of the body. In addition, mark the generic renamings
   --  as generic actuals, so that they are not compatible with other actuals.
   --  Recurse on an actual that is a formal package whose declaration has
   --  a box.
 
   function Contains_Instance_Of
     (Inner : Entity_Id;
      Outer : Entity_Id;
      N     : Node_Id) return Boolean;
   --  Inner is instantiated within the generic Outer. Check whether Inner
   --  directly or indirectly contains an instance of Outer or of one of its
   --  parents, in the case of a subunit. Each generic unit holds a list of
   --  the entities instantiated within (at any depth). This procedure
   --  determines whether the set of such lists contains a cycle, i.e. an
   --  illegal circular instantiation.
 
   function Denotes_Formal_Package
     (Pack     : Entity_Id;
      On_Exit  : Boolean := False;
      Instance : Entity_Id := Empty) return Boolean;
   --  Returns True if E is a formal package of an enclosing generic, or
   --  the actual for such a formal in an enclosing instantiation. If such
   --  a package is used as a formal in an nested generic, or as an actual
   --  in a nested instantiation, the visibility of ITS formals should not
   --  be modified. When called from within Restore_Private_Views, the flag
   --  On_Exit is true, to indicate that the search for a possible enclosing
   --  instance should ignore the current one. In that case Instance denotes
   --  the declaration for which this is an actual. This declaration may be
   --  an instantiation in the source, or the internal instantiation that
   --  corresponds to the actual for a formal package.
 
   function Earlier (N1, N2 : Node_Id) return Boolean;
   --  Yields True if N1 and N2 appear in the same compilation unit,
   --  ignoring subunits, and if N1 is to the left of N2 in a left-to-right
   --  traversal of the tree for the unit. Used to determine the placement
   --  of freeze nodes for instance bodies that may depend on other instances.
 
   function Find_Actual_Type
     (Typ       : Entity_Id;
      Gen_Type  : Entity_Id) return Entity_Id;
   --  When validating the actual types of a child instance, check whether
   --  the formal is a formal type of the parent unit, and retrieve the current
   --  actual for it. Typ is the entity in the analyzed formal type declaration
   --  (component or index type of an array type, or designated type of an
   --  access formal) and Gen_Type is the enclosing analyzed formal array
   --  or access type. The desired actual may be a formal of a parent, or may
   --  be declared in a formal package of a parent. In both cases it is a
   --  generic actual type because it appears within a visible instance.
   --  Finally, it may be declared in a parent unit without being a formal
   --  of that unit, in which case it must be retrieved by visibility.
   --  Ambiguities may still arise if two homonyms are declared in two formal
   --  packages, and the prefix of the formal type may be needed to resolve
   --  the ambiguity in the instance ???
 
   function In_Same_Declarative_Part
     (F_Node : Node_Id;
      Inst   : Node_Id) return Boolean;
   --  True if the instantiation Inst and the given freeze_node F_Node appear
   --  within the same declarative part, ignoring subunits, but with no inter-
   --  vening subprograms or concurrent units. Used to find the proper plave
   --  for the freeze node of an instance, when the generic is declared in a
   --  previous instance. If predicate is true, the freeze node of the instance
   --  can be placed after the freeze node of the previous instance, Otherwise
   --  it has to be placed at the end of the current declarative part.
 
   function In_Main_Context (E : Entity_Id) return Boolean;
   --  Check whether an instantiation is in the context of the main unit.
   --  Used to determine whether its body should be elaborated to allow
   --  front-end inlining.
 
   procedure Set_Instance_Env
     (Gen_Unit : Entity_Id;
      Act_Unit : Entity_Id);
   --  Save current instance on saved environment, to be used to determine
   --  the global status of entities in nested instances. Part of Save_Env.
   --  called after verifying that the generic unit is legal for the instance,
   --  The procedure also examines whether the generic unit is a predefined
   --  unit, in order to set configuration switches accordingly. As a result
   --  the procedure must be called after analyzing and freezing the actuals.
 
   procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id);
   --  Associate analyzed generic parameter with corresponding
   --  instance. Used for semantic checks at instantiation time.
 
   function Has_Been_Exchanged (E : Entity_Id) return Boolean;
   --  Traverse the Exchanged_Views list to see if a type was private
   --  and has already been flipped during this phase of instantiation.
 
   procedure Hide_Current_Scope;
   --  When instantiating a generic child unit, the parent context must be
   --  present, but the instance and all entities that may be generated
   --  must be inserted in the current scope. We leave the current scope
   --  on the stack, but make its entities invisible to avoid visibility
   --  problems. This is reversed at the end of the instantiation. This is
   --  not done for the instantiation of the bodies, which only require the
   --  instances of the generic parents to be in scope.
 
   procedure Install_Body
     (Act_Body : Node_Id;
      N        : Node_Id;
      Gen_Body : Node_Id;
      Gen_Decl : Node_Id);
   --  If the instantiation happens textually before the body of the generic,
   --  the instantiation of the body must be analyzed after the generic body,
   --  and not at the point of instantiation. Such early instantiations can
   --  happen if the generic and the instance appear in  a package declaration
   --  because the generic body can only appear in the corresponding package
   --  body. Early instantiations can also appear if generic, instance and
   --  body are all in the declarative part of a subprogram or entry. Entities
   --  of packages that are early instantiations are delayed, and their freeze
   --  node appears after the generic body.
 
   procedure Insert_Freeze_Node_For_Instance
     (N      : Node_Id;
      F_Node : Node_Id);
   --  N denotes a package or a subprogram instantiation and F_Node is the
   --  associated freeze node. Insert the freeze node before the first source
   --  body which follows immediately after N. If no such body is found, the
   --  freeze node is inserted at the end of the declarative region which
   --  contains N.
 
   procedure Freeze_Subprogram_Body
     (Inst_Node : Node_Id;
      Gen_Body  : Node_Id;
      Pack_Id   : Entity_Id);
   --  The generic body may appear textually after the instance, including
   --  in the proper body of a stub, or within a different package instance.
   --  Given that the instance can only be elaborated after the generic, we
   --  place freeze_nodes for the instance and/or for packages that may enclose
   --  the instance and the generic, so that the back-end can establish the
   --  proper order of elaboration.
 
   procedure Init_Env;
   --  Establish environment for subsequent instantiation. Separated from
   --  Save_Env because data-structures for visibility handling must be
   --  initialized before call to Check_Generic_Child_Unit.
 
   procedure Install_Formal_Packages (Par : Entity_Id);
   --  Install the visible part of any formal of the parent that is a formal
   --  package. Note that for the case of a formal package with a box, this
   --  includes the formal part of the formal package (12.7(10/2)).
 
   procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False);
   --  When compiling an instance of a child unit the parent (which is
   --  itself an instance) is an enclosing scope that must be made
   --  immediately visible. This procedure is also used to install the non-
   --  generic parent of a generic child unit when compiling its body, so
   --  that full views of types in the parent are made visible.
 
   procedure Remove_Parent (In_Body : Boolean := False);
   --  Reverse effect after instantiation of child is complete
 
   procedure Install_Hidden_Primitives
     (Prims_List : in out Elist_Id;
      Gen_T      : Entity_Id;
      Act_T      : Entity_Id);
   --  Remove suffix 'P' from hidden primitives of Act_T to match the
   --  visibility of primitives of Gen_T. The list of primitives to which
   --  the suffix is removed is added to Prims_List to restore them later.
 
   procedure Restore_Hidden_Primitives (Prims_List : in out Elist_Id);
   --  Restore suffix 'P' to primitives of Prims_List and leave Prims_List
   --  set to No_Elist.
 
   procedure Inline_Instance_Body
     (N        : Node_Id;
      Gen_Unit : Entity_Id;
      Act_Decl : Node_Id);
   --  If front-end inlining is requested, instantiate the package body,
   --  and preserve the visibility of its compilation unit, to insure
   --  that successive instantiations succeed.
 
   --  The functions Instantiate_XXX perform various legality checks and build
   --  the declarations for instantiated generic parameters. In all of these
   --  Formal is the entity in the generic unit, Actual is the entity of
   --  expression in the generic associations, and Analyzed_Formal is the
   --  formal in the generic copy, which contains the semantic information to
   --  be used to validate the actual.
 
   function Instantiate_Object
     (Formal          : Node_Id;
      Actual          : Node_Id;
      Analyzed_Formal : Node_Id) return List_Id;
 
   function Instantiate_Type
     (Formal          : Node_Id;
      Actual          : Node_Id;
      Analyzed_Formal : Node_Id;
      Actual_Decls    : List_Id) return List_Id;
 
   function Instantiate_Formal_Subprogram
     (Formal          : Node_Id;
      Actual          : Node_Id;
      Analyzed_Formal : Node_Id) return Node_Id;
 
   function Instantiate_Formal_Package
     (Formal          : Node_Id;
      Actual          : Node_Id;
      Analyzed_Formal : Node_Id) return List_Id;
   --  If the formal package is declared with a box, special visibility rules
   --  apply to its formals: they are in the visible part of the package. This
   --  is true in the declarative region of the formal package, that is to say
   --  in the enclosing generic or instantiation. For an instantiation, the
   --  parameters of the formal package are made visible in an explicit step.
   --  Furthermore, if the actual has a visible USE clause, these formals must
   --  be made potentially use-visible as well. On exit from the enclosing
   --  instantiation, the reverse must be done.
 
   --  For a formal package declared without a box, there are conformance rules
   --  that apply to the actuals in the generic declaration and the actuals of
   --  the actual package in the enclosing instantiation. The simplest way to
   --  apply these rules is to repeat the instantiation of the formal package
   --  in the context of the enclosing instance, and compare the generic
   --  associations of this instantiation with those of the actual package.
   --  This internal instantiation only needs to contain the renamings of the
   --  formals: the visible and private declarations themselves need not be
   --  created.
 
   --  In Ada 2005, the formal package may be only partially parameterized.
   --  In that case the visibility step must make visible those actuals whose
   --  corresponding formals were given with a box. A final complication
   --  involves inherited operations from formal derived types, which must
   --  be visible if the type is.
 
   function Is_In_Main_Unit (N : Node_Id) return Boolean;
   --  Test if given node is in the main unit
 
   procedure Load_Parent_Of_Generic
     (N             : Node_Id;
      Spec          : Node_Id;
      Body_Optional : Boolean := False);
   --  If the generic appears in a separate non-generic library unit, load the
   --  corresponding body to retrieve the body of the generic. N is the node
   --  for the generic instantiation, Spec is the generic package declaration.
   --
   --  Body_Optional is a flag that indicates that the body is being loaded to
   --  ensure that temporaries are generated consistently when there are other
   --  instances in the current declarative part that precede the one being
   --  loaded. In that case a missing body is acceptable.
 
   procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id);
   --  Add the context clause of the unit containing a generic unit to a
   --  compilation unit that is, or contains, an instantiation.
 
   function Get_Associated_Node (N : Node_Id) return Node_Id;
   --  In order to propagate semantic information back from the analyzed copy
   --  to the original generic, we maintain links between selected nodes in the
   --  generic and their corresponding copies. At the end of generic analysis,
   --  the routine Save_Global_References traverses the generic tree, examines
   --  the semantic information, and preserves the links to those nodes that
   --  contain global information. At instantiation, the information from the
   --  associated node is placed on the new copy, so that name resolution is
   --  not repeated.
   --
   --  Three kinds of source nodes have associated nodes:
   --
   --    a) those that can reference (denote) entities, that is identifiers,
   --       character literals, expanded_names, operator symbols, operators,
   --       and attribute reference nodes. These nodes have an Entity field
   --       and are the set of nodes that are in N_Has_Entity.
   --
   --    b) aggregates (N_Aggregate and N_Extension_Aggregate)
   --
   --    c) selected components (N_Selected_Component)
   --
   --  For the first class, the associated node preserves the entity if it is
   --  global. If the generic contains nested instantiations, the associated
   --  node itself has been recopied, and a chain of them must be followed.
   --
   --  For aggregates, the associated node allows retrieval of the type, which
   --  may otherwise not appear in the generic. The view of this type may be
   --  different between generic and instantiation, and the full view can be
   --  installed before the instantiation is analyzed. For aggregates of type
   --  extensions, the same view exchange may have to be performed for some of
   --  the ancestor types, if their view is private at the point of
   --  instantiation.
   --
   --  Nodes that are selected components in the parse tree may be rewritten
   --  as expanded names after resolution, and must be treated as potential
   --  entity holders, which is why they also have an Associated_Node.
   --
   --  Nodes that do not come from source, such as freeze nodes, do not appear
   --  in the generic tree, and need not have an associated node.
   --
   --  The associated node is stored in the Associated_Node field. Note that
   --  this field overlaps Entity, which is fine, because the whole point is
   --  that we don't need or want the normal Entity field in this situation.
 
   procedure Map_Formal_Package_Entities (Form : Entity_Id; Act : Entity_Id);
   --  Within the generic part, entities in the formal package are
   --  visible. To validate subsequent type declarations, indicate
   --  the correspondence between the entities in the analyzed formal,
   --  and the entities in  the actual package. There are three packages
   --  involved in the instantiation of a formal package: the parent
   --  generic P1 which appears in the generic declaration, the fake
   --  instantiation P2 which appears in the analyzed generic, and whose
   --  visible entities may be used in subsequent formals, and the actual
   --  P3 in the instance. To validate subsequent formals, me indicate
   --  that the entities in P2 are mapped into those of P3. The mapping of
   --  entities has to be done recursively for nested packages.
 
   procedure Move_Freeze_Nodes
     (Out_Of : Entity_Id;
      After  : Node_Id;
      L      : List_Id);
   --  Freeze nodes can be generated in the analysis of a generic unit, but
   --  will not be seen by the back-end. It is necessary to move those nodes
   --  to the enclosing scope if they freeze an outer entity. We place them
   --  at the end of the enclosing generic package, which is semantically
   --  neutral.
 
   procedure Preanalyze_Actuals (N : Node_Id);
   --  Analyze actuals to perform name resolution. Full resolution is done
   --  later, when the expected types are known, but names have to be captured
   --  before installing parents of generics, that are not visible for the
   --  actuals themselves.
 
   function True_Parent (N : Node_Id) return Node_Id;
   --  For a subunit, return parent of corresponding stub, else return
   --  parent of node.
 
   procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id);
   --  Verify that an attribute that appears as the default for a formal
   --  subprogram is a function or procedure with the correct profile.
 
   -------------------------------------------
   -- Data Structures for Generic Renamings --
   -------------------------------------------
 
   --  The map Generic_Renamings associates generic entities with their
   --  corresponding actuals. Currently used to validate type instances. It
   --  will eventually be used for all generic parameters to eliminate the
   --  need for overload resolution in the instance.
 
   type Assoc_Ptr is new Int;
 
   Assoc_Null : constant Assoc_Ptr := -1;
 
   type Assoc is record
      Gen_Id         : Entity_Id;
      Act_Id         : Entity_Id;
      Next_In_HTable : Assoc_Ptr;
   end record;
 
   package Generic_Renamings is new Table.Table
     (Table_Component_Type => Assoc,
      Table_Index_Type     => Assoc_Ptr,
      Table_Low_Bound      => 0,
      Table_Initial        => 10,
      Table_Increment      => 100,
      Table_Name           => "Generic_Renamings");
 
   --  Variable to hold enclosing instantiation. When the environment is
   --  saved for a subprogram inlining, the corresponding Act_Id is empty.
 
   Current_Instantiated_Parent : Assoc := (Empty, Empty, Assoc_Null);
 
   --  Hash table for associations
 
   HTable_Size : constant := 37;
   type HTable_Range is range 0 .. HTable_Size - 1;
 
   procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr);
   function  Next_Assoc     (E : Assoc_Ptr) return Assoc_Ptr;
   function Get_Gen_Id      (E : Assoc_Ptr) return Entity_Id;
   function Hash            (F : Entity_Id) return HTable_Range;
 
   package Generic_Renamings_HTable is new GNAT.HTable.Static_HTable (
      Header_Num => HTable_Range,
      Element    => Assoc,
      Elmt_Ptr   => Assoc_Ptr,
      Null_Ptr   => Assoc_Null,
      Set_Next   => Set_Next_Assoc,
      Next       => Next_Assoc,
      Key        => Entity_Id,
      Get_Key    => Get_Gen_Id,
      Hash       => Hash,
      Equal      => "=");
 
   Exchanged_Views : Elist_Id;
   --  This list holds the private views that have been exchanged during
   --  instantiation to restore the visibility of the generic declaration.
   --  (see comments above). After instantiation, the current visibility is
   --  reestablished by means of a traversal of this list.
 
   Hidden_Entities : Elist_Id;
   --  This list holds the entities of the current scope that are removed
   --  from immediate visibility when instantiating a child unit. Their
   --  visibility is restored in Remove_Parent.
 
   --  Because instantiations can be recursive, the following must be saved
   --  on entry and restored on exit from an instantiation (spec or body).
   --  This is done by the two procedures Save_Env and Restore_Env. For
   --  package and subprogram instantiations (but not for the body instances)
   --  the action of Save_Env is done in two steps: Init_Env is called before
   --  Check_Generic_Child_Unit, because setting the parent instances requires
   --  that the visibility data structures be properly initialized. Once the
   --  generic is unit is validated, Set_Instance_Env completes Save_Env.
 
   Parent_Unit_Visible : Boolean := False;
   --  Parent_Unit_Visible is used when the generic is a child unit, and
   --  indicates whether the ultimate parent of the generic is visible in the
   --  instantiation environment. It is used to reset the visibility of the
   --  parent at the end of the instantiation (see Remove_Parent).
 
   Instance_Parent_Unit : Entity_Id := Empty;
   --  This records the ultimate parent unit of an instance of a generic
   --  child unit and is used in conjunction with Parent_Unit_Visible to
   --  indicate the unit to which the Parent_Unit_Visible flag corresponds.
 
   type Instance_Env is record
      Instantiated_Parent  : Assoc;
      Exchanged_Views      : Elist_Id;
      Hidden_Entities      : Elist_Id;
      Current_Sem_Unit     : Unit_Number_Type;
      Parent_Unit_Visible  : Boolean   := False;
      Instance_Parent_Unit : Entity_Id := Empty;
      Switches             : Config_Switches_Type;
   end record;
 
   package Instance_Envs is new Table.Table (
     Table_Component_Type => Instance_Env,
     Table_Index_Type     => Int,
     Table_Low_Bound      => 0,
     Table_Initial        => 32,
     Table_Increment      => 100,
     Table_Name           => "Instance_Envs");
 
   procedure Restore_Private_Views
     (Pack_Id    : Entity_Id;
      Is_Package : Boolean := True);
   --  Restore the private views of external types, and unmark the generic
   --  renamings of actuals, so that they become compatible subtypes again.
   --  For subprograms, Pack_Id is the package constructed to hold the
   --  renamings.
 
   procedure Switch_View (T : Entity_Id);
   --  Switch the partial and full views of a type and its private
   --  dependents (i.e. its subtypes and derived types).
 
   ------------------------------------
   -- Structures for Error Reporting --
   ------------------------------------
 
   Instantiation_Node : Node_Id;
   --  Used by subprograms that validate instantiation of formal parameters
   --  where there might be no actual on which to place the error message.
   --  Also used to locate the instantiation node for generic subunits.
 
   Instantiation_Error : exception;
   --  When there is a semantic error in the generic parameter matching,
   --  there is no point in continuing the instantiation, because the
   --  number of cascaded errors is unpredictable. This exception aborts
   --  the instantiation process altogether.
 
   S_Adjustment : Sloc_Adjustment;
   --  Offset created for each node in an instantiation, in order to keep
   --  track of the source position of the instantiation in each of its nodes.
   --  A subsequent semantic error or warning on a construct of the instance
   --  points to both places: the original generic node, and the point of
   --  instantiation. See Sinput and Sinput.L for additional details.
 
   ------------------------------------------------------------
   -- Data structure for keeping track when inside a Generic --
   ------------------------------------------------------------
 
   --  The following table is used to save values of the Inside_A_Generic
   --  flag (see spec of Sem) when they are saved by Start_Generic.
 
   package Generic_Flags is new Table.Table (
     Table_Component_Type => Boolean,
     Table_Index_Type     => Int,
     Table_Low_Bound      => 0,
     Table_Initial        => 32,
     Table_Increment      => 200,
     Table_Name           => "Generic_Flags");
 
   ---------------------------
   -- Abandon_Instantiation --
   ---------------------------
 
   procedure Abandon_Instantiation (N : Node_Id) is
   begin
      Error_Msg_N ("\instantiation abandoned!", N);
      raise Instantiation_Error;
   end Abandon_Instantiation;
 
   --------------------------
   -- Analyze_Associations --
   --------------------------
 
   function Analyze_Associations
     (I_Node  : Node_Id;
      Formals : List_Id;
      F_Copy  : List_Id) return List_Id
   is
      Actuals_To_Freeze : constant Elist_Id  := New_Elmt_List;
      Assoc             : constant List_Id   := New_List;
      Default_Actuals   : constant Elist_Id  := New_Elmt_List;
      Gen_Unit          : constant Entity_Id :=
                            Defining_Entity (Parent (F_Copy));
 
      Actuals         : List_Id;
      Actual          : Node_Id;
      Analyzed_Formal : Node_Id;
      First_Named     : Node_Id := Empty;
      Formal          : Node_Id;
      Match           : Node_Id;
      Named           : Node_Id;
      Saved_Formal    : Node_Id;
 
      Default_Formals : constant List_Id := New_List;
      --  If an Others_Choice is present, some of the formals may be defaulted.
      --  To simplify the treatment of visibility in an instance, we introduce
      --  individual defaults for each such formal. These defaults are
      --  appended to the list of associations and replace the Others_Choice.
 
      Found_Assoc : Node_Id;
      --  Association for the current formal being match. Empty if there are
      --  no remaining actuals, or if there is no named association with the
      --  name of the formal.
 
      Is_Named_Assoc : Boolean;
      Num_Matched    : Int := 0;
      Num_Actuals    : Int := 0;
 
      Others_Present : Boolean := False;
      Others_Choice  : Node_Id := Empty;
      --  In Ada 2005, indicates partial parametrization of a formal
      --  package. As usual an other association must be last in the list.
 
      procedure Check_Overloaded_Formal_Subprogram (Formal : Entity_Id);
      --  Apply RM 12.3 (9): if a formal subprogram is overloaded, the instance
      --  cannot have a named association for it. AI05-0025 extends this rule
      --  to formals of formal packages by AI05-0025, and it also applies to
      --  box-initialized formals.
 
      function Has_Fully_Defined_Profile (Subp : Entity_Id) return Boolean;
      --  Determine whether the parameter types and the return type of Subp
      --  are fully defined at the point of instantiation.
 
      function Matching_Actual
        (F   : Entity_Id;
         A_F : Entity_Id) return Node_Id;
      --  Find actual that corresponds to a given a formal parameter. If the
      --  actuals are positional, return the next one, if any. If the actuals
      --  are named, scan the parameter associations to find the right one.
      --  A_F is the corresponding entity in the analyzed generic,which is
      --  placed on the selector name for ASIS use.
      --
      --  In Ada 2005, a named association may be given with a box, in which
      --  case Matching_Actual sets Found_Assoc to the generic association,
      --  but return Empty for the actual itself. In this case the code below
      --  creates a corresponding declaration for the formal.
 
      function Partial_Parametrization return Boolean;
      --  Ada 2005: if no match is found for a given formal, check if the
      --  association for it includes a box, or whether the associations
      --  include an Others clause.
 
      procedure Process_Default (F : Entity_Id);
      --  Add a copy of the declaration of generic formal  F to the list of
      --  associations, and add an explicit box association for F  if there
      --  is none yet, and the default comes from an Others_Choice.
 
      function Renames_Standard_Subprogram (Subp : Entity_Id) return Boolean;
      --  Determine whether Subp renames one of the subprograms defined in the
      --  generated package Standard.
 
      procedure Set_Analyzed_Formal;
      --  Find the node in the generic copy that corresponds to a given formal.
      --  The semantic information on this node is used to perform legality
      --  checks on the actuals. Because semantic analysis can introduce some
      --  anonymous entities or modify the declaration node itself, the
      --  correspondence between the two lists is not one-one. In addition to
      --  anonymous types, the presence a formal equality will introduce an
      --  implicit declaration for the corresponding inequality.
 
      ----------------------------------------
      -- Check_Overloaded_Formal_Subprogram --
      ----------------------------------------
 
      procedure Check_Overloaded_Formal_Subprogram (Formal : Entity_Id) is
         Temp_Formal : Entity_Id;
 
      begin
         Temp_Formal := First (Formals);
         while Present (Temp_Formal) loop
            if Nkind (Temp_Formal) in N_Formal_Subprogram_Declaration
              and then Temp_Formal /= Formal
              and then
                Chars (Defining_Unit_Name (Specification (Formal))) =
                Chars (Defining_Unit_Name (Specification (Temp_Formal)))
            then
               if Present (Found_Assoc) then
                  Error_Msg_N
                    ("named association not allowed for overloaded formal",
                     Found_Assoc);
 
               else
                  Error_Msg_N
                    ("named association not allowed for overloaded formal",
                     Others_Choice);
               end if;
 
               Abandon_Instantiation (Instantiation_Node);
            end if;
 
            Next (Temp_Formal);
         end loop;
      end Check_Overloaded_Formal_Subprogram;
 
      -------------------------------
      -- Has_Fully_Defined_Profile --
      -------------------------------
 
      function Has_Fully_Defined_Profile (Subp : Entity_Id) return Boolean is
         function Is_Fully_Defined_Type (Typ : Entity_Id) return Boolean;
         --  Determine whethet type Typ is fully defined
 
         ---------------------------
         -- Is_Fully_Defined_Type --
         ---------------------------
 
         function Is_Fully_Defined_Type (Typ : Entity_Id) return Boolean is
         begin
            --  A private type without a full view is not fully defined
 
            if Is_Private_Type (Typ)
              and then No (Full_View (Typ))
            then
               return False;
 
            --  An incomplete type is never fully defined
 
            elsif Is_Incomplete_Type (Typ) then
               return False;
 
            --  All other types are fully defined
 
            else
               return True;
            end if;
         end Is_Fully_Defined_Type;
 
         --  Local declarations
 
         Param : Entity_Id;
 
      --  Start of processing for Has_Fully_Defined_Profile
 
      begin
         --  Check the parameters
 
         Param := First_Formal (Subp);
         while Present (Param) loop
            if not Is_Fully_Defined_Type (Etype (Param)) then
               return False;
            end if;
 
            Next_Formal (Param);
         end loop;
 
         --  Check the return type
 
         return Is_Fully_Defined_Type (Etype (Subp));
      end Has_Fully_Defined_Profile;
 
      ---------------------
      -- Matching_Actual --
      ---------------------
 
      function Matching_Actual
        (F   : Entity_Id;
         A_F : Entity_Id) return Node_Id
      is
         Prev  : Node_Id;
         Act   : Node_Id;
 
      begin
         Is_Named_Assoc := False;
 
         --  End of list of purely positional parameters
 
         if No (Actual) or else Nkind (Actual) = N_Others_Choice then
            Found_Assoc := Empty;
            Act         := Empty;
 
         --  Case of positional parameter corresponding to current formal
 
         elsif No (Selector_Name (Actual)) then
            Found_Assoc := Actual;
            Act :=  Explicit_Generic_Actual_Parameter (Actual);
            Num_Matched := Num_Matched + 1;
            Next (Actual);
 
         --  Otherwise scan list of named actuals to find the one with the
         --  desired name. All remaining actuals have explicit names.
 
         else
            Is_Named_Assoc := True;
            Found_Assoc := Empty;
            Act         := Empty;
            Prev        := Empty;
 
            while Present (Actual) loop
               if Chars (Selector_Name (Actual)) = Chars (F) then
                  Set_Entity (Selector_Name (Actual), A_F);
                  Set_Etype  (Selector_Name (Actual), Etype (A_F));
                  Generate_Reference (A_F, Selector_Name (Actual));
                  Found_Assoc := Actual;
                  Act :=  Explicit_Generic_Actual_Parameter (Actual);
                  Num_Matched := Num_Matched + 1;
                  exit;
               end if;
 
               Prev := Actual;
               Next (Actual);
            end loop;
 
            --  Reset for subsequent searches. In most cases the named
            --  associations are in order. If they are not, we reorder them
            --  to avoid scanning twice the same actual. This is not just a
            --  question of efficiency: there may be multiple defaults with
            --  boxes that have the same name. In a nested instantiation we
            --  insert actuals for those defaults, and cannot rely on their
            --  names to disambiguate them.
 
            if Actual = First_Named  then
               Next (First_Named);
 
            elsif Present (Actual) then
               Insert_Before (First_Named, Remove_Next (Prev));
            end if;
 
            Actual := First_Named;
         end if;
 
         if Is_Entity_Name (Act) and then Present (Entity (Act)) then
            Set_Used_As_Generic_Actual (Entity (Act));
         end if;
 
         return Act;
      end Matching_Actual;
 
      -----------------------------
      -- Partial_Parametrization --
      -----------------------------
 
      function Partial_Parametrization return Boolean is
      begin
         return Others_Present
          or else (Present (Found_Assoc) and then Box_Present (Found_Assoc));
      end Partial_Parametrization;
 
      ---------------------
      -- Process_Default --
      ---------------------
 
      procedure Process_Default (F : Entity_Id)  is
         Loc     : constant Source_Ptr := Sloc (I_Node);
         F_Id    : constant Entity_Id  := Defining_Entity (F);
         Decl    : Node_Id;
         Default : Node_Id;
         Id      : Entity_Id;
 
      begin
         --  Append copy of formal declaration to associations, and create new
         --  defining identifier for it.
 
         Decl := New_Copy_Tree (F);
         Id := Make_Defining_Identifier (Sloc (F_Id), Chars (F_Id));
 
         if Nkind (F) in N_Formal_Subprogram_Declaration then
            Set_Defining_Unit_Name (Specification (Decl), Id);
 
         else
            Set_Defining_Identifier (Decl, Id);
         end if;
 
         Append (Decl, Assoc);
 
         if No (Found_Assoc) then
            Default :=
               Make_Generic_Association (Loc,
                 Selector_Name => New_Occurrence_Of (Id, Loc),
                 Explicit_Generic_Actual_Parameter => Empty);
            Set_Box_Present (Default);
            Append (Default, Default_Formals);
         end if;
      end Process_Default;
 
      ---------------------------------
      -- Renames_Standard_Subprogram --
      ---------------------------------
 
      function Renames_Standard_Subprogram (Subp : Entity_Id) return Boolean is
         Id : Entity_Id;
 
      begin
         Id := Alias (Subp);
         while Present (Id) loop
            if Scope (Id) = Standard_Standard then
               return True;
            end if;
 
            Id := Alias (Id);
         end loop;
 
         return False;
      end Renames_Standard_Subprogram;
 
      -------------------------
      -- Set_Analyzed_Formal --
      -------------------------
 
      procedure Set_Analyzed_Formal is
         Kind : Node_Kind;
 
      begin
         while Present (Analyzed_Formal) loop
            Kind := Nkind (Analyzed_Formal);
 
            case Nkind (Formal) is
 
               when N_Formal_Subprogram_Declaration =>
                  exit when Kind in N_Formal_Subprogram_Declaration
                    and then
                      Chars
                        (Defining_Unit_Name (Specification (Formal))) =
                      Chars
                        (Defining_Unit_Name (Specification (Analyzed_Formal)));
 
               when N_Formal_Package_Declaration =>
                  exit when Nkind_In (Kind, N_Formal_Package_Declaration,
                                            N_Generic_Package_Declaration,
                                            N_Package_Declaration);
 
               when N_Use_Package_Clause | N_Use_Type_Clause => exit;
 
               when others =>
 
                  --  Skip freeze nodes, and nodes inserted to replace
                  --  unrecognized pragmas.
 
                  exit when
                    Kind not in N_Formal_Subprogram_Declaration
                      and then not Nkind_In (Kind, N_Subprogram_Declaration,
                                                   N_Freeze_Entity,
                                                   N_Null_Statement,
                                                   N_Itype_Reference)
                      and then Chars (Defining_Identifier (Formal)) =
                               Chars (Defining_Identifier (Analyzed_Formal));
            end case;
 
            Next (Analyzed_Formal);
         end loop;
      end Set_Analyzed_Formal;
 
   --  Start of processing for Analyze_Associations
 
   begin
      Actuals := Generic_Associations (I_Node);
 
      if Present (Actuals) then
 
         --  Check for an Others choice, indicating a partial parametrization
         --  for a formal package.
 
         Actual := First (Actuals);
         while Present (Actual) loop
            if Nkind (Actual) = N_Others_Choice then
               Others_Present := True;
               Others_Choice  := Actual;
 
               if Present (Next (Actual)) then
                  Error_Msg_N ("others must be last association", Actual);
               end if;
 
               --  This subprogram is used both for formal packages and for
               --  instantiations. For the latter, associations must all be
               --  explicit.
 
               if Nkind (I_Node) /= N_Formal_Package_Declaration
                 and then Comes_From_Source (I_Node)
               then
                  Error_Msg_N
                    ("others association not allowed in an instance",
                      Actual);
               end if;
 
               --  In any case, nothing to do after the others association
 
               exit;
 
            elsif Box_Present (Actual)
              and then Comes_From_Source (I_Node)
              and then Nkind (I_Node) /= N_Formal_Package_Declaration
            then
               Error_Msg_N
                 ("box association not allowed in an instance", Actual);
            end if;
 
            Next (Actual);
         end loop;
 
         --  If named associations are present, save first named association
         --  (it may of course be Empty) to facilitate subsequent name search.
 
         First_Named := First (Actuals);
         while Present (First_Named)
           and then Nkind (First_Named) /= N_Others_Choice
           and then No (Selector_Name (First_Named))
         loop
            Num_Actuals := Num_Actuals + 1;
            Next (First_Named);
         end loop;
      end if;
 
      Named := First_Named;
      while Present (Named) loop
         if Nkind (Named) /= N_Others_Choice
           and then No (Selector_Name (Named))
         then
            Error_Msg_N ("invalid positional actual after named one", Named);
            Abandon_Instantiation (Named);
         end if;
 
         --  A named association may lack an actual parameter, if it was
         --  introduced for a default subprogram that turns out to be local
         --  to the outer instantiation.
 
         if Nkind (Named) /= N_Others_Choice
           and then Present (Explicit_Generic_Actual_Parameter (Named))
         then
            Num_Actuals := Num_Actuals + 1;
         end if;
 
         Next (Named);
      end loop;
 
      if Present (Formals) then
         Formal := First_Non_Pragma (Formals);
         Analyzed_Formal := First_Non_Pragma (F_Copy);
 
         if Present (Actuals) then
            Actual := First (Actuals);
 
         --  All formals should have default values
 
         else
            Actual := Empty;
         end if;
 
         while Present (Formal) loop
            Set_Analyzed_Formal;
            Saved_Formal := Next_Non_Pragma (Formal);
 
            case Nkind (Formal) is
               when N_Formal_Object_Declaration =>
                  Match :=
                    Matching_Actual (
                      Defining_Identifier (Formal),
                      Defining_Identifier (Analyzed_Formal));
 
                  if No (Match) and then Partial_Parametrization then
                     Process_Default (Formal);
                  else
                     Append_List
                       (Instantiate_Object (Formal, Match, Analyzed_Formal),
                        Assoc);
                  end if;
 
               when N_Formal_Type_Declaration =>
                  Match :=
                    Matching_Actual (
                      Defining_Identifier (Formal),
                      Defining_Identifier (Analyzed_Formal));
 
                  if No (Match) then
                     if Partial_Parametrization then
                        Process_Default (Formal);
 
                     else
                        Error_Msg_Sloc := Sloc (Gen_Unit);
                        Error_Msg_NE
                          ("missing actual&",
                            Instantiation_Node,
                              Defining_Identifier (Formal));
                        Error_Msg_NE ("\in instantiation of & declared#",
                            Instantiation_Node, Gen_Unit);
                        Abandon_Instantiation (Instantiation_Node);
                     end if;
 
                  else
                     Analyze (Match);
                     Append_List
                       (Instantiate_Type
                          (Formal, Match, Analyzed_Formal, Assoc),
                        Assoc);
 
                     --  An instantiation is a freeze point for the actuals,
                     --  unless this is a rewritten formal package, or the
                     --  formal is an Ada 2012 formal incomplete type.
 
                     if Nkind (I_Node) = N_Formal_Package_Declaration
                       or else
                         (Ada_Version >= Ada_2012
                           and then
                             Ekind (Defining_Identifier (Analyzed_Formal)) =
                                                            E_Incomplete_Type)
                     then
                        null;
 
                     else
                        Append_Elmt (Entity (Match), Actuals_To_Freeze);
                     end if;
                  end if;
 
                  --  A remote access-to-class-wide type is not a legal actual
                  --  for a generic formal of an access type (E.2.2(17/2)).
                  --  In GNAT an exception to this rule is introduced when
                  --  the formal is marked as remote using implementation
                  --  defined aspect/pragma Remote_Access_Type. In that case
                  --  the actual must be remote as well.
 
                  if Nkind (Analyzed_Formal) = N_Formal_Type_Declaration
                    and then
                      Nkind (Formal_Type_Definition (Analyzed_Formal)) =
                                            N_Access_To_Object_Definition
                  then
                     declare
                        Formal_Ent : constant Entity_Id :=
                                        Defining_Identifier (Analyzed_Formal);
                     begin
                        if Is_Remote_Access_To_Class_Wide_Type (Entity (Match))
                             = Is_Remote_Types (Formal_Ent)
                        then
                           --  Remoteness of formal and actual match
 
                           null;
 
                        elsif Is_Remote_Types (Formal_Ent) then
 
                           --  Remote formal, non-remote actual
 
                           Error_Msg_NE
                             ("actual for& must be remote", Match, Formal_Ent);
 
                        else
                           --  Non-remote formal, remote actual
 
                           Error_Msg_NE
                             ("actual for& may not be remote",
                              Match, Formal_Ent);
                        end if;
                     end;
                  end if;
 
               when N_Formal_Subprogram_Declaration =>
                  Match :=
                    Matching_Actual
                      (Defining_Unit_Name (Specification (Formal)),
                       Defining_Unit_Name (Specification (Analyzed_Formal)));
 
                  --  If the formal subprogram has the same name as another
                  --  formal subprogram of the generic, then a named
                  --  association is illegal (12.3(9)). Exclude named
                  --  associations that are generated for a nested instance.
 
                  if Present (Match)
                    and then Is_Named_Assoc
                    and then Comes_From_Source (Found_Assoc)
                  then
                     Check_Overloaded_Formal_Subprogram (Formal);
                  end if;
 
                  --  If there is no corresponding actual, this may be case of
                  --  partial parametrization, or else the formal has a default
                  --  or a box.
 
                  if No (Match) and then Partial_Parametrization then
                     Process_Default (Formal);
 
                     if Nkind (I_Node) = N_Formal_Package_Declaration then
                        Check_Overloaded_Formal_Subprogram (Formal);
                     end if;
 
                  else
                     Append_To (Assoc,
                       Instantiate_Formal_Subprogram
                         (Formal, Match, Analyzed_Formal));
 
                     --  An instantiation is a freeze point for the actuals,
                     --  unless this is a rewritten formal package.
 
                     if Nkind (I_Node) /= N_Formal_Package_Declaration
                       and then Nkind (Match) = N_Identifier
                       and then Is_Subprogram (Entity (Match))
 
                       --  The actual subprogram may rename a routine defined
                       --  in Standard. Avoid freezing such renamings because
                       --  subprograms coming from Standard cannot be frozen.
 
                       and then
                         not Renames_Standard_Subprogram (Entity (Match))
 
                       --  If the actual subprogram comes from a different
                       --  unit, it is already frozen, either by a body in
                       --  that unit or by the end of the declarative part
                       --  of the unit. This check avoids the freezing of
                       --  subprograms defined in Standard which are used
                       --  as generic actuals.
 
                       and then In_Same_Code_Unit (Entity (Match), I_Node)
                       and then Has_Fully_Defined_Profile (Entity (Match))
                     then
                        --  Mark the subprogram as having a delayed freeze
                        --  since this may be an out-of-order action.
 
                        Set_Has_Delayed_Freeze (Entity (Match));
                        Append_Elmt (Entity (Match), Actuals_To_Freeze);
                     end if;
                  end if;
 
                  --  If this is a nested generic, preserve default for later
                  --  instantiations.
 
                  if No (Match)
                    and then Box_Present (Formal)
                  then
                     Append_Elmt
                       (Defining_Unit_Name (Specification (Last (Assoc))),
                        Default_Actuals);
                  end if;
 
               when N_Formal_Package_Declaration =>
                  Match :=
                    Matching_Actual (
                      Defining_Identifier (Formal),
                      Defining_Identifier (Original_Node (Analyzed_Formal)));
 
                  if No (Match) then
                     if Partial_Parametrization then
                        Process_Default (Formal);
 
                     else
                        Error_Msg_Sloc := Sloc (Gen_Unit);
                        Error_Msg_NE
                          ("missing actual&",
                            Instantiation_Node, Defining_Identifier (Formal));
                        Error_Msg_NE ("\in instantiation of & declared#",
                            Instantiation_Node, Gen_Unit);
 
                        Abandon_Instantiation (Instantiation_Node);
                     end if;
 
                  else
                     Analyze (Match);
                     Append_List
                       (Instantiate_Formal_Package
                         (Formal, Match, Analyzed_Formal),
                        Assoc);
                  end if;
 
               --  For use type and use package appearing in the generic part,
               --  we have already copied them, so we can just move them where
               --  they belong (we mustn't recopy them since this would mess up
               --  the Sloc values).
 
               when N_Use_Package_Clause |
                    N_Use_Type_Clause    =>
                  if Nkind (Original_Node (I_Node)) =
                                     N_Formal_Package_Declaration
                  then
                     Append (New_Copy_Tree (Formal), Assoc);
                  else
                     Remove (Formal);
                     Append (Formal, Assoc);
                  end if;
 
               when others =>
                  raise Program_Error;
 
            end case;
 
            Formal := Saved_Formal;
            Next_Non_Pragma (Analyzed_Formal);
         end loop;
 
         if Num_Actuals > Num_Matched then
            Error_Msg_Sloc := Sloc (Gen_Unit);
 
            if Present (Selector_Name (Actual)) then
               Error_Msg_NE
                 ("unmatched actual&",
                    Actual, Selector_Name (Actual));
               Error_Msg_NE ("\in instantiation of& declared#",
                    Actual, Gen_Unit);
            else
               Error_Msg_NE
                 ("unmatched actual in instantiation of& declared#",
                   Actual, Gen_Unit);
            end if;
         end if;
 
      elsif Present (Actuals) then
         Error_Msg_N
           ("too many actuals in generic instantiation", Instantiation_Node);
      end if;
 
      --  An instantiation freezes all generic actuals. The only exceptions
      --  to this are incomplete types and subprograms which are not fully
      --  defined at the point of instantiation.
 
      declare
         Elmt : Elmt_Id := First_Elmt (Actuals_To_Freeze);
      begin
         while Present (Elmt) loop
            Freeze_Before (I_Node, Node (Elmt));
            Next_Elmt (Elmt);
         end loop;
      end;
 
      --  If there are default subprograms, normalize the tree by adding
      --  explicit associations for them. This is required if the instance
      --  appears within a generic.
 
      declare
         Elmt  : Elmt_Id;
         Subp  : Entity_Id;
         New_D : Node_Id;
 
      begin
         Elmt := First_Elmt (Default_Actuals);
         while Present (Elmt) loop
            if No (Actuals) then
               Actuals := New_List;
               Set_Generic_Associations (I_Node, Actuals);
            end if;
 
            Subp := Node (Elmt);
            New_D :=
              Make_Generic_Association (Sloc (Subp),
                Selector_Name => New_Occurrence_Of (Subp, Sloc (Subp)),
                  Explicit_Generic_Actual_Parameter =>
                    New_Occurrence_Of (Subp, Sloc (Subp)));
            Mark_Rewrite_Insertion (New_D);
            Append_To (Actuals, New_D);
            Next_Elmt (Elmt);
         end loop;
      end;
 
      --  If this is a formal package, normalize the parameter list by adding
      --  explicit box associations for the formals that are covered by an
      --  Others_Choice.
 
      if not Is_Empty_List (Default_Formals) then
         Append_List (Default_Formals, Formals);
      end if;
 
      return Assoc;
   end Analyze_Associations;
 
   -------------------------------
   -- Analyze_Formal_Array_Type --
   -------------------------------
 
   procedure Analyze_Formal_Array_Type
     (T   : in out Entity_Id;
      Def : Node_Id)
   is
      DSS : Node_Id;
 
   begin
      --  Treated like a non-generic array declaration, with additional
      --  semantic checks.
 
      Enter_Name (T);
 
      if Nkind (Def) = N_Constrained_Array_Definition then
         DSS := First (Discrete_Subtype_Definitions (Def));
         while Present (DSS) loop
            if Nkind_In (DSS, N_Subtype_Indication,
                              N_Range,
                              N_Attribute_Reference)
            then
               Error_Msg_N ("only a subtype mark is allowed in a formal", DSS);
            end if;
 
            Next (DSS);
         end loop;
      end if;
 
      Array_Type_Declaration (T, Def);
      Set_Is_Generic_Type (Base_Type (T));
 
      if Ekind (Component_Type (T)) = E_Incomplete_Type
        and then No (Full_View (Component_Type (T)))
      then
         Error_Msg_N ("premature usage of incomplete type", Def);
 
      --  Check that range constraint is not allowed on the component type
      --  of a generic formal array type (AARM 12.5.3(3))
 
      elsif Is_Internal (Component_Type (T))
        and then Present (Subtype_Indication (Component_Definition (Def)))
        and then Nkind (Original_Node
                         (Subtype_Indication (Component_Definition (Def)))) =
                                                         N_Subtype_Indication
      then
         Error_Msg_N
           ("in a formal, a subtype indication can only be "
             & "a subtype mark (RM 12.5.3(3))",
             Subtype_Indication (Component_Definition (Def)));
      end if;
 
   end Analyze_Formal_Array_Type;
 
   ---------------------------------------------
   -- Analyze_Formal_Decimal_Fixed_Point_Type --
   ---------------------------------------------
 
   --  As for other generic types, we create a valid type representation with
   --  legal but arbitrary attributes, whose values are never considered
   --  static. For all scalar types we introduce an anonymous base type, with
   --  the same attributes. We choose the corresponding integer type to be
   --  Standard_Integer.
   --  Here and in other similar routines, the Sloc of the generated internal
   --  type must be the same as the sloc of the defining identifier of the
   --  formal type declaration, to provide proper source navigation.
 
   procedure Analyze_Formal_Decimal_Fixed_Point_Type
     (T   : Entity_Id;
      Def : Node_Id)
   is
      Loc : constant Source_Ptr := Sloc (Def);
 
      Base : constant Entity_Id :=
               New_Internal_Entity
                 (E_Decimal_Fixed_Point_Type,
                  Current_Scope,
                  Sloc (Defining_Identifier (Parent (Def))), 'G');
 
      Int_Base  : constant Entity_Id := Standard_Integer;
      Delta_Val : constant Ureal := Ureal_1;
      Digs_Val  : constant Uint  := Uint_6;
 
   begin
      Enter_Name (T);
 
      Set_Etype          (Base, Base);
      Set_Size_Info      (Base, Int_Base);
      Set_RM_Size        (Base, RM_Size (Int_Base));
      Set_First_Rep_Item (Base, First_Rep_Item (Int_Base));
      Set_Digits_Value   (Base, Digs_Val);
      Set_Delta_Value    (Base, Delta_Val);
      Set_Small_Value    (Base, Delta_Val);
      Set_Scalar_Range   (Base,
        Make_Range (Loc,
          Low_Bound  => Make_Real_Literal (Loc, Ureal_1),
          High_Bound => Make_Real_Literal (Loc, Ureal_1)));
 
      Set_Is_Generic_Type (Base);
      Set_Parent          (Base, Parent (Def));
 
      Set_Ekind          (T, E_Decimal_Fixed_Point_Subtype);
      Set_Etype          (T, Base);
      Set_Size_Info      (T, Int_Base);
      Set_RM_Size        (T, RM_Size (Int_Base));
      Set_First_Rep_Item (T, First_Rep_Item (Int_Base));
      Set_Digits_Value   (T, Digs_Val);
      Set_Delta_Value    (T, Delta_Val);
      Set_Small_Value    (T, Delta_Val);
      Set_Scalar_Range   (T, Scalar_Range (Base));
      Set_Is_Constrained (T);
 
      Check_Restriction (No_Fixed_Point, Def);
   end Analyze_Formal_Decimal_Fixed_Point_Type;
 
   -------------------------------------------
   -- Analyze_Formal_Derived_Interface_Type --
   -------------------------------------------
 
   procedure Analyze_Formal_Derived_Interface_Type
     (N   : Node_Id;
      T   : Entity_Id;
      Def : Node_Id)
   is
      Loc   : constant Source_Ptr := Sloc (Def);
 
   begin
      --  Rewrite as a type declaration of a derived type. This ensures that
      --  the interface list and primitive operations are properly captured.
 
      Rewrite (N,
        Make_Full_Type_Declaration (Loc,
          Defining_Identifier => T,
          Type_Definition     => Def));
      Analyze (N);
      Set_Is_Generic_Type (T);
   end Analyze_Formal_Derived_Interface_Type;
 
   ---------------------------------
   -- Analyze_Formal_Derived_Type --
   ---------------------------------
 
   procedure Analyze_Formal_Derived_Type
     (N   : Node_Id;
      T   : Entity_Id;
      Def : Node_Id)
   is
      Loc      : constant Source_Ptr := Sloc (Def);
      Unk_Disc : constant Boolean    := Unknown_Discriminants_Present (N);
      New_N    : Node_Id;
 
   begin
      Set_Is_Generic_Type (T);
 
      if Private_Present (Def) then
         New_N :=
           Make_Private_Extension_Declaration (Loc,
             Defining_Identifier           => T,
             Discriminant_Specifications   => Discriminant_Specifications (N),
             Unknown_Discriminants_Present => Unk_Disc,
             Subtype_Indication            => Subtype_Mark (Def),
             Interface_List                => Interface_List (Def));
 
         Set_Abstract_Present     (New_N, Abstract_Present     (Def));
         Set_Limited_Present      (New_N, Limited_Present      (Def));
         Set_Synchronized_Present (New_N, Synchronized_Present (Def));
 
      else
         New_N :=
           Make_Full_Type_Declaration (Loc,
             Defining_Identifier => T,
             Discriminant_Specifications =>
               Discriminant_Specifications (Parent (T)),
             Type_Definition =>
               Make_Derived_Type_Definition (Loc,
                 Subtype_Indication => Subtype_Mark (Def)));
 
         Set_Abstract_Present
           (Type_Definition (New_N), Abstract_Present (Def));
         Set_Limited_Present
           (Type_Definition (New_N), Limited_Present  (Def));
      end if;
 
      Rewrite (N, New_N);
      Analyze (N);
 
      if Unk_Disc then
         if not Is_Composite_Type (T) then
            Error_Msg_N
              ("unknown discriminants not allowed for elementary types", N);
         else
            Set_Has_Unknown_Discriminants (T);
            Set_Is_Constrained (T, False);
         end if;
      end if;
 
      --  If the parent type has a known size, so does the formal, which makes
      --  legal representation clauses that involve the formal.
 
      Set_Size_Known_At_Compile_Time
        (T, Size_Known_At_Compile_Time (Entity (Subtype_Mark (Def))));
   end Analyze_Formal_Derived_Type;
 
   ----------------------------------
   -- Analyze_Formal_Discrete_Type --
   ----------------------------------
 
   --  The operations defined for a discrete types are those of an enumeration
   --  type. The size is set to an arbitrary value, for use in analyzing the
   --  generic unit.
 
   procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id) is
      Loc : constant Source_Ptr := Sloc (Def);
      Lo  : Node_Id;
      Hi  : Node_Id;
 
      Base : constant Entity_Id :=
               New_Internal_Entity
                 (E_Floating_Point_Type, Current_Scope,
                  Sloc (Defining_Identifier (Parent (Def))), 'G');
 
   begin
      Enter_Name          (T);
      Set_Ekind           (T, E_Enumeration_Subtype);
      Set_Etype           (T, Base);
      Init_Size           (T, 8);
      Init_Alignment      (T);
      Set_Is_Generic_Type (T);
      Set_Is_Constrained  (T);
 
      --  For semantic analysis, the bounds of the type must be set to some
      --  non-static value. The simplest is to create attribute nodes for those
      --  bounds, that refer to the type itself. These bounds are never
      --  analyzed but serve as place-holders.
 
      Lo :=
        Make_Attribute_Reference (Loc,
          Attribute_Name => Name_First,
          Prefix         => New_Reference_To (T, Loc));
      Set_Etype (Lo, T);
 
      Hi :=
        Make_Attribute_Reference (Loc,
          Attribute_Name => Name_Last,
          Prefix         => New_Reference_To (T, Loc));
      Set_Etype (Hi, T);
 
      Set_Scalar_Range (T,
        Make_Range (Loc,
          Low_Bound  => Lo,
          High_Bound => Hi));
 
      Set_Ekind           (Base, E_Enumeration_Type);
      Set_Etype           (Base, Base);
      Init_Size           (Base, 8);
      Init_Alignment      (Base);
      Set_Is_Generic_Type (Base);
      Set_Scalar_Range    (Base, Scalar_Range (T));
      Set_Parent          (Base, Parent (Def));
   end Analyze_Formal_Discrete_Type;
 
   ----------------------------------
   -- Analyze_Formal_Floating_Type --
   ---------------------------------
 
   procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id) is
      Base : constant Entity_Id :=
               New_Internal_Entity
                 (E_Floating_Point_Type, Current_Scope,
                  Sloc (Defining_Identifier (Parent (Def))), 'G');
 
   begin
      --  The various semantic attributes are taken from the predefined type
      --  Float, just so that all of them are initialized. Their values are
      --  never used because no constant folding or expansion takes place in
      --  the generic itself.
 
      Enter_Name (T);
      Set_Ekind          (T, E_Floating_Point_Subtype);
      Set_Etype          (T, Base);
      Set_Size_Info      (T,              (Standard_Float));
      Set_RM_Size        (T, RM_Size      (Standard_Float));
      Set_Digits_Value   (T, Digits_Value (Standard_Float));
      Set_Scalar_Range   (T, Scalar_Range (Standard_Float));
      Set_Is_Constrained (T);
 
      Set_Is_Generic_Type (Base);
      Set_Etype           (Base, Base);
      Set_Size_Info       (Base,              (Standard_Float));
      Set_RM_Size         (Base, RM_Size      (Standard_Float));
      Set_Digits_Value    (Base, Digits_Value (Standard_Float));
      Set_Scalar_Range    (Base, Scalar_Range (Standard_Float));
      Set_Parent          (Base, Parent (Def));
 
      Check_Restriction (No_Floating_Point, Def);
   end Analyze_Formal_Floating_Type;
 
   -----------------------------------
   -- Analyze_Formal_Interface_Type;--
   -----------------------------------
 
   procedure Analyze_Formal_Interface_Type
      (N   : Node_Id;
       T   : Entity_Id;
       Def : Node_Id)
   is
      Loc   : constant Source_Ptr := Sloc (N);
      New_N : Node_Id;
 
   begin
      New_N :=
        Make_Full_Type_Declaration (Loc,
          Defining_Identifier => T,
          Type_Definition => Def);
 
      Rewrite (N, New_N);
      Analyze (N);
      Set_Is_Generic_Type (T);
   end Analyze_Formal_Interface_Type;
 
   ---------------------------------
   -- Analyze_Formal_Modular_Type --
   ---------------------------------
 
   procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id) is
   begin
      --  Apart from their entity kind, generic modular types are treated like
      --  signed integer types, and have the same attributes.
 
      Analyze_Formal_Signed_Integer_Type (T, Def);
      Set_Ekind (T, E_Modular_Integer_Subtype);
      Set_Ekind (Etype (T), E_Modular_Integer_Type);
 
   end Analyze_Formal_Modular_Type;
 
   ---------------------------------------
   -- Analyze_Formal_Object_Declaration --
   ---------------------------------------
 
   procedure Analyze_Formal_Object_Declaration (N : Node_Id) is
      E  : constant Node_Id := Default_Expression (N);
      Id : constant Node_Id := Defining_Identifier (N);
      K  : Entity_Kind;
      T  : Node_Id;
 
   begin
      Enter_Name (Id);
 
      --  Determine the mode of the formal object
 
      if Out_Present (N) then
         K := E_Generic_In_Out_Parameter;
 
         if not In_Present (N) then
            Error_Msg_N ("formal generic objects cannot have mode OUT", N);
         end if;
 
      else
         K := E_Generic_In_Parameter;
      end if;
 
      if Present (Subtype_Mark (N)) then
         Find_Type (Subtype_Mark (N));
         T := Entity (Subtype_Mark (N));
 
         --  Verify that there is no redundant null exclusion
 
         if Null_Exclusion_Present (N) then
            if not Is_Access_Type (T) then
               Error_Msg_N
                 ("null exclusion can only apply to an access type", N);
 
            elsif Can_Never_Be_Null (T) then
               Error_Msg_NE
                 ("`NOT NULL` not allowed (& already excludes null)",
                    N, T);
            end if;
         end if;
 
      --  Ada 2005 (AI-423): Formal object with an access definition
 
      else
         Check_Access_Definition (N);
         T := Access_Definition
                (Related_Nod => N,
                 N           => Access_Definition (N));
      end if;
 
      if Ekind (T) = E_Incomplete_Type then
         declare
            Error_Node : Node_Id;
 
         begin
            if Present (Subtype_Mark (N)) then
               Error_Node := Subtype_Mark (N);
            else
               Check_Access_Definition (N);
               Error_Node := Access_Definition (N);
            end if;
 
            Error_Msg_N ("premature usage of incomplete type", Error_Node);
         end;
      end if;
 
      if K = E_Generic_In_Parameter then
 
         --  Ada 2005 (AI-287): Limited aggregates allowed in generic formals
 
         if Ada_Version < Ada_2005 and then Is_Limited_Type (T) then
            Error_Msg_N
              ("generic formal of mode IN must not be of limited type", N);
            Explain_Limited_Type (T, N);
         end if;
 
         if Is_Abstract_Type (T) then
            Error_Msg_N
              ("generic formal of mode IN must not be of abstract type", N);
         end if;
 
         if Present (E) then
            Preanalyze_Spec_Expression (E, T);
 
            if Is_Limited_Type (T) and then not OK_For_Limited_Init (T, E) then
               Error_Msg_N
                 ("initialization not allowed for limited types", E);
               Explain_Limited_Type (T, E);
            end if;
         end if;
 
         Set_Ekind (Id, K);
         Set_Etype (Id, T);
 
      --  Case of generic IN OUT parameter
 
      else
         --  If the formal has an unconstrained type, construct its actual
         --  subtype, as is done for subprogram formals. In this fashion, all
         --  its uses can refer to specific bounds.
 
         Set_Ekind (Id, K);
         Set_Etype (Id, T);
 
         if (Is_Array_Type (T)
              and then not Is_Constrained (T))
           or else
            (Ekind (T) = E_Record_Type
              and then Has_Discriminants (T))
         then
            declare
               Non_Freezing_Ref : constant Node_Id :=
                                    New_Reference_To (Id, Sloc (Id));
               Decl : Node_Id;
 
            begin
               --  Make sure the actual subtype doesn't generate bogus freezing
 
               Set_Must_Not_Freeze (Non_Freezing_Ref);
               Decl := Build_Actual_Subtype (T, Non_Freezing_Ref);
               Insert_Before_And_Analyze (N, Decl);
               Set_Actual_Subtype (Id, Defining_Identifier (Decl));
            end;
         else
            Set_Actual_Subtype (Id, T);
         end if;
 
         if Present (E) then
            Error_Msg_N
              ("initialization not allowed for `IN OUT` formals", N);
         end if;
      end if;
 
      if Has_Aspects (N) then
         Analyze_Aspect_Specifications (N, Id);
      end if;
   end Analyze_Formal_Object_Declaration;
 
   ----------------------------------------------
   -- Analyze_Formal_Ordinary_Fixed_Point_Type --
   ----------------------------------------------
 
   procedure Analyze_Formal_Ordinary_Fixed_Point_Type
     (T   : Entity_Id;
      Def : Node_Id)
   is
      Loc  : constant Source_Ptr := Sloc (Def);
      Base : constant Entity_Id :=
               New_Internal_Entity
                 (E_Ordinary_Fixed_Point_Type, Current_Scope,
                  Sloc (Defining_Identifier (Parent (Def))), 'G');
 
   begin
      --  The semantic attributes are set for completeness only, their values
      --  will never be used, since all properties of the type are non-static.
 
      Enter_Name (T);
      Set_Ekind            (T, E_Ordinary_Fixed_Point_Subtype);
      Set_Etype            (T, Base);
      Set_Size_Info        (T, Standard_Integer);
      Set_RM_Size          (T, RM_Size (Standard_Integer));
      Set_Small_Value      (T, Ureal_1);
      Set_Delta_Value      (T, Ureal_1);
      Set_Scalar_Range     (T,
        Make_Range (Loc,
          Low_Bound  => Make_Real_Literal (Loc, Ureal_1),
          High_Bound => Make_Real_Literal (Loc, Ureal_1)));
      Set_Is_Constrained   (T);
 
      Set_Is_Generic_Type (Base);
      Set_Etype           (Base, Base);
      Set_Size_Info       (Base, Standard_Integer);
      Set_RM_Size         (Base, RM_Size (Standard_Integer));
      Set_Small_Value     (Base, Ureal_1);
      Set_Delta_Value     (Base, Ureal_1);
      Set_Scalar_Range    (Base, Scalar_Range (T));
      Set_Parent          (Base, Parent (Def));
 
      Check_Restriction (No_Fixed_Point, Def);
   end Analyze_Formal_Ordinary_Fixed_Point_Type;
 
   ----------------------------------------
   -- Analyze_Formal_Package_Declaration --
   ----------------------------------------
 
   procedure Analyze_Formal_Package_Declaration (N : Node_Id) is
      Loc              : constant Source_Ptr := Sloc (N);
      Pack_Id          : constant Entity_Id  := Defining_Identifier (N);
      Formal           : Entity_Id;
      Gen_Id           : constant Node_Id    := Name (N);
      Gen_Decl         : Node_Id;
      Gen_Unit         : Entity_Id;
      New_N            : Node_Id;
      Parent_Installed : Boolean := False;
      Renaming         : Node_Id;
      Parent_Instance  : Entity_Id;
      Renaming_In_Par  : Entity_Id;
      Associations     : Boolean := True;
 
      Vis_Prims_List : Elist_Id := No_Elist;
      --  List of primitives made temporarily visible in the instantiation
      --  to match the visibility of the formal type
 
      function Build_Local_Package return Node_Id;
      --  The formal package is rewritten so that its parameters are replaced
      --  with corresponding declarations. For parameters with bona fide
      --  associations these declarations are created by Analyze_Associations
      --  as for a regular instantiation. For boxed parameters, we preserve
      --  the formal declarations and analyze them, in order to introduce
      --  entities of the right kind in the environment of the formal.
 
      -------------------------
      -- Build_Local_Package --
      -------------------------
 
      function Build_Local_Package return Node_Id is
         Decls     : List_Id;
         Pack_Decl : Node_Id;
 
      begin
         --  Within the formal, the name of the generic package is a renaming
         --  of the formal (as for a regular instantiation).
 
         Pack_Decl :=
           Make_Package_Declaration (Loc,
             Specification =>
               Copy_Generic_Node
                 (Specification (Original_Node (Gen_Decl)),
                    Empty, Instantiating => True));
 
         Renaming := Make_Package_Renaming_Declaration (Loc,
             Defining_Unit_Name =>
               Make_Defining_Identifier (Loc, Chars (Gen_Unit)),
             Name => New_Occurrence_Of (Formal, Loc));
 
         if Nkind (Gen_Id) = N_Identifier
           and then Chars (Gen_Id) = Chars (Pack_Id)
         then
            Error_Msg_NE
              ("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
         end if;
 
         --  If the formal is declared with a box, or with an others choice,
         --  create corresponding declarations for all entities in the formal
         --  part, so that names with the proper types are available in the
         --  specification of the formal package.
 
         --  On the other hand, if there are no associations, then all the
         --  formals must have defaults, and this will be checked by the
         --  call to Analyze_Associations.
 
         if Box_Present (N)
           or else Nkind (First (Generic_Associations (N))) = N_Others_Choice
         then
            declare
               Formal_Decl : Node_Id;
 
            begin
               --  TBA : for a formal package, need to recurse ???
 
               Decls := New_List;
               Formal_Decl :=
                 First
                   (Generic_Formal_Declarations (Original_Node (Gen_Decl)));
               while Present (Formal_Decl) loop
                  Append_To
                    (Decls, Copy_Generic_Node (Formal_Decl, Empty, True));
                  Next (Formal_Decl);
               end loop;
            end;
 
         --  If generic associations are present, use Analyze_Associations to
         --  create the proper renaming declarations.
 
         else
            declare
               Act_Tree : constant Node_Id :=
                            Copy_Generic_Node
                              (Original_Node (Gen_Decl), Empty,
                               Instantiating => True);
 
            begin
               Generic_Renamings.Set_Last (0);
               Generic_Renamings_HTable.Reset;
               Instantiation_Node := N;
 
               Decls :=
                 Analyze_Associations
                   (I_Node  => Original_Node (N),
                    Formals => Generic_Formal_Declarations (Act_Tree),
                    F_Copy  => Generic_Formal_Declarations (Gen_Decl));
 
               Vis_Prims_List := Check_Hidden_Primitives (Decls);
            end;
         end if;
 
         Append (Renaming, To => Decls);
 
         --  Add generated declarations ahead of local declarations in
         --  the package.
 
         if No (Visible_Declarations (Specification (Pack_Decl))) then
            Set_Visible_Declarations (Specification (Pack_Decl), Decls);
         else
            Insert_List_Before
              (First (Visible_Declarations (Specification (Pack_Decl))),
                 Decls);
         end if;
 
         return Pack_Decl;
      end Build_Local_Package;
 
   --  Start of processing for Analyze_Formal_Package_Declaration
 
   begin
      Text_IO_Kludge (Gen_Id);
 
      Init_Env;
      Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
      Gen_Unit := Entity (Gen_Id);
 
      --  Check for a formal package that is a package renaming
 
      if Present (Renamed_Object (Gen_Unit)) then
 
         --  Indicate that unit is used, before replacing it with renamed
         --  entity for use below.
 
         if In_Extended_Main_Source_Unit (N) then
            Set_Is_Instantiated (Gen_Unit);
            Generate_Reference  (Gen_Unit, N);
         end if;
 
         Gen_Unit := Renamed_Object (Gen_Unit);
      end if;
 
      if Ekind (Gen_Unit) /= E_Generic_Package then
         Error_Msg_N ("expect generic package name", Gen_Id);
         Restore_Env;
         goto Leave;
 
      elsif  Gen_Unit = Current_Scope then
         Error_Msg_N
           ("generic package cannot be used as a formal package of itself",
             Gen_Id);
         Restore_Env;
         goto Leave;
 
      elsif In_Open_Scopes (Gen_Unit) then
         if Is_Compilation_Unit (Gen_Unit)
           and then Is_Child_Unit (Current_Scope)
         then
            --  Special-case the error when the formal is a parent, and
            --  continue analysis to minimize cascaded errors.
 
            Error_Msg_N
              ("generic parent cannot be used as formal package "
                & "of a child unit",
                Gen_Id);
 
         else
            Error_Msg_N
              ("generic package cannot be used as a formal package "
                & "within itself",
                Gen_Id);
            Restore_Env;
            goto Leave;
         end if;
      end if;
 
      --  Check that name of formal package does not hide name of generic,
      --  or its leading prefix. This check must be done separately because
      --  the name of the generic has already been analyzed.
 
      declare
         Gen_Name : Entity_Id;
 
      begin
         Gen_Name := Gen_Id;
         while Nkind (Gen_Name) = N_Expanded_Name loop
            Gen_Name := Prefix (Gen_Name);
         end loop;
 
         if Chars (Gen_Name) = Chars (Pack_Id) then
            Error_Msg_NE
             ("& is hidden within declaration of formal package",
               Gen_Id, Gen_Name);
         end if;
      end;
 
      if Box_Present (N)
        or else No (Generic_Associations (N))
        or else Nkind (First (Generic_Associations (N))) = N_Others_Choice
      then
         Associations := False;
      end if;
 
      --  If there are no generic associations, the generic parameters appear
      --  as local entities and are instantiated like them. We copy the generic
      --  package declaration as if it were an instantiation, and analyze it
      --  like a regular package, except that we treat the formals as
      --  additional visible components.
 
      Gen_Decl := Unit_Declaration_Node (Gen_Unit);
 
      if In_Extended_Main_Source_Unit (N) then
         Set_Is_Instantiated (Gen_Unit);
         Generate_Reference  (Gen_Unit, N);
      end if;
 
      Formal := New_Copy (Pack_Id);
      Create_Instantiation_Source (N, Gen_Unit, False, S_Adjustment);
 
      begin
         --  Make local generic without formals. The formals will be replaced
         --  with internal declarations.
 
         New_N := Build_Local_Package;
 
         --  If there are errors in the parameter list, Analyze_Associations
         --  raises Instantiation_Error. Patch the declaration to prevent
         --  further exception propagation.
 
      exception
         when Instantiation_Error =>
 
            Enter_Name (Formal);
            Set_Ekind  (Formal, E_Variable);
            Set_Etype  (Formal, Any_Type);
            Restore_Hidden_Primitives (Vis_Prims_List);
 
            if Parent_Installed then
               Remove_Parent;
            end if;
 
            goto Leave;
      end;
 
      Rewrite (N, New_N);
      Set_Defining_Unit_Name (Specification (New_N), Formal);
      Set_Generic_Parent (Specification (N), Gen_Unit);
      Set_Instance_Env (Gen_Unit, Formal);
      Set_Is_Generic_Instance (Formal);
 
      Enter_Name (Formal);
      Set_Ekind  (Formal, E_Package);
      Set_Etype  (Formal, Standard_Void_Type);
      Set_Inner_Instances (Formal, New_Elmt_List);
      Push_Scope  (Formal);
 
      if Is_Child_Unit (Gen_Unit)
        and then Parent_Installed
      then
         --  Similarly, we have to make the name of the formal visible in the
         --  parent instance, to resolve properly fully qualified names that
         --  may appear in the generic unit. The parent instance has been
         --  placed on the scope stack ahead of the current scope.
 
         Parent_Instance := Scope_Stack.Table (Scope_Stack.Last - 1).Entity;
 
         Renaming_In_Par :=
           Make_Defining_Identifier (Loc, Chars (Gen_Unit));
         Set_Ekind (Renaming_In_Par, E_Package);
         Set_Etype (Renaming_In_Par, Standard_Void_Type);
         Set_Scope (Renaming_In_Par, Parent_Instance);
         Set_Parent (Renaming_In_Par, Parent (Formal));
         Set_Renamed_Object (Renaming_In_Par, Formal);
         Append_Entity (Renaming_In_Par, Parent_Instance);
      end if;
 
      Analyze (Specification (N));
 
      --  The formals for which associations are provided are not visible
      --  outside of the formal package. The others are still declared by a
      --  formal parameter declaration.
 
      --  If there are no associations, the only local entity to hide is the
      --  generated package renaming itself.
 
      declare
         E : Entity_Id;
 
      begin
         E := First_Entity (Formal);
         while Present (E) loop
            if Associations
              and then not Is_Generic_Formal (E)
            then
               Set_Is_Hidden (E);
            end if;
 
            if Ekind (E) = E_Package
              and then Renamed_Entity (E) = Formal
            then
               Set_Is_Hidden (E);
               exit;
            end if;
 
            Next_Entity (E);
         end loop;
      end;
 
      End_Package_Scope (Formal);
      Restore_Hidden_Primitives (Vis_Prims_List);
 
      if Parent_Installed then
         Remove_Parent;
      end if;
 
      Restore_Env;
 
      --  Inside the generic unit, the formal package is a regular package, but
      --  no body is needed for it. Note that after instantiation, the defining
      --  unit name we need is in the new tree and not in the original (see
      --  Package_Instantiation). A generic formal package is an instance, and
      --  can be used as an actual for an inner instance.
 
      Set_Has_Completion (Formal, True);
 
      --  Add semantic information to the original defining identifier.
      --  for ASIS use.
 
      Set_Ekind (Pack_Id, E_Package);
      Set_Etype (Pack_Id, Standard_Void_Type);
      Set_Scope (Pack_Id, Scope (Formal));
      Set_Has_Completion (Pack_Id, True);
 
   <<Leave>>
      if Has_Aspects (N) then
         Analyze_Aspect_Specifications (N, Pack_Id);
      end if;
   end Analyze_Formal_Package_Declaration;
 
   ---------------------------------
   -- Analyze_Formal_Private_Type --
   ---------------------------------
 
   procedure Analyze_Formal_Private_Type
     (N   : Node_Id;
      T   : Entity_Id;
      Def : Node_Id)
   is
   begin
      New_Private_Type (N, T, Def);
 
      --  Set the size to an arbitrary but legal value
 
      Set_Size_Info (T, Standard_Integer);
      Set_RM_Size   (T, RM_Size (Standard_Integer));
   end Analyze_Formal_Private_Type;
 
   ------------------------------------
   -- Analyze_Formal_Incomplete_Type --
   ------------------------------------
 
   procedure Analyze_Formal_Incomplete_Type
     (T   : Entity_Id;
      Def : Node_Id)
   is
   begin
      Enter_Name (T);
      Set_Ekind (T, E_Incomplete_Type);
      Set_Etype (T, T);
      Set_Private_Dependents (T, New_Elmt_List);
 
      if Tagged_Present (Def) then
         Set_Is_Tagged_Type (T);
         Make_Class_Wide_Type (T);
         Set_Direct_Primitive_Operations (T, New_Elmt_List);
      end if;
   end Analyze_Formal_Incomplete_Type;
 
   ----------------------------------------
   -- Analyze_Formal_Signed_Integer_Type --
   ----------------------------------------
 
   procedure Analyze_Formal_Signed_Integer_Type
     (T   : Entity_Id;
      Def : Node_Id)
   is
      Base : constant Entity_Id :=
               New_Internal_Entity
                 (E_Signed_Integer_Type,
                  Current_Scope,
                  Sloc (Defining_Identifier (Parent (Def))), 'G');
 
   begin
      Enter_Name (T);
 
      Set_Ekind          (T, E_Signed_Integer_Subtype);
      Set_Etype          (T, Base);
      Set_Size_Info      (T, Standard_Integer);
      Set_RM_Size        (T, RM_Size (Standard_Integer));
      Set_Scalar_Range   (T, Scalar_Range (Standard_Integer));
      Set_Is_Constrained (T);
 
      Set_Is_Generic_Type (Base);
      Set_Size_Info       (Base, Standard_Integer);
      Set_RM_Size         (Base, RM_Size (Standard_Integer));
      Set_Etype           (Base, Base);
      Set_Scalar_Range    (Base, Scalar_Range (Standard_Integer));
      Set_Parent          (Base, Parent (Def));
   end Analyze_Formal_Signed_Integer_Type;
 
   -------------------------------------------
   -- Analyze_Formal_Subprogram_Declaration --
   -------------------------------------------
 
   procedure Analyze_Formal_Subprogram_Declaration (N : Node_Id) is
      Spec : constant Node_Id   := Specification (N);
      Def  : constant Node_Id   := Default_Name (N);
      Nam  : constant Entity_Id := Defining_Unit_Name (Spec);
      Subp : Entity_Id;
 
   begin
      if Nam = Error then
         return;
      end if;
 
      if Nkind (Nam) = N_Defining_Program_Unit_Name then
         Error_Msg_N ("name of formal subprogram must be a direct name", Nam);
         goto Leave;
      end if;
 
      Analyze_Subprogram_Declaration (N);
      Set_Is_Formal_Subprogram (Nam);
      Set_Has_Completion (Nam);
 
      if Nkind (N) = N_Formal_Abstract_Subprogram_Declaration then
         Set_Is_Abstract_Subprogram (Nam);
         Set_Is_Dispatching_Operation (Nam);
 
         declare
            Ctrl_Type : constant Entity_Id := Find_Dispatching_Type (Nam);
         begin
            if No (Ctrl_Type) then
               Error_Msg_N
                 ("abstract formal subprogram must have a controlling type",
                  N);
            else
               Check_Controlling_Formals (Ctrl_Type, Nam);
            end if;
         end;
      end if;
 
      --  Default name is resolved at the point of instantiation
 
      if Box_Present (N) then
         null;
 
      --  Else default is bound at the point of generic declaration
 
      elsif Present (Def) then
         if Nkind (Def) = N_Operator_Symbol then
            Find_Direct_Name (Def);
 
         elsif Nkind (Def) /= N_Attribute_Reference then
            Analyze (Def);
 
         else
            --  For an attribute reference, analyze the prefix and verify
            --  that it has the proper profile for the subprogram.
 
            Analyze (Prefix (Def));
            Valid_Default_Attribute (Nam, Def);
            goto Leave;
         end if;
 
         --  Default name may be overloaded, in which case the interpretation
         --  with the correct profile must be  selected, as for a renaming.
         --  If the definition is an indexed component, it must denote a
         --  member of an entry family. If it is a selected component, it
         --  can be a protected operation.
 
         if Etype (Def) = Any_Type then
            goto Leave;
 
         elsif Nkind (Def) = N_Selected_Component then
            if not Is_Overloadable (Entity (Selector_Name (Def))) then
               Error_Msg_N ("expect valid subprogram name as default", Def);
            end if;
 
         elsif Nkind (Def) = N_Indexed_Component then
            if Is_Entity_Name (Prefix (Def)) then
               if Ekind (Entity (Prefix (Def))) /= E_Entry_Family then
                  Error_Msg_N ("expect valid subprogram name as default", Def);
               end if;
 
            elsif Nkind (Prefix (Def)) = N_Selected_Component then
               if Ekind (Entity (Selector_Name (Prefix (Def)))) /=
                                                          E_Entry_Family
               then
                  Error_Msg_N ("expect valid subprogram name as default", Def);
               end if;
 
            else
               Error_Msg_N ("expect valid subprogram name as default", Def);
               goto Leave;
            end if;
 
         elsif Nkind (Def) = N_Character_Literal then
 
            --  Needs some type checks: subprogram should be parameterless???
 
            Resolve (Def, (Etype (Nam)));
 
         elsif not Is_Entity_Name (Def)
           or else not Is_Overloadable (Entity (Def))
         then
            Error_Msg_N ("expect valid subprogram name as default", Def);
            goto Leave;
 
         elsif not Is_Overloaded (Def) then
            Subp := Entity (Def);
 
            if Subp = Nam then
               Error_Msg_N ("premature usage of formal subprogram", Def);
 
            elsif not Entity_Matches_Spec (Subp, Nam) then
               Error_Msg_N ("no visible entity matches specification", Def);
            end if;
 
         --  More than one interpretation, so disambiguate as for a renaming
 
         else
            declare
               I   : Interp_Index;
               I1  : Interp_Index := 0;
               It  : Interp;
               It1 : Interp;
 
            begin
               Subp := Any_Id;
               Get_First_Interp (Def, I, It);
               while Present (It.Nam) loop
                  if Entity_Matches_Spec (It.Nam, Nam) then
                     if Subp /= Any_Id then
                        It1 := Disambiguate (Def, I1, I, Etype (Subp));
 
                        if It1 = No_Interp then
                           Error_Msg_N ("ambiguous default subprogram", Def);
                        else
                           Subp := It1.Nam;
                        end if;
 
                        exit;
 
                     else
                        I1  := I;
                        Subp := It.Nam;
                     end if;
                  end if;
 
                  Get_Next_Interp (I, It);
               end loop;
            end;
 
            if Subp /= Any_Id then
 
               --  Subprogram found, generate reference to it
 
               Set_Entity (Def, Subp);
               Generate_Reference (Subp, Def);
 
               if Subp = Nam then
                  Error_Msg_N ("premature usage of formal subprogram", Def);
 
               elsif Ekind (Subp) /= E_Operator then
                  Check_Mode_Conformant (Subp, Nam);
               end if;
 
            else
               Error_Msg_N ("no visible subprogram matches specification", N);
            end if;
         end if;
      end if;
 
   <<Leave>>
      if Has_Aspects (N) then
         Analyze_Aspect_Specifications (N, Nam);
      end if;
 
   end Analyze_Formal_Subprogram_Declaration;
 
   -------------------------------------
   -- Analyze_Formal_Type_Declaration --
   -------------------------------------
 
   procedure Analyze_Formal_Type_Declaration (N : Node_Id) is
      Def : constant Node_Id := Formal_Type_Definition (N);
      T   : Entity_Id;
 
   begin
      T := Defining_Identifier (N);
 
      if Present (Discriminant_Specifications (N))
        and then Nkind (Def) /= N_Formal_Private_Type_Definition
      then
         Error_Msg_N
           ("discriminants not allowed for this formal type", T);
      end if;
 
      --  Enter the new name, and branch to specific routine
 
      case Nkind (Def) is
         when N_Formal_Private_Type_Definition         =>
            Analyze_Formal_Private_Type (N, T, Def);
 
         when N_Formal_Derived_Type_Definition         =>
            Analyze_Formal_Derived_Type (N, T, Def);
 
         when N_Formal_Incomplete_Type_Definition         =>
            Analyze_Formal_Incomplete_Type (T, Def);
 
         when N_Formal_Discrete_Type_Definition        =>
            Analyze_Formal_Discrete_Type (T, Def);
 
         when N_Formal_Signed_Integer_Type_Definition  =>
            Analyze_Formal_Signed_Integer_Type (T, Def);
 
         when N_Formal_Modular_Type_Definition         =>
            Analyze_Formal_Modular_Type (T, Def);
 
         when N_Formal_Floating_Point_Definition       =>
            Analyze_Formal_Floating_Type (T, Def);
 
         when N_Formal_Ordinary_Fixed_Point_Definition =>
            Analyze_Formal_Ordinary_Fixed_Point_Type (T, Def);
 
         when N_Formal_Decimal_Fixed_Point_Definition  =>
            Analyze_Formal_Decimal_Fixed_Point_Type (T, Def);
 
         when N_Array_Type_Definition =>
            Analyze_Formal_Array_Type (T, Def);
 
         when N_Access_To_Object_Definition            |
              N_Access_Function_Definition             |
              N_Access_Procedure_Definition            =>
            Analyze_Generic_Access_Type (T, Def);
 
         --  Ada 2005: a interface declaration is encoded as an abstract
         --  record declaration or a abstract type derivation.
 
         when N_Record_Definition                      =>
            Analyze_Formal_Interface_Type (N, T, Def);
 
         when N_Derived_Type_Definition                =>
            Analyze_Formal_Derived_Interface_Type (N, T, Def);
 
         when N_Error                                  =>
            null;
 
         when others                                   =>
            raise Program_Error;
 
      end case;
 
      Set_Is_Generic_Type (T);
 
      if Has_Aspects (N) then
         Analyze_Aspect_Specifications (N, T);
      end if;
   end Analyze_Formal_Type_Declaration;
 
   ------------------------------------
   -- Analyze_Function_Instantiation --
   ------------------------------------
 
   procedure Analyze_Function_Instantiation (N : Node_Id) is
   begin
      Analyze_Subprogram_Instantiation (N, E_Function);
   end Analyze_Function_Instantiation;
 
   ---------------------------------
   -- Analyze_Generic_Access_Type --
   ---------------------------------
 
   procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id) is
   begin
      Enter_Name (T);
 
      if Nkind (Def) = N_Access_To_Object_Definition then
         Access_Type_Declaration (T, Def);
 
         if Is_Incomplete_Or_Private_Type (Designated_Type (T))
           and then No (Full_View (Designated_Type (T)))
           and then not Is_Generic_Type (Designated_Type (T))
         then
            Error_Msg_N ("premature usage of incomplete type", Def);
 
         elsif not Is_Entity_Name (Subtype_Indication (Def)) then
            Error_Msg_N
              ("only a subtype mark is allowed in a formal", Def);
         end if;
 
      else
         Access_Subprogram_Declaration (T, Def);
      end if;
   end Analyze_Generic_Access_Type;
 
   ---------------------------------
   -- Analyze_Generic_Formal_Part --
   ---------------------------------
 
   procedure Analyze_Generic_Formal_Part (N : Node_Id) is
      Gen_Parm_Decl : Node_Id;
 
   begin
      --  The generic formals are processed in the scope of the generic unit,
      --  where they are immediately visible. The scope is installed by the
      --  caller.
 
      Gen_Parm_Decl := First (Generic_Formal_Declarations (N));
 
      while Present (Gen_Parm_Decl) loop
         Analyze (Gen_Parm_Decl);
         Next (Gen_Parm_Decl);
      end loop;
 
      Generate_Reference_To_Generic_Formals (Current_Scope);
   end Analyze_Generic_Formal_Part;
 
   ------------------------------------------
   -- Analyze_Generic_Package_Declaration  --
   ------------------------------------------
 
   procedure Analyze_Generic_Package_Declaration (N : Node_Id) is
      Loc         : constant Source_Ptr := Sloc (N);
      Id          : Entity_Id;
      New_N       : Node_Id;
      Save_Parent : Node_Id;
      Renaming    : Node_Id;
      Decls       : constant List_Id :=
                      Visible_Declarations (Specification (N));
      Decl        : Node_Id;
 
   begin
      Check_SPARK_Restriction ("generic is not allowed", N);
 
      --  We introduce a renaming of the enclosing package, to have a usable
      --  entity as the prefix of an expanded name for a local entity of the
      --  form Par.P.Q, where P is the generic package. This is because a local
      --  entity named P may hide it, so that the usual visibility rules in
      --  the instance will not resolve properly.
 
      Renaming :=
        Make_Package_Renaming_Declaration (Loc,
          Defining_Unit_Name =>
            Make_Defining_Identifier (Loc,
             Chars => New_External_Name (Chars (Defining_Entity (N)), "GH")),
          Name => Make_Identifier (Loc, Chars (Defining_Entity (N))));
 
      if Present (Decls) then
         Decl := First (Decls);
         while Present (Decl)
           and then Nkind (Decl) = N_Pragma
         loop
            Next (Decl);
         end loop;
 
         if Present (Decl) then
            Insert_Before (Decl, Renaming);
         else
            Append (Renaming, Visible_Declarations (Specification (N)));
         end if;
 
      else
         Set_Visible_Declarations (Specification (N), New_List (Renaming));
      end if;
 
      --  Create copy of generic unit, and save for instantiation. If the unit
      --  is a child unit, do not copy the specifications for the parent, which
      --  are not part of the generic tree.
 
      Save_Parent := Parent_Spec (N);
      Set_Parent_Spec (N, Empty);
 
      New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
      Set_Parent_Spec (New_N, Save_Parent);
      Rewrite (N, New_N);
      Id := Defining_Entity (N);
      Generate_Definition (Id);
 
      --  Expansion is not applied to generic units
 
      Start_Generic;
 
      Enter_Name (Id);
      Set_Ekind (Id, E_Generic_Package);
      Set_Etype (Id, Standard_Void_Type);
      Push_Scope (Id);
      Enter_Generic_Scope (Id);
      Set_Inner_Instances (Id, New_Elmt_List);
 
      Set_Categorization_From_Pragmas (N);
      Set_Is_Pure (Id, Is_Pure (Current_Scope));
 
      --  Link the declaration of the generic homonym in the generic copy to
      --  the package it renames, so that it is always resolved properly.
 
      Set_Generic_Homonym (Id, Defining_Unit_Name (Renaming));
      Set_Entity (Associated_Node (Name (Renaming)), Id);
 
      --  For a library unit, we have reconstructed the entity for the unit,
      --  and must reset it in the library tables.
 
      if Nkind (Parent (N)) = N_Compilation_Unit then
         Set_Cunit_Entity (Current_Sem_Unit, Id);
      end if;
 
      Analyze_Generic_Formal_Part (N);
 
      --  After processing the generic formals, analysis proceeds as for a
      --  non-generic package.
 
      Analyze (Specification (N));
 
      Validate_Categorization_Dependency (N, Id);
 
      End_Generic;
 
      End_Package_Scope (Id);
      Exit_Generic_Scope (Id);
 
      if Nkind (Parent (N)) /= N_Compilation_Unit then
         Move_Freeze_Nodes (Id, N, Visible_Declarations (Specification (N)));
         Move_Freeze_Nodes (Id, N, Private_Declarations (Specification (N)));
         Move_Freeze_Nodes (Id, N, Generic_Formal_Declarations (N));
 
      else
         Set_Body_Required (Parent (N), Unit_Requires_Body (Id));
         Validate_RT_RAT_Component (N);
 
         --  If this is a spec without a body, check that generic parameters
         --  are referenced.
 
         if not Body_Required (Parent (N)) then
            Check_References (Id);
         end if;
      end if;
 
      if Has_Aspects (N) then
         Analyze_Aspect_Specifications (N, Id);
      end if;
   end Analyze_Generic_Package_Declaration;
 
   --------------------------------------------
   -- Analyze_Generic_Subprogram_Declaration --
   --------------------------------------------
 
   procedure Analyze_Generic_Subprogram_Declaration (N : Node_Id) is
      Spec        : Node_Id;
      Id          : Entity_Id;
      Formals     : List_Id;
      New_N       : Node_Id;
      Result_Type : Entity_Id;
      Save_Parent : Node_Id;
      Typ         : Entity_Id;
 
   begin
      Check_SPARK_Restriction ("generic is not allowed", N);
 
      --  Create copy of generic unit, and save for instantiation. If the unit
      --  is a child unit, do not copy the specifications for the parent, which
      --  are not part of the generic tree.
 
      Save_Parent := Parent_Spec (N);
      Set_Parent_Spec (N, Empty);
 
      New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
      Set_Parent_Spec (New_N, Save_Parent);
      Rewrite (N, New_N);
 
      --  The aspect specifications are not attached to the tree, and must
      --  be copied and attached to the generic copy explicitly.
 
      if Present (Aspect_Specifications (New_N)) then
         declare
            Aspects : constant List_Id := Aspect_Specifications (N);
         begin
            Set_Has_Aspects (N, False);
            Move_Aspects (New_N, N);
            Set_Has_Aspects (Original_Node (N), False);
            Set_Aspect_Specifications (Original_Node (N), Aspects);
         end;
      end if;
 
      Spec := Specification (N);
      Id := Defining_Entity (Spec);
      Generate_Definition (Id);
      Set_Contract (Id, Make_Contract (Sloc (Id)));
 
      if Nkind (Id) = N_Defining_Operator_Symbol then
         Error_Msg_N
           ("operator symbol not allowed for generic subprogram", Id);
      end if;
 
      Start_Generic;
 
      Enter_Name (Id);
 
      Set_Scope_Depth_Value (Id, Scope_Depth (Current_Scope) + 1);
      Push_Scope (Id);
      Enter_Generic_Scope (Id);
      Set_Inner_Instances (Id, New_Elmt_List);
      Set_Is_Pure (Id, Is_Pure (Current_Scope));
 
      Analyze_Generic_Formal_Part (N);
 
      Formals := Parameter_Specifications (Spec);
 
      if Present (Formals) then
         Process_Formals (Formals, Spec);
      end if;
 
      if Nkind (Spec) = N_Function_Specification then
         Set_Ekind (Id, E_Generic_Function);
 
         if Nkind (Result_Definition (Spec)) = N_Access_Definition then
            Result_Type := Access_Definition (Spec, Result_Definition (Spec));
            Set_Etype (Id, Result_Type);
 
            --  Check restriction imposed by AI05-073: a generic function
            --  cannot return an abstract type or an access to such.
 
            --  This is a binding interpretation should it apply to earlier
            --  versions of Ada as well as Ada 2012???
 
            if Is_Abstract_Type (Designated_Type (Result_Type))
              and then Ada_Version >= Ada_2012
            then
               Error_Msg_N ("generic function cannot have an access result"
                 & " that designates an abstract type", Spec);
            end if;
 
         else
            Find_Type (Result_Definition (Spec));
            Typ := Entity (Result_Definition (Spec));
 
            if Is_Abstract_Type (Typ)
              and then Ada_Version >= Ada_2012
            then
               Error_Msg_N
                 ("generic function cannot have abstract result type", Spec);
            end if;
 
            --  If a null exclusion is imposed on the result type, then create
            --  a null-excluding itype (an access subtype) and use it as the
            --  function's Etype.
 
            if Is_Access_Type (Typ)
              and then Null_Exclusion_Present (Spec)
            then
               Set_Etype  (Id,
                 Create_Null_Excluding_Itype
                   (T           => Typ,
                    Related_Nod => Spec,
                    Scope_Id    => Defining_Unit_Name (Spec)));
            else
               Set_Etype (Id, Typ);
            end if;
         end if;
 
      else
         Set_Ekind (Id, E_Generic_Procedure);
         Set_Etype (Id, Standard_Void_Type);
      end if;
 
      --  For a library unit, we have reconstructed the entity for the unit,
      --  and must reset it in the library tables. We also make sure that
      --  Body_Required is set properly in the original compilation unit node.
 
      if Nkind (Parent (N)) = N_Compilation_Unit then
         Set_Cunit_Entity (Current_Sem_Unit, Id);
         Set_Body_Required (Parent (N), Unit_Requires_Body (Id));
      end if;
 
      Set_Categorization_From_Pragmas (N);
      Validate_Categorization_Dependency (N, Id);
 
      Save_Global_References (Original_Node (N));
 
      --  For ASIS purposes, convert any postcondition, precondition pragmas
      --  into aspects, if N is not a compilation unit by itself, in order to
      --  enable the analysis of expressions inside the corresponding PPC
      --  pragmas.
 
      if ASIS_Mode and then Is_List_Member (N) then
         Make_Aspect_For_PPC_In_Gen_Sub_Decl (N);
      end if;
 
      --  To capture global references, analyze the expressions of aspects,
      --  and propagate information to original tree. Note that in this case
      --  analysis of attributes is not delayed until the freeze point.
 
      --  It seems very hard to recreate the proper visibility of the generic
      --  subprogram at a later point because the analysis of an aspect may
      --  create pragmas after the generic copies have been made ???
 
      if Has_Aspects (N) then
         declare
            Aspect : Node_Id;
 
         begin
            Aspect := First (Aspect_Specifications (N));
            while Present (Aspect) loop
               if Get_Aspect_Id (Chars (Identifier (Aspect)))
                  /= Aspect_Warnings
               then
                  Analyze (Expression (Aspect));
               end if;
               Next (Aspect);
            end loop;
 
            Aspect := First (Aspect_Specifications (Original_Node (N)));
            while Present (Aspect) loop
               Save_Global_References (Expression (Aspect));
               Next (Aspect);
            end loop;
         end;
      end if;
 
      End_Generic;
      End_Scope;
      Exit_Generic_Scope (Id);
      Generate_Reference_To_Formals (Id);
 
      List_Inherited_Pre_Post_Aspects (Id);
   end Analyze_Generic_Subprogram_Declaration;
 
   -----------------------------------
   -- Analyze_Package_Instantiation --
   -----------------------------------
 
   procedure Analyze_Package_Instantiation (N : Node_Id) is
      Loc    : constant Source_Ptr := Sloc (N);
      Gen_Id : constant Node_Id    := Name (N);
 
      Act_Decl      : Node_Id;
      Act_Decl_Name : Node_Id;
      Act_Decl_Id   : Entity_Id;
      Act_Spec      : Node_Id;
      Act_Tree      : Node_Id;
 
      Gen_Decl : Node_Id;
      Gen_Unit : Entity_Id;
 
      Is_Actual_Pack : constant Boolean :=
                         Is_Internal (Defining_Entity (N));
 
      Env_Installed    : Boolean := False;
      Parent_Installed : Boolean := False;
      Renaming_List    : List_Id;
      Unit_Renaming    : Node_Id;
      Needs_Body       : Boolean;
      Inline_Now       : Boolean := False;
 
      Save_Style_Check : constant Boolean := Style_Check;
      --  Save style check mode for restore on exit
 
      procedure Delay_Descriptors (E : Entity_Id);
      --  Delay generation of subprogram descriptors for given entity
 
      function Might_Inline_Subp return Boolean;
      --  If inlining is active and the generic contains inlined subprograms,
      --  we instantiate the body. This may cause superfluous instantiations,
      --  but it is simpler than detecting the need for the body at the point
      --  of inlining, when the context of the instance is not available.
 
      -----------------------
      -- Delay_Descriptors --
      -----------------------
 
      procedure Delay_Descriptors (E : Entity_Id) is
      begin
         if not Delay_Subprogram_Descriptors (E) then
            Set_Delay_Subprogram_Descriptors (E);
            Pending_Descriptor.Append (E);
         end if;
      end Delay_Descriptors;
 
      -----------------------
      -- Might_Inline_Subp --
      -----------------------
 
      function Might_Inline_Subp return Boolean is
         E : Entity_Id;
 
      begin
         if not Inline_Processing_Required then
            return False;
 
         else
            E := First_Entity (Gen_Unit);
            while Present (E) loop
               if Is_Subprogram (E)
                 and then Is_Inlined (E)
               then
                  return True;
               end if;
 
               Next_Entity (E);
            end loop;
         end if;
 
         return False;
      end Might_Inline_Subp;
 
      --  Local declarations
 
      Vis_Prims_List : Elist_Id := No_Elist;
      --  List of primitives made temporarily visible in the instantiation
      --  to match the visibility of the formal type
 
   --  Start of processing for Analyze_Package_Instantiation
 
   begin
      Check_SPARK_Restriction ("generic is not allowed", N);
 
      --  Very first thing: apply the special kludge for Text_IO processing
      --  in case we are instantiating one of the children of [Wide_]Text_IO.
 
      Text_IO_Kludge (Name (N));
 
      --  Make node global for error reporting
 
      Instantiation_Node := N;
 
      --  Turn off style checking in instances. If the check is enabled on the
      --  generic unit, a warning in an instance would just be noise. If not
      --  enabled on the generic, then a warning in an instance is just wrong.
 
      Style_Check := False;
 
      --  Case of instantiation of a generic package
 
      if Nkind (N) = N_Package_Instantiation then
         Act_Decl_Id := New_Copy (Defining_Entity (N));
         Set_Comes_From_Source (Act_Decl_Id, True);
 
         if Nkind (Defining_Unit_Name (N)) = N_Defining_Program_Unit_Name then
            Act_Decl_Name :=
              Make_Defining_Program_Unit_Name (Loc,
                Name => New_Copy_Tree (Name (Defining_Unit_Name (N))),
                Defining_Identifier => Act_Decl_Id);
         else
            Act_Decl_Name :=  Act_Decl_Id;
         end if;
 
      --  Case of instantiation of a formal package
 
      else
         Act_Decl_Id   := Defining_Identifier (N);
         Act_Decl_Name := Act_Decl_Id;
      end if;
 
      Generate_Definition (Act_Decl_Id);
      Preanalyze_Actuals (N);
 
      Init_Env;
      Env_Installed := True;
 
      --  Reset renaming map for formal types. The mapping is established
      --  when analyzing the generic associations, but some mappings are
      --  inherited from formal packages of parent units, and these are
      --  constructed when the parents are installed.
 
      Generic_Renamings.Set_Last (0);
      Generic_Renamings_HTable.Reset;
 
      Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
      Gen_Unit := Entity (Gen_Id);
 
      --  Verify that it is the name of a generic package
 
      --  A visibility glitch: if the instance is a child unit and the generic
      --  is the generic unit of a parent instance (i.e. both the parent and
      --  the child units are instances of the same package) the name now
      --  denotes the renaming within the parent, not the intended generic
      --  unit. See if there is a homonym that is the desired generic. The
      --  renaming declaration must be visible inside the instance of the
      --  child, but not when analyzing the name in the instantiation itself.
 
      if Ekind (Gen_Unit) = E_Package
        and then Present (Renamed_Entity (Gen_Unit))
        and then In_Open_Scopes (Renamed_Entity (Gen_Unit))
        and then Is_Generic_Instance (Renamed_Entity (Gen_Unit))
        and then Present (Homonym (Gen_Unit))
      then
         Gen_Unit := Homonym (Gen_Unit);
      end if;
 
      if Etype (Gen_Unit) = Any_Type then
         Restore_Env;
         goto Leave;
 
      elsif Ekind (Gen_Unit) /= E_Generic_Package then
 
         --  Ada 2005 (AI-50217): Cannot use instance in limited with_clause
 
         if From_With_Type (Gen_Unit) then
            Error_Msg_N
              ("cannot instantiate a limited withed package", Gen_Id);
         else
            Error_Msg_N
              ("expect name of generic package in instantiation", Gen_Id);
         end if;
 
         Restore_Env;
         goto Leave;
      end if;
 
      if In_Extended_Main_Source_Unit (N) then
         Set_Is_Instantiated (Gen_Unit);
         Generate_Reference  (Gen_Unit, N);
 
         if Present (Renamed_Object (Gen_Unit)) then
            Set_Is_Instantiated (Renamed_Object (Gen_Unit));
            Generate_Reference  (Renamed_Object (Gen_Unit), N);
         end if;
      end if;
 
      if Nkind (Gen_Id) = N_Identifier
        and then Chars (Gen_Unit) = Chars (Defining_Entity (N))
      then
         Error_Msg_NE
           ("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
 
      elsif Nkind (Gen_Id) = N_Expanded_Name
        and then Is_Child_Unit (Gen_Unit)
        and then Nkind (Prefix (Gen_Id)) = N_Identifier
        and then Chars (Act_Decl_Id) = Chars (Prefix (Gen_Id))
      then
         Error_Msg_N
           ("& is hidden within declaration of instance ", Prefix (Gen_Id));
      end if;
 
      Set_Entity (Gen_Id, Gen_Unit);
 
      --  If generic is a renaming, get original generic unit
 
      if Present (Renamed_Object (Gen_Unit))
        and then Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Package
      then
         Gen_Unit := Renamed_Object (Gen_Unit);
      end if;
 
      --  Verify that there are no circular instantiations
 
      if In_Open_Scopes (Gen_Unit) then
         Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit);
         Restore_Env;
         goto Leave;
 
      elsif Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then
         Error_Msg_Node_2 := Current_Scope;
         Error_Msg_NE
           ("circular Instantiation: & instantiated in &!", N, Gen_Unit);
         Circularity_Detected := True;
         Restore_Env;
         goto Leave;
 
      else
         Gen_Decl := Unit_Declaration_Node (Gen_Unit);
 
         --  Initialize renamings map, for error checking, and the list that
         --  holds private entities whose views have changed between generic
         --  definition and instantiation. If this is the instance created to
         --  validate an actual package, the instantiation environment is that
         --  of the enclosing instance.
 
         Create_Instantiation_Source (N, Gen_Unit, False, S_Adjustment);
 
         --  Copy original generic tree, to produce text for instantiation
 
         Act_Tree :=
           Copy_Generic_Node
             (Original_Node (Gen_Decl), Empty, Instantiating => True);
 
         Act_Spec := Specification (Act_Tree);
 
         --  If this is the instance created to validate an actual package,
         --  only the formals matter, do not examine the package spec itself.
 
         if Is_Actual_Pack then
            Set_Visible_Declarations (Act_Spec, New_List);
            Set_Private_Declarations (Act_Spec, New_List);
         end if;
 
         Renaming_List :=
           Analyze_Associations
             (I_Node  => N,
              Formals => Generic_Formal_Declarations (Act_Tree),
              F_Copy  => Generic_Formal_Declarations (Gen_Decl));
 
         Vis_Prims_List := Check_Hidden_Primitives (Renaming_List);
 
         Set_Instance_Env (Gen_Unit, Act_Decl_Id);
         Set_Defining_Unit_Name (Act_Spec, Act_Decl_Name);
         Set_Is_Generic_Instance (Act_Decl_Id);
 
         Set_Generic_Parent (Act_Spec, Gen_Unit);
 
         --  References to the generic in its own declaration or its body are
         --  references to the instance. Add a renaming declaration for the
         --  generic unit itself. This declaration, as well as the renaming
         --  declarations for the generic formals, must remain private to the
         --  unit: the formals, because this is the language semantics, and
         --  the unit because its use is an artifact of the implementation.
 
         Unit_Renaming :=
           Make_Package_Renaming_Declaration (Loc,
             Defining_Unit_Name =>
               Make_Defining_Identifier (Loc, Chars (Gen_Unit)),
             Name => New_Reference_To (Act_Decl_Id, Loc));
 
         Append (Unit_Renaming, Renaming_List);
 
         --  The renaming declarations are the first local declarations of
         --  the new unit.
 
         if Is_Non_Empty_List (Visible_Declarations (Act_Spec)) then
            Insert_List_Before
              (First (Visible_Declarations (Act_Spec)), Renaming_List);
         else
            Set_Visible_Declarations (Act_Spec, Renaming_List);
         end if;
 
         Act_Decl :=
           Make_Package_Declaration (Loc,
             Specification => Act_Spec);
 
         --  Save the instantiation node, for subsequent instantiation of the
         --  body, if there is one and we are generating code for the current
         --  unit. Mark the unit as having a body, to avoid a premature error
         --  message.
 
         --  We instantiate the body if we are generating code, if we are
         --  generating cross-reference information, or if we are building
         --  trees for ASIS use.
 
         declare
            Enclosing_Body_Present : Boolean := False;
            --  If the generic unit is not a compilation unit, then a body may
            --  be present in its parent even if none is required. We create a
            --  tentative pending instantiation for the body, which will be
            --  discarded if none is actually present.
 
            Scop : Entity_Id;
 
         begin
            if Scope (Gen_Unit) /= Standard_Standard
              and then not Is_Child_Unit (Gen_Unit)
            then
               Scop := Scope (Gen_Unit);
 
               while Present (Scop)
                 and then Scop /= Standard_Standard
               loop
                  if Unit_Requires_Body (Scop) then
                     Enclosing_Body_Present := True;
                     exit;
 
                  elsif In_Open_Scopes (Scop)
                    and then In_Package_Body (Scop)
                  then
                     Enclosing_Body_Present := True;
                     exit;
                  end if;
 
                  exit when Is_Compilation_Unit (Scop);
                  Scop := Scope (Scop);
               end loop;
            end if;
 
            --  If front-end inlining is enabled, and this is a unit for which
            --  code will be generated, we instantiate the body at once.
 
            --  This is done if the instance is not the main unit, and if the
            --  generic is not a child unit of another generic, to avoid scope
            --  problems and the reinstallation of parent instances.
 
            if Expander_Active
              and then (not Is_Child_Unit (Gen_Unit)
                         or else not Is_Generic_Unit (Scope (Gen_Unit)))
              and then Might_Inline_Subp
              and then not Is_Actual_Pack
            then
               if Front_End_Inlining
                 and then (Is_In_Main_Unit (N)
                            or else In_Main_Context (Current_Scope))
                 and then Nkind (Parent (N)) /= N_Compilation_Unit
               then
                  Inline_Now := True;
 
               --  In configurable_run_time mode we force the inlining of
               --  predefined subprograms marked Inline_Always, to minimize
               --  the use of the run-time library.
 
               elsif Is_Predefined_File_Name
                       (Unit_File_Name (Get_Source_Unit (Gen_Decl)))
                 and then Configurable_Run_Time_Mode
                 and then Nkind (Parent (N)) /= N_Compilation_Unit
               then
                  Inline_Now := True;
               end if;
 
               --  If the current scope is itself an instance within a child
               --  unit, there will be duplications in the scope stack, and the
               --  unstacking mechanism in Inline_Instance_Body will fail.
               --  This loses some rare cases of optimization, and might be
               --  improved some day, if we can find a proper abstraction for
               --  "the complete compilation context" that can be saved and
               --  restored. ???
 
               if Is_Generic_Instance (Current_Scope) then
                  declare
                     Curr_Unit : constant Entity_Id :=
                                   Cunit_Entity (Current_Sem_Unit);
                  begin
                     if Curr_Unit /= Current_Scope
                       and then Is_Child_Unit (Curr_Unit)
                     then
                        Inline_Now := False;
                     end if;
                  end;
               end if;
            end if;
 
            Needs_Body :=
              (Unit_Requires_Body (Gen_Unit)
                  or else Enclosing_Body_Present
                  or else Present (Corresponding_Body (Gen_Decl)))
                and then (Is_In_Main_Unit (N)
                           or else Might_Inline_Subp)
                and then not Is_Actual_Pack
                and then not Inline_Now
                and then not Alfa_Mode
                and then (Operating_Mode = Generate_Code
                           or else (Operating_Mode = Check_Semantics
                                     and then ASIS_Mode));
 
            --  If front_end_inlining is enabled, do not instantiate body if
            --  within a generic context.
 
            if (Front_End_Inlining
                 and then not Expander_Active)
              or else Is_Generic_Unit (Cunit_Entity (Main_Unit))
            then
               Needs_Body := False;
            end if;
 
            --  If the current context is generic, and the package being
            --  instantiated is declared within a formal package, there is no
            --  body to instantiate until the enclosing generic is instantiated
            --  and there is an actual for the formal package. If the formal
            --  package has parameters, we build a regular package instance for
            --  it, that precedes the original formal package declaration.
 
            if In_Open_Scopes (Scope (Scope (Gen_Unit))) then
               declare
                  Decl : constant Node_Id :=
                           Original_Node
                             (Unit_Declaration_Node (Scope (Gen_Unit)));
               begin
                  if Nkind (Decl) = N_Formal_Package_Declaration
                    or else (Nkind (Decl) = N_Package_Declaration
                              and then Is_List_Member (Decl)
                              and then Present (Next (Decl))
                              and then
                                Nkind (Next (Decl)) =
                                                N_Formal_Package_Declaration)
                  then
                     Needs_Body := False;
                  end if;
               end;
            end if;
         end;
 
         --  For RCI unit calling stubs, we omit the instance body if the
         --  instance is the RCI library unit itself.
 
         --  However there is a special case for nested instances: in this case
         --  we do generate the instance body, as it might be required, e.g.
         --  because it provides stream attributes for some type used in the
         --  profile of a remote subprogram. This is consistent with 12.3(12),
         --  which indicates that the instance body occurs at the place of the
         --  instantiation, and thus is part of the RCI declaration, which is
         --  present on all client partitions (this is E.2.3(18)).
 
         --  Note that AI12-0002 may make it illegal at some point to have
         --  stream attributes defined in an RCI unit, in which case this
         --  special case will become unnecessary. In the meantime, there
         --  is known application code in production that depends on this
         --  being possible, so we definitely cannot eliminate the body in
         --  the case of nested instances for the time being.
 
         --  When we generate a nested instance body, calling stubs for any
         --  relevant subprogram will be be inserted immediately after the
         --  subprogram declarations, and will take precedence over the
         --  subsequent (original) body. (The stub and original body will be
         --  complete homographs, but this is permitted in an instance).
         --  (Could we do better and remove the original body???)
 
         if Distribution_Stub_Mode = Generate_Caller_Stub_Body
           and then Comes_From_Source (N)
           and then Nkind (Parent (N)) = N_Compilation_Unit
         then
            Needs_Body := False;
         end if;
 
         if Needs_Body then
 
            --  Here is a defence against a ludicrous number of instantiations
            --  caused by a circular set of instantiation attempts.
 
            if Pending_Instantiations.Last > Hostparm.Max_Instantiations then
               Error_Msg_N ("too many instantiations", N);
               raise Unrecoverable_Error;
            end if;
 
            --  Indicate that the enclosing scopes contain an instantiation,
            --  and that cleanup actions should be delayed until after the
            --  instance body is expanded.
 
            Check_Forward_Instantiation (Gen_Decl);
            if Nkind (N) = N_Package_Instantiation then
               declare
                  Enclosing_Master : Entity_Id;
 
               begin
                  --  Loop to search enclosing masters
 
                  Enclosing_Master := Current_Scope;
                  Scope_Loop : while Enclosing_Master /= Standard_Standard loop
                     if Ekind (Enclosing_Master) = E_Package then
                        if Is_Compilation_Unit (Enclosing_Master) then
                           if In_Package_Body (Enclosing_Master) then
                              Delay_Descriptors
                                (Body_Entity (Enclosing_Master));
                           else
                              Delay_Descriptors
                                (Enclosing_Master);
                           end if;
 
                           exit Scope_Loop;
 
                        else
                           Enclosing_Master := Scope (Enclosing_Master);
                        end if;
 
                     elsif Is_Generic_Unit (Enclosing_Master)
                       or else Ekind (Enclosing_Master) = E_Void
                     then
                        --  Cleanup actions will eventually be performed on the
                        --  enclosing subprogram or package instance, if any.
                        --  Enclosing scope is void in the formal part of a
                        --  generic subprogram.
 
                        exit Scope_Loop;
 
                     else
                        if Ekind (Enclosing_Master) = E_Entry
                          and then
                            Ekind (Scope (Enclosing_Master)) = E_Protected_Type
                        then
                           if not Expander_Active then
                              exit Scope_Loop;
                           else
                              Enclosing_Master :=
                                Protected_Body_Subprogram (Enclosing_Master);
                           end if;
                        end if;
 
                        Set_Delay_Cleanups (Enclosing_Master);
 
                        while Ekind (Enclosing_Master) = E_Block loop
                           Enclosing_Master := Scope (Enclosing_Master);
                        end loop;
 
                        if Is_Subprogram (Enclosing_Master) then
                           Delay_Descriptors (Enclosing_Master);
 
                        elsif Is_Task_Type (Enclosing_Master) then
                           declare
                              TBP : constant Node_Id :=
                                      Get_Task_Body_Procedure
                                        (Enclosing_Master);
                           begin
                              if Present (TBP) then
                                 Delay_Descriptors  (TBP);
                                 Set_Delay_Cleanups (TBP);
                              end if;
                           end;
                        end if;
 
                        exit Scope_Loop;
                     end if;
                  end loop Scope_Loop;
               end;
 
               --  Make entry in table
 
               Pending_Instantiations.Append
                 ((Inst_Node                => N,
                   Act_Decl                 => Act_Decl,
                   Expander_Status          => Expander_Active,
                   Current_Sem_Unit         => Current_Sem_Unit,
                   Scope_Suppress           => Scope_Suppress,
                   Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
                   Version                  => Ada_Version));
            end if;
         end if;
 
         Set_Categorization_From_Pragmas (Act_Decl);
 
         if Parent_Installed then
            Hide_Current_Scope;
         end if;
 
         Set_Instance_Spec (N, Act_Decl);
 
         --  If not a compilation unit, insert the package declaration before
         --  the original instantiation node.
 
         if Nkind (Parent (N)) /= N_Compilation_Unit then
            Mark_Rewrite_Insertion (Act_Decl);
            Insert_Before (N, Act_Decl);
            Analyze (Act_Decl);
 
         --  For an instantiation that is a compilation unit, place
         --  declaration on current node so context is complete for analysis
         --  (including nested instantiations). If this is the main unit,
         --  the declaration eventually replaces the instantiation node.
         --  If the instance body is created later, it replaces the
         --  instance node, and the declaration is attached to it
         --  (see Build_Instance_Compilation_Unit_Nodes).
 
         else
            if Cunit_Entity (Current_Sem_Unit) = Defining_Entity (N) then
 
               --  The entity for the current unit is the newly created one,
               --  and all semantic information is attached to it.
 
               Set_Cunit_Entity (Current_Sem_Unit, Act_Decl_Id);
 
               --  If this is the main unit, replace the main entity as well
 
               if Current_Sem_Unit = Main_Unit then
                  Main_Unit_Entity := Act_Decl_Id;
               end if;
            end if;
 
            Set_Unit (Parent (N), Act_Decl);
            Set_Parent_Spec (Act_Decl, Parent_Spec (N));
            Set_Package_Instantiation (Act_Decl_Id, N);
            Analyze (Act_Decl);
            Set_Unit (Parent (N), N);
            Set_Body_Required (Parent (N), False);
 
            --  We never need elaboration checks on instantiations, since by
            --  definition, the body instantiation is elaborated at the same
            --  time as the spec instantiation.
 
            Set_Suppress_Elaboration_Warnings (Act_Decl_Id);
            Set_Kill_Elaboration_Checks       (Act_Decl_Id);
         end if;
 
         Check_Elab_Instantiation (N);
 
         if ABE_Is_Certain (N) and then Needs_Body then
            Pending_Instantiations.Decrement_Last;
         end if;
 
         Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id);
 
         Set_First_Private_Entity (Defining_Unit_Name (Unit_Renaming),
           First_Private_Entity (Act_Decl_Id));
 
         --  If the instantiation will receive a body, the unit will be
         --  transformed into a package body, and receive its own elaboration
         --  entity. Otherwise, the nature of the unit is now a package
         --  declaration.
 
         if Nkind (Parent (N)) = N_Compilation_Unit
           and then not Needs_Body
         then
            Rewrite (N, Act_Decl);
         end if;
 
         if Present (Corresponding_Body (Gen_Decl))
           or else Unit_Requires_Body (Gen_Unit)
         then
            Set_Has_Completion (Act_Decl_Id);
         end if;
 
         Check_Formal_Packages (Act_Decl_Id);
 
         Restore_Hidden_Primitives (Vis_Prims_List);
         Restore_Private_Views (Act_Decl_Id);
 
         Inherit_Context (Gen_Decl, N);
 
         if Parent_Installed then
            Remove_Parent;
         end if;
 
         Restore_Env;
         Env_Installed := False;
      end if;
 
      Validate_Categorization_Dependency (N, Act_Decl_Id);
 
      --  There used to be a check here to prevent instantiations in local
      --  contexts if the No_Local_Allocators restriction was active. This
      --  check was removed by a binding interpretation in AI-95-00130/07,
      --  but we retain the code for documentation purposes.
 
      --  if Ekind (Act_Decl_Id) /= E_Void
      --    and then not Is_Library_Level_Entity (Act_Decl_Id)
      --  then
      --     Check_Restriction (No_Local_Allocators, N);
      --  end if;
 
      if Inline_Now then
         Inline_Instance_Body (N, Gen_Unit, Act_Decl);
      end if;
 
      --  The following is a tree patch for ASIS: ASIS needs separate nodes to
      --  be used as defining identifiers for a formal package and for the
      --  corresponding expanded package.
 
      if Nkind (N) = N_Formal_Package_Declaration then
         Act_Decl_Id := New_Copy (Defining_Entity (N));
         Set_Comes_From_Source (Act_Decl_Id, True);
         Set_Is_Generic_Instance (Act_Decl_Id, False);
         Set_Defining_Identifier (N, Act_Decl_Id);
      end if;
 
      Style_Check := Save_Style_Check;
 
      --  Check that if N is an instantiation of System.Dim_Float_IO or
      --  System.Dim_Integer_IO, the formal type has a dimension system.
 
      if Nkind (N) = N_Package_Instantiation
        and then Is_Dim_IO_Package_Instantiation (N)
      then
         declare
            Assoc : constant Node_Id := First (Generic_Associations (N));
         begin
            if not Has_Dimension_System
                     (Etype (Explicit_Generic_Actual_Parameter (Assoc)))
            then
               Error_Msg_N ("type with a dimension system expected", Assoc);
            end if;
         end;
      end if;
 
   <<Leave>>
      if Has_Aspects (N) then
         Analyze_Aspect_Specifications (N, Act_Decl_Id);
      end if;
 
   exception
      when Instantiation_Error =>
         if Parent_Installed then
            Remove_Parent;
         end if;
 
         if Env_Installed then
            Restore_Env;
         end if;
 
         Style_Check := Save_Style_Check;
   end Analyze_Package_Instantiation;
 
   --------------------------
   -- Inline_Instance_Body --
   --------------------------
 
   procedure Inline_Instance_Body
     (N        : Node_Id;
      Gen_Unit : Entity_Id;
      Act_Decl : Node_Id)
   is
      Vis          : Boolean;
      Gen_Comp     : constant Entity_Id :=
                      Cunit_Entity (Get_Source_Unit (Gen_Unit));
      Curr_Comp    : constant Node_Id := Cunit (Current_Sem_Unit);
      Curr_Scope   : Entity_Id := Empty;
      Curr_Unit    : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
      Removed      : Boolean := False;
      Num_Scopes   : Int := 0;
 
      Scope_Stack_Depth : constant Int :=
                            Scope_Stack.Last - Scope_Stack.First + 1;
 
      Use_Clauses  : array (1 .. Scope_Stack_Depth) of Node_Id;
      Instances    : array (1 .. Scope_Stack_Depth) of Entity_Id;
      Inner_Scopes : array (1 .. Scope_Stack_Depth) of Entity_Id;
      Num_Inner    : Int := 0;
      N_Instances  : Int := 0;
      S            : Entity_Id;
 
   begin
      --  Case of generic unit defined in another unit. We must remove the
      --  complete context of the current unit to install that of the generic.
 
      if Gen_Comp /= Cunit_Entity (Current_Sem_Unit) then
 
         --  Add some comments for the following two loops ???
 
         S := Current_Scope;
         while Present (S) and then S /= Standard_Standard loop
            loop
               Num_Scopes := Num_Scopes + 1;
 
               Use_Clauses (Num_Scopes) :=
                 (Scope_Stack.Table
                    (Scope_Stack.Last - Num_Scopes + 1).
                       First_Use_Clause);
               End_Use_Clauses (Use_Clauses (Num_Scopes));
 
               exit when Scope_Stack.Last - Num_Scopes + 1 = Scope_Stack.First
                 or else Scope_Stack.Table
                           (Scope_Stack.Last - Num_Scopes).Entity
                             = Scope (S);
            end loop;
 
            exit when Is_Generic_Instance (S)
              and then (In_Package_Body (S)
                          or else Ekind (S) = E_Procedure
                          or else Ekind (S) = E_Function);
            S := Scope (S);
         end loop;
 
         Vis := Is_Immediately_Visible (Gen_Comp);
 
         --  Find and save all enclosing instances
 
         S := Current_Scope;
 
         while Present (S)
           and then S /= Standard_Standard
         loop
            if Is_Generic_Instance (S) then
               N_Instances := N_Instances + 1;
               Instances (N_Instances) := S;
 
               exit when In_Package_Body (S);
            end if;
 
            S := Scope (S);
         end loop;
 
         --  Remove context of current compilation unit, unless we are within a
         --  nested package instantiation, in which case the context has been
         --  removed previously.
 
         --  If current scope is the body of a child unit, remove context of
         --  spec as well. If an enclosing scope is an instance body, the
         --  context has already been removed, but the entities in the body
         --  must be made invisible as well.
 
         S := Current_Scope;
 
         while Present (S)
           and then S /= Standard_Standard
         loop
            if Is_Generic_Instance (S)
              and then (In_Package_Body (S)
                          or else Ekind (S) = E_Procedure
                            or else Ekind (S) = E_Function)
            then
               --  We still have to remove the entities of the enclosing
               --  instance from direct visibility.
 
               declare
                  E : Entity_Id;
               begin
                  E := First_Entity (S);
                  while Present (E) loop
                     Set_Is_Immediately_Visible (E, False);
                     Next_Entity (E);
                  end loop;
               end;
 
               exit;
            end if;
 
            if S = Curr_Unit
              or else (Ekind (Curr_Unit) = E_Package_Body
                        and then S = Spec_Entity (Curr_Unit))
              or else (Ekind (Curr_Unit) = E_Subprogram_Body
                        and then S =
                          Corresponding_Spec
                            (Unit_Declaration_Node (Curr_Unit)))
            then
               Removed := True;
 
               --  Remove entities in current scopes from visibility, so that
               --  instance body is compiled in a clean environment.
 
               Save_Scope_Stack (Handle_Use => False);
 
               if Is_Child_Unit (S) then
 
                  --  Remove child unit from stack, as well as inner scopes.
                  --  Removing the context of a child unit removes parent units
                  --  as well.
 
                  while Current_Scope /= S loop
                     Num_Inner := Num_Inner + 1;
                     Inner_Scopes (Num_Inner) := Current_Scope;
                     Pop_Scope;
                  end loop;
 
                  Pop_Scope;
                  Remove_Context (Curr_Comp);
                  Curr_Scope := S;
 
               else
                  Remove_Context (Curr_Comp);
               end if;
 
               if Ekind (Curr_Unit) = E_Package_Body then
                  Remove_Context (Library_Unit (Curr_Comp));
               end if;
            end if;
 
            S := Scope (S);
         end loop;
         pragma Assert (Num_Inner < Num_Scopes);
 
         Push_Scope (Standard_Standard);
         Scope_Stack.Table (Scope_Stack.Last).Is_Active_Stack_Base := True;
         Instantiate_Package_Body
           (Body_Info =>
             ((Inst_Node                => N,
               Act_Decl                 => Act_Decl,
               Expander_Status          => Expander_Active,
               Current_Sem_Unit         => Current_Sem_Unit,
               Scope_Suppress           => Scope_Suppress,
               Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
               Version                  => Ada_Version)),
            Inlined_Body => True);
 
         Pop_Scope;
 
         --  Restore context
 
         Set_Is_Immediately_Visible (Gen_Comp, Vis);
 
         --  Reset Generic_Instance flag so that use clauses can be installed
         --  in the proper order. (See Use_One_Package for effect of enclosing
         --  instances on processing of use clauses).
 
         for J in 1 .. N_Instances loop
            Set_Is_Generic_Instance (Instances (J), False);
         end loop;
 
         if Removed then
            Install_Context (Curr_Comp);
 
            if Present (Curr_Scope)
              and then Is_Child_Unit (Curr_Scope)
            then
               Push_Scope (Curr_Scope);
               Set_Is_Immediately_Visible (Curr_Scope);
 
               --  Finally, restore inner scopes as well
 
               for J in reverse 1 .. Num_Inner loop
                  Push_Scope (Inner_Scopes (J));
               end loop;
            end if;
 
            Restore_Scope_Stack (Handle_Use => False);
 
            if Present (Curr_Scope)
              and then
                (In_Private_Part (Curr_Scope)
                  or else In_Package_Body (Curr_Scope))
            then
               --  Install private declaration of ancestor units, which are
               --  currently available. Restore_Scope_Stack and Install_Context
               --  only install the visible part of parents.
 
               declare
                  Par : Entity_Id;
               begin
                  Par := Scope (Curr_Scope);
                  while (Present (Par))
                    and then Par /= Standard_Standard
                  loop
                     Install_Private_Declarations (Par);
                     Par := Scope (Par);
                  end loop;
               end;
            end if;
         end if;
 
         --  Restore use clauses. For a child unit, use clauses in the parents
         --  are restored when installing the context, so only those in inner
         --  scopes (and those local to the child unit itself) need to be
         --  installed explicitly.
 
         if Is_Child_Unit (Curr_Unit)
           and then Removed
         then
            for J in reverse 1 .. Num_Inner + 1 loop
               Scope_Stack.Table (Scope_Stack.Last - J + 1).First_Use_Clause :=
                 Use_Clauses (J);
               Install_Use_Clauses (Use_Clauses (J));
            end  loop;
 
         else
            for J in reverse 1 .. Num_Scopes loop
               Scope_Stack.Table (Scope_Stack.Last - J + 1).First_Use_Clause :=
                 Use_Clauses (J);
               Install_Use_Clauses (Use_Clauses (J));
            end  loop;
         end if;
 
         --  Restore status of instances. If one of them is a body, make
         --  its local entities visible again.
 
         declare
            E    : Entity_Id;
            Inst : Entity_Id;
 
         begin
            for J in 1 .. N_Instances loop
               Inst := Instances (J);
               Set_Is_Generic_Instance (Inst, True);
 
               if In_Package_Body (Inst)
                 or else Ekind (S) = E_Procedure
                 or else Ekind (S) = E_Function
               then
                  E := First_Entity (Instances (J));
                  while Present (E) loop
                     Set_Is_Immediately_Visible (E);
                     Next_Entity (E);
                  end loop;
               end if;
            end loop;
         end;
 
      --  If generic unit is in current unit, current context is correct
 
      else
         Instantiate_Package_Body
           (Body_Info =>
             ((Inst_Node                => N,
               Act_Decl                 => Act_Decl,
               Expander_Status          => Expander_Active,
               Current_Sem_Unit         => Current_Sem_Unit,
               Scope_Suppress           => Scope_Suppress,
               Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
               Version                  => Ada_Version)),
            Inlined_Body => True);
      end if;
   end Inline_Instance_Body;
 
   -------------------------------------
   -- Analyze_Procedure_Instantiation --
   -------------------------------------
 
   procedure Analyze_Procedure_Instantiation (N : Node_Id) is
   begin
      Analyze_Subprogram_Instantiation (N, E_Procedure);
   end Analyze_Procedure_Instantiation;
 
   -----------------------------------
   -- Need_Subprogram_Instance_Body --
   -----------------------------------
 
   function Need_Subprogram_Instance_Body
     (N    : Node_Id;
      Subp : Entity_Id) return Boolean
   is
   begin
      if (Is_In_Main_Unit (N)
           or else Is_Inlined (Subp)
           or else Is_Inlined (Alias (Subp)))
        and then (Operating_Mode = Generate_Code
                   or else (Operating_Mode = Check_Semantics
                             and then ASIS_Mode))
        and then (Full_Expander_Active or else ASIS_Mode)
        and then not ABE_Is_Certain (N)
        and then not Is_Eliminated (Subp)
      then
         Pending_Instantiations.Append
           ((Inst_Node                => N,
             Act_Decl                 => Unit_Declaration_Node (Subp),
             Expander_Status          => Expander_Active,
             Current_Sem_Unit         => Current_Sem_Unit,
             Scope_Suppress           => Scope_Suppress,
             Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
             Version                  => Ada_Version));
         return True;
 
      else
         return False;
      end if;
   end Need_Subprogram_Instance_Body;
 
   --------------------------------------
   -- Analyze_Subprogram_Instantiation --
   --------------------------------------
 
   procedure Analyze_Subprogram_Instantiation
     (N : Node_Id;
      K : Entity_Kind)
   is
      Loc    : constant Source_Ptr := Sloc (N);
      Gen_Id : constant Node_Id    := Name (N);
 
      Anon_Id : constant Entity_Id :=
                  Make_Defining_Identifier (Sloc (Defining_Entity (N)),
                    Chars => New_External_Name
                               (Chars (Defining_Entity (N)), 'R'));
 
      Act_Decl_Id : Entity_Id;
      Act_Decl    : Node_Id;
      Act_Spec    : Node_Id;
      Act_Tree    : Node_Id;
 
      Env_Installed    : Boolean := False;
      Gen_Unit         : Entity_Id;
      Gen_Decl         : Node_Id;
      Pack_Id          : Entity_Id;
      Parent_Installed : Boolean := False;
      Renaming_List    : List_Id;
 
      Save_Style_Check : constant Boolean := Style_Check;
      --  Save style check mode for restore on exit
 
      procedure Analyze_Instance_And_Renamings;
      --  The instance must be analyzed in a context that includes the mappings
      --  of generic parameters into actuals. We create a package declaration
      --  for this purpose, and a subprogram with an internal name within the
      --  package. The subprogram instance is simply an alias for the internal
      --  subprogram, declared in the current scope.
 
      ------------------------------------
      -- Analyze_Instance_And_Renamings --
      ------------------------------------
 
      procedure Analyze_Instance_And_Renamings is
         Def_Ent   : constant Entity_Id := Defining_Entity (N);
         Pack_Decl : Node_Id;
 
      begin
         if Nkind (Parent (N)) = N_Compilation_Unit then
 
            --  For the case of a compilation unit, the container package has
            --  the same name as the instantiation, to insure that the binder
            --  calls the elaboration procedure with the right name. Copy the
            --  entity of the instance, which may have compilation level flags
            --  (e.g. Is_Child_Unit) set.
 
            Pack_Id := New_Copy (Def_Ent);
 
         else
            --  Otherwise we use the name of the instantiation concatenated
            --  with its source position to ensure uniqueness if there are
            --  several instantiations with the same name.
 
            Pack_Id :=
              Make_Defining_Identifier (Loc,
                Chars => New_External_Name
                           (Related_Id   => Chars (Def_Ent),
                            Suffix       => "GP",
                            Suffix_Index => Source_Offset (Sloc (Def_Ent))));
         end if;
 
         Pack_Decl := Make_Package_Declaration (Loc,
           Specification => Make_Package_Specification (Loc,
             Defining_Unit_Name   => Pack_Id,
             Visible_Declarations => Renaming_List,
             End_Label            => Empty));
 
         Set_Instance_Spec (N, Pack_Decl);
         Set_Is_Generic_Instance (Pack_Id);
         Set_Debug_Info_Needed (Pack_Id);
 
         --  Case of not a compilation unit
 
         if Nkind (Parent (N)) /= N_Compilation_Unit then
            Mark_Rewrite_Insertion (Pack_Decl);
            Insert_Before (N, Pack_Decl);
            Set_Has_Completion (Pack_Id);
 
         --  Case of an instantiation that is a compilation unit
 
         --  Place declaration on current node so context is complete for
         --  analysis (including nested instantiations), and for use in a
         --  context_clause (see Analyze_With_Clause).
 
         else
            Set_Unit (Parent (N), Pack_Decl);
            Set_Parent_Spec (Pack_Decl, Parent_Spec (N));
         end if;
 
         Analyze (Pack_Decl);
         Check_Formal_Packages (Pack_Id);
         Set_Is_Generic_Instance (Pack_Id, False);
 
         --  Why do we clear Is_Generic_Instance??? We set it 20 lines
         --  above???
 
         --  Body of the enclosing package is supplied when instantiating the
         --  subprogram body, after semantic analysis is completed.
 
         if Nkind (Parent (N)) = N_Compilation_Unit then
 
            --  Remove package itself from visibility, so it does not
            --  conflict with subprogram.
 
            Set_Name_Entity_Id (Chars (Pack_Id), Homonym (Pack_Id));
 
            --  Set name and scope of internal subprogram so that the proper
            --  external name will be generated. The proper scope is the scope
            --  of the wrapper package. We need to generate debugging info for
            --  the internal subprogram, so set flag accordingly.
 
            Set_Chars (Anon_Id, Chars (Defining_Entity (N)));
            Set_Scope (Anon_Id, Scope (Pack_Id));
 
            --  Mark wrapper package as referenced, to avoid spurious warnings
            --  if the instantiation appears in various with_ clauses of
            --  subunits of the main unit.
 
            Set_Referenced (Pack_Id);
         end if;
 
         Set_Is_Generic_Instance (Anon_Id);
         Set_Debug_Info_Needed   (Anon_Id);
         Act_Decl_Id := New_Copy (Anon_Id);
 
         Set_Parent            (Act_Decl_Id, Parent (Anon_Id));
         Set_Chars             (Act_Decl_Id, Chars (Defining_Entity (N)));
         Set_Sloc              (Act_Decl_Id, Sloc (Defining_Entity (N)));
         Set_Comes_From_Source (Act_Decl_Id, True);
 
         --  The signature may involve types that are not frozen yet, but the
         --  subprogram will be frozen at the point the wrapper package is
         --  frozen, so it does not need its own freeze node. In fact, if one
         --  is created, it might conflict with the freezing actions from the
         --  wrapper package.
 
         Set_Has_Delayed_Freeze (Anon_Id, False);
 
         --  If the instance is a child unit, mark the Id accordingly. Mark
         --  the anonymous entity as well, which is the real subprogram and
         --  which is used when the instance appears in a context clause.
         --  Similarly, propagate the Is_Eliminated flag to handle properly
         --  nested eliminated subprograms.
 
         Set_Is_Child_Unit (Act_Decl_Id, Is_Child_Unit (Defining_Entity (N)));
         Set_Is_Child_Unit (Anon_Id, Is_Child_Unit (Defining_Entity (N)));
         New_Overloaded_Entity (Act_Decl_Id);
         Check_Eliminated  (Act_Decl_Id);
         Set_Is_Eliminated (Anon_Id, Is_Eliminated (Act_Decl_Id));
 
         --  In compilation unit case, kill elaboration checks on the
         --  instantiation, since they are never needed -- the body is
         --  instantiated at the same point as the spec.
 
         if Nkind (Parent (N)) = N_Compilation_Unit then
            Set_Suppress_Elaboration_Warnings (Act_Decl_Id);
            Set_Kill_Elaboration_Checks       (Act_Decl_Id);
            Set_Is_Compilation_Unit (Anon_Id);
 
            Set_Cunit_Entity (Current_Sem_Unit, Pack_Id);
         end if;
 
         --  The instance is not a freezing point for the new subprogram
 
         Set_Is_Frozen (Act_Decl_Id, False);
 
         if Nkind (Defining_Entity (N)) = N_Defining_Operator_Symbol then
            Valid_Operator_Definition (Act_Decl_Id);
         end if;
 
         Set_Alias  (Act_Decl_Id, Anon_Id);
         Set_Parent (Act_Decl_Id, Parent (Anon_Id));
         Set_Has_Completion (Act_Decl_Id);
         Set_Related_Instance (Pack_Id, Act_Decl_Id);
 
         if Nkind (Parent (N)) = N_Compilation_Unit then
            Set_Body_Required (Parent (N), False);
         end if;
      end Analyze_Instance_And_Renamings;
 
      --  Local variables
 
      Vis_Prims_List : Elist_Id := No_Elist;
      --  List of primitives made temporarily visible in the instantiation
      --  to match the visibility of the formal type
 
   --  Start of processing for Analyze_Subprogram_Instantiation
 
   begin
      Check_SPARK_Restriction ("generic is not allowed", N);
 
      --  Very first thing: apply the special kludge for Text_IO processing
      --  in case we are instantiating one of the children of [Wide_]Text_IO.
      --  Of course such an instantiation is bogus (these are packages, not
      --  subprograms), but we get a better error message if we do this.
 
      Text_IO_Kludge (Gen_Id);
 
      --  Make node global for error reporting
 
      Instantiation_Node := N;
 
      --  Turn off style checking in instances. If the check is enabled on the
      --  generic unit, a warning in an instance would just be noise. If not
      --  enabled on the generic, then a warning in an instance is just wrong.
 
      Style_Check := False;
 
      Preanalyze_Actuals (N);
 
      Init_Env;
      Env_Installed := True;
      Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
      Gen_Unit := Entity (Gen_Id);
 
      Generate_Reference (Gen_Unit, Gen_Id);
 
      if Nkind (Gen_Id) = N_Identifier
        and then Chars (Gen_Unit) = Chars (Defining_Entity (N))
      then
         Error_Msg_NE
           ("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
      end if;
 
      if Etype (Gen_Unit) = Any_Type then
         Restore_Env;
         return;
      end if;
 
      --  Verify that it is a generic subprogram of the right kind, and that
      --  it does not lead to a circular instantiation.
 
      if not Ekind_In (Gen_Unit, E_Generic_Procedure, E_Generic_Function) then
         Error_Msg_N ("expect generic subprogram in instantiation", Gen_Id);
 
      elsif In_Open_Scopes (Gen_Unit) then
         Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit);
 
      elsif K = E_Procedure
        and then Ekind (Gen_Unit) /= E_Generic_Procedure
      then
         if Ekind (Gen_Unit) = E_Generic_Function then
            Error_Msg_N
              ("cannot instantiate generic function as procedure", Gen_Id);
         else
            Error_Msg_N
              ("expect name of generic procedure in instantiation", Gen_Id);
         end if;
 
      elsif K = E_Function
        and then Ekind (Gen_Unit) /= E_Generic_Function
      then
         if Ekind (Gen_Unit) = E_Generic_Procedure then
            Error_Msg_N
              ("cannot instantiate generic procedure as function", Gen_Id);
         else
            Error_Msg_N
              ("expect name of generic function in instantiation", Gen_Id);
         end if;
 
      else
         Set_Entity (Gen_Id, Gen_Unit);
         Set_Is_Instantiated (Gen_Unit);
 
         if In_Extended_Main_Source_Unit (N) then
            Generate_Reference (Gen_Unit, N);
         end if;
 
         --  If renaming, get original unit
 
         if Present (Renamed_Object (Gen_Unit))
           and then (Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Procedure
                       or else
                     Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Function)
         then
            Gen_Unit := Renamed_Object (Gen_Unit);
            Set_Is_Instantiated (Gen_Unit);
            Generate_Reference  (Gen_Unit, N);
         end if;
 
         if Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then
            Error_Msg_Node_2 := Current_Scope;
            Error_Msg_NE
              ("circular Instantiation: & instantiated in &!", N, Gen_Unit);
            Circularity_Detected := True;
            Restore_Hidden_Primitives (Vis_Prims_List);
            goto Leave;
         end if;
 
         Gen_Decl := Unit_Declaration_Node (Gen_Unit);
 
         --  Initialize renamings map, for error checking
 
         Generic_Renamings.Set_Last (0);
         Generic_Renamings_HTable.Reset;
 
         Create_Instantiation_Source (N, Gen_Unit, False, S_Adjustment);
 
         --  Copy original generic tree, to produce text for instantiation
 
         Act_Tree :=
           Copy_Generic_Node
             (Original_Node (Gen_Decl), Empty, Instantiating => True);
 
         --  Inherit overriding indicator from instance node
 
         Act_Spec := Specification (Act_Tree);
         Set_Must_Override     (Act_Spec, Must_Override (N));
         Set_Must_Not_Override (Act_Spec, Must_Not_Override (N));
 
         Renaming_List :=
           Analyze_Associations
             (I_Node  => N,
              Formals => Generic_Formal_Declarations (Act_Tree),
              F_Copy  => Generic_Formal_Declarations (Gen_Decl));
 
         Vis_Prims_List := Check_Hidden_Primitives (Renaming_List);
 
         --  The subprogram itself cannot contain a nested instance, so the
         --  current parent is left empty.
 
         Set_Instance_Env (Gen_Unit, Empty);
 
         --  Build the subprogram declaration, which does not appear in the
         --  generic template, and give it a sloc consistent with that of the
         --  template.
 
         Set_Defining_Unit_Name (Act_Spec, Anon_Id);
         Set_Generic_Parent (Act_Spec, Gen_Unit);
         Act_Decl :=
           Make_Subprogram_Declaration (Sloc (Act_Spec),
             Specification => Act_Spec);
 
         --  The aspects have been copied previously, but they have to be
         --  linked explicitly to the new subprogram declaration. Explicit
         --  pre/postconditions on the instance are analyzed below, in a
         --  separate step.
 
         Move_Aspects (Act_Tree, Act_Decl);
         Set_Categorization_From_Pragmas (Act_Decl);
 
         if Parent_Installed then
            Hide_Current_Scope;
         end if;
 
         Append (Act_Decl, Renaming_List);
         Analyze_Instance_And_Renamings;
 
         --  If the generic is marked Import (Intrinsic), then so is the
         --  instance. This indicates that there is no body to instantiate. If
         --  generic is marked inline, so it the instance, and the anonymous
         --  subprogram it renames. If inlined, or else if inlining is enabled
         --  for the compilation, we generate the instance body even if it is
         --  not within the main unit.
 
         if Is_Intrinsic_Subprogram (Gen_Unit) then
            Set_Is_Intrinsic_Subprogram (Anon_Id);
            Set_Is_Intrinsic_Subprogram (Act_Decl_Id);
 
            if Chars (Gen_Unit) = Name_Unchecked_Conversion then
               Validate_Unchecked_Conversion (N, Act_Decl_Id);
            end if;
         end if;
 
         --  Inherit convention from generic unit. Intrinsic convention, as for
         --  an instance of unchecked conversion, is not inherited because an
         --  explicit Ada instance has been created.
 
         if Has_Convention_Pragma (Gen_Unit)
           and then Convention (Gen_Unit) /= Convention_Intrinsic
         then
            Set_Convention (Act_Decl_Id, Convention (Gen_Unit));
            Set_Is_Exported (Act_Decl_Id, Is_Exported (Gen_Unit));
         end if;
 
         Generate_Definition (Act_Decl_Id);
         --  Set_Contract (Anon_Id, Make_Contract (Sloc (Anon_Id)));
         --  ??? needed?
         Set_Contract (Act_Decl_Id, Make_Contract (Sloc (Act_Decl_Id)));
 
         --  Inherit all inlining-related flags which apply to the generic in
         --  the subprogram and its declaration.
 
         Set_Is_Inlined (Act_Decl_Id, Is_Inlined (Gen_Unit));
         Set_Is_Inlined (Anon_Id,     Is_Inlined (Gen_Unit));
 
         Set_Has_Pragma_Inline (Act_Decl_Id, Has_Pragma_Inline (Gen_Unit));
         Set_Has_Pragma_Inline (Anon_Id,     Has_Pragma_Inline (Gen_Unit));
 
         Set_Has_Pragma_Inline_Always
           (Act_Decl_Id, Has_Pragma_Inline_Always (Gen_Unit));
         Set_Has_Pragma_Inline_Always
           (Anon_Id,     Has_Pragma_Inline_Always (Gen_Unit));
 
         if not Is_Intrinsic_Subprogram (Gen_Unit) then
            Check_Elab_Instantiation (N);
         end if;
 
         if Is_Dispatching_Operation (Act_Decl_Id)
           and then Ada_Version >= Ada_2005
         then
            declare
               Formal : Entity_Id;
 
            begin
               Formal := First_Formal (Act_Decl_Id);
               while Present (Formal) loop
                  if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
                    and then Is_Controlling_Formal (Formal)
                    and then not Can_Never_Be_Null (Formal)
                  then
                     Error_Msg_NE ("access parameter& is controlling,",
                       N, Formal);
                     Error_Msg_NE
                       ("\corresponding parameter of & must be"
                       & " explicitly null-excluding", N, Gen_Id);
                  end if;
 
                  Next_Formal (Formal);
               end loop;
            end;
         end if;
 
         Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id);
 
         Validate_Categorization_Dependency (N, Act_Decl_Id);
 
         if not Is_Intrinsic_Subprogram (Act_Decl_Id) then
            Inherit_Context (Gen_Decl, N);
 
            Restore_Private_Views (Pack_Id, False);
 
            --  If the context requires a full instantiation, mark node for
            --  subsequent construction of the body.
 
            if Need_Subprogram_Instance_Body (N, Act_Decl_Id) then
 
               Check_Forward_Instantiation (Gen_Decl);
 
               --  The wrapper package is always delayed, because it does not
               --  constitute a freeze point, but to insure that the freeze
               --  node is placed properly, it is created directly when
               --  instantiating the body (otherwise the freeze node might
               --  appear to early for nested instantiations).
 
            elsif Nkind (Parent (N)) = N_Compilation_Unit then
 
               --  For ASIS purposes, indicate that the wrapper package has
               --  replaced the instantiation node.
 
               Rewrite (N, Unit (Parent (N)));
               Set_Unit (Parent (N), N);
            end if;
 
         elsif Nkind (Parent (N)) = N_Compilation_Unit then
 
               --  Replace instance node for library-level instantiations of
               --  intrinsic subprograms, for ASIS use.
 
               Rewrite (N, Unit (Parent (N)));
               Set_Unit (Parent (N), N);
         end if;
 
         if Parent_Installed then
            Remove_Parent;
         end if;
 
         Restore_Hidden_Primitives (Vis_Prims_List);
         Restore_Env;
         Env_Installed := False;
         Generic_Renamings.Set_Last (0);
         Generic_Renamings_HTable.Reset;
      end if;
 
      Style_Check := Save_Style_Check;
 
   <<Leave>>
      if Has_Aspects (N) then
         Analyze_Aspect_Specifications (N, Act_Decl_Id);
      end if;
 
   exception
      when Instantiation_Error =>
         if Parent_Installed then
            Remove_Parent;
         end if;
 
         if Env_Installed then
            Restore_Env;
         end if;
 
         Style_Check := Save_Style_Check;
   end Analyze_Subprogram_Instantiation;
 
   -------------------------
   -- Get_Associated_Node --
   -------------------------
 
   function Get_Associated_Node (N : Node_Id) return Node_Id is
      Assoc : Node_Id;
 
   begin
      Assoc := Associated_Node (N);
 
      if Nkind (Assoc) /= Nkind (N) then
         return Assoc;
 
      elsif Nkind_In (Assoc, N_Aggregate, N_Extension_Aggregate) then
         return Assoc;
 
      else
         --  If the node is part of an inner generic, it may itself have been
         --  remapped into a further generic copy. Associated_Node is otherwise
         --  used for the entity of the node, and will be of a different node
         --  kind, or else N has been rewritten as a literal or function call.
 
         while Present (Associated_Node (Assoc))
           and then Nkind (Associated_Node (Assoc)) = Nkind (Assoc)
         loop
            Assoc := Associated_Node (Assoc);
         end loop;
 
         --  Follow and additional link in case the final node was rewritten.
         --  This can only happen with nested generic units.
 
         if (Nkind (Assoc) = N_Identifier or else Nkind (Assoc) in N_Op)
           and then Present (Associated_Node (Assoc))
           and then (Nkind_In (Associated_Node (Assoc), N_Function_Call,
                                                        N_Explicit_Dereference,
                                                        N_Integer_Literal,
                                                        N_Real_Literal,
                                                        N_String_Literal))
         then
            Assoc := Associated_Node (Assoc);
         end if;
 
         return Assoc;
      end if;
   end Get_Associated_Node;
 
   -------------------------------------------
   -- Build_Instance_Compilation_Unit_Nodes --
   -------------------------------------------
 
   procedure Build_Instance_Compilation_Unit_Nodes
     (N        : Node_Id;
      Act_Body : Node_Id;
      Act_Decl : Node_Id)
   is
      Decl_Cunit : Node_Id;
      Body_Cunit : Node_Id;
      Citem      : Node_Id;
      New_Main   : constant Entity_Id := Defining_Entity (Act_Decl);
      Old_Main   : constant Entity_Id := Cunit_Entity (Main_Unit);
 
   begin
      --  A new compilation unit node is built for the instance declaration
 
      Decl_Cunit :=
        Make_Compilation_Unit (Sloc (N),
          Context_Items  => Empty_List,
          Unit           => Act_Decl,
          Aux_Decls_Node =>
            Make_Compilation_Unit_Aux (Sloc (N)));
 
      Set_Parent_Spec   (Act_Decl, Parent_Spec (N));
 
      --  The new compilation unit is linked to its body, but both share the
      --  same file, so we do not set Body_Required on the new unit so as not
      --  to create a spurious dependency on a non-existent body in the ali.
      --  This simplifies CodePeer unit traversal.
 
      --  We use the original instantiation compilation unit as the resulting
      --  compilation unit of the instance, since this is the main unit.
 
      Rewrite (N, Act_Body);
      Body_Cunit := Parent (N);
 
      --  The two compilation unit nodes are linked by the Library_Unit field
 
      Set_Library_Unit  (Decl_Cunit, Body_Cunit);
      Set_Library_Unit  (Body_Cunit, Decl_Cunit);
 
      --  Preserve the private nature of the package if needed
 
      Set_Private_Present (Decl_Cunit, Private_Present (Body_Cunit));
 
      --  If the instance is not the main unit, its context, categorization
      --  and elaboration entity are not relevant to the compilation.
 
      if Body_Cunit /= Cunit (Main_Unit) then
         Make_Instance_Unit (Body_Cunit, In_Main => False);
         return;
      end if;
 
      --  The context clause items on the instantiation, which are now attached
      --  to the body compilation unit (since the body overwrote the original
      --  instantiation node), semantically belong on the spec, so copy them
      --  there. It's harmless to leave them on the body as well. In fact one
      --  could argue that they belong in both places.
 
      Citem := First (Context_Items (Body_Cunit));
      while Present (Citem) loop
         Append (New_Copy (Citem), Context_Items (Decl_Cunit));
         Next (Citem);
      end loop;
 
      --  Propagate categorization flags on packages, so that they appear in
      --  the ali file for the spec of the unit.
 
      if Ekind (New_Main) = E_Package then
         Set_Is_Pure           (Old_Main, Is_Pure (New_Main));
         Set_Is_Preelaborated  (Old_Main, Is_Preelaborated (New_Main));
         Set_Is_Remote_Types   (Old_Main, Is_Remote_Types (New_Main));
         Set_Is_Shared_Passive (Old_Main, Is_Shared_Passive (New_Main));
         Set_Is_Remote_Call_Interface
           (Old_Main, Is_Remote_Call_Interface (New_Main));
      end if;
 
      --  Make entry in Units table, so that binder can generate call to
      --  elaboration procedure for body, if any.
 
      Make_Instance_Unit (Body_Cunit, In_Main => True);
      Main_Unit_Entity := New_Main;
      Set_Cunit_Entity (Main_Unit, Main_Unit_Entity);
 
      --  Build elaboration entity, since the instance may certainly generate
      --  elaboration code requiring a flag for protection.
 
      Build_Elaboration_Entity (Decl_Cunit, New_Main);
   end Build_Instance_Compilation_Unit_Nodes;
 
   -----------------------------
   -- Check_Access_Definition --
   -----------------------------
 
   procedure Check_Access_Definition (N : Node_Id) is
   begin
      pragma Assert
        (Ada_Version >= Ada_2005
           and then Present (Access_Definition (N)));
      null;
   end Check_Access_Definition;
 
   -----------------------------------
   -- Check_Formal_Package_Instance --
   -----------------------------------
 
   --  If the formal has specific parameters, they must match those of the
   --  actual. Both of them are instances, and the renaming declarations for
   --  their formal parameters appear in the same order in both. The analyzed
   --  formal has been analyzed in the context of the current instance.
 
   procedure Check_Formal_Package_Instance
     (Formal_Pack : Entity_Id;
      Actual_Pack : Entity_Id)
   is
      E1 : Entity_Id := First_Entity (Actual_Pack);
      E2 : Entity_Id := First_Entity (Formal_Pack);
 
      Expr1 : Node_Id;
      Expr2 : Node_Id;
 
      procedure Check_Mismatch (B : Boolean);
      --  Common error routine for mismatch between the parameters of the
      --  actual instance and those of the formal package.
 
      function Same_Instantiated_Constant (E1, E2 : Entity_Id) return Boolean;
      --  The formal may come from a nested formal package, and the actual may
      --  have been constant-folded. To determine whether the two denote the
      --  same entity we may have to traverse several definitions to recover
      --  the ultimate entity that they refer to.
 
      function Same_Instantiated_Variable (E1, E2 : Entity_Id) return Boolean;
      --  Similarly, if the formal comes from a nested formal package, the
      --  actual may designate the formal through multiple renamings, which
      --  have to be followed to determine the original variable in question.
 
      --------------------
      -- Check_Mismatch --
      --------------------
 
      procedure Check_Mismatch (B : Boolean) is
         Kind : constant Node_Kind := Nkind (Parent (E2));
 
      begin
         if Kind = N_Formal_Type_Declaration then
            return;
 
         elsif Nkind_In (Kind, N_Formal_Object_Declaration,
                               N_Formal_Package_Declaration)
           or else Kind in N_Formal_Subprogram_Declaration
         then
            null;
 
         elsif B then
            Error_Msg_NE
              ("actual for & in actual instance does not match formal",
               Parent (Actual_Pack), E1);
         end if;
      end Check_Mismatch;
 
      --------------------------------
      -- Same_Instantiated_Constant --
      --------------------------------
 
      function Same_Instantiated_Constant
        (E1, E2 : Entity_Id) return Boolean
      is
         Ent : Entity_Id;
 
      begin
         Ent := E2;
         while Present (Ent) loop
            if E1 = Ent then
               return True;
 
            elsif Ekind (Ent) /= E_Constant then
               return False;
 
            elsif Is_Entity_Name (Constant_Value (Ent)) then
               if  Entity (Constant_Value (Ent)) = E1 then
                  return True;
               else
                  Ent := Entity (Constant_Value (Ent));
               end if;
 
            --  The actual may be a constant that has been folded. Recover
            --  original name.
 
            elsif Is_Entity_Name (Original_Node (Constant_Value (Ent))) then
                  Ent := Entity (Original_Node (Constant_Value (Ent)));
            else
               return False;
            end if;
         end loop;
 
         return False;
      end Same_Instantiated_Constant;
 
      --------------------------------
      -- Same_Instantiated_Variable --
      --------------------------------
 
      function Same_Instantiated_Variable
        (E1, E2 : Entity_Id) return Boolean
      is
         function Original_Entity (E : Entity_Id) return Entity_Id;
         --  Follow chain of renamings to the ultimate ancestor
 
         ---------------------
         -- Original_Entity --
         ---------------------
 
         function Original_Entity (E : Entity_Id) return Entity_Id is
            Orig : Entity_Id;
 
         begin
            Orig := E;
            while Nkind (Parent (Orig)) = N_Object_Renaming_Declaration
              and then Present (Renamed_Object (Orig))
              and then Is_Entity_Name (Renamed_Object (Orig))
            loop
               Orig := Entity (Renamed_Object (Orig));
            end loop;
 
            return Orig;
         end Original_Entity;
 
      --  Start of processing for Same_Instantiated_Variable
 
      begin
         return Ekind (E1) = Ekind (E2)
           and then Original_Entity (E1) = Original_Entity (E2);
      end Same_Instantiated_Variable;
 
   --  Start of processing for Check_Formal_Package_Instance
 
   begin
      while Present (E1)
        and then Present (E2)
      loop
         exit when Ekind (E1) = E_Package
           and then Renamed_Entity (E1) = Renamed_Entity (Actual_Pack);
 
         --  If the formal is the renaming of the formal package, this
         --  is the end of its formal part, which may occur before the
         --  end of the formal part in the actual in the presence of
         --  defaulted parameters in the formal package.
 
         exit when Nkind (Parent (E2)) = N_Package_Renaming_Declaration
           and then Renamed_Entity (E2) = Scope (E2);
 
         --  The analysis of the actual may generate additional internal
         --  entities. If the formal is defaulted, there is no corresponding
         --  analysis and the internal entities must be skipped, until we
         --  find corresponding entities again.
 
         if Comes_From_Source (E2)
           and then not Comes_From_Source (E1)
           and then Chars (E1) /= Chars (E2)
         then
            while Present (E1)
              and then  Chars (E1) /= Chars (E2)
            loop
               Next_Entity (E1);
            end loop;
         end if;
 
         if No (E1) then
            return;
 
         --  If the formal entity comes from a formal declaration, it was
         --  defaulted in the formal package, and no check is needed on it.
 
         elsif Nkind (Parent (E2)) =  N_Formal_Object_Declaration then
            goto Next_E;
 
         elsif Is_Type (E1) then
 
            --  Subtypes must statically match. E1, E2 are the local entities
            --  that are subtypes of the actuals. Itypes generated for other
            --  parameters need not be checked, the check will be performed
            --  on the parameters themselves.
 
            --  If E2 is a formal type declaration, it is a defaulted parameter
            --  and needs no checking.
 
            if not Is_Itype (E1)
              and then not Is_Itype (E2)
            then
               Check_Mismatch
                 (not Is_Type (E2)
                   or else Etype (E1) /= Etype (E2)
                   or else not Subtypes_Statically_Match (E1, E2));
            end if;
 
         elsif Ekind (E1) = E_Constant then
 
            --  IN parameters must denote the same static value, or the same
            --  constant, or the literal null.
 
            Expr1 := Expression (Parent (E1));
 
            if Ekind (E2) /= E_Constant then
               Check_Mismatch (True);
               goto Next_E;
            else
               Expr2 := Expression (Parent (E2));
            end if;
 
            if Is_Static_Expression (Expr1) then
 
               if not Is_Static_Expression (Expr2) then
                  Check_Mismatch (True);
 
               elsif Is_Discrete_Type (Etype (E1)) then
                  declare
                     V1 : constant Uint := Expr_Value (Expr1);
                     V2 : constant Uint := Expr_Value (Expr2);
                  begin
                     Check_Mismatch (V1 /= V2);
                  end;
 
               elsif Is_Real_Type (Etype (E1)) then
                  declare
                     V1 : constant Ureal := Expr_Value_R (Expr1);
                     V2 : constant Ureal := Expr_Value_R (Expr2);
                  begin
                     Check_Mismatch (V1 /= V2);
                  end;
 
               elsif Is_String_Type (Etype (E1))
                 and then Nkind (Expr1) = N_String_Literal
               then
                  if Nkind (Expr2) /= N_String_Literal then
                     Check_Mismatch (True);
                  else
                     Check_Mismatch
                       (not String_Equal (Strval (Expr1), Strval (Expr2)));
                  end if;
               end if;
 
            elsif Is_Entity_Name (Expr1) then
               if Is_Entity_Name (Expr2) then
                  if Entity (Expr1) = Entity (Expr2) then
                     null;
                  else
                     Check_Mismatch
                       (not Same_Instantiated_Constant
                         (Entity (Expr1), Entity (Expr2)));
                  end if;
               else
                  Check_Mismatch (True);
               end if;
 
            elsif Is_Entity_Name (Original_Node (Expr1))
              and then Is_Entity_Name (Expr2)
            and then
              Same_Instantiated_Constant
                (Entity (Original_Node (Expr1)), Entity (Expr2))
            then
               null;
 
            elsif Nkind (Expr1) = N_Null then
               Check_Mismatch (Nkind (Expr1) /= N_Null);
 
            else
               Check_Mismatch (True);
            end if;
 
         elsif Ekind (E1) = E_Variable then
            Check_Mismatch (not Same_Instantiated_Variable (E1, E2));
 
         elsif Ekind (E1) = E_Package then
            Check_Mismatch
              (Ekind (E1) /= Ekind (E2)
                or else Renamed_Object (E1) /= Renamed_Object (E2));
 
         elsif Is_Overloadable (E1) then
 
            --  Verify that the actual subprograms match. Note that actuals
            --  that are attributes are rewritten as subprograms. If the
            --  subprogram in the formal package is defaulted, no check is
            --  needed. Note that this can only happen in Ada 2005 when the
            --  formal package can be partially parameterized.
 
            if Nkind (Unit_Declaration_Node (E1)) =
                                           N_Subprogram_Renaming_Declaration
              and then From_Default (Unit_Declaration_Node (E1))
            then
               null;
 
            --  If the formal package has an "others"  box association that
            --  covers this formal, there is no need for a check either.
 
            elsif Nkind (Unit_Declaration_Node (E2)) in
                    N_Formal_Subprogram_Declaration
              and then Box_Present (Unit_Declaration_Node (E2))
            then
               null;
 
            --  No check needed if subprogram is a defaulted null procedure
 
            elsif No (Alias (E2))
              and then Ekind (E2) = E_Procedure
              and then
                Null_Present (Specification (Unit_Declaration_Node (E2)))
            then
               null;
 
            --  Otherwise the actual in the formal and the actual in the
            --  instantiation of the formal must match, up to renamings.
 
            else
               Check_Mismatch
                 (Ekind (E2) /= Ekind (E1) or else (Alias (E1)) /= Alias (E2));
            end if;
 
         else
            raise Program_Error;
         end if;
 
         <<Next_E>>
            Next_Entity (E1);
            Next_Entity (E2);
      end loop;
   end Check_Formal_Package_Instance;
 
   ---------------------------
   -- Check_Formal_Packages --
   ---------------------------
 
   procedure Check_Formal_Packages (P_Id : Entity_Id) is
      E        : Entity_Id;
      Formal_P : Entity_Id;
 
   begin
      --  Iterate through the declarations in the instance, looking for package
      --  renaming declarations that denote instances of formal packages. Stop
      --  when we find the renaming of the current package itself. The
      --  declaration for a formal package without a box is followed by an
      --  internal entity that repeats the instantiation.
 
      E := First_Entity (P_Id);
      while Present (E) loop
         if Ekind (E) = E_Package then
            if Renamed_Object (E) = P_Id then
               exit;
 
            elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
               null;
 
            elsif not Box_Present (Parent (Associated_Formal_Package (E))) then
               Formal_P := Next_Entity (E);
               Check_Formal_Package_Instance (Formal_P, E);
 
               --  After checking, remove the internal validating package. It
               --  is only needed for semantic checks, and as it may contain
               --  generic formal declarations it should not reach gigi.
 
               Remove (Unit_Declaration_Node (Formal_P));
            end if;
         end if;
 
         Next_Entity (E);
      end loop;
   end Check_Formal_Packages;
 
   ---------------------------------
   -- Check_Forward_Instantiation --
   ---------------------------------
 
   procedure Check_Forward_Instantiation (Decl : Node_Id) is
      S        : Entity_Id;
      Gen_Comp : Entity_Id := Cunit_Entity (Get_Source_Unit (Decl));
 
   begin
      --  The instantiation appears before the generic body if we are in the
      --  scope of the unit containing the generic, either in its spec or in
      --  the package body, and before the generic body.
 
      if Ekind (Gen_Comp) = E_Package_Body then
         Gen_Comp := Spec_Entity (Gen_Comp);
      end if;
 
      if In_Open_Scopes (Gen_Comp)
        and then No (Corresponding_Body (Decl))
      then
         S := Current_Scope;
 
         while Present (S)
           and then not Is_Compilation_Unit (S)
           and then not Is_Child_Unit (S)
         loop
            if Ekind (S) = E_Package then
               Set_Has_Forward_Instantiation (S);
            end if;
 
            S := Scope (S);
         end loop;
      end if;
   end Check_Forward_Instantiation;
 
   ---------------------------
   -- Check_Generic_Actuals --
   ---------------------------
 
   --  The visibility of the actuals may be different between the point of
   --  generic instantiation and the instantiation of the body.
 
   procedure Check_Generic_Actuals
     (Instance      : Entity_Id;
      Is_Formal_Box : Boolean)
   is
      E      : Entity_Id;
      Astype : Entity_Id;
 
      function Denotes_Previous_Actual (Typ : Entity_Id) return Boolean;
      --  For a formal that is an array type, the component type is often a
      --  previous formal in the same unit. The privacy status of the component
      --  type will have been examined earlier in the traversal of the
      --  corresponding actuals, and this status should not be modified for the
      --  array type itself.
      --
      --  To detect this case we have to rescan the list of formals, which
      --  is usually short enough to ignore the resulting inefficiency.
 
      -----------------------------
      -- Denotes_Previous_Actual --
      -----------------------------
 
      function Denotes_Previous_Actual (Typ : Entity_Id) return Boolean is
         Prev : Entity_Id;
 
      begin
         Prev := First_Entity (Instance);
         while Present (Prev) loop
            if Is_Type (Prev)
              and then Nkind (Parent (Prev)) = N_Subtype_Declaration
              and then Is_Entity_Name (Subtype_Indication (Parent (Prev)))
              and then Entity (Subtype_Indication (Parent (Prev))) = Typ
            then
               return True;
 
            elsif Prev = E then
               return False;
 
            else
               Next_Entity (Prev);
            end if;
         end loop;
 
         return False;
      end Denotes_Previous_Actual;
 
   --  Start of processing for Check_Generic_Actuals
 
   begin
      E := First_Entity (Instance);
      while Present (E) loop
         if Is_Type (E)
           and then Nkind (Parent (E)) = N_Subtype_Declaration
           and then Scope (Etype (E)) /= Instance
           and then Is_Entity_Name (Subtype_Indication (Parent (E)))
         then
            if Is_Array_Type (E)
              and then Denotes_Previous_Actual (Component_Type (E))
            then
               null;
            else
               Check_Private_View (Subtype_Indication (Parent (E)));
            end if;
 
            Set_Is_Generic_Actual_Type (E, True);
            Set_Is_Hidden (E, False);
            Set_Is_Potentially_Use_Visible (E,
              In_Use (Instance));
 
            --  We constructed the generic actual type as a subtype of the
            --  supplied type. This means that it normally would not inherit
            --  subtype specific attributes of the actual, which is wrong for
            --  the generic case.
 
            Astype := Ancestor_Subtype (E);
 
            if No (Astype) then
 
               --  This can happen when E is an itype that is the full view of
               --  a private type completed, e.g. with a constrained array. In
               --  that case, use the first subtype, which will carry size
               --  information. The base type itself is unconstrained and will
               --  not carry it.
 
               Astype := First_Subtype (E);
            end if;
 
            Set_Size_Info      (E,                (Astype));
            Set_RM_Size        (E, RM_Size        (Astype));
            Set_First_Rep_Item (E, First_Rep_Item (Astype));
 
            if Is_Discrete_Or_Fixed_Point_Type (E) then
               Set_RM_Size (E, RM_Size (Astype));
 
            --  In  nested instances, the base type of an access actual
            --  may itself be private, and need to be exchanged.
 
            elsif Is_Access_Type (E)
              and then Is_Private_Type (Etype (E))
            then
               Check_Private_View
                 (New_Occurrence_Of (Etype (E), Sloc (Instance)));
            end if;
 
         elsif Ekind (E) = E_Package then
 
            --  If this is the renaming for the current instance, we're done.
            --  Otherwise it is a formal package. If the corresponding formal
            --  was declared with a box, the (instantiations of the) generic
            --  formal part are also visible. Otherwise, ignore the entity
            --  created to validate the actuals.
 
            if Renamed_Object (E) = Instance then
               exit;
 
            elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
               null;
 
            --  The visibility of a formal of an enclosing generic is already
            --  correct.
 
            elsif Denotes_Formal_Package (E) then
               null;
 
            elsif Present (Associated_Formal_Package (E))
              and then not Is_Generic_Formal (E)
            then
               if Box_Present (Parent (Associated_Formal_Package (E))) then
                  Check_Generic_Actuals (Renamed_Object (E), True);
 
               else
                  Check_Generic_Actuals (Renamed_Object (E), False);
               end if;
 
               Set_Is_Hidden (E, False);
            end if;
 
         --  If this is a subprogram instance (in a wrapper package) the
         --  actual is fully visible.
 
         elsif Is_Wrapper_Package (Instance) then
            Set_Is_Hidden (E, False);
 
         --  If the formal package is declared with a box, or if the formal
         --  parameter is defaulted, it is visible in the body.
 
         elsif Is_Formal_Box
           or else Is_Visible_Formal (E)
         then
            Set_Is_Hidden (E, False);
         end if;
 
         if Ekind (E) = E_Constant then
 
            --  If the type of the actual is a private type declared in the
            --  enclosing scope of the generic unit, the body of the generic
            --  sees the full view of the type (because it has to appear in
            --  the corresponding package body). If the type is private now,
            --  exchange views to restore the proper visiblity in the instance.
 
            declare
               Typ : constant Entity_Id := Base_Type (Etype (E));
               --  The type of the actual
 
               Gen_Id : Entity_Id;
               --  The generic unit
 
               Parent_Scope : Entity_Id;
               --  The enclosing scope of the generic unit
 
            begin
               if Is_Wrapper_Package (Instance) then
                  Gen_Id :=
                     Generic_Parent
                       (Specification
                         (Unit_Declaration_Node
                           (Related_Instance (Instance))));
               else
                  Gen_Id :=
                    Generic_Parent
                      (Specification (Unit_Declaration_Node (Instance)));
               end if;
 
               Parent_Scope := Scope (Gen_Id);
 
               --  The exchange is only needed if the generic is defined
               --  within a package which is not a common ancestor of the
               --  scope of the instance, and is not already in scope.
 
               if Is_Private_Type (Typ)
                 and then Scope (Typ) = Parent_Scope
                 and then Scope (Instance) /= Parent_Scope
                 and then Ekind (Parent_Scope) = E_Package
                 and then not Is_Child_Unit (Gen_Id)
               then
                  Switch_View (Typ);
 
                  --  If the type of the entity is a subtype, it may also
                  --  have to be made visible, together with the base type
                  --  of its full view, after exchange.
 
                  if Is_Private_Type (Etype (E)) then
                     Switch_View (Etype (E));
                     Switch_View (Base_Type (Etype (E)));
                  end if;
               end if;
            end;
         end if;
 
         Next_Entity (E);
      end loop;
   end Check_Generic_Actuals;
 
   ------------------------------
   -- Check_Generic_Child_Unit --
   ------------------------------
 
   procedure Check_Generic_Child_Unit
     (Gen_Id           : Node_Id;
      Parent_Installed : in out Boolean)
   is
      Loc      : constant Source_Ptr := Sloc (Gen_Id);
      Gen_Par  : Entity_Id := Empty;
      E        : Entity_Id;
      Inst_Par : Entity_Id;
      S        : Node_Id;
 
      function Find_Generic_Child
        (Scop : Entity_Id;
         Id   : Node_Id) return Entity_Id;
      --  Search generic parent for possible child unit with the given name
 
      function In_Enclosing_Instance return Boolean;
      --  Within an instance of the parent, the child unit may be denoted
      --  by a simple name, or an abbreviated expanded name. Examine enclosing
      --  scopes to locate a possible parent instantiation.
 
      ------------------------
      -- Find_Generic_Child --
      ------------------------
 
      function Find_Generic_Child
        (Scop : Entity_Id;
         Id   : Node_Id) return Entity_Id
      is
         E : Entity_Id;
 
      begin
         --  If entity of name is already set, instance has already been
         --  resolved, e.g. in an enclosing instantiation.
 
         if Present (Entity (Id)) then
            if Scope (Entity (Id)) = Scop then
               return Entity (Id);
            else
               return Empty;
            end if;
 
         else
            E := First_Entity (Scop);
            while Present (E) loop
               if Chars (E) = Chars (Id)
                 and then Is_Child_Unit (E)
               then
                  if Is_Child_Unit (E)
                    and then not Is_Visible_Child_Unit (E)
                  then
                     Error_Msg_NE
                       ("generic child unit& is not visible", Gen_Id, E);
                  end if;
 
                  Set_Entity (Id, E);
                  return E;
               end if;
 
               Next_Entity (E);
            end loop;
 
            return Empty;
         end if;
      end Find_Generic_Child;
 
      ---------------------------
      -- In_Enclosing_Instance --
      ---------------------------
 
      function In_Enclosing_Instance return Boolean is
         Enclosing_Instance : Node_Id;
         Instance_Decl      : Node_Id;
 
      begin
         --  We do not inline any call that contains instantiations, except
         --  for instantiations of Unchecked_Conversion, so if we are within
         --  an inlined body the current instance does not require parents.
 
         if In_Inlined_Body then
            pragma Assert (Chars (Gen_Id) = Name_Unchecked_Conversion);
            return False;
         end if;
 
         --  Loop to check enclosing scopes
 
         Enclosing_Instance := Current_Scope;
         while Present (Enclosing_Instance) loop
            Instance_Decl := Unit_Declaration_Node (Enclosing_Instance);
 
            if Ekind (Enclosing_Instance) = E_Package
              and then Is_Generic_Instance (Enclosing_Instance)
              and then Present
                (Generic_Parent (Specification (Instance_Decl)))
            then
               --  Check whether the generic we are looking for is a child of
               --  this instance.
 
               E := Find_Generic_Child
                      (Generic_Parent (Specification (Instance_Decl)), Gen_Id);
               exit when Present (E);
 
            else
               E := Empty;
            end if;
 
            Enclosing_Instance := Scope (Enclosing_Instance);
         end loop;
 
         if No (E) then
 
            --  Not a child unit
 
            Analyze (Gen_Id);
            return False;
 
         else
            Rewrite (Gen_Id,
              Make_Expanded_Name (Loc,
                Chars         => Chars (E),
                Prefix        => New_Occurrence_Of (Enclosing_Instance, Loc),
                Selector_Name => New_Occurrence_Of (E, Loc)));
 
            Set_Entity (Gen_Id, E);
            Set_Etype  (Gen_Id, Etype (E));
            Parent_Installed := False;      -- Already in scope.
            return True;
         end if;
      end In_Enclosing_Instance;
 
   --  Start of processing for Check_Generic_Child_Unit
 
   begin
      --  If the name of the generic is given by a selected component, it may
      --  be the name of a generic child unit, and the prefix is the name of an
      --  instance of the parent, in which case the child unit must be visible.
      --  If this instance is not in scope, it must be placed there and removed
      --  after instantiation, because what is being instantiated is not the
      --  original child, but the corresponding child present in the instance
      --  of the parent.
 
      --  If the child is instantiated within the parent, it can be given by
      --  a simple name. In this case the instance is already in scope, but
      --  the child generic must be recovered from the generic parent as well.
 
      if Nkind (Gen_Id) = N_Selected_Component then
         S := Selector_Name (Gen_Id);
         Analyze (Prefix (Gen_Id));
         Inst_Par := Entity (Prefix (Gen_Id));
 
         if Ekind (Inst_Par) = E_Package
           and then Present (Renamed_Object (Inst_Par))
         then
            Inst_Par := Renamed_Object (Inst_Par);
         end if;
 
         if Ekind (Inst_Par) = E_Package then
            if Nkind (Parent (Inst_Par)) = N_Package_Specification then
               Gen_Par := Generic_Parent (Parent (Inst_Par));
 
            elsif Nkind (Parent (Inst_Par)) = N_Defining_Program_Unit_Name
              and then
                Nkind (Parent (Parent (Inst_Par))) = N_Package_Specification
            then
               Gen_Par := Generic_Parent (Parent (Parent (Inst_Par)));
            end if;
 
         elsif Ekind (Inst_Par) = E_Generic_Package
           and then Nkind (Parent (Gen_Id)) = N_Formal_Package_Declaration
         then
            --  A formal package may be a real child package, and not the
            --  implicit instance within a parent. In this case the child is
            --  not visible and has to be retrieved explicitly as well.
 
            Gen_Par := Inst_Par;
         end if;
 
         if Present (Gen_Par) then
 
            --  The prefix denotes an instantiation. The entity itself may be a
            --  nested generic, or a child unit.
 
            E := Find_Generic_Child (Gen_Par, S);
 
            if Present (E) then
               Change_Selected_Component_To_Expanded_Name (Gen_Id);
               Set_Entity (Gen_Id, E);
               Set_Etype (Gen_Id, Etype (E));
               Set_Entity (S, E);
               Set_Etype (S, Etype (E));
 
               --  Indicate that this is a reference to the parent
 
               if In_Extended_Main_Source_Unit (Gen_Id) then
                  Set_Is_Instantiated (Inst_Par);
               end if;
 
               --  A common mistake is to replicate the naming scheme of a
               --  hierarchy by instantiating a generic child directly, rather
               --  than the implicit child in a parent instance:
 
               --  generic .. package Gpar is ..
               --  generic .. package Gpar.Child is ..
               --  package Par is new Gpar ();
 
               --  with Gpar.Child;
               --  package Par.Child is new Gpar.Child ();
               --                           rather than Par.Child
 
               --  In this case the instantiation is within Par, which is an
               --  instance, but Gpar does not denote Par because we are not IN
               --  the instance of Gpar, so this is illegal. The test below
               --  recognizes this particular case.
 
               if Is_Child_Unit (E)
                 and then not Comes_From_Source (Entity (Prefix (Gen_Id)))
                 and then (not In_Instance
                             or else Nkind (Parent (Parent (Gen_Id))) =
                                                         N_Compilation_Unit)
               then
                  Error_Msg_N
                    ("prefix of generic child unit must be instance of parent",
                      Gen_Id);
               end if;
 
               if not In_Open_Scopes (Inst_Par)
                 and then Nkind (Parent (Gen_Id)) not in
                                           N_Generic_Renaming_Declaration
               then
                  Install_Parent (Inst_Par);
                  Parent_Installed := True;
 
               elsif In_Open_Scopes (Inst_Par) then
 
                  --  If the parent is already installed, install the actuals
                  --  for its formal packages. This is necessary when the
                  --  child instance is a child of the parent instance:
                  --  in this case, the parent is placed on the scope stack
                  --  but the formal packages are not made visible.
 
                  Install_Formal_Packages (Inst_Par);
               end if;
 
            else
               --  If the generic parent does not contain an entity that
               --  corresponds to the selector, the instance doesn't either.
               --  Analyzing the node will yield the appropriate error message.
               --  If the entity is not a child unit, then it is an inner
               --  generic in the parent.
 
               Analyze (Gen_Id);
            end if;
 
         else
            Analyze (Gen_Id);
 
            if Is_Child_Unit (Entity (Gen_Id))
              and then
                Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration
              and then not In_Open_Scopes (Inst_Par)
            then
               Install_Parent (Inst_Par);
               Parent_Installed := True;
 
            --  The generic unit may be the renaming of the implicit child
            --  present in an instance. In that case the parent instance is
            --  obtained from the name of the renamed entity.
 
            elsif Ekind (Entity (Gen_Id)) = E_Generic_Package
              and then Present (Renamed_Entity (Entity (Gen_Id)))
              and then Is_Child_Unit (Renamed_Entity (Entity (Gen_Id)))
            then
               declare
                  Renamed_Package : constant Node_Id :=
                                      Name (Parent (Entity (Gen_Id)));
               begin
                  if Nkind (Renamed_Package) = N_Expanded_Name then
                     Inst_Par := Entity (Prefix (Renamed_Package));
                     Install_Parent (Inst_Par);
                     Parent_Installed := True;
                  end if;
               end;
            end if;
         end if;
 
      elsif Nkind (Gen_Id) = N_Expanded_Name then
 
         --  Entity already present, analyze prefix, whose meaning may be
         --  an instance in the current context. If it is an instance of
         --  a relative within another, the proper parent may still have
         --  to be installed, if they are not of the same generation.
 
         Analyze (Prefix (Gen_Id));
 
         --  In the unlikely case that a local declaration hides the name
         --  of the parent package, locate it on the homonym chain. If the
         --  context is an instance of the parent, the renaming entity is
         --  flagged as such.
 
         Inst_Par := Entity (Prefix (Gen_Id));
         while Present (Inst_Par)
           and then not Is_Package_Or_Generic_Package (Inst_Par)
         loop
            Inst_Par := Homonym (Inst_Par);
         end loop;
 
         pragma Assert (Present (Inst_Par));
         Set_Entity (Prefix (Gen_Id), Inst_Par);
 
         if In_Enclosing_Instance then
            null;
 
         elsif Present (Entity (Gen_Id))
           and then Is_Child_Unit (Entity (Gen_Id))
           and then not In_Open_Scopes (Inst_Par)
         then
            Install_Parent (Inst_Par);
            Parent_Installed := True;
         end if;
 
      elsif In_Enclosing_Instance then
 
         --  The child unit is found in some enclosing scope
 
         null;
 
      else
         Analyze (Gen_Id);
 
         --  If this is the renaming of the implicit child in a parent
         --  instance, recover the parent name and install it.
 
         if Is_Entity_Name (Gen_Id) then
            E := Entity (Gen_Id);
 
            if Is_Generic_Unit (E)
              and then Nkind (Parent (E)) in N_Generic_Renaming_Declaration
              and then Is_Child_Unit (Renamed_Object (E))
              and then Is_Generic_Unit (Scope (Renamed_Object (E)))
              and then Nkind (Name (Parent (E))) = N_Expanded_Name
            then
               Rewrite (Gen_Id,
                 New_Copy_Tree (Name (Parent (E))));
               Inst_Par := Entity (Prefix (Gen_Id));
 
               if not In_Open_Scopes (Inst_Par) then
                  Install_Parent (Inst_Par);
                  Parent_Installed := True;
               end if;
 
            --  If it is a child unit of a non-generic parent, it may be
            --  use-visible and given by a direct name. Install parent as
            --  for other cases.
 
            elsif Is_Generic_Unit (E)
              and then Is_Child_Unit (E)
              and then
                Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration
              and then not Is_Generic_Unit (Scope (E))
            then
               if not In_Open_Scopes (Scope (E)) then
                  Install_Parent (Scope (E));
                  Parent_Installed := True;
               end if;
            end if;
         end if;
      end if;
   end Check_Generic_Child_Unit;
 
   -----------------------------
   -- Check_Hidden_Child_Unit --
   -----------------------------
 
   procedure Check_Hidden_Child_Unit
     (N           : Node_Id;
      Gen_Unit    : Entity_Id;
      Act_Decl_Id : Entity_Id)
   is
      Gen_Id : constant Node_Id := Name (N);
 
   begin
      if Is_Child_Unit (Gen_Unit)
        and then Is_Child_Unit (Act_Decl_Id)
        and then Nkind (Gen_Id) = N_Expanded_Name
        and then Entity (Prefix (Gen_Id)) = Scope (Act_Decl_Id)
        and then Chars (Gen_Unit) = Chars (Act_Decl_Id)
      then
         Error_Msg_Node_2 := Scope (Act_Decl_Id);
         Error_Msg_NE
           ("generic unit & is implicitly declared in &",
             Defining_Unit_Name (N), Gen_Unit);
         Error_Msg_N ("\instance must have different name",
           Defining_Unit_Name (N));
      end if;
   end Check_Hidden_Child_Unit;
 
   ------------------------
   -- Check_Private_View --
   ------------------------
 
   procedure Check_Private_View (N : Node_Id) is
      T : constant Entity_Id := Etype (N);
      BT : Entity_Id;
 
   begin
      --  Exchange views if the type was not private in the generic but is
      --  private at the point of instantiation. Do not exchange views if
      --  the scope of the type is in scope. This can happen if both generic
      --  and instance are sibling units, or if type is defined in a parent.
      --  In this case the visibility of the type will be correct for all
      --  semantic checks.
 
      if Present (T) then
         BT := Base_Type (T);
 
         if Is_Private_Type (T)
           and then not Has_Private_View (N)
           and then Present (Full_View (T))
           and then not In_Open_Scopes (Scope (T))
         then
            --  In the generic, the full type was visible. Save the private
            --  entity, for subsequent exchange.
 
            Switch_View (T);
 
         elsif Has_Private_View (N)
           and then not Is_Private_Type (T)
           and then not Has_Been_Exchanged (T)
           and then Etype (Get_Associated_Node (N)) /= T
         then
            --  Only the private declaration was visible in the generic. If
            --  the type appears in a subtype declaration, the subtype in the
            --  instance must have a view compatible with that of its parent,
            --  which must be exchanged (see corresponding code in Restore_
            --  Private_Views). Otherwise, if the type is defined in a parent
            --  unit, leave full visibility within instance, which is safe.
 
            if In_Open_Scopes (Scope (Base_Type (T)))
              and then not Is_Private_Type (Base_Type (T))
              and then Comes_From_Source (Base_Type (T))
            then
               null;
 
            elsif Nkind (Parent (N)) = N_Subtype_Declaration
              or else not In_Private_Part (Scope (Base_Type (T)))
            then
               Prepend_Elmt (T, Exchanged_Views);
               Exchange_Declarations (Etype (Get_Associated_Node (N)));
            end if;
 
         --  For composite types with inconsistent representation exchange
         --  component types accordingly.
 
         elsif Is_Access_Type (T)
           and then Is_Private_Type (Designated_Type (T))
           and then not Has_Private_View (N)
           and then Present (Full_View (Designated_Type (T)))
         then
            Switch_View (Designated_Type (T));
 
         elsif Is_Array_Type (T) then
            if Is_Private_Type (Component_Type (T))
              and then not Has_Private_View (N)
              and then Present (Full_View (Component_Type (T)))
            then
               Switch_View (Component_Type (T));
            end if;
 
            --  The normal exchange mechanism relies on the setting of a
            --  flag on the reference in the generic. However, an additional
            --  mechanism is needed for types that are not explicitly mentioned
            --  in the generic, but may be needed in expanded code in the
            --  instance. This includes component types of arrays and
            --  designated types of access types. This processing must also
            --  include the index types of arrays which we take care of here.
 
            declare
               Indx : Node_Id;
               Typ  : Entity_Id;
 
            begin
               Indx := First_Index (T);
               Typ  := Base_Type (Etype (Indx));
               while Present (Indx) loop
                  if Is_Private_Type (Typ)
                    and then Present (Full_View (Typ))
                  then
                     Switch_View (Typ);
                  end if;
 
                  Next_Index (Indx);
               end loop;
            end;
 
         elsif Is_Private_Type (T)
           and then Present (Full_View (T))
           and then Is_Array_Type (Full_View (T))
           and then Is_Private_Type (Component_Type (Full_View (T)))
         then
            Switch_View (T);
 
         --  Finally, a non-private subtype may have a private base type, which
         --  must be exchanged for consistency. This can happen when a package
         --  body is instantiated, when the scope stack is empty but in fact
         --  the subtype and the base type are declared in an enclosing scope.
 
         --  Note that in this case we introduce an inconsistency in the view
         --  set, because we switch the base type BT, but there could be some
         --  private dependent subtypes of BT which remain unswitched. Such
         --  subtypes might need to be switched at a later point (see specific
         --  provision for that case in Switch_View).
 
         elsif not Is_Private_Type (T)
           and then not Has_Private_View (N)
           and then Is_Private_Type (BT)
           and then Present (Full_View (BT))
           and then not Is_Generic_Type (BT)
           and then not In_Open_Scopes (BT)
         then
            Prepend_Elmt (Full_View (BT), Exchanged_Views);
            Exchange_Declarations (BT);
         end if;
      end if;
   end Check_Private_View;
 
   -----------------------------
   -- Check_Hidden_Primitives --
   -----------------------------
 
   function Check_Hidden_Primitives (Assoc_List : List_Id) return Elist_Id is
      Actual : Node_Id;
      Gen_T  : Entity_Id;
      Result : Elist_Id := No_Elist;
 
   begin
      if No (Assoc_List) then
         return No_Elist;
      end if;
 
      --  Traverse the list of associations between formals and actuals
      --  searching for renamings of tagged types
 
      Actual := First (Assoc_List);
      while Present (Actual) loop
         if Nkind (Actual) = N_Subtype_Declaration then
            Gen_T := Generic_Parent_Type (Actual);
 
            if Present (Gen_T)
              and then Is_Tagged_Type (Gen_T)
            then
               --  Traverse the list of primitives of the actual types
               --  searching for hidden primitives that are visible in the
               --  corresponding generic formal; leave them visible and
               --  append them to Result to restore their decoration later.
 
               Install_Hidden_Primitives
                 (Prims_List => Result,
                  Gen_T      => Gen_T,
                  Act_T      => Entity (Subtype_Indication (Actual)));
            end if;
         end if;
 
         Next (Actual);
      end loop;
 
      return Result;
   end Check_Hidden_Primitives;
 
   --------------------------
   -- Contains_Instance_Of --
   --------------------------
 
   function Contains_Instance_Of
     (Inner : Entity_Id;
      Outer : Entity_Id;
      N     : Node_Id) return Boolean
   is
      Elmt : Elmt_Id;
      Scop : Entity_Id;
 
   begin
      Scop := Outer;
 
      --  Verify that there are no circular instantiations. We check whether
      --  the unit contains an instance of the current scope or some enclosing
      --  scope (in case one of the instances appears in a subunit). Longer
      --  circularities involving subunits might seem too pathological to
      --  consider, but they were not too pathological for the authors of
      --  DEC bc30vsq, so we loop over all enclosing scopes, and mark all
      --  enclosing generic scopes as containing an instance.
 
      loop
         --  Within a generic subprogram body, the scope is not generic, to
         --  allow for recursive subprograms. Use the declaration to determine
         --  whether this is a generic unit.
 
         if Ekind (Scop) = E_Generic_Package
           or else (Is_Subprogram (Scop)
                      and then Nkind (Unit_Declaration_Node (Scop)) =
                                        N_Generic_Subprogram_Declaration)
         then
            Elmt := First_Elmt (Inner_Instances (Inner));
 
            while Present (Elmt) loop
               if Node (Elmt) = Scop then
                  Error_Msg_Node_2 := Inner;
                  Error_Msg_NE
                    ("circular Instantiation: & instantiated within &!",
                       N, Scop);
                  return True;
 
               elsif Node (Elmt) = Inner then
                  return True;
 
               elsif Contains_Instance_Of (Node (Elmt), Scop, N) then
                  Error_Msg_Node_2 := Inner;
                  Error_Msg_NE
                    ("circular Instantiation: & instantiated within &!",
                      N, Node (Elmt));
                  return True;
               end if;
 
               Next_Elmt (Elmt);
            end loop;
 
            --  Indicate that Inner is being instantiated within Scop
 
            Append_Elmt (Inner, Inner_Instances (Scop));
         end if;
 
         if Scop = Standard_Standard then
            exit;
         else
            Scop := Scope (Scop);
         end if;
      end loop;
 
      return False;
   end Contains_Instance_Of;
 
   -----------------------
   -- Copy_Generic_Node --
   -----------------------
 
   function Copy_Generic_Node
     (N             : Node_Id;
      Parent_Id     : Node_Id;
      Instantiating : Boolean) return Node_Id
   is
      Ent   : Entity_Id;
      New_N : Node_Id;
 
      function Copy_Generic_Descendant (D : Union_Id) return Union_Id;
      --  Check the given value of one of the Fields referenced by the
      --  current node to determine whether to copy it recursively. The
      --  field may hold a Node_Id, a List_Id, or an Elist_Id, or a plain
      --  value (Sloc, Uint, Char) in which case it need not be copied.
 
      procedure Copy_Descendants;
      --  Common utility for various nodes
 
      function Copy_Generic_Elist (E : Elist_Id) return Elist_Id;
      --  Make copy of element list
 
      function Copy_Generic_List
        (L         : List_Id;
         Parent_Id : Node_Id) return List_Id;
      --  Apply Copy_Node recursively to the members of a node list
 
      function In_Defining_Unit_Name (Nam : Node_Id) return Boolean;
      --  True if an identifier is part of the defining program unit name
      --  of a child unit. The entity of such an identifier must be kept
      --  (for ASIS use) even though as the name of an enclosing generic
      --   it would otherwise not be preserved in the generic tree.
 
      ----------------------
      -- Copy_Descendants --
      ----------------------
 
      procedure Copy_Descendants is
 
         use Atree.Unchecked_Access;
         --  This code section is part of the implementation of an untyped
         --  tree traversal, so it needs direct access to node fields.
 
      begin
         Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
         Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
         Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
         Set_Field4 (New_N, Copy_Generic_Descendant (Field4 (N)));
         Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
      end Copy_Descendants;
 
      -----------------------------
      -- Copy_Generic_Descendant --
      -----------------------------
 
      function Copy_Generic_Descendant (D : Union_Id) return Union_Id is
      begin
         if D = Union_Id (Empty) then
            return D;
 
         elsif D in Node_Range then
            return Union_Id
              (Copy_Generic_Node (Node_Id (D), New_N, Instantiating));
 
         elsif D in List_Range then
            return Union_Id (Copy_Generic_List (List_Id (D), New_N));
 
         elsif D in Elist_Range then
            return Union_Id (Copy_Generic_Elist (Elist_Id (D)));
 
         --  Nothing else is copyable (e.g. Uint values), return as is
 
         else
            return D;
         end if;
      end Copy_Generic_Descendant;
 
      ------------------------
      -- Copy_Generic_Elist --
      ------------------------
 
      function Copy_Generic_Elist (E : Elist_Id) return Elist_Id is
         M : Elmt_Id;
         L : Elist_Id;
 
      begin
         if Present (E) then
            L := New_Elmt_List;
            M := First_Elmt (E);
            while Present (M) loop
               Append_Elmt
                 (Copy_Generic_Node (Node (M), Empty, Instantiating), L);
               Next_Elmt (M);
            end loop;
 
            return L;
 
         else
            return No_Elist;
         end if;
      end Copy_Generic_Elist;
 
      -----------------------
      -- Copy_Generic_List --
      -----------------------
 
      function Copy_Generic_List
        (L         : List_Id;
         Parent_Id : Node_Id) return List_Id
      is
         N     : Node_Id;
         New_L : List_Id;
 
      begin
         if Present (L) then
            New_L := New_List;
            Set_Parent (New_L, Parent_Id);
 
            N := First (L);
            while Present (N) loop
               Append (Copy_Generic_Node (N, Empty, Instantiating), New_L);
               Next (N);
            end loop;
 
            return New_L;
 
         else
            return No_List;
         end if;
      end Copy_Generic_List;
 
      ---------------------------
      -- In_Defining_Unit_Name --
      ---------------------------
 
      function In_Defining_Unit_Name (Nam : Node_Id) return Boolean is
      begin
         return Present (Parent (Nam))
           and then (Nkind (Parent (Nam)) = N_Defining_Program_Unit_Name
                      or else
                        (Nkind (Parent (Nam)) = N_Expanded_Name
                          and then In_Defining_Unit_Name (Parent (Nam))));
      end In_Defining_Unit_Name;
 
   --  Start of processing for Copy_Generic_Node
 
   begin
      if N = Empty then
         return N;
      end if;
 
      New_N := New_Copy (N);
 
      --  Copy aspects if present
 
      if Has_Aspects (N) then
         Set_Has_Aspects (New_N, False);
         Set_Aspect_Specifications
           (New_N, Copy_Generic_List (Aspect_Specifications (N), Parent_Id));
      end if;
 
      if Instantiating then
         Adjust_Instantiation_Sloc (New_N, S_Adjustment);
      end if;
 
      if not Is_List_Member (N) then
         Set_Parent (New_N, Parent_Id);
      end if;
 
      --  If defining identifier, then all fields have been copied already
 
      if Nkind (New_N) in N_Entity then
         null;
 
      --  Special casing for identifiers and other entity names and operators
 
      elsif Nkind_In (New_N, N_Identifier,
                             N_Character_Literal,
                             N_Expanded_Name,
                             N_Operator_Symbol)
        or else Nkind (New_N) in N_Op
      then
         if not Instantiating then
 
            --  Link both nodes in order to assign subsequently the entity of
            --  the copy to the original node, in case this is a global
            --  reference.
 
            Set_Associated_Node (N, New_N);
 
            --  If we are within an instantiation, this is a nested generic
            --  that has already been analyzed at the point of definition. We
            --  must preserve references that were global to the enclosing
            --  parent at that point. Other occurrences, whether global or
            --  local to the current generic, must be resolved anew, so we
            --  reset the entity in the generic copy. A global reference has a
            --  smaller depth than the parent, or else the same depth in case
            --  both are distinct compilation units.
            --  A child unit is implicitly declared within the enclosing parent
            --  but is in fact global to it, and must be preserved.
 
            --  It is also possible for Current_Instantiated_Parent to be
            --  defined, and for this not to be a nested generic, namely if the
            --  unit is loaded through Rtsfind. In that case, the entity of
            --  New_N is only a link to the associated node, and not a defining
            --  occurrence.
 
            --  The entities for parent units in the defining_program_unit of a
            --  generic child unit are established when the context of the unit
            --  is first analyzed, before the generic copy is made. They are
            --  preserved in the copy for use in ASIS queries.
 
            Ent := Entity (New_N);
 
            if No (Current_Instantiated_Parent.Gen_Id) then
               if No (Ent)
                 or else Nkind (Ent) /= N_Defining_Identifier
                 or else not In_Defining_Unit_Name (N)
               then
                  Set_Associated_Node (New_N, Empty);
               end if;
 
            elsif No (Ent)
              or else
                not Nkind_In (Ent, N_Defining_Identifier,
                                   N_Defining_Character_Literal,
                                   N_Defining_Operator_Symbol)
              or else No (Scope (Ent))
              or else
                (Scope (Ent) = Current_Instantiated_Parent.Gen_Id
                  and then not Is_Child_Unit (Ent))
              or else
                (Scope_Depth (Scope (Ent)) >
                             Scope_Depth (Current_Instantiated_Parent.Gen_Id)
                  and then
                    Get_Source_Unit (Ent) =
                    Get_Source_Unit (Current_Instantiated_Parent.Gen_Id))
            then
               Set_Associated_Node (New_N, Empty);
            end if;
 
         --  Case of instantiating identifier or some other name or operator
 
         else
            --  If the associated node is still defined, the entity in it is
            --  global, and must be copied to the instance. If this copy is
            --  being made for a body to inline, it is applied to an
            --  instantiated tree, and the entity is already present and must
            --  be also preserved.
 
            declare
               Assoc : constant Node_Id := Get_Associated_Node (N);
 
            begin
               if Present (Assoc) then
                  if Nkind (Assoc) = Nkind (N) then
                     Set_Entity (New_N, Entity (Assoc));
                     Check_Private_View (N);
 
                  elsif Nkind (Assoc) = N_Function_Call then
                     Set_Entity (New_N, Entity (Name (Assoc)));
 
                  elsif Nkind_In (Assoc, N_Defining_Identifier,
                                         N_Defining_Character_Literal,
                                         N_Defining_Operator_Symbol)
                    and then Expander_Active
                  then
                     --  Inlining case: we are copying a tree that contains
                     --  global entities, which are preserved in the copy to be
                     --  used for subsequent inlining.
 
                     null;
 
                  else
                     Set_Entity (New_N, Empty);
                  end if;
               end if;
            end;
         end if;
 
         --  For expanded name, we must copy the Prefix and Selector_Name
 
         if Nkind (N) = N_Expanded_Name then
            Set_Prefix
              (New_N, Copy_Generic_Node (Prefix (N), New_N, Instantiating));
 
            Set_Selector_Name (New_N,
              Copy_Generic_Node (Selector_Name (N), New_N, Instantiating));
 
         --  For operators, we must copy the right operand
 
         elsif Nkind (N) in N_Op then
            Set_Right_Opnd (New_N,
              Copy_Generic_Node (Right_Opnd (N), New_N, Instantiating));
 
            --  And for binary operators, the left operand as well
 
            if Nkind (N) in N_Binary_Op then
               Set_Left_Opnd (New_N,
                 Copy_Generic_Node (Left_Opnd (N), New_N, Instantiating));
            end if;
         end if;
 
      --  Special casing for stubs
 
      elsif Nkind (N) in N_Body_Stub then
 
         --  In any case, we must copy the specification or defining
         --  identifier as appropriate.
 
         if Nkind (N) = N_Subprogram_Body_Stub then
            Set_Specification (New_N,
              Copy_Generic_Node (Specification (N), New_N, Instantiating));
 
         else
            Set_Defining_Identifier (New_N,
              Copy_Generic_Node
                (Defining_Identifier (N), New_N, Instantiating));
         end if;
 
         --  If we are not instantiating, then this is where we load and
         --  analyze subunits, i.e. at the point where the stub occurs. A
         --  more permissive system might defer this analysis to the point
         --  of instantiation, but this seems to complicated for now.
 
         if not Instantiating then
            declare
               Subunit_Name : constant Unit_Name_Type := Get_Unit_Name (N);
               Subunit      : Node_Id;
               Unum         : Unit_Number_Type;
               New_Body     : Node_Id;
 
            begin
               --  Make sure that, if it is a subunit of the main unit that is
               --  preprocessed and if -gnateG is specified, the preprocessed
               --  file will be written.
 
               Lib.Analysing_Subunit_Of_Main :=
                 Lib.In_Extended_Main_Source_Unit (N);
               Unum :=
                 Load_Unit
                   (Load_Name  => Subunit_Name,
                    Required   => False,
                    Subunit    => True,
                    Error_Node => N);
               Lib.Analysing_Subunit_Of_Main := False;
 
               --  If the proper body is not found, a warning message will be
               --  emitted when analyzing the stub, or later at the point
               --  of instantiation. Here we just leave the stub as is.
 
               if Unum = No_Unit then
                  Subunits_Missing := True;
                  goto Subunit_Not_Found;
               end if;
 
               Subunit := Cunit (Unum);
 
               if Nkind (Unit (Subunit)) /= N_Subunit then
                  Error_Msg_N
                    ("found child unit instead of expected SEPARATE subunit",
                     Subunit);
                  Error_Msg_Sloc := Sloc (N);
                  Error_Msg_N ("\to complete stub #", Subunit);
                  goto Subunit_Not_Found;
               end if;
 
               --  We must create a generic copy of the subunit, in order to
               --  perform semantic analysis on it, and we must replace the
               --  stub in the original generic unit with the subunit, in order
               --  to preserve non-local references within.
 
               --  Only the proper body needs to be copied. Library_Unit and
               --  context clause are simply inherited by the generic copy.
               --  Note that the copy (which may be recursive if there are
               --  nested subunits) must be done first, before attaching it to
               --  the enclosing generic.
 
               New_Body :=
                 Copy_Generic_Node
                   (Proper_Body (Unit (Subunit)),
                    Empty, Instantiating => False);
 
               --  Now place the original proper body in the original generic
               --  unit. This is a body, not a compilation unit.
 
               Rewrite (N, Proper_Body (Unit (Subunit)));
               Set_Is_Compilation_Unit (Defining_Entity (N), False);
               Set_Was_Originally_Stub (N);
 
               --  Finally replace the body of the subunit with its copy, and
               --  make this new subunit into the library unit of the generic
               --  copy, which does not have stubs any longer.
 
               Set_Proper_Body (Unit (Subunit), New_Body);
               Set_Library_Unit (New_N, Subunit);
               Inherit_Context (Unit (Subunit), N);
            end;
 
         --  If we are instantiating, this must be an error case, since
         --  otherwise we would have replaced the stub node by the proper body
         --  that corresponds. So just ignore it in the copy (i.e. we have
         --  copied it, and that is good enough).
 
         else
            null;
         end if;
 
         <<Subunit_Not_Found>> null;
 
      --  If the node is a compilation unit, it is the subunit of a stub, which
      --  has been loaded already (see code below). In this case, the library
      --  unit field of N points to the parent unit (which is a compilation
      --  unit) and need not (and cannot!) be copied.
 
      --  When the proper body of the stub is analyzed, the library_unit link
      --  is used to establish the proper context (see sem_ch10).
 
      --  The other fields of a compilation unit are copied as usual
 
      elsif Nkind (N) = N_Compilation_Unit then
 
         --  This code can only be executed when not instantiating, because in
         --  the copy made for an instantiation, the compilation unit node has
         --  disappeared at the point that a stub is replaced by its proper
         --  body.
 
         pragma Assert (not Instantiating);
 
         Set_Context_Items (New_N,
           Copy_Generic_List (Context_Items (N), New_N));
 
         Set_Unit (New_N,
           Copy_Generic_Node (Unit (N), New_N, False));
 
         Set_First_Inlined_Subprogram (New_N,
           Copy_Generic_Node
             (First_Inlined_Subprogram (N), New_N, False));
 
         Set_Aux_Decls_Node (New_N,
           Copy_Generic_Node (Aux_Decls_Node (N), New_N, False));
 
      --  For an assignment node, the assignment is known to be semantically
      --  legal if we are instantiating the template. This avoids incorrect
      --  diagnostics in generated code.
 
      elsif Nkind (N) = N_Assignment_Statement then
 
         --  Copy name and expression fields in usual manner
 
         Set_Name (New_N,
           Copy_Generic_Node (Name (N), New_N, Instantiating));
 
         Set_Expression (New_N,
           Copy_Generic_Node (Expression (N), New_N, Instantiating));
 
         if Instantiating then
            Set_Assignment_OK (Name (New_N), True);
         end if;
 
      elsif Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
         if not Instantiating then
            Set_Associated_Node (N, New_N);
 
         else
            if Present (Get_Associated_Node (N))
              and then Nkind (Get_Associated_Node (N)) = Nkind (N)
            then
               --  In the generic the aggregate has some composite type. If at
               --  the point of instantiation the type has a private view,
               --  install the full view (and that of its ancestors, if any).
 
               declare
                  T   : Entity_Id := (Etype (Get_Associated_Node (New_N)));
                  Rt  : Entity_Id;
 
               begin
                  if Present (T)
                    and then Is_Private_Type (T)
                  then
                     Switch_View (T);
                  end if;
 
                  if Present (T)
                    and then Is_Tagged_Type (T)
                    and then Is_Derived_Type (T)
                  then
                     Rt := Root_Type (T);
 
                     loop
                        T := Etype (T);
 
                        if Is_Private_Type (T) then
                           Switch_View (T);
                        end if;
 
                        exit when T = Rt;
                     end loop;
                  end if;
               end;
            end if;
         end if;
 
         --  Do not copy the associated node, which points to the generic copy
         --  of the aggregate.
 
         declare
            use Atree.Unchecked_Access;
            --  This code section is part of the implementation of an untyped
            --  tree traversal, so it needs direct access to node fields.
 
         begin
            Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
            Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
            Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
            Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
         end;
 
      --  Allocators do not have an identifier denoting the access type, so we
      --  must locate it through the expression to check whether the views are
      --  consistent.
 
      elsif Nkind (N) = N_Allocator
        and then Nkind (Expression (N)) = N_Qualified_Expression
        and then Is_Entity_Name (Subtype_Mark (Expression (N)))
        and then Instantiating
      then
         declare
            T     : constant Node_Id :=
                      Get_Associated_Node (Subtype_Mark (Expression (N)));
            Acc_T : Entity_Id;
 
         begin
            if Present (T) then
 
               --  Retrieve the allocator node in the generic copy
 
               Acc_T := Etype (Parent (Parent (T)));
               if Present (Acc_T)
                 and then Is_Private_Type (Acc_T)
               then
                  Switch_View (Acc_T);
               end if;
            end if;
 
            Copy_Descendants;
         end;
 
      --  For a proper body, we must catch the case of a proper body that
      --  replaces a stub. This represents the point at which a separate
      --  compilation unit, and hence template file, may be referenced, so we
      --  must make a new source instantiation entry for the template of the
      --  subunit, and ensure that all nodes in the subunit are adjusted using
      --  this new source instantiation entry.
 
      elsif Nkind (N) in N_Proper_Body then
         declare
            Save_Adjustment : constant Sloc_Adjustment := S_Adjustment;
 
         begin
            if Instantiating and then Was_Originally_Stub (N) then
               Create_Instantiation_Source
                 (Instantiation_Node,
                  Defining_Entity (N),
                  False,
                  S_Adjustment);
            end if;
 
            --  Now copy the fields of the proper body, using the new
            --  adjustment factor if one was needed as per test above.
 
            Copy_Descendants;
 
            --  Restore the original adjustment factor in case changed
 
            S_Adjustment := Save_Adjustment;
         end;
 
      --  Don't copy Ident or Comment pragmas, since the comment belongs to the
      --  generic unit, not to the instantiating unit.
 
      elsif Nkind (N) = N_Pragma and then Instantiating then
         declare
            Prag_Id : constant Pragma_Id := Get_Pragma_Id (N);
         begin
            if Prag_Id = Pragma_Ident or else Prag_Id = Pragma_Comment then
               New_N := Make_Null_Statement (Sloc (N));
 
            else
               Copy_Descendants;
            end if;
         end;
 
      elsif Nkind_In (N, N_Integer_Literal, N_Real_Literal) then
 
         --  No descendant fields need traversing
 
         null;
 
      elsif Nkind (N) = N_String_Literal
        and then Present (Etype (N))
        and then Instantiating
      then
         --  If the string is declared in an outer scope, the string_literal
         --  subtype created for it may have the wrong scope. We force the
         --  reanalysis of the constant to generate a new itype in the proper
         --  context.
 
         Set_Etype (New_N, Empty);
         Set_Analyzed (New_N, False);
 
      --  For the remaining nodes, copy their descendants recursively
 
      else
         Copy_Descendants;
 
         if Instantiating and then Nkind (N) = N_Subprogram_Body then
            Set_Generic_Parent (Specification (New_N), N);
 
            --  Should preserve Corresponding_Spec??? (12.3(14))
         end if;
      end if;
 
      return New_N;
   end Copy_Generic_Node;
 
   ----------------------------
   -- Denotes_Formal_Package --
   ----------------------------
 
   function Denotes_Formal_Package
     (Pack     : Entity_Id;
      On_Exit  : Boolean := False;
      Instance : Entity_Id := Empty) return Boolean
   is
      Par  : Entity_Id;
      Scop : constant Entity_Id := Scope (Pack);
      E    : Entity_Id;
 
      function Is_Actual_Of_Previous_Formal (P : Entity_Id) return Boolean;
      --  The package in question may be an actual for a previous formal
      --  package P of the current instance, so examine its actuals as well.
      --  This must be recursive over other formal packages.
 
      ----------------------------------
      -- Is_Actual_Of_Previous_Formal --
      ----------------------------------
 
      function Is_Actual_Of_Previous_Formal (P : Entity_Id) return Boolean is
         E1 : Entity_Id;
 
      begin
         E1 := First_Entity (P);
         while Present (E1) and then  E1 /= Instance loop
            if Ekind (E1) = E_Package
              and then Nkind (Parent (E1)) = N_Package_Renaming_Declaration
            then
               if Renamed_Object (E1) = Pack then
                  return True;
 
               elsif E1 = P or else  Renamed_Object (E1) = P then
                  return False;
 
               elsif Is_Actual_Of_Previous_Formal (E1) then
                  return True;
               end if;
            end if;
 
            Next_Entity (E1);
         end loop;
 
         return False;
      end Is_Actual_Of_Previous_Formal;
 
   --  Start of processing for Denotes_Formal_Package
 
   begin
      if On_Exit then
         Par :=
           Instance_Envs.Table
             (Instance_Envs.Last).Instantiated_Parent.Act_Id;
      else
         Par := Current_Instantiated_Parent.Act_Id;
      end if;
 
      if Ekind (Scop) = E_Generic_Package
        or else Nkind (Unit_Declaration_Node (Scop)) =
                                         N_Generic_Subprogram_Declaration
      then
         return True;
 
      elsif Nkind (Original_Node (Unit_Declaration_Node (Pack))) =
        N_Formal_Package_Declaration
      then
         return True;
 
      elsif No (Par) then
         return False;
 
      else
         --  Check whether this package is associated with a formal package of
         --  the enclosing instantiation. Iterate over the list of renamings.
 
         E := First_Entity (Par);
         while Present (E) loop
            if Ekind (E) /= E_Package
              or else Nkind (Parent (E)) /= N_Package_Renaming_Declaration
            then
               null;
 
            elsif Renamed_Object (E) = Par then
               return False;
 
            elsif Renamed_Object (E) = Pack then
               return True;
 
            elsif Is_Actual_Of_Previous_Formal (E) then
               return True;
 
            end if;
 
            Next_Entity (E);
         end loop;
 
         return False;
      end if;
   end Denotes_Formal_Package;
 
   -----------------
   -- End_Generic --
   -----------------
 
   procedure End_Generic is
   begin
      --  ??? More things could be factored out in this routine. Should
      --  probably be done at a later stage.
 
      Inside_A_Generic := Generic_Flags.Table (Generic_Flags.Last);
      Generic_Flags.Decrement_Last;
 
      Expander_Mode_Restore;
   end End_Generic;
 
   -------------
   -- Earlier --
   -------------
 
   function Earlier (N1, N2 : Node_Id) return Boolean is
      procedure Find_Depth (P : in out Node_Id; D : in out Integer);
      --  Find distance from given node to enclosing compilation unit
 
      ----------------
      -- Find_Depth --
      ----------------
 
      procedure Find_Depth (P : in out Node_Id; D : in out Integer) is
      begin
         while Present (P)
           and then Nkind (P) /= N_Compilation_Unit
         loop
            P := True_Parent (P);
            D := D + 1;
         end loop;
      end Find_Depth;
 
      --  Local declarations
 
      D1 : Integer := 0;
      D2 : Integer := 0;
      P1 : Node_Id := N1;
      P2 : Node_Id := N2;
 
   --  Start of processing for Earlier
 
   begin
      Find_Depth (P1, D1);
      Find_Depth (P2, D2);
 
      if P1 /= P2 then
         return False;
      else
         P1 := N1;
         P2 := N2;
      end if;
 
      while D1 > D2 loop
         P1 := True_Parent (P1);
         D1 := D1 - 1;
      end loop;
 
      while D2 > D1 loop
         P2 := True_Parent (P2);
         D2 := D2 - 1;
      end loop;
 
      --  At this point P1 and P2 are at the same distance from the root.
      --  We examine their parents until we find a common declarative list.
      --  If we reach the root, N1 and N2 do not descend from the same
      --  declarative list (e.g. one is nested in the declarative part and
      --  the other is in a block in the statement part) and the earlier
      --  one is already frozen.
 
      while not Is_List_Member (P1)
        or else not Is_List_Member (P2)
        or else List_Containing (P1) /= List_Containing (P2)
      loop
         P1 := True_Parent (P1);
         P2 := True_Parent (P2);
 
         if Nkind (Parent (P1)) = N_Subunit then
            P1 := Corresponding_Stub (Parent (P1));
         end if;
 
         if Nkind (Parent (P2)) = N_Subunit then
            P2 := Corresponding_Stub (Parent (P2));
         end if;
 
         if P1 = P2 then
            return False;
         end if;
      end loop;
 
      --  Expanded code usually shares the source location of the original
      --  construct it was generated for. This however may not necessarely
      --  reflect the true location of the code within the tree.
 
      --  Before comparing the slocs of the two nodes, make sure that we are
      --  working with correct source locations. Assume that P1 is to the left
      --  of P2. If either one does not come from source, traverse the common
      --  list heading towards the other node and locate the first source
      --  statement.
 
      --             P1                     P2
      --     ----+===+===+--------------+===+===+----
      --          expanded code          expanded code
 
      if not Comes_From_Source (P1) then
         while Present (P1) loop
 
            --  Neither P2 nor a source statement were located during the
            --  search. If we reach the end of the list, then P1 does not
            --  occur earlier than P2.
 
            --                     ---->
            --   start --- P2 ----- P1 --- end
 
            if No (Next (P1)) then
               return False;
 
            --  We encounter P2 while going to the right of the list. This
            --  means that P1 does indeed appear earlier.
 
            --             ---->
            --    start --- P1 ===== P2 --- end
            --                 expanded code in between
 
            elsif P1 = P2 then
               return True;
 
            --  No need to look any further since we have located a source
            --  statement.
 
            elsif Comes_From_Source (P1) then
               exit;
            end if;
 
            --  Keep going right
 
            Next (P1);
         end loop;
      end if;
 
      if not Comes_From_Source (P2) then
         while Present (P2) loop
 
            --  Neither P1 nor a source statement were located during the
            --  search. If we reach the start of the list, then P1 does not
            --  occur earlier than P2.
 
            --            <----
            --    start --- P2 --- P1 --- end
 
            if No (Prev (P2)) then
               return False;
 
            --  We encounter P1 while going to the left of the list. This
            --  means that P1 does indeed appear earlier.
 
            --                     <----
            --    start --- P1 ===== P2 --- end
            --                 expanded code in between
 
            elsif P2 = P1 then
               return True;
 
            --  No need to look any further since we have located a source
            --  statement.
 
            elsif Comes_From_Source (P2) then
               exit;
            end if;
 
            --  Keep going left
 
            Prev (P2);
         end loop;
      end if;
 
      --  At this point either both nodes came from source or we approximated
      --  their source locations through neighbouring source statements. There
      --  is no need to look at the top level locations of P1 and P2 because
      --  both nodes are in the same list and whether the enclosing context is
      --  instantiated is irrelevant.
 
      return Sloc (P1) < Sloc (P2);
   end Earlier;
 
   ----------------------
   -- Find_Actual_Type --
   ----------------------
 
   function Find_Actual_Type
     (Typ      : Entity_Id;
      Gen_Type : Entity_Id) return Entity_Id
   is
      Gen_Scope : constant Entity_Id := Scope (Gen_Type);
      T         : Entity_Id;
 
   begin
      --  Special processing only applies to child units
 
      if not Is_Child_Unit (Gen_Scope) then
         return Get_Instance_Of (Typ);
 
      --  If designated or component type is itself a formal of the child unit,
      --  its instance is available.
 
      elsif Scope (Typ) = Gen_Scope then
         return Get_Instance_Of (Typ);
 
      --  If the array or access type is not declared in the parent unit,
      --  no special processing needed.
 
      elsif not Is_Generic_Type (Typ)
        and then Scope (Gen_Scope) /= Scope (Typ)
      then
         return Get_Instance_Of (Typ);
 
      --  Otherwise, retrieve designated or component type by visibility
 
      else
         T := Current_Entity (Typ);
         while Present (T) loop
            if In_Open_Scopes (Scope (T)) then
               return T;
 
            elsif Is_Generic_Actual_Type (T) then
               return T;
            end if;
 
            T := Homonym (T);
         end loop;
 
         return Typ;
      end if;
   end Find_Actual_Type;
 
   ----------------------------
   -- Freeze_Subprogram_Body --
   ----------------------------
 
   procedure Freeze_Subprogram_Body
     (Inst_Node : Node_Id;
      Gen_Body  : Node_Id;
      Pack_Id   : Entity_Id)
  is
      Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node);
      Par      : constant Entity_Id := Scope (Gen_Unit);
      E_G_Id   : Entity_Id;
      Enc_G    : Entity_Id;
      Enc_I    : Node_Id;
      F_Node   : Node_Id;
 
      function Enclosing_Package_Body (N : Node_Id) return Node_Id;
      --  Find innermost package body that encloses the given node, and which
      --  is not a compilation unit. Freeze nodes for the instance, or for its
      --  enclosing body, may be inserted after the enclosing_body of the
      --  generic unit. Used to determine proper placement of freeze node for
      --  both package and subprogram instances.
 
      function Package_Freeze_Node (B : Node_Id) return Node_Id;
      --  Find entity for given package body, and locate or create a freeze
      --  node for it.
 
      ----------------------------
      -- Enclosing_Package_Body --
      ----------------------------
 
      function Enclosing_Package_Body (N : Node_Id) return Node_Id is
         P : Node_Id;
 
      begin
         P := Parent (N);
         while Present (P)
           and then Nkind (Parent (P)) /= N_Compilation_Unit
         loop
            if Nkind (P) = N_Package_Body then
               if Nkind (Parent (P)) = N_Subunit then
                  return Corresponding_Stub (Parent (P));
               else
                  return P;
               end if;
            end if;
 
            P := True_Parent (P);
         end loop;
 
         return Empty;
      end Enclosing_Package_Body;
 
      -------------------------
      -- Package_Freeze_Node --
      -------------------------
 
      function Package_Freeze_Node (B : Node_Id) return Node_Id is
         Id : Entity_Id;
 
      begin
         if Nkind (B) = N_Package_Body then
            Id := Corresponding_Spec (B);
         else pragma Assert (Nkind (B) = N_Package_Body_Stub);
            Id := Corresponding_Spec (Proper_Body (Unit (Library_Unit (B))));
         end if;
 
         Ensure_Freeze_Node (Id);
         return Freeze_Node (Id);
      end Package_Freeze_Node;
 
   --  Start of processing of Freeze_Subprogram_Body
 
   begin
      --  If the instance and the generic body appear within the same unit, and
      --  the instance precedes the generic, the freeze node for the instance
      --  must appear after that of the generic. If the generic is nested
      --  within another instance I2, then current instance must be frozen
      --  after I2. In both cases, the freeze nodes are those of enclosing
      --  packages. Otherwise, the freeze node is placed at the end of the
      --  current declarative part.
 
      Enc_G  := Enclosing_Package_Body (Gen_Body);
      Enc_I  := Enclosing_Package_Body (Inst_Node);
      Ensure_Freeze_Node (Pack_Id);
      F_Node := Freeze_Node (Pack_Id);
 
      if Is_Generic_Instance (Par)
        and then Present (Freeze_Node (Par))
        and then In_Same_Declarative_Part (Freeze_Node (Par), Inst_Node)
      then
         --  The parent was a premature instantiation. Insert freeze node at
         --  the end the current declarative part.
 
         if ABE_Is_Certain (Get_Package_Instantiation_Node (Par)) then
            Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
 
         --  Handle the following case:
         --
         --    package Parent_Inst is new ...
         --    Parent_Inst []
         --
         --    procedure P ...  --  this body freezes Parent_Inst
         --
         --    package Inst is new ...
         --
         --  In this particular scenario, the freeze node for Inst must be
         --  inserted in the same manner as that of Parent_Inst - before the
         --  next source body or at the end of the declarative list (body not
         --  available). If body P did not exist and Parent_Inst was frozen
         --  after Inst, either by a body following Inst or at the end of the
         --  declarative region, the freeze node for Inst must be inserted
         --  after that of Parent_Inst. This relation is established by
         --  comparing the Slocs of Parent_Inst freeze node and Inst.
 
         elsif List_Containing (Get_Package_Instantiation_Node (Par)) =
               List_Containing (Inst_Node)
           and then Sloc (Freeze_Node (Par)) < Sloc (Inst_Node)
         then
            Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
 
         else
            Insert_After (Freeze_Node (Par), F_Node);
         end if;
 
      --  The body enclosing the instance should be frozen after the body that
      --  includes the generic, because the body of the instance may make
      --  references to entities therein. If the two are not in the same
      --  declarative part, or if the one enclosing the instance is frozen
      --  already, freeze the instance at the end of the current declarative
      --  part.
 
      elsif Is_Generic_Instance (Par)
        and then Present (Freeze_Node (Par))
        and then Present (Enc_I)
      then
         if In_Same_Declarative_Part (Freeze_Node (Par), Enc_I)
           or else
             (Nkind (Enc_I) = N_Package_Body
               and then
                 In_Same_Declarative_Part (Freeze_Node (Par), Parent (Enc_I)))
         then
            --  The enclosing package may contain several instances. Rather
            --  than computing the earliest point at which to insert its freeze
            --  node, we place it at the end of the declarative part of the
            --  parent of the generic.
 
            Insert_Freeze_Node_For_Instance
              (Freeze_Node (Par), Package_Freeze_Node (Enc_I));
         end if;
 
         Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
 
      elsif Present (Enc_G)
        and then Present (Enc_I)
        and then Enc_G /= Enc_I
        and then Earlier (Inst_Node, Gen_Body)
      then
         if Nkind (Enc_G) = N_Package_Body then
            E_G_Id := Corresponding_Spec (Enc_G);
         else pragma Assert (Nkind (Enc_G) = N_Package_Body_Stub);
            E_G_Id :=
              Corresponding_Spec (Proper_Body (Unit (Library_Unit (Enc_G))));
         end if;
 
         --  Freeze package that encloses instance, and place node after
         --  package that encloses generic. If enclosing package is already
         --  frozen we have to assume it is at the proper place. This may be a
         --  potential ABE that requires dynamic checking. Do not add a freeze
         --  node if the package that encloses the generic is inside the body
         --  that encloses the instance, because the freeze node would be in
         --  the wrong scope. Additional contortions needed if the bodies are
         --  within a subunit.
 
         declare
            Enclosing_Body : Node_Id;
 
         begin
            if Nkind (Enc_I) = N_Package_Body_Stub then
               Enclosing_Body := Proper_Body (Unit (Library_Unit (Enc_I)));
            else
               Enclosing_Body := Enc_I;
            end if;
 
            if Parent (List_Containing (Enc_G)) /= Enclosing_Body then
               Insert_Freeze_Node_For_Instance
                 (Enc_G, Package_Freeze_Node (Enc_I));
            end if;
         end;
 
         --  Freeze enclosing subunit before instance
 
         Ensure_Freeze_Node (E_G_Id);
 
         if not Is_List_Member (Freeze_Node (E_G_Id)) then
            Insert_After (Enc_G, Freeze_Node (E_G_Id));
         end if;
 
         Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
 
      else
         --  If none of the above, insert freeze node at the end of the current
         --  declarative part.
 
         Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
      end if;
   end Freeze_Subprogram_Body;
 
   ----------------
   -- Get_Gen_Id --
   ----------------
 
   function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id is
   begin
      return Generic_Renamings.Table (E).Gen_Id;
   end Get_Gen_Id;
 
   ---------------------
   -- Get_Instance_Of --
   ---------------------
 
   function Get_Instance_Of (A : Entity_Id) return Entity_Id is
      Res : constant Assoc_Ptr := Generic_Renamings_HTable.Get (A);
 
   begin
      if Res /= Assoc_Null then
         return Generic_Renamings.Table (Res).Act_Id;
      else
         --  On exit, entity is not instantiated: not a generic parameter, or
         --  else parameter of an inner generic unit.
 
         return A;
      end if;
   end Get_Instance_Of;
 
   ------------------------------------
   -- Get_Package_Instantiation_Node --
   ------------------------------------
 
   function Get_Package_Instantiation_Node (A : Entity_Id) return Node_Id is
      Decl : Node_Id := Unit_Declaration_Node (A);
      Inst : Node_Id;
 
   begin
      --  If the Package_Instantiation attribute has been set on the package
      --  entity, then use it directly when it (or its Original_Node) refers
      --  to an N_Package_Instantiation node. In principle it should be
      --  possible to have this field set in all cases, which should be
      --  investigated, and would allow this function to be significantly
      --  simplified. ???
 
      Inst := Package_Instantiation (A);
 
      if Present (Inst) then
         if Nkind (Inst) = N_Package_Instantiation then
            return Inst;
 
         elsif Nkind (Original_Node (Inst)) = N_Package_Instantiation then
            return Original_Node (Inst);
         end if;
      end if;
 
      --  If the instantiation is a compilation unit that does not need body
      --  then the instantiation node has been rewritten as a package
      --  declaration for the instance, and we return the original node.
 
      --  If it is a compilation unit and the instance node has not been
      --  rewritten, then it is still the unit of the compilation. Finally, if
      --  a body is present, this is a parent of the main unit whose body has
      --  been compiled for inlining purposes, and the instantiation node has
      --  been rewritten with the instance body.
 
      --  Otherwise the instantiation node appears after the declaration. If
      --  the entity is a formal package, the declaration may have been
      --  rewritten as a generic declaration (in the case of a formal with box)
      --  or left as a formal package declaration if it has actuals, and is
      --  found with a forward search.
 
      if Nkind (Parent (Decl)) = N_Compilation_Unit then
         if Nkind (Decl) = N_Package_Declaration
           and then Present (Corresponding_Body (Decl))
         then
            Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
         end if;
 
         if Nkind (Original_Node (Decl)) = N_Package_Instantiation then
            return Original_Node (Decl);
         else
            return Unit (Parent (Decl));
         end if;
 
      elsif Nkind (Decl) = N_Package_Declaration
        and then Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration
      then
         return Original_Node (Decl);
 
      else
         Inst := Next (Decl);
         while not Nkind_In (Inst, N_Package_Instantiation,
                                   N_Formal_Package_Declaration)
         loop
            Next (Inst);
         end loop;
 
         return Inst;
      end if;
   end Get_Package_Instantiation_Node;
 
   ------------------------
   -- Has_Been_Exchanged --
   ------------------------
 
   function Has_Been_Exchanged (E : Entity_Id) return Boolean is
      Next : Elmt_Id;
 
   begin
      Next := First_Elmt (Exchanged_Views);
      while Present (Next) loop
         if Full_View (Node (Next)) = E then
            return True;
         end if;
 
         Next_Elmt (Next);
      end loop;
 
      return False;
   end Has_Been_Exchanged;
 
   ----------
   -- Hash --
   ----------
 
   function Hash (F : Entity_Id) return HTable_Range is
   begin
      return HTable_Range (F mod HTable_Size);
   end Hash;
 
   ------------------------
   -- Hide_Current_Scope --
   ------------------------
 
   procedure Hide_Current_Scope is
      C : constant Entity_Id := Current_Scope;
      E : Entity_Id;
 
   begin
      Set_Is_Hidden_Open_Scope (C);
 
      E := First_Entity (C);
      while Present (E) loop
         if Is_Immediately_Visible (E) then
            Set_Is_Immediately_Visible (E, False);
            Append_Elmt (E, Hidden_Entities);
         end if;
 
         Next_Entity (E);
      end loop;
 
      --  Make the scope name invisible as well. This is necessary, but might
      --  conflict with calls to Rtsfind later on, in case the scope is a
      --  predefined one. There is no clean solution to this problem, so for
      --  now we depend on the user not redefining Standard itself in one of
      --  the parent units.
 
      if Is_Immediately_Visible (C) and then C /= Standard_Standard then
         Set_Is_Immediately_Visible (C, False);
         Append_Elmt (C, Hidden_Entities);
      end if;
 
   end Hide_Current_Scope;
 
   --------------
   -- Init_Env --
   --------------
 
   procedure Init_Env is
      Saved : Instance_Env;
 
   begin
      Saved.Instantiated_Parent  := Current_Instantiated_Parent;
      Saved.Exchanged_Views      := Exchanged_Views;
      Saved.Hidden_Entities      := Hidden_Entities;
      Saved.Current_Sem_Unit     := Current_Sem_Unit;
      Saved.Parent_Unit_Visible  := Parent_Unit_Visible;
      Saved.Instance_Parent_Unit := Instance_Parent_Unit;
 
      --  Save configuration switches. These may be reset if the unit is a
      --  predefined unit, and the current mode is not Ada 2005.
 
      Save_Opt_Config_Switches (Saved.Switches);
 
      Instance_Envs.Append (Saved);
 
      Exchanged_Views := New_Elmt_List;
      Hidden_Entities := New_Elmt_List;
 
      --  Make dummy entry for Instantiated parent. If generic unit is legal,
      --  this is set properly in Set_Instance_Env.
 
      Current_Instantiated_Parent :=
        (Current_Scope, Current_Scope, Assoc_Null);
   end Init_Env;
 
   ------------------------------
   -- In_Same_Declarative_Part --
   ------------------------------
 
   function In_Same_Declarative_Part
     (F_Node : Node_Id;
      Inst   : Node_Id) return Boolean
   is
      Decls : constant Node_Id := Parent (F_Node);
      Nod   : Node_Id := Parent (Inst);
 
   begin
      while Present (Nod) loop
         if Nod = Decls then
            return True;
 
         elsif Nkind_In (Nod, N_Subprogram_Body,
                              N_Package_Body,
                              N_Package_Declaration,
                              N_Task_Body,
                              N_Protected_Body,
                              N_Block_Statement)
         then
            return False;
 
         elsif Nkind (Nod) = N_Subunit then
            Nod := Corresponding_Stub (Nod);
 
         elsif Nkind (Nod) = N_Compilation_Unit then
            return False;
 
         else
            Nod := Parent (Nod);
         end if;
      end loop;
 
      return False;
   end In_Same_Declarative_Part;
 
   ---------------------
   -- In_Main_Context --
   ---------------------
 
   function In_Main_Context (E : Entity_Id) return Boolean is
      Context : List_Id;
      Clause  : Node_Id;
      Nam     : Node_Id;
 
   begin
      if not Is_Compilation_Unit (E)
        or else Ekind (E) /= E_Package
        or else In_Private_Part (E)
      then
         return False;
      end if;
 
      Context := Context_Items (Cunit (Main_Unit));
 
      Clause  := First (Context);
      while Present (Clause) loop
         if Nkind (Clause) = N_With_Clause then
            Nam := Name (Clause);
 
            --  If the current scope is part of the context of the main unit,
            --  analysis of the corresponding with_clause is not complete, and
            --  the entity is not set. We use the Chars field directly, which
            --  might produce false positives in rare cases, but guarantees
            --  that we produce all the instance bodies we will need.
 
            if (Is_Entity_Name (Nam) and then Chars (Nam) = Chars (E))
                 or else (Nkind (Nam) = N_Selected_Component
                           and then Chars (Selector_Name (Nam)) = Chars (E))
            then
               return True;
            end if;
         end if;
 
         Next (Clause);
      end loop;
 
      return False;
   end In_Main_Context;
 
   ---------------------
   -- Inherit_Context --
   ---------------------
 
   procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id) is
      Current_Context : List_Id;
      Current_Unit    : Node_Id;
      Item            : Node_Id;
      New_I           : Node_Id;
 
   begin
      if Nkind (Parent (Gen_Decl)) = N_Compilation_Unit then
 
         --  The inherited context is attached to the enclosing compilation
         --  unit. This is either the main unit, or the declaration for the
         --  main unit (in case the instantiation appears within the package
         --  declaration and the main unit is its body).
 
         Current_Unit := Parent (Inst);
         while Present (Current_Unit)
           and then Nkind (Current_Unit) /= N_Compilation_Unit
         loop
            Current_Unit := Parent (Current_Unit);
         end loop;
 
         Current_Context := Context_Items (Current_Unit);
 
         Item := First (Context_Items (Parent (Gen_Decl)));
         while Present (Item) loop
            if Nkind (Item) = N_With_Clause then
 
               --  Take care to prevent direct cyclic with's, which can happen
               --  if the generic body with's the current unit. Such a case
               --  would result in binder errors (or run-time errors if the
               --  -gnatE switch is in effect), but we want to prevent it here,
               --  because Sem.Walk_Library_Items doesn't like cycles. Note
               --  that we don't bother to detect indirect cycles.
 
               if Library_Unit (Item) /= Current_Unit then
                  New_I := New_Copy (Item);
                  Set_Implicit_With (New_I, True);
                  Append (New_I, Current_Context);
               end if;
            end if;
 
            Next (Item);
         end loop;
      end if;
   end Inherit_Context;
 
   ----------------
   -- Initialize --
   ----------------
 
   procedure Initialize is
   begin
      Generic_Renamings.Init;
      Instance_Envs.Init;
      Generic_Flags.Init;
      Generic_Renamings_HTable.Reset;
      Circularity_Detected := False;
      Exchanged_Views      := No_Elist;
      Hidden_Entities      := No_Elist;
   end Initialize;
 
   -------------------------------------
   -- Insert_Freeze_Node_For_Instance --
   -------------------------------------
 
   procedure Insert_Freeze_Node_For_Instance
     (N      : Node_Id;
      F_Node : Node_Id)
   is
      Inst  : constant Entity_Id := Entity (F_Node);
      Decl  : Node_Id;
      Decls : List_Id;
      Par_N : Node_Id;
 
      function Enclosing_Body (N : Node_Id) return Node_Id;
      --  Find enclosing package or subprogram body, if any. Freeze node
      --  may be placed at end of current declarative list if previous
      --  instance and current one have different enclosing bodies.
 
      function Previous_Instance (Gen : Entity_Id) return Entity_Id;
      --  Find the local instance, if any, that declares the generic that is
      --  being instantiated. If present, the freeze node for this instance
      --  must follow the freeze node for the previous instance.
 
      --------------------
      -- Enclosing_Body --
      --------------------
 
      function Enclosing_Body (N : Node_Id) return Node_Id is
         P : Node_Id;
 
      begin
         P := Parent (N);
         while Present (P)
           and then Nkind (Parent (P)) /= N_Compilation_Unit
         loop
            if Nkind_In (P, N_Package_Body, N_Subprogram_Body) then
               if Nkind (Parent (P)) = N_Subunit then
                  return Corresponding_Stub (Parent (P));
               else
                  return P;
               end if;
            end if;
 
            P := True_Parent (P);
         end loop;
 
         return Empty;
      end Enclosing_Body;
 
      -----------------------
      -- Previous_Instance --
      -----------------------
 
      function Previous_Instance (Gen : Entity_Id) return Entity_Id is
         S : Entity_Id;
 
      begin
         S := Scope (Gen);
         while Present (S)
           and then S /= Standard_Standard
         loop
            if Is_Generic_Instance (S)
              and then In_Same_Source_Unit (S, N)
            then
               return S;
            end if;
 
            S := Scope (S);
         end loop;
 
         return Empty;
      end Previous_Instance;
 
   --  Start of processing for Insert_Freeze_Node_For_Instance
 
   begin
      if not Is_List_Member (F_Node) then
         Decls := List_Containing (N);
         Par_N := Parent (Decls);
         Decl  := N;
 
         --  If this is a package instance, check whether the generic is
         --  declared in a previous instance and the current instance is
         --  not within the previous one.
 
         if Present (Generic_Parent (Parent (Inst)))
           and then Is_In_Main_Unit (N)
         then
            declare
               Enclosing_N : constant Node_Id := Enclosing_Body (N);
               Par_I       : constant Entity_Id :=
                               Previous_Instance
                                 (Generic_Parent (Parent (Inst)));
               Scop        : Entity_Id;
 
            begin
               if Present (Par_I)
                 and then Earlier (N, Freeze_Node (Par_I))
               then
                  Scop := Scope (Inst);
 
                  --  If the current instance is within the one that contains
                  --  the generic, the freeze node for the current one must
                  --  appear in the current declarative part. Ditto, if the
                  --  current instance is within another package instance or
                  --  within a body that does not enclose the current instance.
                  --  In these three cases the freeze node of the previous
                  --  instance is not relevant.
 
                  while Present (Scop)
                    and then Scop /= Standard_Standard
                  loop
                     exit when Scop = Par_I
                       or else
                         (Is_Generic_Instance (Scop)
                           and then Scope_Depth (Scop) > Scope_Depth (Par_I));
                     Scop := Scope (Scop);
                  end loop;
 
                  --  Previous instance encloses current instance
 
                  if Scop = Par_I then
                     null;
 
                  --  If the next node is a source  body we must freeze in
                  --  the current scope as well.
 
                  elsif Present (Next (N))
                    and then Nkind_In (Next (N),
                      N_Subprogram_Body, N_Package_Body)
                    and then Comes_From_Source (Next (N))
                  then
                     null;
 
                  --  Current instance is within an unrelated instance
 
                  elsif Is_Generic_Instance (Scop) then
                     null;
 
                  --  Current instance is within an unrelated body
 
                  elsif Present (Enclosing_N)
                     and then Enclosing_N /= Enclosing_Body (Par_I)
                  then
                     null;
 
                  else
                     Insert_After (Freeze_Node (Par_I), F_Node);
                     return;
                  end if;
               end if;
            end;
         end if;
 
         --  When the instantiation occurs in a package declaration, append the
         --  freeze node to the private declarations (if any).
 
         if Nkind (Par_N) = N_Package_Specification
           and then Decls = Visible_Declarations (Par_N)
           and then Present (Private_Declarations (Par_N))
           and then not Is_Empty_List (Private_Declarations (Par_N))
         then
            Decls := Private_Declarations (Par_N);
            Decl  := First (Decls);
         end if;
 
         --  Determine the proper freeze point of a package instantiation. We
         --  adhere to the general rule of a package or subprogram body causing
         --  freezing of anything before it in the same declarative region. In
         --  this case, the proper freeze point of a package instantiation is
         --  before the first source body which follows, or before a stub. This
         --  ensures that entities coming from the instance are already frozen
         --  and usable in source bodies.
 
         if Nkind (Par_N) /= N_Package_Declaration
           and then Ekind (Inst) = E_Package
           and then Is_Generic_Instance (Inst)
           and then
             not In_Same_Source_Unit (Generic_Parent (Parent (Inst)), Inst)
         then
            while Present (Decl) loop
               if (Nkind (Decl) in N_Unit_Body
                     or else
                   Nkind (Decl) in N_Body_Stub)
                 and then Comes_From_Source (Decl)
               then
                  Insert_Before (Decl, F_Node);
                  return;
               end if;
 
               Next (Decl);
            end loop;
         end if;
 
         --  In a package declaration, or if no previous body, insert at end
         --  of list.
 
         Set_Sloc (F_Node, Sloc (Last (Decls)));
         Insert_After (Last (Decls), F_Node);
      end if;
   end Insert_Freeze_Node_For_Instance;
 
   ------------------
   -- Install_Body --
   ------------------
 
   procedure Install_Body
     (Act_Body : Node_Id;
      N        : Node_Id;
      Gen_Body : Node_Id;
      Gen_Decl : Node_Id)
   is
      Act_Id    : constant Entity_Id := Corresponding_Spec (Act_Body);
      Act_Unit  : constant Node_Id   := Unit (Cunit (Get_Source_Unit (N)));
      Gen_Id    : constant Entity_Id := Corresponding_Spec (Gen_Body);
      Par       : constant Entity_Id := Scope (Gen_Id);
      Gen_Unit  : constant Node_Id   :=
                    Unit (Cunit (Get_Source_Unit (Gen_Decl)));
      Orig_Body : Node_Id := Gen_Body;
      F_Node    : Node_Id;
      Body_Unit : Node_Id;
 
      Must_Delay : Boolean;
 
      function Enclosing_Subp (Id : Entity_Id) return Entity_Id;
      --  Find subprogram (if any) that encloses instance and/or generic body
 
      function True_Sloc (N : Node_Id) return Source_Ptr;
      --  If the instance is nested inside a generic unit, the Sloc of the
      --  instance indicates the place of the original definition, not the
      --  point of the current enclosing instance. Pending a better usage of
      --  Slocs to indicate instantiation places, we determine the place of
      --  origin of a node by finding the maximum sloc of any ancestor node.
      --  Why is this not equivalent to Top_Level_Location ???
 
      --------------------
      -- Enclosing_Subp --
      --------------------
 
      function Enclosing_Subp (Id : Entity_Id) return Entity_Id is
         Scop : Entity_Id;
 
      begin
         Scop := Scope (Id);
         while Scop /= Standard_Standard
           and then not Is_Overloadable (Scop)
         loop
            Scop := Scope (Scop);
         end loop;
 
         return Scop;
      end Enclosing_Subp;
 
      ---------------
      -- True_Sloc --
      ---------------
 
      function True_Sloc (N : Node_Id) return Source_Ptr is
         Res : Source_Ptr;
         N1  : Node_Id;
 
      begin
         Res := Sloc (N);
         N1 := N;
         while Present (N1) and then N1 /= Act_Unit loop
            if Sloc (N1) > Res then
               Res := Sloc (N1);
            end if;
 
            N1 := Parent (N1);
         end loop;
 
         return Res;
      end True_Sloc;
 
   --  Start of processing for Install_Body
 
   begin
      --  If the body is a subunit, the freeze point is the corresponding stub
      --  in the current compilation, not the subunit itself.
 
      if Nkind (Parent (Gen_Body)) = N_Subunit then
         Orig_Body := Corresponding_Stub (Parent (Gen_Body));
      else
         Orig_Body := Gen_Body;
      end if;
 
      Body_Unit := Unit (Cunit (Get_Source_Unit (Orig_Body)));
 
      --  If the instantiation and the generic definition appear in the same
      --  package declaration, this is an early instantiation. If they appear
      --  in the same declarative part, it is an early instantiation only if
      --  the generic body appears textually later, and the generic body is
      --  also in the main unit.
 
      --  If instance is nested within a subprogram, and the generic body is
      --  not, the instance is delayed because the enclosing body is. If
      --  instance and body are within the same scope, or the same sub-
      --  program body, indicate explicitly that the instance is delayed.
 
      Must_Delay :=
        (Gen_Unit = Act_Unit
          and then (Nkind_In (Gen_Unit, N_Package_Declaration,
                                        N_Generic_Package_Declaration)
                      or else (Gen_Unit = Body_Unit
                                and then True_Sloc (N) < Sloc (Orig_Body)))
          and then Is_In_Main_Unit (Gen_Unit)
          and then (Scope (Act_Id) = Scope (Gen_Id)
                      or else
                    Enclosing_Subp (Act_Id) = Enclosing_Subp (Gen_Id)));
 
      --  If this is an early instantiation, the freeze node is placed after
      --  the generic body. Otherwise, if the generic appears in an instance,
      --  we cannot freeze the current instance until the outer one is frozen.
      --  This is only relevant if the current instance is nested within some
      --  inner scope not itself within the outer instance. If this scope is
      --  a package body in the same declarative part as the outer instance,
      --  then that body needs to be frozen after the outer instance. Finally,
      --  if no delay is needed, we place the freeze node at the end of the
      --  current declarative part.
 
      if Expander_Active then
         Ensure_Freeze_Node (Act_Id);
         F_Node := Freeze_Node (Act_Id);
 
         if Must_Delay then
            Insert_After (Orig_Body, F_Node);
 
         elsif Is_Generic_Instance (Par)
           and then Present (Freeze_Node (Par))
           and then Scope (Act_Id) /= Par
         then
            --  Freeze instance of inner generic after instance of enclosing
            --  generic.
 
            if In_Same_Declarative_Part (Freeze_Node (Par), N) then
 
               --  Handle the following case:
 
               --    package Parent_Inst is new ...
               --    Parent_Inst []
 
               --    procedure P ...  --  this body freezes Parent_Inst
 
               --    package Inst is new ...
 
               --  In this particular scenario, the freeze node for Inst must
               --  be inserted in the same manner as that of Parent_Inst -
               --  before the next source body or at the end of the declarative
               --  list (body not available). If body P did not exist and
               --  Parent_Inst was frozen after Inst, either by a body
               --  following Inst or at the end of the declarative region, the
               --  freeze node for Inst must be inserted after that of
               --  Parent_Inst. This relation is established by comparing the
               --  Slocs of Parent_Inst freeze node and Inst.
 
               if List_Containing (Get_Package_Instantiation_Node (Par)) =
                  List_Containing (N)
                 and then Sloc (Freeze_Node (Par)) < Sloc (N)
               then
                  Insert_Freeze_Node_For_Instance (N, F_Node);
               else
                  Insert_After (Freeze_Node (Par), F_Node);
               end if;
 
            --  Freeze package enclosing instance of inner generic after
            --  instance of enclosing generic.
 
            elsif Nkind_In (Parent (N), N_Package_Body, N_Subprogram_Body)
              and then In_Same_Declarative_Part (Freeze_Node (Par), Parent (N))
            then
               declare
                  Enclosing :  Entity_Id;
 
               begin
                  Enclosing := Corresponding_Spec (Parent (N));
 
                  if No (Enclosing) then
                     Enclosing := Defining_Entity (Parent (N));
                  end if;
 
                  Insert_Freeze_Node_For_Instance (N, F_Node);
                  Ensure_Freeze_Node (Enclosing);
 
                  if not Is_List_Member (Freeze_Node (Enclosing)) then
 
                     --  The enclosing context is a subunit, insert the freeze
                     --  node after the stub.
 
                     if Nkind (Parent (Parent (N))) = N_Subunit then
                        Insert_Freeze_Node_For_Instance
                          (Corresponding_Stub (Parent (Parent (N))),
                           Freeze_Node (Enclosing));
 
                     --  The enclosing context is a package with a stub body
                     --  which has already been replaced by the real body.
                     --  Insert the freeze node after the actual body.
 
                     elsif Ekind (Enclosing) = E_Package
                       and then Present (Body_Entity (Enclosing))
                       and then Was_Originally_Stub
                                  (Parent (Body_Entity (Enclosing)))
                     then
                        Insert_Freeze_Node_For_Instance
                          (Parent (Body_Entity (Enclosing)),
                           Freeze_Node (Enclosing));
 
                     --  The parent instance has been frozen before the body of
                     --  the enclosing package, insert the freeze node after
                     --  the body.
 
                     elsif List_Containing (Freeze_Node (Par)) =
                           List_Containing (Parent (N))
                       and then Sloc (Freeze_Node (Par)) < Sloc (Parent (N))
                     then
                        Insert_Freeze_Node_For_Instance
                          (Parent (N), Freeze_Node (Enclosing));
 
                     else
                        Insert_After
                          (Freeze_Node (Par), Freeze_Node (Enclosing));
                     end if;
                  end if;
               end;
 
            else
               Insert_Freeze_Node_For_Instance (N, F_Node);
            end if;
 
         else
            Insert_Freeze_Node_For_Instance (N, F_Node);
         end if;
      end if;
 
      Set_Is_Frozen (Act_Id);
      Insert_Before (N, Act_Body);
      Mark_Rewrite_Insertion (Act_Body);
   end Install_Body;
 
   -----------------------------
   -- Install_Formal_Packages --
   -----------------------------
 
   procedure Install_Formal_Packages (Par : Entity_Id) is
      E     : Entity_Id;
      Gen   : Entity_Id;
      Gen_E : Entity_Id := Empty;
 
   begin
      E := First_Entity (Par);
 
      --  If we are installing an instance parent, locate the formal packages
      --  of its generic parent.
 
      if Is_Generic_Instance (Par) then
         Gen   := Generic_Parent (Specification (Unit_Declaration_Node (Par)));
         Gen_E := First_Entity (Gen);
      end if;
 
      while Present (E) loop
         if Ekind (E) = E_Package
           and then Nkind (Parent (E)) = N_Package_Renaming_Declaration
         then
            --  If this is the renaming for the parent instance, done
 
            if Renamed_Object (E) = Par then
               exit;
 
            --  The visibility of a formal of an enclosing generic is already
            --  correct.
 
            elsif Denotes_Formal_Package (E) then
               null;
 
            elsif Present (Associated_Formal_Package (E)) then
               Check_Generic_Actuals (Renamed_Object (E), True);
               Set_Is_Hidden (E, False);
 
               --  Find formal package in generic unit that corresponds to
               --  (instance of) formal package in instance.
 
               while Present (Gen_E) and then Chars (Gen_E) /= Chars (E) loop
                  Next_Entity (Gen_E);
               end loop;
 
               if Present (Gen_E) then
                  Map_Formal_Package_Entities (Gen_E, E);
               end if;
            end if;
         end if;
 
         Next_Entity (E);
         if Present (Gen_E) then
            Next_Entity (Gen_E);
         end if;
      end loop;
   end Install_Formal_Packages;
 
   --------------------
   -- Install_Parent --
   --------------------
 
   procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False) is
      Ancestors : constant Elist_Id  := New_Elmt_List;
      S         : constant Entity_Id := Current_Scope;
      Inst_Par  : Entity_Id;
      First_Par : Entity_Id;
      Inst_Node : Node_Id;
      Gen_Par   : Entity_Id;
      First_Gen : Entity_Id;
      Elmt      : Elmt_Id;
 
      procedure Install_Noninstance_Specs (Par : Entity_Id);
      --  Install the scopes of noninstance parent units ending with Par
 
      procedure Install_Spec (Par : Entity_Id);
      --  The child unit is within the declarative part of the parent, so
      --  the declarations within the parent are immediately visible.
 
      -------------------------------
      -- Install_Noninstance_Specs --
      -------------------------------
 
      procedure Install_Noninstance_Specs (Par : Entity_Id) is
      begin
         if Present (Par)
           and then Par /= Standard_Standard
           and then not In_Open_Scopes (Par)
         then
            Install_Noninstance_Specs (Scope (Par));
            Install_Spec (Par);
         end if;
      end Install_Noninstance_Specs;
 
      ------------------
      -- Install_Spec --
      ------------------
 
      procedure Install_Spec (Par : Entity_Id) is
         Spec : constant Node_Id :=
                  Specification (Unit_Declaration_Node (Par));
 
      begin
         --  If this parent of the child instance is a top-level unit,
         --  then record the unit and its visibility for later resetting
         --  in Remove_Parent. We exclude units that are generic instances,
         --  as we only want to record this information for the ultimate
         --  top-level noninstance parent (is that always correct???).
 
         if Scope (Par) = Standard_Standard
           and then not Is_Generic_Instance (Par)
         then
            Parent_Unit_Visible := Is_Immediately_Visible (Par);
            Instance_Parent_Unit := Par;
         end if;
 
         --  Open the parent scope and make it and its declarations visible.
         --  If this point is not within a body, then only the visible
         --  declarations should be made visible, and installation of the
         --  private declarations is deferred until the appropriate point
         --  within analysis of the spec being instantiated (see the handling
         --  of parent visibility in Analyze_Package_Specification). This is
         --  relaxed in the case where the parent unit is Ada.Tags, to avoid
         --  private view problems that occur when compiling instantiations of
         --  a generic child of that package (Generic_Dispatching_Constructor).
         --  If the instance freezes a tagged type, inlinings of operations
         --  from Ada.Tags may need the full view of type Tag. If inlining took
         --  proper account of establishing visibility of inlined subprograms'
         --  parents then it should be possible to remove this
         --  special check. ???
 
         Push_Scope (Par);
         Set_Is_Immediately_Visible   (Par);
         Install_Visible_Declarations (Par);
         Set_Use (Visible_Declarations (Spec));
 
         if In_Body or else Is_RTU (Par, Ada_Tags) then
            Install_Private_Declarations (Par);
            Set_Use (Private_Declarations (Spec));
         end if;
      end Install_Spec;
 
   --  Start of processing for Install_Parent
 
   begin
      --  We need to install the parent instance to compile the instantiation
      --  of the child, but the child instance must appear in the current
      --  scope. Given that we cannot place the parent above the current scope
      --  in the scope stack, we duplicate the current scope and unstack both
      --  after the instantiation is complete.
 
      --  If the parent is itself the instantiation of a child unit, we must
      --  also stack the instantiation of its parent, and so on. Each such
      --  ancestor is the prefix of the name in a prior instantiation.
 
      --  If this is a nested instance, the parent unit itself resolves to
      --  a renaming of the parent instance, whose declaration we need.
 
      --  Finally, the parent may be a generic (not an instance) when the
      --  child unit appears as a formal package.
 
      Inst_Par := P;
 
      if Present (Renamed_Entity (Inst_Par)) then
         Inst_Par := Renamed_Entity (Inst_Par);
      end if;
 
      First_Par := Inst_Par;
 
      Gen_Par :=
        Generic_Parent (Specification (Unit_Declaration_Node (Inst_Par)));
 
      First_Gen := Gen_Par;
 
      while Present (Gen_Par)
        and then Is_Child_Unit (Gen_Par)
      loop
         --  Load grandparent instance as well
 
         Inst_Node := Get_Package_Instantiation_Node (Inst_Par);
 
         if Nkind (Name (Inst_Node)) = N_Expanded_Name then
            Inst_Par := Entity (Prefix (Name (Inst_Node)));
 
            if Present (Renamed_Entity (Inst_Par)) then
               Inst_Par := Renamed_Entity (Inst_Par);
            end if;
 
            Gen_Par :=
              Generic_Parent
                (Specification (Unit_Declaration_Node (Inst_Par)));
 
            if Present (Gen_Par) then
               Prepend_Elmt (Inst_Par, Ancestors);
 
            else
               --  Parent is not the name of an instantiation
 
               Install_Noninstance_Specs (Inst_Par);
               exit;
            end if;
 
         else
            --  Previous error
 
            exit;
         end if;
      end loop;
 
      if Present (First_Gen) then
         Append_Elmt (First_Par, Ancestors);
      else
         Install_Noninstance_Specs (First_Par);
      end if;
 
      if not Is_Empty_Elmt_List (Ancestors) then
         Elmt := First_Elmt (Ancestors);
         while Present (Elmt) loop
            Install_Spec (Node (Elmt));
            Install_Formal_Packages (Node (Elmt));
            Next_Elmt (Elmt);
         end loop;
      end if;
 
      if not In_Body then
         Push_Scope (S);
      end if;
   end Install_Parent;
 
   -------------------------------
   -- Install_Hidden_Primitives --
   -------------------------------
 
   procedure Install_Hidden_Primitives
     (Prims_List : in out Elist_Id;
      Gen_T      : Entity_Id;
      Act_T      : Entity_Id)
   is
      Elmt        : Elmt_Id;
      List        : Elist_Id := No_Elist;
      Prim_G_Elmt : Elmt_Id;
      Prim_A_Elmt : Elmt_Id;
      Prim_G      : Node_Id;
      Prim_A      : Node_Id;
 
   begin
      --  No action needed in case of serious errors because we cannot trust
      --  in the order of primitives
 
      if Serious_Errors_Detected > 0 then
         return;
 
      --  No action possible if we don't have available the list of primitive
      --  operations
 
      elsif No (Gen_T)
        or else not Is_Record_Type (Gen_T)
        or else not Is_Tagged_Type (Gen_T)
        or else not Is_Record_Type (Act_T)
        or else not Is_Tagged_Type (Act_T)
      then
         return;
 
      --  There is no need to handle interface types since their primitives
      --  cannot be hidden
 
      elsif Is_Interface (Gen_T) then
         return;
      end if;
 
      Prim_G_Elmt := First_Elmt (Primitive_Operations (Gen_T));
 
      if not Is_Class_Wide_Type (Act_T) then
         Prim_A_Elmt := First_Elmt (Primitive_Operations (Act_T));
      else
         Prim_A_Elmt := First_Elmt (Primitive_Operations (Root_Type (Act_T)));
      end if;
 
      loop
         --  Skip predefined primitives in the generic formal
 
         while Present (Prim_G_Elmt)
           and then Is_Predefined_Dispatching_Operation (Node (Prim_G_Elmt))
         loop
            Next_Elmt (Prim_G_Elmt);
         end loop;
 
         --  Skip predefined primitives in the generic actual
 
         while Present (Prim_A_Elmt)
           and then Is_Predefined_Dispatching_Operation (Node (Prim_A_Elmt))
         loop
            Next_Elmt (Prim_A_Elmt);
         end loop;
 
         exit when No (Prim_G_Elmt) or else No (Prim_A_Elmt);
 
         Prim_G := Node (Prim_G_Elmt);
         Prim_A := Node (Prim_A_Elmt);
 
         --  There is no need to handle interface primitives because their
         --  primitives are not hidden
 
         exit when Present (Interface_Alias (Prim_G));
 
         --  Here we install one hidden primitive
 
         if Chars (Prim_G) /= Chars (Prim_A)
           and then Has_Suffix (Prim_A, 'P')
           and then Remove_Suffix (Prim_A, 'P') = Chars (Prim_G)
         then
            Set_Chars (Prim_A, Chars (Prim_G));
 
            if List = No_Elist then
               List := New_Elmt_List;
            end if;
 
            Append_Elmt (Prim_A, List);
         end if;
 
         Next_Elmt (Prim_A_Elmt);
         Next_Elmt (Prim_G_Elmt);
      end loop;
 
      --  Append the elements to the list of temporarily visible primitives
      --  avoiding duplicates.
 
      if Present (List) then
         if No (Prims_List) then
            Prims_List := New_Elmt_List;
         end if;
 
         Elmt := First_Elmt (List);
         while Present (Elmt) loop
            Append_Unique_Elmt (Node (Elmt), Prims_List);
            Next_Elmt (Elmt);
         end loop;
      end if;
   end Install_Hidden_Primitives;
 
   -------------------------------
   -- Restore_Hidden_Primitives --
   -------------------------------
 
   procedure Restore_Hidden_Primitives (Prims_List : in out Elist_Id) is
      Prim_Elmt : Elmt_Id;
      Prim      : Node_Id;
 
   begin
      if Prims_List /= No_Elist then
         Prim_Elmt := First_Elmt (Prims_List);
         while Present (Prim_Elmt) loop
            Prim := Node (Prim_Elmt);
            Set_Chars (Prim, Add_Suffix (Prim, 'P'));
            Next_Elmt (Prim_Elmt);
         end loop;
 
         Prims_List := No_Elist;
      end if;
   end Restore_Hidden_Primitives;
 
   --------------------------------
   -- Instantiate_Formal_Package --
   --------------------------------
 
   function Instantiate_Formal_Package
     (Formal          : Node_Id;
      Actual          : Node_Id;
      Analyzed_Formal : Node_Id) return List_Id
   is
      Loc         : constant Source_Ptr := Sloc (Actual);
      Actual_Pack : Entity_Id;
      Formal_Pack : Entity_Id;
      Gen_Parent  : Entity_Id;
      Decls       : List_Id;
      Nod         : Node_Id;
      Parent_Spec : Node_Id;
 
      procedure Find_Matching_Actual
       (F    : Node_Id;
        Act  : in out Entity_Id);
      --  We need to associate each formal entity in the formal package
      --  with the corresponding entity in the actual package. The actual
      --  package has been analyzed and possibly expanded, and as a result
      --  there is no one-to-one correspondence between the two lists (for
      --  example, the actual may include subtypes, itypes, and inherited
      --  primitive operations, interspersed among the renaming declarations
      --  for the actuals) . We retrieve the corresponding actual by name
      --  because each actual has the same name as the formal, and they do
      --  appear in the same order.
 
      function Get_Formal_Entity (N : Node_Id) return Entity_Id;
      --  Retrieve entity of defining entity of  generic formal parameter.
      --  Only the declarations of formals need to be considered when
      --  linking them to actuals, but the declarative list may include
      --  internal entities generated during analysis, and those are ignored.
 
      procedure Match_Formal_Entity
        (Formal_Node : Node_Id;
         Formal_Ent  : Entity_Id;
         Actual_Ent  : Entity_Id);
      --  Associates the formal entity with the actual. In the case
      --  where Formal_Ent is a formal package, this procedure iterates
      --  through all of its formals and enters associations between the
      --  actuals occurring in the formal package's corresponding actual
      --  package (given by Actual_Ent) and the formal package's formal
      --  parameters. This procedure recurses if any of the parameters is
      --  itself a package.
 
      function Is_Instance_Of
        (Act_Spec : Entity_Id;
         Gen_Anc  : Entity_Id) return Boolean;
      --  The actual can be an instantiation of a generic within another
      --  instance, in which case there is no direct link from it to the
      --  original generic ancestor. In that case, we recognize that the
      --  ultimate ancestor is the same by examining names and scopes.
 
      procedure Process_Nested_Formal (Formal : Entity_Id);
      --  If the current formal is declared with a box, its own formals are
      --  visible in the instance, as they were in the generic, and their
      --  Hidden flag must be reset. If some of these formals are themselves
      --  packages declared with a box, the processing must be recursive.
 
      --------------------------
      -- Find_Matching_Actual --
      --------------------------
 
      procedure Find_Matching_Actual
        (F   : Node_Id;
         Act : in out Entity_Id)
     is
         Formal_Ent : Entity_Id;
 
      begin
         case Nkind (Original_Node (F)) is
            when N_Formal_Object_Declaration |
                 N_Formal_Type_Declaration   =>
               Formal_Ent := Defining_Identifier (F);
 
               while Chars (Act) /= Chars (Formal_Ent) loop
                  Next_Entity (Act);
               end loop;
 
            when N_Formal_Subprogram_Declaration |
                 N_Formal_Package_Declaration    |
                 N_Package_Declaration           |
                 N_Generic_Package_Declaration   =>
               Formal_Ent := Defining_Entity (F);
 
               while Chars (Act) /= Chars (Formal_Ent) loop
                  Next_Entity (Act);
               end loop;
 
            when others =>
               raise Program_Error;
         end case;
      end Find_Matching_Actual;
 
      -------------------------
      -- Match_Formal_Entity --
      -------------------------
 
      procedure Match_Formal_Entity
        (Formal_Node : Node_Id;
         Formal_Ent  : Entity_Id;
         Actual_Ent  : Entity_Id)
      is
         Act_Pkg   : Entity_Id;
 
      begin
         Set_Instance_Of (Formal_Ent, Actual_Ent);
 
         if Ekind (Actual_Ent) = E_Package then
 
            --  Record associations for each parameter
 
            Act_Pkg := Actual_Ent;
 
            declare
               A_Ent  : Entity_Id := First_Entity (Act_Pkg);
               F_Ent  : Entity_Id;
               F_Node : Node_Id;
 
               Gen_Decl : Node_Id;
               Formals  : List_Id;
               Actual   : Entity_Id;
 
            begin
               --  Retrieve the actual given in the formal package declaration
 
               Actual := Entity (Name (Original_Node (Formal_Node)));
 
               --  The actual in the formal package declaration  may be a
               --  renamed generic package, in which case we want to retrieve
               --  the original generic in order to traverse its formal part.
 
               if Present (Renamed_Entity (Actual)) then
                  Gen_Decl := Unit_Declaration_Node (Renamed_Entity (Actual));
               else
                  Gen_Decl := Unit_Declaration_Node (Actual);
               end if;
 
               Formals := Generic_Formal_Declarations (Gen_Decl);
 
               if Present (Formals) then
                  F_Node := First_Non_Pragma (Formals);
               else
                  F_Node := Empty;
               end if;
 
               while Present (A_Ent)
                 and then Present (F_Node)
                 and then A_Ent /= First_Private_Entity (Act_Pkg)
               loop
                  F_Ent := Get_Formal_Entity (F_Node);
 
                  if Present (F_Ent) then
 
                     --  This is a formal of the original package. Record
                     --  association and recurse.
 
                     Find_Matching_Actual (F_Node, A_Ent);
                     Match_Formal_Entity (F_Node, F_Ent, A_Ent);
                     Next_Entity (A_Ent);
                  end if;
 
                  Next_Non_Pragma (F_Node);
               end loop;
            end;
         end if;
      end Match_Formal_Entity;
 
      -----------------------
      -- Get_Formal_Entity --
      -----------------------
 
      function Get_Formal_Entity (N : Node_Id) return Entity_Id is
         Kind : constant Node_Kind := Nkind (Original_Node (N));
      begin
         case Kind is
            when N_Formal_Object_Declaration     =>
               return Defining_Identifier (N);
 
            when N_Formal_Type_Declaration       =>
               return Defining_Identifier (N);
 
            when N_Formal_Subprogram_Declaration =>
               return Defining_Unit_Name (Specification (N));
 
            when N_Formal_Package_Declaration    =>
               return Defining_Identifier (Original_Node (N));
 
            when N_Generic_Package_Declaration   =>
               return Defining_Identifier (Original_Node (N));
 
            --  All other declarations are introduced by semantic analysis and
            --  have no match in the actual.
 
            when others =>
               return Empty;
         end case;
      end Get_Formal_Entity;
 
      --------------------
      -- Is_Instance_Of --
      --------------------
 
      function Is_Instance_Of
        (Act_Spec : Entity_Id;
         Gen_Anc  : Entity_Id) return Boolean
      is
         Gen_Par : constant Entity_Id := Generic_Parent (Act_Spec);
 
      begin
         if No (Gen_Par) then
            return False;
 
         --  Simplest case: the generic parent of the actual is the formal
 
         elsif Gen_Par = Gen_Anc then
            return True;
 
         elsif Chars (Gen_Par) /= Chars (Gen_Anc) then
            return False;
 
         --  The actual may be obtained through several instantiations. Its
         --  scope must itself be an instance of a generic declared in the
         --  same scope as the formal. Any other case is detected above.
 
         elsif not Is_Generic_Instance (Scope (Gen_Par)) then
            return False;
 
         else
            return Generic_Parent (Parent (Scope (Gen_Par))) = Scope (Gen_Anc);
         end if;
      end Is_Instance_Of;
 
      ---------------------------
      -- Process_Nested_Formal --
      ---------------------------
 
      procedure Process_Nested_Formal (Formal : Entity_Id) is
         Ent : Entity_Id;
 
      begin
         if Present (Associated_Formal_Package (Formal))
           and then Box_Present (Parent (Associated_Formal_Package (Formal)))
         then
            Ent := First_Entity (Formal);
            while Present (Ent) loop
               Set_Is_Hidden (Ent, False);
               Set_Is_Visible_Formal (Ent);
               Set_Is_Potentially_Use_Visible
                 (Ent, Is_Potentially_Use_Visible (Formal));
 
               if Ekind (Ent) = E_Package then
                  exit when Renamed_Entity (Ent) = Renamed_Entity (Formal);
                  Process_Nested_Formal (Ent);
               end if;
 
               Next_Entity (Ent);
            end loop;
         end if;
      end Process_Nested_Formal;
 
   --  Start of processing for Instantiate_Formal_Package
 
   begin
      Analyze (Actual);
 
      if not Is_Entity_Name (Actual)
        or else  Ekind (Entity (Actual)) /= E_Package
      then
         Error_Msg_N
           ("expect package instance to instantiate formal", Actual);
         Abandon_Instantiation (Actual);
         raise Program_Error;
 
      else
         Actual_Pack := Entity (Actual);
         Set_Is_Instantiated (Actual_Pack);
 
         --  The actual may be a renamed package, or an outer generic formal
         --  package whose instantiation is converted into a renaming.
 
         if Present (Renamed_Object (Actual_Pack)) then
            Actual_Pack := Renamed_Object (Actual_Pack);
         end if;
 
         if Nkind (Analyzed_Formal) = N_Formal_Package_Declaration then
            Gen_Parent  := Get_Instance_Of (Entity (Name (Analyzed_Formal)));
            Formal_Pack := Defining_Identifier (Analyzed_Formal);
         else
            Gen_Parent :=
              Generic_Parent (Specification (Analyzed_Formal));
            Formal_Pack :=
              Defining_Unit_Name (Specification (Analyzed_Formal));
         end if;
 
         if Nkind (Parent (Actual_Pack)) = N_Defining_Program_Unit_Name then
            Parent_Spec := Specification (Unit_Declaration_Node (Actual_Pack));
         else
            Parent_Spec := Parent (Actual_Pack);
         end if;
 
         if Gen_Parent = Any_Id then
            Error_Msg_N
              ("previous error in declaration of formal package", Actual);
            Abandon_Instantiation (Actual);
 
         elsif
           Is_Instance_Of (Parent_Spec, Get_Instance_Of (Gen_Parent))
         then
            null;
 
         else
            Error_Msg_NE
              ("actual parameter must be instance of&", Actual, Gen_Parent);
            Abandon_Instantiation (Actual);
         end if;
 
         Set_Instance_Of (Defining_Identifier (Formal), Actual_Pack);
         Map_Formal_Package_Entities (Formal_Pack, Actual_Pack);
 
         Nod :=
           Make_Package_Renaming_Declaration (Loc,
             Defining_Unit_Name => New_Copy (Defining_Identifier (Formal)),
             Name               => New_Reference_To (Actual_Pack, Loc));
 
         Set_Associated_Formal_Package (Defining_Unit_Name (Nod),
           Defining_Identifier (Formal));
         Decls := New_List (Nod);
 
         --  If the formal F has a box, then the generic declarations are
         --  visible in the generic G. In an instance of G, the corresponding
         --  entities in the actual for F (which are the actuals for the
         --  instantiation of the generic that F denotes) must also be made
         --  visible for analysis of the current instance. On exit from the
         --  current instance, those entities are made private again. If the
         --  actual is currently in use, these entities are also use-visible.
 
         --  The loop through the actual entities also steps through the formal
         --  entities and enters associations from formals to actuals into the
         --  renaming map. This is necessary to properly handle checking of
         --  actual parameter associations for later formals that depend on
         --  actuals declared in the formal package.
 
         --  In Ada 2005, partial parametrization requires that we make visible
         --  the actuals corresponding to formals that were defaulted in the
         --  formal package. There formals are identified because they remain
         --  formal generics within the formal package, rather than being
         --  renamings of the actuals supplied.
 
         declare
            Gen_Decl : constant Node_Id :=
                         Unit_Declaration_Node (Gen_Parent);
            Formals  : constant List_Id :=
                         Generic_Formal_Declarations (Gen_Decl);
 
            Actual_Ent       : Entity_Id;
            Actual_Of_Formal : Node_Id;
            Formal_Node      : Node_Id;
            Formal_Ent       : Entity_Id;
 
         begin
            if Present (Formals) then
               Formal_Node := First_Non_Pragma (Formals);
            else
               Formal_Node := Empty;
            end if;
 
            Actual_Ent := First_Entity (Actual_Pack);
            Actual_Of_Formal :=
               First (Visible_Declarations (Specification (Analyzed_Formal)));
            while Present (Actual_Ent)
              and then Actual_Ent /= First_Private_Entity (Actual_Pack)
            loop
               if Present (Formal_Node) then
                  Formal_Ent := Get_Formal_Entity (Formal_Node);
 
                  if Present (Formal_Ent) then
                     Find_Matching_Actual (Formal_Node, Actual_Ent);
                     Match_Formal_Entity
                       (Formal_Node, Formal_Ent, Actual_Ent);
 
                     --  We iterate at the same time over the actuals of the
                     --  local package created for the formal, to determine
                     --  which one of the formals of the original generic were
                     --  defaulted in the formal. The corresponding actual
                     --  entities are visible in the enclosing instance.
 
                     if Box_Present (Formal)
                       or else
                         (Present (Actual_Of_Formal)
                           and then
                             Is_Generic_Formal
                               (Get_Formal_Entity (Actual_Of_Formal)))
                     then
                        Set_Is_Hidden (Actual_Ent, False);
                        Set_Is_Visible_Formal (Actual_Ent);
                        Set_Is_Potentially_Use_Visible
                          (Actual_Ent, In_Use (Actual_Pack));
 
                        if Ekind (Actual_Ent) = E_Package then
                           Process_Nested_Formal (Actual_Ent);
                        end if;
 
                     else
                        Set_Is_Hidden (Actual_Ent);
                        Set_Is_Potentially_Use_Visible (Actual_Ent, False);
                     end if;
                  end if;
 
                  Next_Non_Pragma (Formal_Node);
                  Next (Actual_Of_Formal);
 
               else
                  --  No further formals to match, but the generic part may
                  --  contain inherited operation that are not hidden in the
                  --  enclosing instance.
 
                  Next_Entity (Actual_Ent);
               end if;
            end loop;
 
            --  Inherited subprograms generated by formal derived types are
            --  also visible if the types are.
 
            Actual_Ent := First_Entity (Actual_Pack);
            while Present (Actual_Ent)
              and then Actual_Ent /= First_Private_Entity (Actual_Pack)
            loop
               if Is_Overloadable (Actual_Ent)
                 and then
                   Nkind (Parent (Actual_Ent)) = N_Subtype_Declaration
                 and then
                   not Is_Hidden (Defining_Identifier (Parent (Actual_Ent)))
               then
                  Set_Is_Hidden (Actual_Ent, False);
                  Set_Is_Potentially_Use_Visible
                    (Actual_Ent, In_Use (Actual_Pack));
               end if;
 
               Next_Entity (Actual_Ent);
            end loop;
         end;
 
         --  If the formal is not declared with a box, reanalyze it as an
         --  abbreviated instantiation, to verify the matching rules of 12.7.
         --  The actual checks are performed after the generic associations
         --  have been analyzed, to guarantee the same visibility for this
         --  instantiation and for the actuals.
 
         --  In Ada 2005, the generic associations for the formal can include
         --  defaulted parameters. These are ignored during check. This
         --  internal instantiation is removed from the tree after conformance
         --  checking, because it contains formal declarations for those
         --  defaulted parameters, and those should not reach the back-end.
 
         if not Box_Present (Formal) then
            declare
               I_Pack : constant Entity_Id :=
                          Make_Temporary (Sloc (Actual), 'P');
 
            begin
               Set_Is_Internal (I_Pack);
 
               Append_To (Decls,
                 Make_Package_Instantiation (Sloc (Actual),
                   Defining_Unit_Name => I_Pack,
                   Name =>
                     New_Occurrence_Of
                       (Get_Instance_Of (Gen_Parent), Sloc (Actual)),
                   Generic_Associations =>
                     Generic_Associations (Formal)));
            end;
         end if;
 
         return Decls;
      end if;
   end Instantiate_Formal_Package;
 
   -----------------------------------
   -- Instantiate_Formal_Subprogram --
   -----------------------------------
 
   function Instantiate_Formal_Subprogram
     (Formal          : Node_Id;
      Actual          : Node_Id;
      Analyzed_Formal : Node_Id) return Node_Id
   is
      Loc        : Source_Ptr;
      Formal_Sub : constant Entity_Id :=
                     Defining_Unit_Name (Specification (Formal));
      Analyzed_S : constant Entity_Id :=
                     Defining_Unit_Name (Specification (Analyzed_Formal));
      Decl_Node  : Node_Id;
      Nam        : Node_Id;
      New_Spec   : Node_Id;
 
      function From_Parent_Scope (Subp : Entity_Id) return Boolean;
      --  If the generic is a child unit, the parent has been installed on the
      --  scope stack, but a default subprogram cannot resolve to something on
      --  the parent because that parent is not really part of the visible
      --  context (it is there to resolve explicit local entities). If the
      --  default has resolved in this way, we remove the entity from
      --  immediate visibility and analyze the node again to emit an error
      --  message or find another visible candidate.
 
      procedure Valid_Actual_Subprogram (Act : Node_Id);
      --  Perform legality check and raise exception on failure
 
      -----------------------
      -- From_Parent_Scope --
      -----------------------
 
      function From_Parent_Scope (Subp : Entity_Id) return Boolean is
         Gen_Scope : Node_Id;
 
      begin
         Gen_Scope := Scope (Analyzed_S);
         while Present (Gen_Scope) and then Is_Child_Unit (Gen_Scope) loop
            if Scope (Subp) = Scope (Gen_Scope) then
               return True;
            end if;
 
            Gen_Scope := Scope (Gen_Scope);
         end loop;
 
         return False;
      end From_Parent_Scope;
 
      -----------------------------
      -- Valid_Actual_Subprogram --
      -----------------------------
 
      procedure Valid_Actual_Subprogram (Act : Node_Id) is
         Act_E : Entity_Id;
 
      begin
         if Is_Entity_Name (Act) then
            Act_E := Entity (Act);
 
         elsif Nkind (Act) = N_Selected_Component
           and then Is_Entity_Name (Selector_Name (Act))
         then
            Act_E := Entity (Selector_Name (Act));
 
         else
            Act_E := Empty;
         end if;
 
         if (Present (Act_E) and then Is_Overloadable (Act_E))
           or else Nkind_In (Act, N_Attribute_Reference,
                                  N_Indexed_Component,
                                  N_Character_Literal,
                                  N_Explicit_Dereference)
         then
            return;
         end if;
 
         Error_Msg_NE
           ("expect subprogram or entry name in instantiation of&",
            Instantiation_Node, Formal_Sub);
         Abandon_Instantiation (Instantiation_Node);
 
      end Valid_Actual_Subprogram;
 
   --  Start of processing for Instantiate_Formal_Subprogram
 
   begin
      New_Spec := New_Copy_Tree (Specification (Formal));
 
      --  The tree copy has created the proper instantiation sloc for the
      --  new specification. Use this location for all other constructed
      --  declarations.
 
      Loc := Sloc (Defining_Unit_Name (New_Spec));
 
      --  Create new entity for the actual (New_Copy_Tree does not)
 
      Set_Defining_Unit_Name
        (New_Spec, Make_Defining_Identifier (Loc, Chars (Formal_Sub)));
 
      --  Create new entities for the each of the formals in the
      --  specification of the renaming declaration built for the actual.
 
      if Present (Parameter_Specifications (New_Spec)) then
         declare
            F : Node_Id;
         begin
            F := First (Parameter_Specifications (New_Spec));
            while Present (F) loop
               Set_Defining_Identifier (F,
                  Make_Defining_Identifier (Sloc (F),
                    Chars => Chars (Defining_Identifier (F))));
               Next (F);
            end loop;
         end;
      end if;
 
      --  Find entity of actual. If the actual is an attribute reference, it
      --  cannot be resolved here (its formal is missing) but is handled
      --  instead in Attribute_Renaming. If the actual is overloaded, it is
      --  fully resolved subsequently, when the renaming declaration for the
      --  formal is analyzed. If it is an explicit dereference, resolve the
      --  prefix but not the actual itself, to prevent interpretation as call.
 
      if Present (Actual) then
         Loc := Sloc (Actual);
         Set_Sloc (New_Spec, Loc);
 
         if Nkind (Actual) = N_Operator_Symbol then
            Find_Direct_Name (Actual);
 
         elsif Nkind (Actual) = N_Explicit_Dereference then
            Analyze (Prefix (Actual));
 
         elsif Nkind (Actual) /= N_Attribute_Reference then
            Analyze (Actual);
         end if;
 
         Valid_Actual_Subprogram (Actual);
         Nam := Actual;
 
      elsif Present (Default_Name (Formal)) then
         if not Nkind_In (Default_Name (Formal), N_Attribute_Reference,
                                                 N_Selected_Component,
                                                 N_Indexed_Component,
                                                 N_Character_Literal)
           and then Present (Entity (Default_Name (Formal)))
         then
            Nam := New_Occurrence_Of (Entity (Default_Name (Formal)), Loc);
         else
            Nam := New_Copy (Default_Name (Formal));
            Set_Sloc (Nam, Loc);
         end if;
 
      elsif Box_Present (Formal) then
 
         --  Actual is resolved at the point of instantiation. Create an
         --  identifier or operator with the same name as the formal.
 
         if Nkind (Formal_Sub) = N_Defining_Operator_Symbol then
            Nam := Make_Operator_Symbol (Loc,
              Chars =>  Chars (Formal_Sub),
              Strval => No_String);
         else
            Nam := Make_Identifier (Loc, Chars (Formal_Sub));
         end if;
 
      elsif Nkind (Specification (Formal)) = N_Procedure_Specification
        and then Null_Present (Specification (Formal))
      then
         --  Generate null body for procedure, for use in the instance
 
         Decl_Node :=
           Make_Subprogram_Body (Loc,
             Specification              => New_Spec,
             Declarations               => New_List,
             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => New_List (Make_Null_Statement (Loc))));
 
         Set_Is_Intrinsic_Subprogram (Defining_Unit_Name (New_Spec));
         return Decl_Node;
 
      else
         Error_Msg_Sloc := Sloc (Scope (Analyzed_S));
         Error_Msg_NE
           ("missing actual&", Instantiation_Node, Formal_Sub);
         Error_Msg_NE
           ("\in instantiation of & declared#",
              Instantiation_Node, Scope (Analyzed_S));
         Abandon_Instantiation (Instantiation_Node);
      end if;
 
      Decl_Node :=
        Make_Subprogram_Renaming_Declaration (Loc,
          Specification => New_Spec,
          Name          => Nam);
 
      --  If we do not have an actual and the formal specified <> then set to
      --  get proper default.
 
      if No (Actual) and then Box_Present (Formal) then
         Set_From_Default (Decl_Node);
      end if;
 
      --  Gather possible interpretations for the actual before analyzing the
      --  instance. If overloaded, it will be resolved when analyzing the
      --  renaming declaration.
 
      if Box_Present (Formal)
        and then No (Actual)
      then
         Analyze (Nam);
 
         if Is_Child_Unit (Scope (Analyzed_S))
           and then Present (Entity (Nam))
         then
            if not Is_Overloaded (Nam) then
               if From_Parent_Scope (Entity (Nam)) then
                  Set_Is_Immediately_Visible (Entity (Nam), False);
                  Set_Entity (Nam, Empty);
                  Set_Etype (Nam, Empty);
 
                  Analyze (Nam);
                  Set_Is_Immediately_Visible (Entity (Nam));
               end if;
 
            else
               declare
                  I  : Interp_Index;
                  It : Interp;
 
               begin
                  Get_First_Interp (Nam, I, It);
                  while Present (It.Nam) loop
                     if From_Parent_Scope (It.Nam) then
                        Remove_Interp (I);
                     end if;
 
                     Get_Next_Interp (I, It);
                  end loop;
               end;
            end if;
         end if;
      end if;
 
      --  The generic instantiation freezes the actual. This can only be done
      --  once the actual is resolved, in the analysis of the renaming
      --  declaration. To make the formal subprogram entity available, we set
      --  Corresponding_Formal_Spec to point to the formal subprogram entity.
      --  This is also needed in Analyze_Subprogram_Renaming for the processing
      --  of formal abstract subprograms.
 
      Set_Corresponding_Formal_Spec (Decl_Node, Analyzed_S);
 
      --  We cannot analyze the renaming declaration, and thus find the actual,
      --  until all the actuals are assembled in the instance. For subsequent
      --  checks of other actuals, indicate the node that will hold the
      --  instance of this formal.
 
      Set_Instance_Of (Analyzed_S, Nam);
 
      if Nkind (Actual) = N_Selected_Component
        and then Is_Task_Type (Etype (Prefix (Actual)))
        and then not Is_Frozen (Etype (Prefix (Actual)))
      then
         --  The renaming declaration will create a body, which must appear
         --  outside of the instantiation, We move the renaming declaration
         --  out of the instance, and create an additional renaming inside,
         --  to prevent freezing anomalies.
 
         declare
            Anon_Id : constant Entity_Id := Make_Temporary (Loc, 'E');
 
         begin
            Set_Defining_Unit_Name (New_Spec, Anon_Id);
            Insert_Before (Instantiation_Node, Decl_Node);
            Analyze (Decl_Node);
 
            --  Now create renaming within the instance
 
            Decl_Node :=
              Make_Subprogram_Renaming_Declaration (Loc,
                Specification => New_Copy_Tree (New_Spec),
                Name => New_Occurrence_Of (Anon_Id, Loc));
 
            Set_Defining_Unit_Name (Specification (Decl_Node),
              Make_Defining_Identifier (Loc, Chars (Formal_Sub)));
         end;
      end if;
 
      return Decl_Node;
   end Instantiate_Formal_Subprogram;
 
   ------------------------
   -- Instantiate_Object --
   ------------------------
 
   function Instantiate_Object
     (Formal          : Node_Id;
      Actual          : Node_Id;
      Analyzed_Formal : Node_Id) return List_Id
   is
      Gen_Obj     : constant Entity_Id  := Defining_Identifier (Formal);
      A_Gen_Obj   : constant Entity_Id  :=
                      Defining_Identifier (Analyzed_Formal);
      Acc_Def     : Node_Id             := Empty;
      Act_Assoc   : constant Node_Id    := Parent (Actual);
      Actual_Decl : Node_Id             := Empty;
      Decl_Node   : Node_Id;
      Def         : Node_Id;
      Ftyp        : Entity_Id;
      List        : constant List_Id    := New_List;
      Loc         : constant Source_Ptr := Sloc (Actual);
      Orig_Ftyp   : constant Entity_Id  := Etype (A_Gen_Obj);
      Subt_Decl   : Node_Id             := Empty;
      Subt_Mark   : Node_Id             := Empty;
 
   begin
      if Present (Subtype_Mark (Formal)) then
         Subt_Mark := Subtype_Mark (Formal);
      else
         Check_Access_Definition (Formal);
         Acc_Def := Access_Definition (Formal);
      end if;
 
      --  Sloc for error message on missing actual
 
      Error_Msg_Sloc := Sloc (Scope (A_Gen_Obj));
 
      if Get_Instance_Of (Gen_Obj) /= Gen_Obj then
         Error_Msg_N ("duplicate instantiation of generic parameter", Actual);
      end if;
 
      Set_Parent (List, Parent (Actual));
 
      --  OUT present
 
      if Out_Present (Formal) then
 
         --  An IN OUT generic actual must be a name. The instantiation is a
         --  renaming declaration. The actual is the name being renamed. We
         --  use the actual directly, rather than a copy, because it is not
         --  used further in the list of actuals, and because a copy or a use
         --  of relocate_node is incorrect if the instance is nested within a
         --  generic. In order to simplify ASIS searches, the Generic_Parent
         --  field links the declaration to the generic association.
 
         if No (Actual) then
            Error_Msg_NE
              ("missing actual&",
               Instantiation_Node, Gen_Obj);
            Error_Msg_NE
              ("\in instantiation of & declared#",
                 Instantiation_Node, Scope (A_Gen_Obj));
            Abandon_Instantiation (Instantiation_Node);
         end if;
 
         if Present (Subt_Mark) then
            Decl_Node :=
              Make_Object_Renaming_Declaration (Loc,
                Defining_Identifier => New_Copy (Gen_Obj),
                Subtype_Mark        => New_Copy_Tree (Subt_Mark),
                Name                => Actual);
 
         else pragma Assert (Present (Acc_Def));
            Decl_Node :=
              Make_Object_Renaming_Declaration (Loc,
                Defining_Identifier => New_Copy (Gen_Obj),
                Access_Definition   => New_Copy_Tree (Acc_Def),
                Name                => Actual);
         end if;
 
         Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc);
 
         --  The analysis of the actual may produce Insert_Action nodes, so
         --  the declaration must have a context in which to attach them.
 
         Append (Decl_Node, List);
         Analyze (Actual);
 
         --  Return if the analysis of the actual reported some error
 
         if Etype (Actual) = Any_Type then
            return List;
         end if;
 
         --  This check is performed here because Analyze_Object_Renaming will
         --  not check it when Comes_From_Source is False. Note though that the
         --  check for the actual being the name of an object will be performed
         --  in Analyze_Object_Renaming.
 
         if Is_Object_Reference (Actual)
           and then Is_Dependent_Component_Of_Mutable_Object (Actual)
         then
            Error_Msg_N
              ("illegal discriminant-dependent component for in out parameter",
               Actual);
         end if;
 
         --  The actual has to be resolved in order to check that it is a
         --  variable (due to cases such as F (1), where F returns access to an
         --  array, and for overloaded prefixes).
 
         Ftyp := Get_Instance_Of (Etype (A_Gen_Obj));
 
         --  If the type of the formal is not itself a formal, and the
         --  current unit is a child unit, the formal type must be declared
         --  in a parent, and must be retrieved by visibility.
 
         if Ftyp = Orig_Ftyp
           and then Is_Generic_Unit (Scope (Ftyp))
           and then Is_Child_Unit (Scope (A_Gen_Obj))
         then
            declare
               Temp : constant Node_Id :=
                        New_Copy_Tree (Subtype_Mark (Analyzed_Formal));
            begin
               Set_Entity (Temp, Empty);
               Find_Type (Temp);
               Ftyp := Entity (Temp);
            end;
         end if;
 
         if Is_Private_Type (Ftyp)
           and then not Is_Private_Type (Etype (Actual))
           and then (Base_Type (Full_View (Ftyp)) = Base_Type (Etype (Actual))
                      or else Base_Type (Etype (Actual)) = Ftyp)
         then
            --  If the actual has the type of the full view of the formal, or
            --  else a non-private subtype of the formal, then the visibility
            --  of the formal type has changed. Add to the actuals a subtype
            --  declaration that will force the exchange of views in the body
            --  of the instance as well.
 
            Subt_Decl :=
              Make_Subtype_Declaration (Loc,
                 Defining_Identifier => Make_Temporary (Loc, 'P'),
                 Subtype_Indication  => New_Occurrence_Of (Ftyp, Loc));
 
            Prepend (Subt_Decl, List);
 
            Prepend_Elmt (Full_View (Ftyp), Exchanged_Views);
            Exchange_Declarations (Ftyp);
         end if;
 
         Resolve (Actual, Ftyp);
 
         if not Denotes_Variable (Actual) then
            Error_Msg_NE
              ("actual for& must be a variable", Actual, Gen_Obj);
 
         elsif Base_Type (Ftyp) /= Base_Type (Etype (Actual)) then
 
            --  Ada 2005 (AI-423): For a generic formal object of mode in out,
            --  the type of the actual shall resolve to a specific anonymous
            --  access type.
 
            if Ada_Version < Ada_2005
              or else
                Ekind (Base_Type (Ftyp)) /=
                  E_Anonymous_Access_Type
              or else
                Ekind (Base_Type (Etype (Actual))) /=
                  E_Anonymous_Access_Type
            then
               Error_Msg_NE ("type of actual does not match type of&",
                             Actual, Gen_Obj);
            end if;
         end if;
 
         Note_Possible_Modification (Actual, Sure => True);
 
         --  Check for instantiation of atomic/volatile actual for
         --  non-atomic/volatile formal (RM C.6 (12)).
 
         if Is_Atomic_Object (Actual)
           and then not Is_Atomic (Orig_Ftyp)
         then
            Error_Msg_N
              ("cannot instantiate non-atomic formal object " &
               "with atomic actual", Actual);
 
         elsif Is_Volatile_Object (Actual)
           and then not Is_Volatile (Orig_Ftyp)
         then
            Error_Msg_N
              ("cannot instantiate non-volatile formal object " &
               "with volatile actual", Actual);
         end if;
 
      --  Formal in-parameter
 
      else
         --  The instantiation of a generic formal in-parameter is constant
         --  declaration. The actual is the expression for that declaration.
 
         if Present (Actual) then
            if Present (Subt_Mark) then
               Def := Subt_Mark;
            else pragma Assert (Present (Acc_Def));
               Def := Acc_Def;
            end if;
 
            Decl_Node :=
              Make_Object_Declaration (Loc,
                Defining_Identifier    => New_Copy (Gen_Obj),
                Constant_Present       => True,
                Null_Exclusion_Present => Null_Exclusion_Present (Formal),
                Object_Definition      => New_Copy_Tree (Def),
                Expression             => Actual);
 
            Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc);
 
            --  A generic formal object of a tagged type is defined to be
            --  aliased so the new constant must also be treated as aliased.
 
            if Is_Tagged_Type (Etype (A_Gen_Obj)) then
               Set_Aliased_Present (Decl_Node);
            end if;
 
            Append (Decl_Node, List);
 
            --  No need to repeat (pre-)analysis of some expression nodes
            --  already handled in Preanalyze_Actuals.
 
            if Nkind (Actual) /= N_Allocator then
               Analyze (Actual);
 
               --  Return if the analysis of the actual reported some error
 
               if Etype (Actual) = Any_Type then
                  return List;
               end if;
            end if;
 
            declare
               Formal_Type : constant Entity_Id := Etype (A_Gen_Obj);
               Typ         : Entity_Id;
 
            begin
               Typ := Get_Instance_Of (Formal_Type);
 
               Freeze_Before (Instantiation_Node, Typ);
 
               --  If the actual is an aggregate, perform name resolution on
               --  its components (the analysis of an aggregate does not do it)
               --  to capture local names that may be hidden if the generic is
               --  a child unit.
 
               if Nkind (Actual) = N_Aggregate then
                  Preanalyze_And_Resolve (Actual, Typ);
               end if;
 
               if Is_Limited_Type (Typ)
                 and then not OK_For_Limited_Init (Typ, Actual)
               then
                  Error_Msg_N
                    ("initialization not allowed for limited types", Actual);
                  Explain_Limited_Type (Typ, Actual);
               end if;
            end;
 
         elsif Present (Default_Expression (Formal)) then
 
            --  Use default to construct declaration
 
            if Present (Subt_Mark) then
               Def := Subt_Mark;
            else pragma Assert (Present (Acc_Def));
               Def := Acc_Def;
            end if;
 
            Decl_Node :=
              Make_Object_Declaration (Sloc (Formal),
                Defining_Identifier    => New_Copy (Gen_Obj),
                Constant_Present       => True,
                Null_Exclusion_Present => Null_Exclusion_Present (Formal),
                Object_Definition      => New_Copy (Def),
                Expression             => New_Copy_Tree
                                            (Default_Expression (Formal)));
 
            Append (Decl_Node, List);
            Set_Analyzed (Expression (Decl_Node), False);
 
         else
            Error_Msg_NE
              ("missing actual&",
                Instantiation_Node, Gen_Obj);
            Error_Msg_NE ("\in instantiation of & declared#",
              Instantiation_Node, Scope (A_Gen_Obj));
 
            if Is_Scalar_Type (Etype (A_Gen_Obj)) then
 
               --  Create dummy constant declaration so that instance can be
               --  analyzed, to minimize cascaded visibility errors.
 
               if Present (Subt_Mark) then
                  Def := Subt_Mark;
               else pragma Assert (Present (Acc_Def));
                  Def := Acc_Def;
               end if;
 
               Decl_Node :=
                 Make_Object_Declaration (Loc,
                   Defining_Identifier    => New_Copy (Gen_Obj),
                   Constant_Present       => True,
                   Null_Exclusion_Present => Null_Exclusion_Present (Formal),
                   Object_Definition      => New_Copy (Def),
                   Expression             =>
                     Make_Attribute_Reference (Sloc (Gen_Obj),
                       Attribute_Name => Name_First,
                       Prefix         => New_Copy (Def)));
 
               Append (Decl_Node, List);
 
            else
               Abandon_Instantiation (Instantiation_Node);
            end if;
         end if;
      end if;
 
      if Nkind (Actual) in N_Has_Entity then
         Actual_Decl := Parent (Entity (Actual));
      end if;
 
      --  Ada 2005 (AI-423): For a formal object declaration with a null
      --  exclusion or an access definition that has a null exclusion: If the
      --  actual matching the formal object declaration denotes a generic
      --  formal object of another generic unit G, and the instantiation
      --  containing the actual occurs within the body of G or within the body
      --  of a generic unit declared within the declarative region of G, then
      --  the declaration of the formal object of G must have a null exclusion.
      --  Otherwise, the subtype of the actual matching the formal object
      --  declaration shall exclude null.
 
      if Ada_Version >= Ada_2005
        and then Present (Actual_Decl)
        and then
          Nkind_In (Actual_Decl, N_Formal_Object_Declaration,
                                 N_Object_Declaration)
        and then Nkind (Analyzed_Formal) = N_Formal_Object_Declaration
        and then not Has_Null_Exclusion (Actual_Decl)
        and then Has_Null_Exclusion (Analyzed_Formal)
      then
         Error_Msg_Sloc := Sloc (Analyzed_Formal);
         Error_Msg_N
           ("actual must exclude null to match generic formal#", Actual);
      end if;
 
      return List;
   end Instantiate_Object;
 
   ------------------------------
   -- Instantiate_Package_Body --
   ------------------------------
 
   procedure Instantiate_Package_Body
     (Body_Info     : Pending_Body_Info;
      Inlined_Body  : Boolean := False;
      Body_Optional : Boolean := False)
   is
      Act_Decl    : constant Node_Id    := Body_Info.Act_Decl;
      Inst_Node   : constant Node_Id    := Body_Info.Inst_Node;
      Loc         : constant Source_Ptr := Sloc (Inst_Node);
 
      Gen_Id      : constant Node_Id    := Name (Inst_Node);
      Gen_Unit    : constant Entity_Id  := Get_Generic_Entity (Inst_Node);
      Gen_Decl    : constant Node_Id    := Unit_Declaration_Node (Gen_Unit);
      Act_Spec    : constant Node_Id    := Specification (Act_Decl);
      Act_Decl_Id : constant Entity_Id  := Defining_Entity (Act_Spec);
 
      Act_Body_Name : Node_Id;
      Gen_Body      : Node_Id;
      Gen_Body_Id   : Node_Id;
      Act_Body      : Node_Id;
      Act_Body_Id   : Entity_Id;
 
      Parent_Installed : Boolean := False;
      Save_Style_Check : constant Boolean := Style_Check;
 
      Par_Ent : Entity_Id := Empty;
      Par_Vis : Boolean   := False;
 
      Vis_Prims_List : Elist_Id := No_Elist;
      --  List of primitives made temporarily visible in the instantiation
      --  to match the visibility of the formal type
 
   begin
      Gen_Body_Id := Corresponding_Body (Gen_Decl);
 
      --  The instance body may already have been processed, as the parent of
      --  another instance that is inlined (Load_Parent_Of_Generic).
 
      if Present (Corresponding_Body (Instance_Spec (Inst_Node))) then
         return;
      end if;
 
      Expander_Mode_Save_And_Set (Body_Info.Expander_Status);
 
      --  Re-establish the state of information on which checks are suppressed.
      --  This information was set in Body_Info at the point of instantiation,
      --  and now we restore it so that the instance is compiled using the
      --  check status at the instantiation (RM 11.5 (7.2/2), AI95-00224-01).
 
      Local_Suppress_Stack_Top := Body_Info.Local_Suppress_Stack_Top;
      Scope_Suppress           := Body_Info.Scope_Suppress;
      Opt.Ada_Version          := Body_Info.Version;
 
      if No (Gen_Body_Id) then
         Load_Parent_Of_Generic
           (Inst_Node, Specification (Gen_Decl), Body_Optional);
         Gen_Body_Id := Corresponding_Body (Gen_Decl);
      end if;
 
      --  Establish global variable for sloc adjustment and for error recovery
 
      Instantiation_Node := Inst_Node;
 
      if Present (Gen_Body_Id) then
         Save_Env (Gen_Unit, Act_Decl_Id);
         Style_Check := False;
         Current_Sem_Unit := Body_Info.Current_Sem_Unit;
 
         Gen_Body := Unit_Declaration_Node (Gen_Body_Id);
 
         Create_Instantiation_Source
           (Inst_Node, Gen_Body_Id, False, S_Adjustment);
 
         Act_Body :=
           Copy_Generic_Node
             (Original_Node (Gen_Body), Empty, Instantiating => True);
 
         --  Build new name (possibly qualified) for body declaration
 
         Act_Body_Id := New_Copy (Act_Decl_Id);
 
         --  Some attributes of spec entity are not inherited by body entity
 
         Set_Handler_Records (Act_Body_Id, No_List);
 
         if Nkind (Defining_Unit_Name (Act_Spec)) =
                                           N_Defining_Program_Unit_Name
         then
            Act_Body_Name :=
              Make_Defining_Program_Unit_Name (Loc,
                Name => New_Copy_Tree (Name (Defining_Unit_Name (Act_Spec))),
                Defining_Identifier => Act_Body_Id);
         else
            Act_Body_Name :=  Act_Body_Id;
         end if;
 
         Set_Defining_Unit_Name (Act_Body, Act_Body_Name);
 
         Set_Corresponding_Spec (Act_Body, Act_Decl_Id);
         Check_Generic_Actuals (Act_Decl_Id, False);
 
         --  Install primitives hidden at the point of the instantiation but
         --  visible when processing the generic formals
 
         declare
            E : Entity_Id;
 
         begin
            E := First_Entity (Act_Decl_Id);
            while Present (E) loop
               if Is_Type (E)
                 and then Is_Generic_Actual_Type (E)
                 and then Is_Tagged_Type (E)
               then
                  Install_Hidden_Primitives
                    (Prims_List => Vis_Prims_List,
                     Gen_T      => Generic_Parent_Type (Parent (E)),
                     Act_T      => E);
               end if;
 
               Next_Entity (E);
            end loop;
         end;
 
         --  If it is a child unit, make the parent instance (which is an
         --  instance of the parent of the generic) visible. The parent
         --  instance is the prefix of the name of the generic unit.
 
         if Ekind (Scope (Gen_Unit)) = E_Generic_Package
           and then Nkind (Gen_Id) = N_Expanded_Name
         then
            Par_Ent := Entity (Prefix (Gen_Id));
            Par_Vis := Is_Immediately_Visible (Par_Ent);
            Install_Parent (Par_Ent, In_Body => True);
            Parent_Installed := True;
 
         elsif Is_Child_Unit (Gen_Unit) then
            Par_Ent := Scope (Gen_Unit);
            Par_Vis := Is_Immediately_Visible (Par_Ent);
            Install_Parent (Par_Ent, In_Body => True);
            Parent_Installed := True;
         end if;
 
         --  If the instantiation is a library unit, and this is the main unit,
         --  then build the resulting compilation unit nodes for the instance.
         --  If this is a compilation unit but it is not the main unit, then it
         --  is the body of a unit in the context, that is being compiled
         --  because it is encloses some inlined unit or another generic unit
         --  being instantiated. In that case, this body is not part of the
         --  current compilation, and is not attached to the tree, but its
         --  parent must be set for analysis.
 
         if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
 
            --  Replace instance node with body of instance, and create new
            --  node for corresponding instance declaration.
 
            Build_Instance_Compilation_Unit_Nodes
              (Inst_Node, Act_Body, Act_Decl);
            Analyze (Inst_Node);
 
            if Parent (Inst_Node) = Cunit (Main_Unit) then
 
               --  If the instance is a child unit itself, then set the scope
               --  of the expanded body to be the parent of the instantiation
               --  (ensuring that the fully qualified name will be generated
               --  for the elaboration subprogram).
 
               if Nkind (Defining_Unit_Name (Act_Spec)) =
                                              N_Defining_Program_Unit_Name
               then
                  Set_Scope
                    (Defining_Entity (Inst_Node), Scope (Act_Decl_Id));
               end if;
            end if;
 
         --  Case where instantiation is not a library unit
 
         else
            --  If this is an early instantiation, i.e. appears textually
            --  before the corresponding body and must be elaborated first,
            --  indicate that the body instance is to be delayed.
 
            Install_Body (Act_Body, Inst_Node, Gen_Body, Gen_Decl);
 
            --  Now analyze the body. We turn off all checks if this is an
            --  internal unit, since there is no reason to have checks on for
            --  any predefined run-time library code. All such code is designed
            --  to be compiled with checks off.
 
            --  Note that we do NOT apply this criterion to children of GNAT
            --  (or on VMS, children of DEC). The latter units must suppress
            --  checks explicitly if this is needed.
 
            if Is_Predefined_File_Name
                 (Unit_File_Name (Get_Source_Unit (Gen_Decl)))
            then
               Analyze (Act_Body, Suppress => All_Checks);
            else
               Analyze (Act_Body);
            end if;
         end if;
 
         Inherit_Context (Gen_Body, Inst_Node);
 
         --  Remove the parent instances if they have been placed on the scope
         --  stack to compile the body.
 
         if Parent_Installed then
            Remove_Parent (In_Body => True);
 
            --  Restore the previous visibility of the parent
 
            Set_Is_Immediately_Visible (Par_Ent, Par_Vis);
         end if;
 
         Restore_Hidden_Primitives (Vis_Prims_List);
         Restore_Private_Views (Act_Decl_Id);
 
         --  Remove the current unit from visibility if this is an instance
         --  that is not elaborated on the fly for inlining purposes.
 
         if not Inlined_Body then
            Set_Is_Immediately_Visible (Act_Decl_Id, False);
         end if;
 
         Restore_Env;
         Style_Check := Save_Style_Check;
 
      --  If we have no body, and the unit requires a body, then complain. This
      --  complaint is suppressed if we have detected other errors (since a
      --  common reason for missing the body is that it had errors).
      --  In CodePeer mode, a warning has been emitted already, no need for
      --  further messages.
 
      elsif Unit_Requires_Body (Gen_Unit)
        and then not Body_Optional
      then
         if CodePeer_Mode then
            null;
 
         elsif Serious_Errors_Detected = 0 then
            Error_Msg_NE
              ("cannot find body of generic package &", Inst_Node, Gen_Unit);
 
         --  Don't attempt to perform any cleanup actions if some other error
         --  was already detected, since this can cause blowups.
 
         else
            return;
         end if;
 
      --  Case of package that does not need a body
 
      else
         --  If the instantiation of the declaration is a library unit, rewrite
         --  the original package instantiation as a package declaration in the
         --  compilation unit node.
 
         if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
            Set_Parent_Spec (Act_Decl, Parent_Spec (Inst_Node));
            Rewrite (Inst_Node, Act_Decl);
 
            --  Generate elaboration entity, in case spec has elaboration code.
            --  This cannot be done when the instance is analyzed, because it
            --  is not known yet whether the body exists.
 
            Set_Elaboration_Entity_Required (Act_Decl_Id, False);
            Build_Elaboration_Entity (Parent (Inst_Node), Act_Decl_Id);
 
         --  If the instantiation is not a library unit, then append the
         --  declaration to the list of implicitly generated entities, unless
         --  it is already a list member which means that it was already
         --  processed
 
         elsif not Is_List_Member (Act_Decl) then
            Mark_Rewrite_Insertion (Act_Decl);
            Insert_Before (Inst_Node, Act_Decl);
         end if;
      end if;
 
      Expander_Mode_Restore;
   end Instantiate_Package_Body;
 
   ---------------------------------
   -- Instantiate_Subprogram_Body --
   ---------------------------------
 
   procedure Instantiate_Subprogram_Body
     (Body_Info     : Pending_Body_Info;
      Body_Optional : Boolean := False)
   is
      Act_Decl      : constant Node_Id    := Body_Info.Act_Decl;
      Inst_Node     : constant Node_Id    := Body_Info.Inst_Node;
      Loc           : constant Source_Ptr := Sloc (Inst_Node);
      Gen_Id        : constant Node_Id    := Name (Inst_Node);
      Gen_Unit      : constant Entity_Id  := Get_Generic_Entity (Inst_Node);
      Gen_Decl      : constant Node_Id    := Unit_Declaration_Node (Gen_Unit);
      Anon_Id       : constant Entity_Id  :=
                        Defining_Unit_Name (Specification (Act_Decl));
      Pack_Id       : constant Entity_Id  :=
                        Defining_Unit_Name (Parent (Act_Decl));
      Decls         : List_Id;
      Gen_Body      : Node_Id;
      Gen_Body_Id   : Node_Id;
      Act_Body      : Node_Id;
      Pack_Body     : Node_Id;
      Prev_Formal   : Entity_Id;
      Ret_Expr      : Node_Id;
      Unit_Renaming : Node_Id;
 
      Parent_Installed : Boolean := False;
      Save_Style_Check : constant Boolean := Style_Check;
 
      Par_Ent : Entity_Id := Empty;
      Par_Vis : Boolean   := False;
 
   begin
      Gen_Body_Id := Corresponding_Body (Gen_Decl);
 
      --  Subprogram body may have been created already because of an inline
      --  pragma, or because of multiple elaborations of the enclosing package
      --  when several instances of the subprogram appear in the main unit.
 
      if Present (Corresponding_Body (Act_Decl)) then
         return;
      end if;
 
      Expander_Mode_Save_And_Set (Body_Info.Expander_Status);
 
      --  Re-establish the state of information on which checks are suppressed.
      --  This information was set in Body_Info at the point of instantiation,
      --  and now we restore it so that the instance is compiled using the
      --  check status at the instantiation (RM 11.5 (7.2/2), AI95-00224-01).
 
      Local_Suppress_Stack_Top := Body_Info.Local_Suppress_Stack_Top;
      Scope_Suppress           := Body_Info.Scope_Suppress;
      Opt.Ada_Version          := Body_Info.Version;
 
      if No (Gen_Body_Id) then
 
         --  For imported generic subprogram, no body to compile, complete
         --  the spec entity appropriately.
 
         if Is_Imported (Gen_Unit) then
            Set_Is_Imported (Anon_Id);
            Set_First_Rep_Item (Anon_Id, First_Rep_Item (Gen_Unit));
            Set_Interface_Name (Anon_Id, Interface_Name (Gen_Unit));
            Set_Convention     (Anon_Id, Convention     (Gen_Unit));
            Set_Has_Completion (Anon_Id);
            return;
 
         --  For other cases, compile the body
 
         else
            Load_Parent_Of_Generic
              (Inst_Node, Specification (Gen_Decl), Body_Optional);
            Gen_Body_Id := Corresponding_Body (Gen_Decl);
         end if;
      end if;
 
      Instantiation_Node := Inst_Node;
 
      if Present (Gen_Body_Id) then
         Gen_Body := Unit_Declaration_Node (Gen_Body_Id);
 
         if Nkind (Gen_Body) = N_Subprogram_Body_Stub then
 
            --  Either body is not present, or context is non-expanding, as
            --  when compiling a subunit. Mark the instance as completed, and
            --  diagnose a missing body when needed.
 
            if Expander_Active
              and then Operating_Mode = Generate_Code
            then
               Error_Msg_N
                 ("missing proper body for instantiation", Gen_Body);
            end if;
 
            Set_Has_Completion (Anon_Id);
            return;
         end if;
 
         Save_Env (Gen_Unit, Anon_Id);
         Style_Check := False;
         Current_Sem_Unit := Body_Info.Current_Sem_Unit;
         Create_Instantiation_Source
           (Inst_Node,
            Gen_Body_Id,
            False,
            S_Adjustment);
 
         Act_Body :=
           Copy_Generic_Node
             (Original_Node (Gen_Body), Empty, Instantiating => True);
 
         --  Create proper defining name for the body, to correspond to
         --  the one in the spec.
 
         Set_Defining_Unit_Name (Specification (Act_Body),
           Make_Defining_Identifier
             (Sloc (Defining_Entity (Inst_Node)), Chars (Anon_Id)));
         Set_Corresponding_Spec (Act_Body, Anon_Id);
         Set_Has_Completion (Anon_Id);
         Check_Generic_Actuals (Pack_Id, False);
 
         --  Generate a reference to link the visible subprogram instance to
         --  the generic body, which for navigation purposes is the only
         --  available source for the instance.
 
         Generate_Reference
           (Related_Instance (Pack_Id),
             Gen_Body_Id, 'b', Set_Ref => False, Force => True);
 
         --  If it is a child unit, make the parent instance (which is an
         --  instance of the parent of the generic) visible. The parent
         --  instance is the prefix of the name of the generic unit.
 
         if Ekind (Scope (Gen_Unit)) = E_Generic_Package
           and then Nkind (Gen_Id) = N_Expanded_Name
         then
            Par_Ent := Entity (Prefix (Gen_Id));
            Par_Vis := Is_Immediately_Visible (Par_Ent);
            Install_Parent (Par_Ent, In_Body => True);
            Parent_Installed := True;
 
         elsif Is_Child_Unit (Gen_Unit) then
            Par_Ent := Scope (Gen_Unit);
            Par_Vis := Is_Immediately_Visible (Par_Ent);
            Install_Parent (Par_Ent, In_Body => True);
            Parent_Installed := True;
         end if;
 
         --  Inside its body, a reference to the generic unit is a reference
         --  to the instance. The corresponding renaming is the first
         --  declaration in the body.
 
         Unit_Renaming :=
           Make_Subprogram_Renaming_Declaration (Loc,
             Specification =>
               Copy_Generic_Node (
                 Specification (Original_Node (Gen_Body)),
                 Empty,
                 Instantiating => True),
             Name => New_Occurrence_Of (Anon_Id, Loc));
 
         --  If there is a formal subprogram with the same name as the unit
         --  itself, do not add this renaming declaration. This is a temporary
         --  fix for one ACVC test. ???
 
         Prev_Formal := First_Entity (Pack_Id);
         while Present (Prev_Formal) loop
            if Chars (Prev_Formal) = Chars (Gen_Unit)
              and then Is_Overloadable (Prev_Formal)
            then
               exit;
            end if;
 
            Next_Entity (Prev_Formal);
         end loop;
 
         if Present (Prev_Formal) then
            Decls :=  New_List (Act_Body);
         else
            Decls :=  New_List (Unit_Renaming, Act_Body);
         end if;
 
         --  The subprogram body is placed in the body of a dummy package body,
         --  whose spec contains the subprogram declaration as well as the
         --  renaming declarations for the generic parameters.
 
         Pack_Body := Make_Package_Body (Loc,
           Defining_Unit_Name => New_Copy (Pack_Id),
           Declarations       => Decls);
 
         Set_Corresponding_Spec (Pack_Body, Pack_Id);
 
         --  If the instantiation is a library unit, then build resulting
         --  compilation unit nodes for the instance. The declaration of
         --  the enclosing package is the grandparent of the subprogram
         --  declaration. First replace the instantiation node as the unit
         --  of the corresponding compilation.
 
         if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
            if Parent (Inst_Node) = Cunit (Main_Unit) then
               Set_Unit (Parent (Inst_Node), Inst_Node);
               Build_Instance_Compilation_Unit_Nodes
                 (Inst_Node, Pack_Body, Parent (Parent (Act_Decl)));
               Analyze (Inst_Node);
            else
               Set_Parent (Pack_Body, Parent (Inst_Node));
               Analyze (Pack_Body);
            end if;
 
         else
            Insert_Before (Inst_Node, Pack_Body);
            Mark_Rewrite_Insertion (Pack_Body);
            Analyze (Pack_Body);
 
            if Expander_Active then
               Freeze_Subprogram_Body (Inst_Node, Gen_Body, Pack_Id);
            end if;
         end if;
 
         Inherit_Context (Gen_Body, Inst_Node);
 
         Restore_Private_Views (Pack_Id, False);
 
         if Parent_Installed then
            Remove_Parent (In_Body => True);
 
            --  Restore the previous visibility of the parent
 
            Set_Is_Immediately_Visible (Par_Ent, Par_Vis);
         end if;
 
         Restore_Env;
         Style_Check := Save_Style_Check;
 
      --  Body not found. Error was emitted already. If there were no previous
      --  errors, this may be an instance whose scope is a premature instance.
      --  In that case we must insure that the (legal) program does raise
      --  program error if executed. We generate a subprogram body for this
      --  purpose. See DEC ac30vso.
 
      --  Should not reference proprietary DEC tests in comments ???
 
      elsif Serious_Errors_Detected = 0
        and then Nkind (Parent (Inst_Node)) /= N_Compilation_Unit
      then
         if Body_Optional then
            return;
 
         elsif Ekind (Anon_Id) = E_Procedure then
            Act_Body :=
              Make_Subprogram_Body (Loc,
                 Specification              =>
                   Make_Procedure_Specification (Loc,
                     Defining_Unit_Name         =>
                       Make_Defining_Identifier (Loc, Chars (Anon_Id)),
                       Parameter_Specifications =>
                       New_Copy_List
                         (Parameter_Specifications (Parent (Anon_Id)))),
 
                 Declarations               => Empty_List,
                 Handled_Statement_Sequence =>
                   Make_Handled_Sequence_Of_Statements (Loc,
                     Statements =>
                       New_List (
                         Make_Raise_Program_Error (Loc,
                           Reason =>
                             PE_Access_Before_Elaboration))));
 
         else
            Ret_Expr :=
              Make_Raise_Program_Error (Loc,
                Reason => PE_Access_Before_Elaboration);
 
            Set_Etype (Ret_Expr, (Etype (Anon_Id)));
            Set_Analyzed (Ret_Expr);
 
            Act_Body :=
              Make_Subprogram_Body (Loc,
                Specification =>
                  Make_Function_Specification (Loc,
                     Defining_Unit_Name         =>
                       Make_Defining_Identifier (Loc, Chars (Anon_Id)),
                       Parameter_Specifications =>
                       New_Copy_List
                         (Parameter_Specifications (Parent (Anon_Id))),
                     Result_Definition =>
                       New_Occurrence_Of (Etype (Anon_Id), Loc)),
 
                  Declarations               => Empty_List,
                  Handled_Statement_Sequence =>
                    Make_Handled_Sequence_Of_Statements (Loc,
                      Statements =>
                        New_List
                          (Make_Simple_Return_Statement (Loc, Ret_Expr))));
         end if;
 
         Pack_Body := Make_Package_Body (Loc,
           Defining_Unit_Name => New_Copy (Pack_Id),
           Declarations       => New_List (Act_Body));
 
         Insert_After (Inst_Node, Pack_Body);
         Set_Corresponding_Spec (Pack_Body, Pack_Id);
         Analyze (Pack_Body);
      end if;
 
      Expander_Mode_Restore;
   end Instantiate_Subprogram_Body;
 
   ----------------------
   -- Instantiate_Type --
   ----------------------
 
   function Instantiate_Type
     (Formal          : Node_Id;
      Actual          : Node_Id;
      Analyzed_Formal : Node_Id;
      Actual_Decls    : List_Id) return List_Id
   is
      Gen_T      : constant Entity_Id  := Defining_Identifier (Formal);
      A_Gen_T    : constant Entity_Id  :=
                     Defining_Identifier (Analyzed_Formal);
      Ancestor   : Entity_Id := Empty;
      Def        : constant Node_Id    := Formal_Type_Definition (Formal);
      Act_T      : Entity_Id;
      Decl_Node  : Node_Id;
      Decl_Nodes : List_Id;
      Loc        : Source_Ptr;
      Subt       : Entity_Id;
 
      procedure Validate_Array_Type_Instance;
      procedure Validate_Access_Subprogram_Instance;
      procedure Validate_Access_Type_Instance;
      procedure Validate_Derived_Type_Instance;
      procedure Validate_Derived_Interface_Type_Instance;
      procedure Validate_Discriminated_Formal_Type;
      procedure Validate_Interface_Type_Instance;
      procedure Validate_Private_Type_Instance;
      procedure Validate_Incomplete_Type_Instance;
      --  These procedures perform validation tests for the named case.
      --  Validate_Discriminated_Formal_Type is shared by formal private
      --  types and Ada 2012 formal incomplete types.
 
      function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean;
      --  Check that base types are the same and that the subtypes match
      --  statically. Used in several of the above.
 
      --------------------
      -- Subtypes_Match --
      --------------------
 
      function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean is
         T : constant Entity_Id := Get_Instance_Of (Gen_T);
 
      begin
         return (Base_Type (T) = Base_Type (Act_T)
                  and then Subtypes_Statically_Match (T, Act_T))
 
           or else (Is_Class_Wide_Type (Gen_T)
                     and then Is_Class_Wide_Type (Act_T)
                     and then
                       Subtypes_Match
                        (Get_Instance_Of (Root_Type (Gen_T)),
                         Root_Type (Act_T)))
 
           or else
             ((Ekind (Gen_T) = E_Anonymous_Access_Subprogram_Type
                 or else Ekind (Gen_T) = E_Anonymous_Access_Type)
               and then Ekind (Act_T) = Ekind (Gen_T)
               and then
                 Subtypes_Statically_Match
                   (Designated_Type (Gen_T), Designated_Type (Act_T)));
      end Subtypes_Match;
 
      -----------------------------------------
      -- Validate_Access_Subprogram_Instance --
      -----------------------------------------
 
      procedure Validate_Access_Subprogram_Instance is
      begin
         if not Is_Access_Type (Act_T)
           or else Ekind (Designated_Type (Act_T)) /= E_Subprogram_Type
         then
            Error_Msg_NE
              ("expect access type in instantiation of &", Actual, Gen_T);
            Abandon_Instantiation (Actual);
         end if;
 
         Check_Mode_Conformant
           (Designated_Type (Act_T),
            Designated_Type (A_Gen_T),
            Actual,
            Get_Inst => True);
 
         if Ekind (Base_Type (Act_T)) = E_Access_Protected_Subprogram_Type then
            if Ekind (A_Gen_T) = E_Access_Subprogram_Type then
               Error_Msg_NE
                 ("protected access type not allowed for formal &",
                  Actual, Gen_T);
            end if;
 
         elsif Ekind (A_Gen_T) = E_Access_Protected_Subprogram_Type then
            Error_Msg_NE
              ("expect protected access type for formal &",
               Actual, Gen_T);
         end if;
      end Validate_Access_Subprogram_Instance;
 
      -----------------------------------
      -- Validate_Access_Type_Instance --
      -----------------------------------
 
      procedure Validate_Access_Type_Instance is
         Desig_Type : constant Entity_Id :=
                        Find_Actual_Type (Designated_Type (A_Gen_T), A_Gen_T);
         Desig_Act  : Entity_Id;
 
      begin
         if not Is_Access_Type (Act_T) then
            Error_Msg_NE
              ("expect access type in instantiation of &", Actual, Gen_T);
            Abandon_Instantiation (Actual);
         end if;
 
         if Is_Access_Constant (A_Gen_T) then
            if not Is_Access_Constant (Act_T) then
               Error_Msg_N
                 ("actual type must be access-to-constant type", Actual);
               Abandon_Instantiation (Actual);
            end if;
         else
            if Is_Access_Constant (Act_T) then
               Error_Msg_N
                 ("actual type must be access-to-variable type", Actual);
               Abandon_Instantiation (Actual);
 
            elsif Ekind (A_Gen_T) = E_General_Access_Type
              and then Ekind (Base_Type (Act_T)) /= E_General_Access_Type
            then
               Error_Msg_N -- CODEFIX
                 ("actual must be general access type!", Actual);
               Error_Msg_NE -- CODEFIX
                 ("add ALL to }!", Actual, Act_T);
               Abandon_Instantiation (Actual);
            end if;
         end if;
 
         --  The designated subtypes, that is to say the subtypes introduced
         --  by an access type declaration (and not by a subtype declaration)
         --  must match.
 
         Desig_Act := Designated_Type (Base_Type (Act_T));
 
         --  The designated type may have been introduced through a limited_
         --  with clause, in which case retrieve the non-limited view. This
         --  applies to incomplete types as well as to class-wide types.
 
         if From_With_Type (Desig_Act) then
            Desig_Act := Available_View (Desig_Act);
         end if;
 
         if not Subtypes_Match
           (Desig_Type, Desig_Act) then
            Error_Msg_NE
              ("designated type of actual does not match that of formal &",
                 Actual, Gen_T);
            Abandon_Instantiation (Actual);
 
         elsif Is_Access_Type (Designated_Type (Act_T))
           and then Is_Constrained (Designated_Type (Designated_Type (Act_T)))
                      /=
                  Is_Constrained (Designated_Type (Desig_Type))
         then
            Error_Msg_NE
              ("designated type of actual does not match that of formal &",
                 Actual, Gen_T);
            Abandon_Instantiation (Actual);
         end if;
 
         --  Ada 2005: null-exclusion indicators of the two types must agree
 
         if Can_Never_Be_Null (A_Gen_T) /=  Can_Never_Be_Null (Act_T) then
            Error_Msg_NE
              ("non null exclusion of actual and formal & do not match",
                 Actual, Gen_T);
         end if;
      end Validate_Access_Type_Instance;
 
      ----------------------------------
      -- Validate_Array_Type_Instance --
      ----------------------------------
 
      procedure Validate_Array_Type_Instance is
         I1 : Node_Id;
         I2 : Node_Id;
         T2 : Entity_Id;
 
         function Formal_Dimensions return Int;
         --  Count number of dimensions in array type formal
 
         -----------------------
         -- Formal_Dimensions --
         -----------------------
 
         function Formal_Dimensions return Int is
            Num   : Int := 0;
            Index : Node_Id;
 
         begin
            if Nkind (Def) = N_Constrained_Array_Definition then
               Index := First (Discrete_Subtype_Definitions (Def));
            else
               Index := First (Subtype_Marks (Def));
            end if;
 
            while Present (Index) loop
               Num := Num + 1;
               Next_Index (Index);
            end loop;
 
            return Num;
         end Formal_Dimensions;
 
      --  Start of processing for Validate_Array_Type_Instance
 
      begin
         if not Is_Array_Type (Act_T) then
            Error_Msg_NE
              ("expect array type in instantiation of &", Actual, Gen_T);
            Abandon_Instantiation (Actual);
 
         elsif Nkind (Def) = N_Constrained_Array_Definition then
            if not (Is_Constrained (Act_T)) then
               Error_Msg_NE
                 ("expect constrained array in instantiation of &",
                  Actual, Gen_T);
               Abandon_Instantiation (Actual);
            end if;
 
         else
            if Is_Constrained (Act_T) then
               Error_Msg_NE
                 ("expect unconstrained array in instantiation of &",
                  Actual, Gen_T);
               Abandon_Instantiation (Actual);
            end if;
         end if;
 
         if Formal_Dimensions /= Number_Dimensions (Act_T) then
            Error_Msg_NE
              ("dimensions of actual do not match formal &", Actual, Gen_T);
            Abandon_Instantiation (Actual);
         end if;
 
         I1 := First_Index (A_Gen_T);
         I2 := First_Index (Act_T);
         for J in 1 .. Formal_Dimensions loop
 
            --  If the indexes of the actual were given by a subtype_mark,
            --  the index was transformed into a range attribute. Retrieve
            --  the original type mark for checking.
 
            if Is_Entity_Name (Original_Node (I2)) then
               T2 := Entity (Original_Node (I2));
            else
               T2 := Etype (I2);
            end if;
 
            if not Subtypes_Match
                     (Find_Actual_Type (Etype (I1), A_Gen_T), T2)
            then
               Error_Msg_NE
                 ("index types of actual do not match those of formal &",
                  Actual, Gen_T);
               Abandon_Instantiation (Actual);
            end if;
 
            Next_Index (I1);
            Next_Index (I2);
         end loop;
 
         --  Check matching subtypes. Note that there are complex visibility
         --  issues when the generic is a child unit and some aspect of the
         --  generic type is declared in a parent unit of the generic. We do
         --  the test to handle this special case only after a direct check
         --  for static matching has failed.
 
         if Subtypes_Match
           (Component_Type (A_Gen_T), Component_Type (Act_T))
             or else Subtypes_Match
                      (Find_Actual_Type (Component_Type (A_Gen_T), A_Gen_T),
                       Component_Type (Act_T))
         then
            null;
         else
            Error_Msg_NE
              ("component subtype of actual does not match that of formal &",
               Actual, Gen_T);
            Abandon_Instantiation (Actual);
         end if;
 
         if Has_Aliased_Components (A_Gen_T)
           and then not Has_Aliased_Components (Act_T)
         then
            Error_Msg_NE
              ("actual must have aliased components to match formal type &",
               Actual, Gen_T);
         end if;
      end Validate_Array_Type_Instance;
 
      -----------------------------------------------
      --  Validate_Derived_Interface_Type_Instance --
      -----------------------------------------------
 
      procedure Validate_Derived_Interface_Type_Instance is
         Par  : constant Entity_Id := Entity (Subtype_Indication (Def));
         Elmt : Elmt_Id;
 
      begin
         --  First apply interface instance checks
 
         Validate_Interface_Type_Instance;
 
         --  Verify that immediate parent interface is an ancestor of
         --  the actual.
 
         if Present (Par)
           and then not Interface_Present_In_Ancestor (Act_T, Par)
         then
            Error_Msg_NE
              ("interface actual must include progenitor&", Actual, Par);
         end if;
 
         --  Now verify that the actual includes all other ancestors of
         --  the formal.
 
         Elmt := First_Elmt (Interfaces (A_Gen_T));
         while Present (Elmt) loop
            if not Interface_Present_In_Ancestor
                     (Act_T, Get_Instance_Of (Node (Elmt)))
            then
               Error_Msg_NE
                 ("interface actual must include progenitor&",
                    Actual, Node (Elmt));
            end if;
 
            Next_Elmt (Elmt);
         end loop;
      end Validate_Derived_Interface_Type_Instance;
 
      ------------------------------------
      -- Validate_Derived_Type_Instance --
      ------------------------------------
 
      procedure Validate_Derived_Type_Instance is
         Actual_Discr   : Entity_Id;
         Ancestor_Discr : Entity_Id;
 
      begin
         --  If the parent type in the generic declaration is itself a previous
         --  formal type, then it is local to the generic and absent from the
         --  analyzed generic definition. In that case the ancestor is the
         --  instance of the formal (which must have been instantiated
         --  previously), unless the ancestor is itself a formal derived type.
         --  In this latter case (which is the subject of Corrigendum 8652/0038
         --  (AI-202) the ancestor of the formals is the ancestor of its
         --  parent. Otherwise, the analyzed generic carries the parent type.
         --  If the parent type is defined in a previous formal package, then
         --  the scope of that formal package is that of the generic type
         --  itself, and it has already been mapped into the corresponding type
         --  in the actual package.
 
         --  Common case: parent type defined outside of the generic
 
         if Is_Entity_Name (Subtype_Mark (Def))
           and then Present (Entity (Subtype_Mark (Def)))
         then
            Ancestor := Get_Instance_Of (Entity (Subtype_Mark (Def)));
 
         --  Check whether parent is defined in a previous formal package
 
         elsif
           Scope (Scope (Base_Type (Etype (A_Gen_T)))) = Scope (A_Gen_T)
         then
            Ancestor :=
              Get_Instance_Of (Base_Type (Etype (A_Gen_T)));
 
         --  The type may be a local derivation, or a type extension of a
         --  previous formal, or of a formal of a parent package.
 
         elsif Is_Derived_Type (Get_Instance_Of (A_Gen_T))
          or else
            Ekind (Get_Instance_Of (A_Gen_T)) = E_Record_Type_With_Private
         then
            --  Check whether the parent is another derived formal type in the
            --  same generic unit.
 
            if Etype (A_Gen_T) /= A_Gen_T
              and then Is_Generic_Type (Etype (A_Gen_T))
              and then Scope (Etype (A_Gen_T)) = Scope (A_Gen_T)
              and then Etype (Etype (A_Gen_T)) /= Etype (A_Gen_T)
            then
               --  Locate ancestor of parent from the subtype declaration
               --  created for the actual.
 
               declare
                  Decl : Node_Id;
 
               begin
                  Decl := First (Actual_Decls);
                  while Present (Decl) loop
                     if Nkind (Decl) = N_Subtype_Declaration
                       and then Chars (Defining_Identifier (Decl)) =
                                                    Chars (Etype (A_Gen_T))
                     then
                        Ancestor := Generic_Parent_Type (Decl);
                        exit;
                     else
                        Next (Decl);
                     end if;
                  end loop;
               end;
 
               pragma Assert (Present (Ancestor));
 
            else
               Ancestor :=
                 Get_Instance_Of (Base_Type (Get_Instance_Of (A_Gen_T)));
            end if;
 
         else
            Ancestor := Get_Instance_Of (Etype (Base_Type (A_Gen_T)));
         end if;
 
         --  If the formal derived type has pragma Preelaborable_Initialization
         --  then the actual type must have preelaborable initialization.
 
         if Known_To_Have_Preelab_Init (A_Gen_T)
           and then not Has_Preelaborable_Initialization (Act_T)
         then
            Error_Msg_NE
              ("actual for & must have preelaborable initialization",
               Actual, Gen_T);
         end if;
 
         --  Ada 2005 (AI-251)
 
         if Ada_Version >= Ada_2005
           and then Is_Interface (Ancestor)
         then
            if not Interface_Present_In_Ancestor (Act_T, Ancestor) then
               Error_Msg_NE
                 ("(Ada 2005) expected type implementing & in instantiation",
                  Actual, Ancestor);
            end if;
 
         elsif not Is_Ancestor (Base_Type (Ancestor), Act_T) then
            Error_Msg_NE
              ("expect type derived from & in instantiation",
               Actual, First_Subtype (Ancestor));
            Abandon_Instantiation (Actual);
         end if;
 
         --  Ada 2005 (AI-443): Synchronized formal derived type checks. Note
         --  that the formal type declaration has been rewritten as a private
         --  extension.
 
         if Ada_Version >= Ada_2005
           and then Nkind (Parent (A_Gen_T)) = N_Private_Extension_Declaration
           and then Synchronized_Present (Parent (A_Gen_T))
         then
            --  The actual must be a synchronized tagged type
 
            if not Is_Tagged_Type (Act_T) then
               Error_Msg_N
                 ("actual of synchronized type must be tagged", Actual);
               Abandon_Instantiation (Actual);
 
            elsif Nkind (Parent (Act_T)) = N_Full_Type_Declaration
              and then Nkind (Type_Definition (Parent (Act_T))) =
                         N_Derived_Type_Definition
              and then not Synchronized_Present (Type_Definition
                             (Parent (Act_T)))
            then
               Error_Msg_N
                 ("actual of synchronized type must be synchronized", Actual);
               Abandon_Instantiation (Actual);
            end if;
         end if;
 
         --  Perform atomic/volatile checks (RM C.6(12)). Note that AI05-0218-1
         --  removes the second instance of the phrase "or allow pass by copy".
 
         if Is_Atomic (Act_T) and then not Is_Atomic (Ancestor) then
            Error_Msg_N
              ("cannot have atomic actual type for non-atomic formal type",
               Actual);
 
         elsif Is_Volatile (Act_T) and then not Is_Volatile (Ancestor) then
            Error_Msg_N
              ("cannot have volatile actual type for non-volatile formal type",
               Actual);
         end if;
 
         --  It should not be necessary to check for unknown discriminants on
         --  Formal, but for some reason Has_Unknown_Discriminants is false for
         --  A_Gen_T, so Is_Indefinite_Subtype incorrectly returns False. This
         --  needs fixing. ???
 
         if not Is_Indefinite_Subtype (A_Gen_T)
           and then not Unknown_Discriminants_Present (Formal)
           and then Is_Indefinite_Subtype (Act_T)
         then
            Error_Msg_N
              ("actual subtype must be constrained", Actual);
            Abandon_Instantiation (Actual);
         end if;
 
         if not Unknown_Discriminants_Present (Formal) then
            if Is_Constrained (Ancestor) then
               if not Is_Constrained (Act_T) then
                  Error_Msg_N
                    ("actual subtype must be constrained", Actual);
                  Abandon_Instantiation (Actual);
               end if;
 
            --  Ancestor is unconstrained, Check if generic formal and actual
            --  agree on constrainedness. The check only applies to array types
            --  and discriminated types.
 
            elsif Is_Constrained (Act_T) then
               if Ekind (Ancestor) = E_Access_Type
                 or else
                   (not Is_Constrained (A_Gen_T)
                     and then Is_Composite_Type (A_Gen_T))
               then
                  Error_Msg_N
                    ("actual subtype must be unconstrained", Actual);
                  Abandon_Instantiation (Actual);
               end if;
 
            --  A class-wide type is only allowed if the formal has unknown
            --  discriminants.
 
            elsif Is_Class_Wide_Type (Act_T)
              and then not Has_Unknown_Discriminants (Ancestor)
            then
               Error_Msg_NE
                 ("actual for & cannot be a class-wide type", Actual, Gen_T);
               Abandon_Instantiation (Actual);
 
            --  Otherwise, the formal and actual shall have the same number
            --  of discriminants and each discriminant of the actual must
            --  correspond to a discriminant of the formal.
 
            elsif Has_Discriminants (Act_T)
              and then not Has_Unknown_Discriminants (Act_T)
              and then Has_Discriminants (Ancestor)
            then
               Actual_Discr   := First_Discriminant (Act_T);
               Ancestor_Discr := First_Discriminant (Ancestor);
               while Present (Actual_Discr)
                 and then Present (Ancestor_Discr)
               loop
                  if Base_Type (Act_T) /= Base_Type (Ancestor) and then
                    No (Corresponding_Discriminant (Actual_Discr))
                  then
                     Error_Msg_NE
                       ("discriminant & does not correspond " &
                        "to ancestor discriminant", Actual, Actual_Discr);
                     Abandon_Instantiation (Actual);
                  end if;
 
                  Next_Discriminant (Actual_Discr);
                  Next_Discriminant (Ancestor_Discr);
               end loop;
 
               if Present (Actual_Discr) or else Present (Ancestor_Discr) then
                  Error_Msg_NE
                    ("actual for & must have same number of discriminants",
                     Actual, Gen_T);
                  Abandon_Instantiation (Actual);
               end if;
 
            --  This case should be caught by the earlier check for
            --  constrainedness, but the check here is added for completeness.
 
            elsif Has_Discriminants (Act_T)
              and then not Has_Unknown_Discriminants (Act_T)
            then
               Error_Msg_NE
                 ("actual for & must not have discriminants", Actual, Gen_T);
               Abandon_Instantiation (Actual);
 
            elsif Has_Discriminants (Ancestor) then
               Error_Msg_NE
                 ("actual for & must have known discriminants", Actual, Gen_T);
               Abandon_Instantiation (Actual);
            end if;
 
            if not Subtypes_Statically_Compatible (Act_T, Ancestor) then
               Error_Msg_N
                 ("constraint on actual is incompatible with formal", Actual);
               Abandon_Instantiation (Actual);
            end if;
         end if;
 
         --  If the formal and actual types are abstract, check that there
         --  are no abstract primitives of the actual type that correspond to
         --  nonabstract primitives of the formal type (second sentence of
         --  RM95-3.9.3(9)).
 
         if Is_Abstract_Type (A_Gen_T) and then Is_Abstract_Type (Act_T) then
            Check_Abstract_Primitives : declare
               Gen_Prims  : constant Elist_Id :=
                             Primitive_Operations (A_Gen_T);
               Gen_Elmt   : Elmt_Id;
               Gen_Subp   : Entity_Id;
               Anc_Subp   : Entity_Id;
               Anc_Formal : Entity_Id;
               Anc_F_Type : Entity_Id;
 
               Act_Prims  : constant Elist_Id  := Primitive_Operations (Act_T);
               Act_Elmt   : Elmt_Id;
               Act_Subp   : Entity_Id;
               Act_Formal : Entity_Id;
               Act_F_Type : Entity_Id;
 
               Subprograms_Correspond : Boolean;
 
               function Is_Tagged_Ancestor (T1, T2 : Entity_Id) return Boolean;
               --  Returns true if T2 is derived directly or indirectly from
               --  T1, including derivations from interfaces. T1 and T2 are
               --  required to be specific tagged base types.
 
               ------------------------
               -- Is_Tagged_Ancestor --
               ------------------------
 
               function Is_Tagged_Ancestor (T1, T2 : Entity_Id) return Boolean
               is
                  Intfc_Elmt : Elmt_Id;
 
               begin
                  --  The predicate is satisfied if the types are the same
 
                  if T1 = T2 then
                     return True;
 
                  --  If we've reached the top of the derivation chain then
                  --  we know that T1 is not an ancestor of T2.
 
                  elsif Etype (T2) = T2 then
                     return False;
 
                  --  Proceed to check T2's immediate parent
 
                  elsif Is_Ancestor (T1, Base_Type (Etype (T2))) then
                     return True;
 
                  --  Finally, check to see if T1 is an ancestor of any of T2's
                  --  progenitors.
 
                  else
                     Intfc_Elmt := First_Elmt (Interfaces (T2));
                     while Present (Intfc_Elmt) loop
                        if Is_Ancestor (T1, Node (Intfc_Elmt)) then
                           return True;
                        end if;
 
                        Next_Elmt (Intfc_Elmt);
                     end loop;
                  end if;
 
                  return False;
               end Is_Tagged_Ancestor;
 
            --  Start of processing for Check_Abstract_Primitives
 
            begin
               --  Loop over all of the formal derived type's primitives
 
               Gen_Elmt := First_Elmt (Gen_Prims);
               while Present (Gen_Elmt) loop
                  Gen_Subp := Node (Gen_Elmt);
 
                  --  If the primitive of the formal is not abstract, then
                  --  determine whether there is a corresponding primitive of
                  --  the actual type that's abstract.
 
                  if not Is_Abstract_Subprogram (Gen_Subp) then
                     Act_Elmt := First_Elmt (Act_Prims);
                     while Present (Act_Elmt) loop
                        Act_Subp := Node (Act_Elmt);
 
                        --  If we find an abstract primitive of the actual,
                        --  then we need to test whether it corresponds to the
                        --  subprogram from which the generic formal primitive
                        --  is inherited.
 
                        if Is_Abstract_Subprogram (Act_Subp) then
                           Anc_Subp := Alias (Gen_Subp);
 
                           --  Test whether we have a corresponding primitive
                           --  by comparing names, kinds, formal types, and
                           --  result types.
 
                           if Chars (Anc_Subp) = Chars (Act_Subp)
                             and then Ekind (Anc_Subp) = Ekind (Act_Subp)
                           then
                              Anc_Formal := First_Formal (Anc_Subp);
                              Act_Formal := First_Formal (Act_Subp);
                              while Present (Anc_Formal)
                                and then Present (Act_Formal)
                              loop
                                 Anc_F_Type := Etype (Anc_Formal);
                                 Act_F_Type := Etype (Act_Formal);
 
                                 if Ekind (Anc_F_Type)
                                      = E_Anonymous_Access_Type
                                 then
                                    Anc_F_Type := Designated_Type (Anc_F_Type);
 
                                    if Ekind (Act_F_Type)
                                         = E_Anonymous_Access_Type
                                    then
                                       Act_F_Type :=
                                         Designated_Type (Act_F_Type);
                                    else
                                       exit;
                                    end if;
 
                                 elsif
                                   Ekind (Act_F_Type) = E_Anonymous_Access_Type
                                 then
                                    exit;
                                 end if;
 
                                 Anc_F_Type := Base_Type (Anc_F_Type);
                                 Act_F_Type := Base_Type (Act_F_Type);
 
                                 --  If the formal is controlling, then the
                                 --  the type of the actual primitive's formal
                                 --  must be derived directly or indirectly
                                 --  from the type of the ancestor primitive's
                                 --  formal.
 
                                 if Is_Controlling_Formal (Anc_Formal) then
                                    if not Is_Tagged_Ancestor
                                             (Anc_F_Type, Act_F_Type)
                                    then
                                       exit;
                                    end if;
 
                                 --  Otherwise the types of the formals must
                                 --  be the same.
 
                                 elsif Anc_F_Type /= Act_F_Type then
                                    exit;
                                 end if;
 
                                 Next_Entity (Anc_Formal);
                                 Next_Entity (Act_Formal);
                              end loop;
 
                              --  If we traversed through all of the formals
                              --  then so far the subprograms correspond, so
                              --  now check that any result types correspond.
 
                              if No (Anc_Formal) and then No (Act_Formal) then
                                 Subprograms_Correspond := True;
 
                                 if Ekind (Act_Subp) = E_Function then
                                    Anc_F_Type := Etype (Anc_Subp);
                                    Act_F_Type := Etype (Act_Subp);
 
                                    if Ekind (Anc_F_Type)
                                         = E_Anonymous_Access_Type
                                    then
                                       Anc_F_Type :=
                                         Designated_Type (Anc_F_Type);
 
                                       if Ekind (Act_F_Type)
                                            = E_Anonymous_Access_Type
                                       then
                                          Act_F_Type :=
                                            Designated_Type (Act_F_Type);
                                       else
                                          Subprograms_Correspond := False;
                                       end if;
 
                                    elsif
                                      Ekind (Act_F_Type)
                                        = E_Anonymous_Access_Type
                                    then
                                       Subprograms_Correspond := False;
                                    end if;
 
                                    Anc_F_Type := Base_Type (Anc_F_Type);
                                    Act_F_Type := Base_Type (Act_F_Type);
 
                                    --  Now either the result types must be
                                    --  the same or, if the result type is
                                    --  controlling, the result type of the
                                    --  actual primitive must descend from the
                                    --  result type of the ancestor primitive.
 
                                    if Subprograms_Correspond
                                      and then Anc_F_Type /= Act_F_Type
                                      and then
                                        Has_Controlling_Result (Anc_Subp)
                                      and then
                                        not Is_Tagged_Ancestor
                                              (Anc_F_Type, Act_F_Type)
                                    then
                                       Subprograms_Correspond := False;
                                    end if;
                                 end if;
 
                                 --  Found a matching subprogram belonging to
                                 --  formal ancestor type, so actual subprogram
                                 --  corresponds and this violates 3.9.3(9).
 
                                 if Subprograms_Correspond then
                                    Error_Msg_NE
                                      ("abstract subprogram & overrides " &
                                       "nonabstract subprogram of ancestor",
                                       Actual,
                                       Act_Subp);
                                 end if;
                              end if;
                           end if;
                        end if;
 
                        Next_Elmt (Act_Elmt);
                     end loop;
                  end if;
 
                  Next_Elmt (Gen_Elmt);
               end loop;
            end Check_Abstract_Primitives;
         end if;
 
         --  Verify that limitedness matches. If parent is a limited
         --  interface then  the generic formal is not unless declared
         --  explicitly so. If not declared limited, the actual cannot be
         --  limited (see AI05-0087).
 
         --  Even though this AI is a binding interpretation, we enable the
         --  check only in Ada 2012 mode, because this improper construct
         --  shows up in user code and in existing B-tests.
 
         if Is_Limited_Type (Act_T)
           and then not Is_Limited_Type (A_Gen_T)
           and then Ada_Version >= Ada_2012
         then
            if In_Instance then
               null;
            else
               Error_Msg_NE
                 ("actual for non-limited & cannot be a limited type", Actual,
                  Gen_T);
               Explain_Limited_Type (Act_T, Actual);
               Abandon_Instantiation (Actual);
            end if;
         end if;
      end Validate_Derived_Type_Instance;
 
      ----------------------------------------
      -- Validate_Discriminated_Formal_Type --
      ----------------------------------------
 
      procedure Validate_Discriminated_Formal_Type is
         Formal_Discr : Entity_Id;
         Actual_Discr : Entity_Id;
         Formal_Subt  : Entity_Id;
 
      begin
         if Has_Discriminants (A_Gen_T) then
            if not Has_Discriminants (Act_T) then
               Error_Msg_NE
                 ("actual for & must have discriminants", Actual, Gen_T);
               Abandon_Instantiation (Actual);
 
            elsif Is_Constrained (Act_T) then
               Error_Msg_NE
                 ("actual for & must be unconstrained", Actual, Gen_T);
               Abandon_Instantiation (Actual);
 
            else
               Formal_Discr := First_Discriminant (A_Gen_T);
               Actual_Discr := First_Discriminant (Act_T);
               while Formal_Discr /= Empty loop
                  if Actual_Discr = Empty then
                     Error_Msg_NE
                       ("discriminants on actual do not match formal",
                        Actual, Gen_T);
                     Abandon_Instantiation (Actual);
                  end if;
 
                  Formal_Subt := Get_Instance_Of (Etype (Formal_Discr));
 
                  --  Access discriminants match if designated types do
 
                  if Ekind (Base_Type (Formal_Subt)) = E_Anonymous_Access_Type
                    and then (Ekind (Base_Type (Etype (Actual_Discr)))) =
                                E_Anonymous_Access_Type
                    and then
                      Get_Instance_Of
                        (Designated_Type (Base_Type (Formal_Subt))) =
                           Designated_Type (Base_Type (Etype (Actual_Discr)))
                  then
                     null;
 
                  elsif Base_Type (Formal_Subt) /=
                          Base_Type (Etype (Actual_Discr))
                  then
                     Error_Msg_NE
                       ("types of actual discriminants must match formal",
                        Actual, Gen_T);
                     Abandon_Instantiation (Actual);
 
                  elsif not Subtypes_Statically_Match
                              (Formal_Subt, Etype (Actual_Discr))
                    and then Ada_Version >= Ada_95
                  then
                     Error_Msg_NE
                       ("subtypes of actual discriminants must match formal",
                        Actual, Gen_T);
                     Abandon_Instantiation (Actual);
                  end if;
 
                  Next_Discriminant (Formal_Discr);
                  Next_Discriminant (Actual_Discr);
               end loop;
 
               if Actual_Discr /= Empty then
                  Error_Msg_NE
                    ("discriminants on actual do not match formal",
                     Actual, Gen_T);
                  Abandon_Instantiation (Actual);
               end if;
            end if;
         end if;
      end Validate_Discriminated_Formal_Type;
 
      ---------------------------------------
      -- Validate_Incomplete_Type_Instance --
      ---------------------------------------
 
      procedure Validate_Incomplete_Type_Instance is
      begin
         if not Is_Tagged_Type (Act_T)
           and then Is_Tagged_Type (A_Gen_T)
         then
            Error_Msg_NE
              ("actual for & must be a tagged type", Actual, Gen_T);
         end if;
 
         Validate_Discriminated_Formal_Type;
      end Validate_Incomplete_Type_Instance;
 
      --------------------------------------
      -- Validate_Interface_Type_Instance --
      --------------------------------------
 
      procedure Validate_Interface_Type_Instance is
      begin
         if not Is_Interface (Act_T) then
            Error_Msg_NE
              ("actual for formal interface type must be an interface",
                Actual, Gen_T);
 
         elsif Is_Limited_Type (Act_T) /= Is_Limited_Type (A_Gen_T)
           or else
             Is_Task_Interface (A_Gen_T) /= Is_Task_Interface (Act_T)
           or else
             Is_Protected_Interface (A_Gen_T) /=
               Is_Protected_Interface (Act_T)
           or else
             Is_Synchronized_Interface (A_Gen_T) /=
               Is_Synchronized_Interface (Act_T)
         then
            Error_Msg_NE
              ("actual for interface& does not match (RM 12.5.5(4))",
               Actual, Gen_T);
         end if;
      end Validate_Interface_Type_Instance;
 
      ------------------------------------
      -- Validate_Private_Type_Instance --
      ------------------------------------
 
      procedure Validate_Private_Type_Instance is
      begin
         if Is_Limited_Type (Act_T)
           and then not Is_Limited_Type (A_Gen_T)
         then
            if In_Instance then
               null;
            else
               Error_Msg_NE
                 ("actual for non-limited & cannot be a limited type", Actual,
                  Gen_T);
               Explain_Limited_Type (Act_T, Actual);
               Abandon_Instantiation (Actual);
            end if;
 
         elsif Known_To_Have_Preelab_Init (A_Gen_T)
           and then not Has_Preelaborable_Initialization (Act_T)
         then
            Error_Msg_NE
              ("actual for & must have preelaborable initialization", Actual,
               Gen_T);
 
         elsif Is_Indefinite_Subtype (Act_T)
            and then not Is_Indefinite_Subtype (A_Gen_T)
            and then Ada_Version >= Ada_95
         then
            Error_Msg_NE
              ("actual for & must be a definite subtype", Actual, Gen_T);
 
         elsif not Is_Tagged_Type (Act_T)
           and then Is_Tagged_Type (A_Gen_T)
         then
            Error_Msg_NE
              ("actual for & must be a tagged type", Actual, Gen_T);
         end if;
 
         Validate_Discriminated_Formal_Type;
         Ancestor := Gen_T;
      end Validate_Private_Type_Instance;
 
   --  Start of processing for Instantiate_Type
 
   begin
      if Get_Instance_Of (A_Gen_T) /= A_Gen_T then
         Error_Msg_N ("duplicate instantiation of generic type", Actual);
         return New_List (Error);
 
      elsif not Is_Entity_Name (Actual)
        or else not Is_Type (Entity (Actual))
      then
         Error_Msg_NE
           ("expect valid subtype mark to instantiate &", Actual, Gen_T);
         Abandon_Instantiation (Actual);
 
      else
         Act_T := Entity (Actual);
 
         --  Ada 2005 (AI-216): An Unchecked_Union subtype shall only be passed
         --  as a generic actual parameter if the corresponding formal type
         --  does not have a known_discriminant_part, or is a formal derived
         --  type that is an Unchecked_Union type.
 
         if Is_Unchecked_Union (Base_Type (Act_T)) then
            if not Has_Discriminants (A_Gen_T)
                     or else
                   (Is_Derived_Type (A_Gen_T)
                     and then
                    Is_Unchecked_Union (A_Gen_T))
            then
               null;
            else
               Error_Msg_N ("Unchecked_Union cannot be the actual for a" &
                 " discriminated formal type", Act_T);
 
            end if;
         end if;
 
         --  Deal with fixed/floating restrictions
 
         if Is_Floating_Point_Type (Act_T) then
            Check_Restriction (No_Floating_Point, Actual);
         elsif Is_Fixed_Point_Type (Act_T) then
            Check_Restriction (No_Fixed_Point, Actual);
         end if;
 
         --  Deal with error of using incomplete type as generic actual.
         --  This includes limited views of a type, even if the non-limited
         --  view may be available.
 
         if Ekind (Act_T) = E_Incomplete_Type
           or else (Is_Class_Wide_Type (Act_T)
                      and then
                         Ekind (Root_Type (Act_T)) = E_Incomplete_Type)
         then
            --  If the formal is an incomplete type, the actual can be
            --  incomplete as well.
 
            if Ekind (A_Gen_T) = E_Incomplete_Type then
               null;
 
            elsif Is_Class_Wide_Type (Act_T)
              or else No (Full_View (Act_T))
            then
               Error_Msg_N ("premature use of incomplete type", Actual);
               Abandon_Instantiation (Actual);
            else
               Act_T := Full_View (Act_T);
               Set_Entity (Actual, Act_T);
 
               if Has_Private_Component (Act_T) then
                  Error_Msg_N
                    ("premature use of type with private component", Actual);
               end if;
            end if;
 
         --  Deal with error of premature use of private type as generic actual
 
         elsif Is_Private_Type (Act_T)
           and then Is_Private_Type (Base_Type (Act_T))
           and then not Is_Generic_Type (Act_T)
           and then not Is_Derived_Type (Act_T)
           and then No (Full_View (Root_Type (Act_T)))
         then
            --  If the formal is an incomplete type, the actual can be
            --  private or incomplete as well.
 
            if Ekind (A_Gen_T) = E_Incomplete_Type then
               null;
            else
               Error_Msg_N ("premature use of private type", Actual);
            end if;
 
         elsif Has_Private_Component (Act_T) then
            Error_Msg_N
              ("premature use of type with private component", Actual);
         end if;
 
         Set_Instance_Of (A_Gen_T, Act_T);
 
         --  If the type is generic, the class-wide type may also be used
 
         if Is_Tagged_Type (A_Gen_T)
           and then Is_Tagged_Type (Act_T)
           and then not Is_Class_Wide_Type (A_Gen_T)
         then
            Set_Instance_Of (Class_Wide_Type (A_Gen_T),
              Class_Wide_Type (Act_T));
         end if;
 
         if not Is_Abstract_Type (A_Gen_T)
           and then Is_Abstract_Type (Act_T)
         then
            Error_Msg_N
              ("actual of non-abstract formal cannot be abstract", Actual);
         end if;
 
         --  A generic scalar type is a first subtype for which we generate
         --  an anonymous base type. Indicate that the instance of this base
         --  is the base type of the actual.
 
         if Is_Scalar_Type (A_Gen_T) then
            Set_Instance_Of (Etype (A_Gen_T), Etype (Act_T));
         end if;
      end if;
 
      if Error_Posted (Act_T) then
         null;
      else
         case Nkind (Def) is
            when N_Formal_Private_Type_Definition =>
               Validate_Private_Type_Instance;
 
            when N_Formal_Incomplete_Type_Definition =>
               Validate_Incomplete_Type_Instance;
 
            when N_Formal_Derived_Type_Definition =>
               Validate_Derived_Type_Instance;
 
            when N_Formal_Discrete_Type_Definition =>
               if not Is_Discrete_Type (Act_T) then
                  Error_Msg_NE
                    ("expect discrete type in instantiation of&",
                       Actual, Gen_T);
                  Abandon_Instantiation (Actual);
               end if;
 
            when N_Formal_Signed_Integer_Type_Definition =>
               if not Is_Signed_Integer_Type (Act_T) then
                  Error_Msg_NE
                    ("expect signed integer type in instantiation of&",
                     Actual, Gen_T);
                  Abandon_Instantiation (Actual);
               end if;
 
            when N_Formal_Modular_Type_Definition =>
               if not Is_Modular_Integer_Type (Act_T) then
                  Error_Msg_NE
                    ("expect modular type in instantiation of &",
                       Actual, Gen_T);
                  Abandon_Instantiation (Actual);
               end if;
 
            when N_Formal_Floating_Point_Definition =>
               if not Is_Floating_Point_Type (Act_T) then
                  Error_Msg_NE
                    ("expect float type in instantiation of &", Actual, Gen_T);
                  Abandon_Instantiation (Actual);
               end if;
 
            when N_Formal_Ordinary_Fixed_Point_Definition =>
               if not Is_Ordinary_Fixed_Point_Type (Act_T) then
                  Error_Msg_NE
                    ("expect ordinary fixed point type in instantiation of &",
                     Actual, Gen_T);
                  Abandon_Instantiation (Actual);
               end if;
 
            when N_Formal_Decimal_Fixed_Point_Definition =>
               if not Is_Decimal_Fixed_Point_Type (Act_T) then
                  Error_Msg_NE
                    ("expect decimal type in instantiation of &",
                     Actual, Gen_T);
                  Abandon_Instantiation (Actual);
               end if;
 
            when N_Array_Type_Definition =>
               Validate_Array_Type_Instance;
 
            when N_Access_To_Object_Definition =>
               Validate_Access_Type_Instance;
 
            when N_Access_Function_Definition |
                 N_Access_Procedure_Definition =>
               Validate_Access_Subprogram_Instance;
 
            when N_Record_Definition           =>
               Validate_Interface_Type_Instance;
 
            when N_Derived_Type_Definition     =>
               Validate_Derived_Interface_Type_Instance;
 
            when others =>
               raise Program_Error;
 
         end case;
      end if;
 
      Subt := New_Copy (Gen_T);
 
      --  Use adjusted sloc of subtype name as the location for other nodes in
      --  the subtype declaration.
 
      Loc  := Sloc (Subt);
 
      Decl_Node :=
        Make_Subtype_Declaration (Loc,
          Defining_Identifier => Subt,
          Subtype_Indication  => New_Reference_To (Act_T, Loc));
 
      if Is_Private_Type (Act_T) then
         Set_Has_Private_View (Subtype_Indication (Decl_Node));
 
      elsif Is_Access_Type (Act_T)
        and then Is_Private_Type (Designated_Type (Act_T))
      then
         Set_Has_Private_View (Subtype_Indication (Decl_Node));
      end if;
 
      Decl_Nodes := New_List (Decl_Node);
 
      --  Flag actual derived types so their elaboration produces the
      --  appropriate renamings for the primitive operations of the ancestor.
      --  Flag actual for formal private types as well, to determine whether
      --  operations in the private part may override inherited operations.
      --  If the formal has an interface list, the ancestor is not the
      --  parent, but the analyzed formal that includes the interface
      --  operations of all its progenitors.
 
      --  Same treatment for formal private types, so we can check whether the
      --  type is tagged limited when validating derivations in the private
      --  part. (See AI05-096).
 
      if Nkind (Def) = N_Formal_Derived_Type_Definition then
         if Present (Interface_List (Def)) then
            Set_Generic_Parent_Type (Decl_Node, A_Gen_T);
         else
            Set_Generic_Parent_Type (Decl_Node, Ancestor);
         end if;
 
      elsif Nkind_In (Def,
        N_Formal_Private_Type_Definition,
        N_Formal_Incomplete_Type_Definition)
      then
         Set_Generic_Parent_Type (Decl_Node, A_Gen_T);
      end if;
 
      --  If the actual is a synchronized type that implements an interface,
      --  the primitive operations are attached to the corresponding record,
      --  and we have to treat it as an additional generic actual, so that its
      --  primitive operations become visible in the instance. The task or
      --  protected type itself does not carry primitive operations.
 
      if Is_Concurrent_Type (Act_T)
        and then Is_Tagged_Type (Act_T)
        and then Present (Corresponding_Record_Type (Act_T))
        and then Present (Ancestor)
        and then Is_Interface (Ancestor)
      then
         declare
            Corr_Rec  : constant Entity_Id :=
                          Corresponding_Record_Type (Act_T);
            New_Corr  : Entity_Id;
            Corr_Decl : Node_Id;
 
         begin
            New_Corr := Make_Temporary (Loc, 'S');
            Corr_Decl :=
              Make_Subtype_Declaration (Loc,
                Defining_Identifier => New_Corr,
                Subtype_Indication  =>
                  New_Reference_To (Corr_Rec, Loc));
            Append_To (Decl_Nodes, Corr_Decl);
 
            if Ekind (Act_T) = E_Task_Type then
               Set_Ekind (Subt, E_Task_Subtype);
            else
               Set_Ekind (Subt, E_Protected_Subtype);
            end if;
 
            Set_Corresponding_Record_Type (Subt, Corr_Rec);
            Set_Generic_Parent_Type (Corr_Decl, Ancestor);
            Set_Generic_Parent_Type (Decl_Node, Empty);
         end;
      end if;
 
      return Decl_Nodes;
   end Instantiate_Type;
 
   ---------------------
   -- Is_In_Main_Unit --
   ---------------------
 
   function Is_In_Main_Unit (N : Node_Id) return Boolean is
      Unum         : constant Unit_Number_Type := Get_Source_Unit (N);
      Current_Unit : Node_Id;
 
   begin
      if Unum = Main_Unit then
         return True;
 
      --  If the current unit is a subunit then it is either the main unit or
      --  is being compiled as part of the main unit.
 
      elsif Nkind (N) = N_Compilation_Unit then
         return Nkind (Unit (N)) = N_Subunit;
      end if;
 
      Current_Unit := Parent (N);
      while Present (Current_Unit)
        and then Nkind (Current_Unit) /= N_Compilation_Unit
      loop
         Current_Unit := Parent (Current_Unit);
      end loop;
 
      --  The instantiation node is in the main unit, or else the current node
      --  (perhaps as the result of nested instantiations) is in the main unit,
      --  or in the declaration of the main unit, which in this last case must
      --  be a body.
 
      return Unum = Main_Unit
        or else Current_Unit = Cunit (Main_Unit)
        or else Current_Unit = Library_Unit (Cunit (Main_Unit))
        or else (Present (Library_Unit (Current_Unit))
                  and then Is_In_Main_Unit (Library_Unit (Current_Unit)));
   end Is_In_Main_Unit;
 
   ----------------------------
   -- Load_Parent_Of_Generic --
   ----------------------------
 
   procedure Load_Parent_Of_Generic
     (N             : Node_Id;
      Spec          : Node_Id;
      Body_Optional : Boolean := False)
   is
      Comp_Unit          : constant Node_Id := Cunit (Get_Source_Unit (Spec));
      Save_Style_Check   : constant Boolean := Style_Check;
      True_Parent        : Node_Id;
      Inst_Node          : Node_Id;
      OK                 : Boolean;
      Previous_Instances : constant Elist_Id := New_Elmt_List;
 
      procedure Collect_Previous_Instances (Decls : List_Id);
      --  Collect all instantiations in the given list of declarations, that
      --  precede the generic that we need to load. If the bodies of these
      --  instantiations are available, we must analyze them, to ensure that
      --  the public symbols generated are the same when the unit is compiled
      --  to generate code, and when it is compiled in the context of a unit
      --  that needs a particular nested instance. This process is applied to
      --  both package and subprogram instances.
 
      --------------------------------
      -- Collect_Previous_Instances --
      --------------------------------
 
      procedure Collect_Previous_Instances (Decls : List_Id) is
         Decl : Node_Id;
 
      begin
         Decl := First (Decls);
         while Present (Decl) loop
            if Sloc (Decl) >= Sloc (Inst_Node) then
               return;
 
            --  If Decl is an instantiation, then record it as requiring
            --  instantiation of the corresponding body, except if it is an
            --  abbreviated instantiation generated internally for conformance
            --  checking purposes only for the case of a formal package
            --  declared without a box (see Instantiate_Formal_Package). Such
            --  an instantiation does not generate any code (the actual code
            --  comes from actual) and thus does not need to be analyzed here.
            --  If the instantiation appears with a generic package body it is
            --  not analyzed here either.
 
            elsif Nkind (Decl) = N_Package_Instantiation
              and then not Is_Internal (Defining_Entity (Decl))
            then
               Append_Elmt (Decl, Previous_Instances);
 
            --  For a subprogram instantiation, omit instantiations intrinsic
            --  operations (Unchecked_Conversions, etc.) that have no bodies.
 
            elsif Nkind_In (Decl, N_Function_Instantiation,
                                  N_Procedure_Instantiation)
              and then not Is_Intrinsic_Subprogram (Entity (Name (Decl)))
            then
               Append_Elmt (Decl, Previous_Instances);
 
            elsif Nkind (Decl) = N_Package_Declaration then
               Collect_Previous_Instances
                 (Visible_Declarations (Specification (Decl)));
               Collect_Previous_Instances
                 (Private_Declarations (Specification (Decl)));
 
            --  Previous non-generic bodies may contain instances as well
 
            elsif Nkind (Decl) = N_Package_Body
              and then Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package
            then
               Collect_Previous_Instances (Declarations (Decl));
 
            elsif Nkind (Decl) = N_Subprogram_Body
              and then not Acts_As_Spec (Decl)
              and then not Is_Generic_Subprogram (Corresponding_Spec (Decl))
            then
               Collect_Previous_Instances (Declarations (Decl));
            end if;
 
            Next (Decl);
         end loop;
      end Collect_Previous_Instances;
 
   --  Start of processing for Load_Parent_Of_Generic
 
   begin
      if not In_Same_Source_Unit (N, Spec)
        or else Nkind (Unit (Comp_Unit)) = N_Package_Declaration
        or else (Nkind (Unit (Comp_Unit)) = N_Package_Body
                   and then not Is_In_Main_Unit (Spec))
      then
         --  Find body of parent of spec, and analyze it. A special case arises
         --  when the parent is an instantiation, that is to say when we are
         --  currently instantiating a nested generic. In that case, there is
         --  no separate file for the body of the enclosing instance. Instead,
         --  the enclosing body must be instantiated as if it were a pending
         --  instantiation, in order to produce the body for the nested generic
         --  we require now. Note that in that case the generic may be defined
         --  in a package body, the instance defined in the same package body,
         --  and the original enclosing body may not be in the main unit.
 
         Inst_Node := Empty;
 
         True_Parent := Parent (Spec);
         while Present (True_Parent)
           and then Nkind (True_Parent) /= N_Compilation_Unit
         loop
            if Nkind (True_Parent) = N_Package_Declaration
                 and then
               Nkind (Original_Node (True_Parent)) = N_Package_Instantiation
            then
               --  Parent is a compilation unit that is an instantiation.
               --  Instantiation node has been replaced with package decl.
 
               Inst_Node := Original_Node (True_Parent);
               exit;
 
            elsif Nkind (True_Parent) = N_Package_Declaration
              and then Present (Generic_Parent (Specification (True_Parent)))
              and then Nkind (Parent (True_Parent)) /= N_Compilation_Unit
            then
               --  Parent is an instantiation within another specification.
               --  Declaration for instance has been inserted before original
               --  instantiation node. A direct link would be preferable?
 
               Inst_Node := Next (True_Parent);
               while Present (Inst_Node)
                 and then Nkind (Inst_Node) /= N_Package_Instantiation
               loop
                  Next (Inst_Node);
               end loop;
 
               --  If the instance appears within a generic, and the generic
               --  unit is defined within a formal package of the enclosing
               --  generic, there is no generic body available, and none
               --  needed. A more precise test should be used ???
 
               if No (Inst_Node) then
                  return;
               end if;
 
               exit;
 
            else
               True_Parent := Parent (True_Parent);
            end if;
         end loop;
 
         --  Case where we are currently instantiating a nested generic
 
         if Present (Inst_Node) then
            if Nkind (Parent (True_Parent)) = N_Compilation_Unit then
 
               --  Instantiation node and declaration of instantiated package
               --  were exchanged when only the declaration was needed.
               --  Restore instantiation node before proceeding with body.
 
               Set_Unit (Parent (True_Parent), Inst_Node);
            end if;
 
            --  Now complete instantiation of enclosing body, if it appears in
            --  some other unit. If it appears in the current unit, the body
            --  will have been instantiated already.
 
            if No (Corresponding_Body (Instance_Spec (Inst_Node))) then
 
               --  We need to determine the expander mode to instantiate the
               --  enclosing body. Because the generic body we need may use
               --  global entities declared in the enclosing package (including
               --  aggregates) it is in general necessary to compile this body
               --  with expansion enabled, except if we are within a generic
               --  package, in which case the usual generic rule applies.
 
               declare
                  Exp_Status         : Boolean := True;
                  Scop               : Entity_Id;
 
               begin
                  --  Loop through scopes looking for generic package
 
                  Scop := Scope (Defining_Entity (Instance_Spec (Inst_Node)));
                  while Present (Scop)
                    and then Scop /= Standard_Standard
                  loop
                     if Ekind (Scop) = E_Generic_Package then
                        Exp_Status := False;
                        exit;
                     end if;
 
                     Scop := Scope (Scop);
                  end loop;
 
                  --  Collect previous instantiations in the unit that contains
                  --  the desired generic.
 
                  if Nkind (Parent (True_Parent)) /= N_Compilation_Unit
                    and then not Body_Optional
                  then
                     declare
                        Decl : Elmt_Id;
                        Info : Pending_Body_Info;
                        Par  : Node_Id;
 
                     begin
                        Par := Parent (Inst_Node);
                        while Present (Par) loop
                           exit when Nkind (Parent (Par)) = N_Compilation_Unit;
                           Par := Parent (Par);
                        end loop;
 
                        pragma Assert (Present (Par));
 
                        if Nkind (Par) = N_Package_Body then
                           Collect_Previous_Instances (Declarations (Par));
 
                        elsif Nkind (Par) = N_Package_Declaration then
                           Collect_Previous_Instances
                             (Visible_Declarations (Specification (Par)));
                           Collect_Previous_Instances
                             (Private_Declarations (Specification (Par)));
 
                        else
                           --  Enclosing unit is a subprogram body. In this
                           --  case all instance bodies are processed in order
                           --  and there is no need to collect them separately.
 
                           null;
                        end if;
 
                        Decl := First_Elmt (Previous_Instances);
                        while Present (Decl) loop
                           Info :=
                             (Inst_Node                => Node (Decl),
                              Act_Decl                 =>
                                Instance_Spec (Node (Decl)),
                              Expander_Status          => Exp_Status,
                              Current_Sem_Unit         =>
                                Get_Code_Unit (Sloc (Node (Decl))),
                              Scope_Suppress           => Scope_Suppress,
                              Local_Suppress_Stack_Top =>
                                Local_Suppress_Stack_Top,
                              Version                  => Ada_Version);
 
                           --  Package instance
 
                           if
                             Nkind (Node (Decl)) = N_Package_Instantiation
                           then
                              Instantiate_Package_Body
                                (Info, Body_Optional => True);
 
                           --  Subprogram instance
 
                           else
                              --  The instance_spec is the wrapper package,
                              --  and the subprogram declaration is the last
                              --  declaration in the wrapper.
 
                              Info.Act_Decl :=
                                Last
                                  (Visible_Declarations
                                    (Specification (Info.Act_Decl)));
 
                              Instantiate_Subprogram_Body
                                (Info, Body_Optional => True);
                           end if;
 
                           Next_Elmt (Decl);
                        end loop;
                     end;
                  end if;
 
                  Instantiate_Package_Body
                    (Body_Info =>
                       ((Inst_Node                => Inst_Node,
                         Act_Decl                 => True_Parent,
                         Expander_Status          => Exp_Status,
                         Current_Sem_Unit         =>
                           Get_Code_Unit (Sloc (Inst_Node)),
                         Scope_Suppress           => Scope_Suppress,
                         Local_Suppress_Stack_Top =>
                           Local_Suppress_Stack_Top,
                           Version                => Ada_Version)),
                     Body_Optional => Body_Optional);
               end;
            end if;
 
         --  Case where we are not instantiating a nested generic
 
         else
            Opt.Style_Check := False;
            Expander_Mode_Save_And_Set (True);
            Load_Needed_Body (Comp_Unit, OK);
            Opt.Style_Check := Save_Style_Check;
            Expander_Mode_Restore;
 
            if not OK
              and then Unit_Requires_Body (Defining_Entity (Spec))
              and then not Body_Optional
            then
               declare
                  Bname : constant Unit_Name_Type :=
                            Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
 
               begin
                  --  In CodePeer mode, the missing body may make the analysis
                  --  incomplete, but we do not treat it as fatal.
 
                  if CodePeer_Mode then
                     return;
 
                  else
                     Error_Msg_Unit_1 := Bname;
                     Error_Msg_N ("this instantiation requires$!", N);
                     Error_Msg_File_1 :=
                       Get_File_Name (Bname, Subunit => False);
                     Error_Msg_N ("\but file{ was not found!", N);
                     raise Unrecoverable_Error;
                  end if;
               end;
            end if;
         end if;
      end if;
 
      --  If loading parent of the generic caused an instantiation circularity,
      --  we abandon compilation at this point, because otherwise in some cases
      --  we get into trouble with infinite recursions after this point.
 
      if Circularity_Detected then
         raise Unrecoverable_Error;
      end if;
   end Load_Parent_Of_Generic;
 
   ---------------------------------
   -- Map_Formal_Package_Entities --
   ---------------------------------
 
   procedure Map_Formal_Package_Entities (Form : Entity_Id; Act : Entity_Id) is
      E1 : Entity_Id;
      E2 : Entity_Id;
 
   begin
      Set_Instance_Of (Form, Act);
 
      --  Traverse formal and actual package to map the corresponding entities.
      --  We skip over internal entities that may be generated during semantic
      --  analysis, and find the matching entities by name, given that they
      --  must appear in the same order.
 
      E1 := First_Entity (Form);
      E2 := First_Entity (Act);
      while Present (E1) and then E1 /= First_Private_Entity (Form) loop
         --  Could this test be a single condition???
         --  Seems like it could, and isn't FPE (Form) a constant anyway???
 
         if not Is_Internal (E1)
           and then Present (Parent (E1))
           and then not Is_Class_Wide_Type (E1)
           and then not Is_Internal_Name (Chars (E1))
         then
            while Present (E2) and then Chars (E2) /= Chars (E1) loop
               Next_Entity (E2);
            end loop;
 
            if No (E2) then
               exit;
            else
               Set_Instance_Of (E1, E2);
 
               if Is_Type (E1) and then Is_Tagged_Type (E2) then
                  Set_Instance_Of (Class_Wide_Type (E1), Class_Wide_Type (E2));
               end if;
 
               if Is_Constrained (E1) then
                  Set_Instance_Of (Base_Type (E1), Base_Type (E2));
               end if;
 
               if Ekind (E1) = E_Package and then No (Renamed_Object (E1)) then
                  Map_Formal_Package_Entities (E1, E2);
               end if;
            end if;
         end if;
 
         Next_Entity (E1);
      end loop;
   end Map_Formal_Package_Entities;
 
   -----------------------
   -- Move_Freeze_Nodes --
   -----------------------
 
   procedure Move_Freeze_Nodes
     (Out_Of : Entity_Id;
      After  : Node_Id;
      L      : List_Id)
   is
      Decl      : Node_Id;
      Next_Decl : Node_Id;
      Next_Node : Node_Id := After;
      Spec      : Node_Id;
 
      function Is_Outer_Type (T : Entity_Id) return Boolean;
      --  Check whether entity is declared in a scope external to that of the
      --  generic unit.
 
      -------------------
      -- Is_Outer_Type --
      -------------------
 
      function Is_Outer_Type (T : Entity_Id) return Boolean is
         Scop : Entity_Id := Scope (T);
 
      begin
         if Scope_Depth (Scop) < Scope_Depth (Out_Of) then
            return True;
 
         else
            while Scop /= Standard_Standard loop
               if Scop = Out_Of then
                  return False;
               else
                  Scop := Scope (Scop);
               end if;
            end loop;
 
            return True;
         end if;
      end Is_Outer_Type;
 
   --  Start of processing for Move_Freeze_Nodes
 
   begin
      if No (L) then
         return;
      end if;
 
      --  First remove the freeze nodes that may appear before all other
      --  declarations.
 
      Decl := First (L);
      while Present (Decl)
        and then Nkind (Decl) = N_Freeze_Entity
        and then Is_Outer_Type (Entity (Decl))
      loop
         Decl := Remove_Head (L);
         Insert_After (Next_Node, Decl);
         Set_Analyzed (Decl, False);
         Next_Node := Decl;
         Decl := First (L);
      end loop;
 
      --  Next scan the list of declarations and remove each freeze node that
      --  appears ahead of the current node.
 
      while Present (Decl) loop
         while Present (Next (Decl))
           and then Nkind (Next (Decl)) = N_Freeze_Entity
           and then Is_Outer_Type (Entity (Next (Decl)))
         loop
            Next_Decl := Remove_Next (Decl);
            Insert_After (Next_Node, Next_Decl);
            Set_Analyzed (Next_Decl, False);
            Next_Node := Next_Decl;
         end loop;
 
         --  If the declaration is a nested package or concurrent type, then
         --  recurse. Nested generic packages will have been processed from the
         --  inside out.
 
         case Nkind (Decl) is
            when N_Package_Declaration =>
               Spec := Specification (Decl);
 
            when N_Task_Type_Declaration =>
               Spec := Task_Definition (Decl);
 
            when N_Protected_Type_Declaration =>
               Spec := Protected_Definition (Decl);
 
            when others =>
               Spec := Empty;
         end case;
 
         if Present (Spec) then
            Move_Freeze_Nodes (Out_Of, Next_Node, Visible_Declarations (Spec));
            Move_Freeze_Nodes (Out_Of, Next_Node, Private_Declarations (Spec));
         end if;
 
         Next (Decl);
      end loop;
   end Move_Freeze_Nodes;
 
   ----------------
   -- Next_Assoc --
   ----------------
 
   function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr is
   begin
      return Generic_Renamings.Table (E).Next_In_HTable;
   end Next_Assoc;
 
   ------------------------
   -- Preanalyze_Actuals --
   ------------------------
 
   procedure Preanalyze_Actuals (N : Node_Id) is
      Assoc : Node_Id;
      Act   : Node_Id;
      Errs  : constant Int := Serious_Errors_Detected;
 
      Cur : Entity_Id := Empty;
      --  Current homograph of the instance name
 
      Vis : Boolean;
      --  Saved visibility status of the current homograph
 
   begin
      Assoc := First (Generic_Associations (N));
 
      --  If the instance is a child unit, its name may hide an outer homonym,
      --  so make it invisible to perform name resolution on the actuals.
 
      if Nkind (Defining_Unit_Name (N)) = N_Defining_Program_Unit_Name
        and then Present
          (Current_Entity (Defining_Identifier (Defining_Unit_Name (N))))
      then
         Cur := Current_Entity (Defining_Identifier (Defining_Unit_Name (N)));
 
         if Is_Compilation_Unit (Cur) then
            Vis := Is_Immediately_Visible (Cur);
            Set_Is_Immediately_Visible (Cur, False);
         else
            Cur := Empty;
         end if;
      end if;
 
      while Present (Assoc) loop
         if Nkind (Assoc) /= N_Others_Choice then
            Act := Explicit_Generic_Actual_Parameter (Assoc);
 
            --  Within a nested instantiation, a defaulted actual is an empty
            --  association, so nothing to analyze. If the subprogram actual
            --  is an attribute, analyze prefix only, because actual is not a
            --  complete attribute reference.
 
            --  If actual is an allocator, analyze expression only. The full
            --  analysis can generate code, and if instance is a compilation
            --  unit we have to wait until the package instance is installed
            --  to have a proper place to insert this code.
 
            --  String literals may be operators, but at this point we do not
            --  know whether the actual is a formal subprogram or a string.
 
            if No (Act) then
               null;
 
            elsif Nkind (Act) = N_Attribute_Reference then
               Analyze (Prefix (Act));
 
            elsif Nkind (Act) = N_Explicit_Dereference then
               Analyze (Prefix (Act));
 
            elsif Nkind (Act) = N_Allocator then
               declare
                  Expr : constant Node_Id := Expression (Act);
 
               begin
                  if Nkind (Expr) = N_Subtype_Indication then
                     Analyze (Subtype_Mark (Expr));
 
                     --  Analyze separately each discriminant constraint, when
                     --  given with a named association.
 
                     declare
                        Constr : Node_Id;
 
                     begin
                        Constr := First (Constraints (Constraint (Expr)));
                        while Present (Constr) loop
                           if Nkind (Constr) = N_Discriminant_Association then
                              Analyze (Expression (Constr));
                           else
                              Analyze (Constr);
                           end if;
 
                           Next (Constr);
                        end loop;
                     end;
 
                  else
                     Analyze (Expr);
                  end if;
               end;
 
            elsif Nkind (Act) /= N_Operator_Symbol then
               Analyze (Act);
            end if;
 
            if Errs /= Serious_Errors_Detected then
 
               --  Do a minimal analysis of the generic, to prevent spurious
               --  warnings complaining about the generic being unreferenced,
               --  before abandoning the instantiation.
 
               Analyze (Name (N));
 
               if Is_Entity_Name (Name (N))
                 and then Etype (Name (N)) /= Any_Type
               then
                  Generate_Reference  (Entity (Name (N)), Name (N));
                  Set_Is_Instantiated (Entity (Name (N)));
               end if;
 
               if Present (Cur) then
 
                  --  For the case of a child instance hiding an outer homonym,
                  --  provide additional warning which might explain the error.
 
                  Set_Is_Immediately_Visible (Cur, Vis);
                  Error_Msg_NE ("& hides outer unit with the same name?",
                    N, Defining_Unit_Name (N));
               end if;
 
               Abandon_Instantiation (Act);
            end if;
         end if;
 
         Next (Assoc);
      end loop;
 
      if Present (Cur) then
         Set_Is_Immediately_Visible (Cur, Vis);
      end if;
   end Preanalyze_Actuals;
 
   -------------------
   -- Remove_Parent --
   -------------------
 
   procedure Remove_Parent (In_Body : Boolean := False) is
      S : Entity_Id := Current_Scope;
      --  S is the scope containing the instantiation just completed. The scope
      --  stack contains the parent instances of the instantiation, followed by
      --  the original S.
 
      Cur_P  : Entity_Id;
      E      : Entity_Id;
      P      : Entity_Id;
      Hidden : Elmt_Id;
 
   begin
      --  After child instantiation is complete, remove from scope stack the
      --  extra copy of the current scope, and then remove parent instances.
 
      if not In_Body then
         Pop_Scope;
 
         while Current_Scope /= S loop
            P := Current_Scope;
            End_Package_Scope (Current_Scope);
 
            if In_Open_Scopes (P) then
               E := First_Entity (P);
               while Present (E) loop
                  Set_Is_Immediately_Visible (E, True);
                  Next_Entity (E);
               end loop;
 
               --  If instantiation is declared in a block, it is the enclosing
               --  scope that might be a parent instance. Note that only one
               --  block can be involved, because the parent instances have
               --  been installed within it.
 
               if Ekind (P) = E_Block then
                  Cur_P := Scope (P);
               else
                  Cur_P := P;
               end if;
 
               if Is_Generic_Instance (Cur_P) and then P /= Current_Scope then
                  --  We are within an instance of some sibling. Retain
                  --  visibility of parent, for proper subsequent cleanup, and
                  --  reinstall private declarations as well.
 
                  Set_In_Private_Part (P);
                  Install_Private_Declarations (P);
               end if;
 
            --  If the ultimate parent is a top-level unit recorded in
            --  Instance_Parent_Unit, then reset its visibility to what it was
            --  before instantiation. (It's not clear what the purpose is of
            --  testing whether Scope (P) is In_Open_Scopes, but that test was
            --  present before the ultimate parent test was added.???)
 
            elsif not In_Open_Scopes (Scope (P))
              or else (P = Instance_Parent_Unit
                        and then not Parent_Unit_Visible)
            then
               Set_Is_Immediately_Visible (P, False);
 
            --  If the current scope is itself an instantiation of a generic
            --  nested within P, and we are in the private part of body of this
            --  instantiation, restore the full views of P, that were removed
            --  in End_Package_Scope above. This obscure case can occur when a
            --  subunit of a generic contains an instance of a child unit of
            --  its generic parent unit.
 
            elsif S = Current_Scope and then Is_Generic_Instance (S) then
               declare
                  Par : constant Entity_Id :=
                          Generic_Parent
                            (Specification (Unit_Declaration_Node (S)));
               begin
                  if Present (Par)
                    and then P = Scope (Par)
                    and then (In_Package_Body (S) or else In_Private_Part (S))
                  then
                     Set_In_Private_Part (P);
                     Install_Private_Declarations (P);
                  end if;
               end;
            end if;
         end loop;
 
         --  Reset visibility of entities in the enclosing scope
 
         Set_Is_Hidden_Open_Scope (Current_Scope, False);
 
         Hidden := First_Elmt (Hidden_Entities);
         while Present (Hidden) loop
            Set_Is_Immediately_Visible (Node (Hidden), True);
            Next_Elmt (Hidden);
         end loop;
 
      else
         --  Each body is analyzed separately, and there is no context that
         --  needs preserving from one body instance to the next, so remove all
         --  parent scopes that have been installed.
 
         while Present (S) loop
            End_Package_Scope (S);
            Set_Is_Immediately_Visible (S, False);
            S := Current_Scope;
            exit when S = Standard_Standard;
         end loop;
      end if;
   end Remove_Parent;
 
   -----------------
   -- Restore_Env --
   -----------------
 
   procedure Restore_Env is
      Saved : Instance_Env renames Instance_Envs.Table (Instance_Envs.Last);
 
   begin
      if No (Current_Instantiated_Parent.Act_Id) then
         --  Restore environment after subprogram inlining
 
         Restore_Private_Views (Empty);
      end if;
 
      Current_Instantiated_Parent := Saved.Instantiated_Parent;
      Exchanged_Views             := Saved.Exchanged_Views;
      Hidden_Entities             := Saved.Hidden_Entities;
      Current_Sem_Unit            := Saved.Current_Sem_Unit;
      Parent_Unit_Visible         := Saved.Parent_Unit_Visible;
      Instance_Parent_Unit        := Saved.Instance_Parent_Unit;
 
      Restore_Opt_Config_Switches (Saved.Switches);
 
      Instance_Envs.Decrement_Last;
   end Restore_Env;
 
   ---------------------------
   -- Restore_Private_Views --
   ---------------------------
 
   procedure Restore_Private_Views
     (Pack_Id    : Entity_Id;
      Is_Package : Boolean := True)
   is
      M        : Elmt_Id;
      E        : Entity_Id;
      Typ      : Entity_Id;
      Dep_Elmt : Elmt_Id;
      Dep_Typ  : Node_Id;
 
      procedure Restore_Nested_Formal (Formal : Entity_Id);
      --  Hide the generic formals of formal packages declared with box which
      --  were reachable in the current instantiation.
 
      ---------------------------
      -- Restore_Nested_Formal --
      ---------------------------
 
      procedure Restore_Nested_Formal (Formal : Entity_Id) is
         Ent : Entity_Id;
 
      begin
         if Present (Renamed_Object (Formal))
           and then Denotes_Formal_Package (Renamed_Object (Formal), True)
         then
            return;
 
         elsif Present (Associated_Formal_Package (Formal)) then
            Ent := First_Entity (Formal);
            while Present (Ent) loop
               exit when Ekind (Ent) = E_Package
                 and then Renamed_Entity (Ent) = Renamed_Entity (Formal);
 
               Set_Is_Hidden (Ent);
               Set_Is_Potentially_Use_Visible (Ent, False);
 
               --  If package, then recurse
 
               if Ekind (Ent) = E_Package then
                  Restore_Nested_Formal (Ent);
               end if;
 
               Next_Entity (Ent);
            end loop;
         end if;
      end Restore_Nested_Formal;
 
   --  Start of processing for Restore_Private_Views
 
   begin
      M := First_Elmt (Exchanged_Views);
      while Present (M) loop
         Typ := Node (M);
 
         --  Subtypes of types whose views have been exchanged, and that are
         --  defined within the instance, were not on the Private_Dependents
         --  list on entry to the instance, so they have to be exchanged
         --  explicitly now, in order to remain consistent with the view of the
         --  parent type.
 
         if Ekind_In (Typ, E_Private_Type,
                           E_Limited_Private_Type,
                           E_Record_Type_With_Private)
         then
            Dep_Elmt := First_Elmt (Private_Dependents (Typ));
            while Present (Dep_Elmt) loop
               Dep_Typ := Node (Dep_Elmt);
 
               if Scope (Dep_Typ) = Pack_Id
                 and then Present (Full_View (Dep_Typ))
               then
                  Replace_Elmt (Dep_Elmt, Full_View (Dep_Typ));
                  Exchange_Declarations (Dep_Typ);
               end if;
 
               Next_Elmt (Dep_Elmt);
            end loop;
         end if;
 
         Exchange_Declarations (Node (M));
         Next_Elmt (M);
      end loop;
 
      if No (Pack_Id) then
         return;
      end if;
 
      --  Make the generic formal parameters private, and make the formal types
      --  into subtypes of the actuals again.
 
      E := First_Entity (Pack_Id);
      while Present (E) loop
         Set_Is_Hidden (E, True);
 
         if Is_Type (E)
           and then Nkind (Parent (E)) = N_Subtype_Declaration
         then
            Set_Is_Generic_Actual_Type (E, False);
 
            --  An unusual case of aliasing: the actual may also be directly
            --  visible in the generic, and be private there, while it is fully
            --  visible in the context of the instance. The internal subtype
            --  is private in the instance but has full visibility like its
            --  parent in the enclosing scope. This enforces the invariant that
            --  the privacy status of all private dependents of a type coincide
            --  with that of the parent type. This can only happen when a
            --  generic child unit is instantiated within a sibling.
 
            if Is_Private_Type (E)
              and then not Is_Private_Type (Etype (E))
            then
               Exchange_Declarations (E);
            end if;
 
         elsif Ekind (E) = E_Package then
 
            --  The end of the renaming list is the renaming of the generic
            --  package itself. If the instance is a subprogram, all entities
            --  in the corresponding package are renamings. If this entity is
            --  a formal package, make its own formals private as well. The
            --  actual in this case is itself the renaming of an instantiation.
            --  If the entity is not a package renaming, it is the entity
            --  created to validate formal package actuals: ignore it.
 
            --  If the actual is itself a formal package for the enclosing
            --  generic, or the actual for such a formal package, it remains
            --  visible on exit from the instance, and therefore nothing needs
            --  to be done either, except to keep it accessible.
 
            if Is_Package and then Renamed_Object (E) = Pack_Id then
               exit;
 
            elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
               null;
 
            elsif
              Denotes_Formal_Package (Renamed_Object (E), True, Pack_Id)
            then
               Set_Is_Hidden (E, False);
 
            else
               declare
                  Act_P : constant Entity_Id := Renamed_Object (E);
                  Id    : Entity_Id;
 
               begin
                  Id := First_Entity (Act_P);
                  while Present (Id)
                    and then Id /= First_Private_Entity (Act_P)
                  loop
                     exit when Ekind (Id) = E_Package
                                 and then Renamed_Object (Id) = Act_P;
 
                     Set_Is_Hidden (Id, True);
                     Set_Is_Potentially_Use_Visible (Id, In_Use (Act_P));
 
                     if Ekind (Id) = E_Package then
                        Restore_Nested_Formal (Id);
                     end if;
 
                     Next_Entity (Id);
                  end loop;
               end;
            end if;
         end if;
 
         Next_Entity (E);
      end loop;
   end Restore_Private_Views;
 
   --------------
   -- Save_Env --
   --------------
 
   procedure Save_Env
     (Gen_Unit : Entity_Id;
      Act_Unit : Entity_Id)
   is
   begin
      Init_Env;
      Set_Instance_Env (Gen_Unit, Act_Unit);
   end Save_Env;
 
   ----------------------------
   -- Save_Global_References --
   ----------------------------
 
   procedure Save_Global_References (N : Node_Id) is
      Gen_Scope : Entity_Id;
      E         : Entity_Id;
      N2        : Node_Id;
 
      function Is_Global (E : Entity_Id) return Boolean;
      --  Check whether entity is defined outside of generic unit. Examine the
      --  scope of an entity, and the scope of the scope, etc, until we find
      --  either Standard, in which case the entity is global, or the generic
      --  unit itself, which indicates that the entity is local. If the entity
      --  is the generic unit itself, as in the case of a recursive call, or
      --  the enclosing generic unit, if different from the current scope, then
      --  it is local as well, because it will be replaced at the point of
      --  instantiation. On the other hand, if it is a reference to a child
      --  unit of a common ancestor, which appears in an instantiation, it is
      --  global because it is used to denote a specific compilation unit at
      --  the time the instantiations will be analyzed.
 
      procedure Reset_Entity (N : Node_Id);
      --  Save semantic information on global entity so that it is not resolved
      --  again at instantiation time.
 
      procedure Save_Entity_Descendants (N : Node_Id);
      --  Apply Save_Global_References to the two syntactic descendants of
      --  non-terminal nodes that carry an Associated_Node and are processed
      --  through Reset_Entity. Once the global entity (if any) has been
      --  captured together with its type, only two syntactic descendants need
      --  to be traversed to complete the processing of the tree rooted at N.
      --  This applies to Selected_Components, Expanded_Names, and to Operator
      --  nodes. N can also be a character literal, identifier, or operator
      --  symbol node, but the call has no effect in these cases.
 
      procedure Save_Global_Defaults (N1, N2 : Node_Id);
      --  Default actuals in nested instances must be handled specially
      --  because there is no link to them from the original tree. When an
      --  actual subprogram is given by a default, we add an explicit generic
      --  association for it in the instantiation node. When we save the
      --  global references on the name of the instance, we recover the list
      --  of generic associations, and add an explicit one to the original
      --  generic tree, through which a global actual can be preserved.
      --  Similarly, if a child unit is instantiated within a sibling, in the
      --  context of the parent, we must preserve the identifier of the parent
      --  so that it can be properly resolved in a subsequent instantiation.
 
      procedure Save_Global_Descendant (D : Union_Id);
      --  Apply Save_Global_References recursively to the descendents of the
      --  current node.
 
      procedure Save_References (N : Node_Id);
      --  This is the recursive procedure that does the work, once the
      --  enclosing generic scope has been established.
 
      ---------------
      -- Is_Global --
      ---------------
 
      function Is_Global (E : Entity_Id) return Boolean is
         Se : Entity_Id;
 
         function Is_Instance_Node (Decl : Node_Id) return Boolean;
         --  Determine whether the parent node of a reference to a child unit
         --  denotes an instantiation or a formal package, in which case the
         --  reference to the child unit is global, even if it appears within
         --  the current scope (e.g. when the instance appears within the body
         --  of an ancestor).
 
         ----------------------
         -- Is_Instance_Node --
         ----------------------
 
         function Is_Instance_Node (Decl : Node_Id) return Boolean is
         begin
            return Nkind (Decl) in N_Generic_Instantiation
                     or else
                   Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration;
         end Is_Instance_Node;
 
      --  Start of processing for Is_Global
 
      begin
         if E = Gen_Scope then
            return False;
 
         elsif E = Standard_Standard then
            return True;
 
         elsif Is_Child_Unit (E)
           and then (Is_Instance_Node (Parent (N2))
                      or else (Nkind (Parent (N2)) = N_Expanded_Name
                                and then N2 = Selector_Name (Parent (N2))
                                and then
                                  Is_Instance_Node (Parent (Parent (N2)))))
         then
            return True;
 
         else
            Se := Scope (E);
            while Se /= Gen_Scope loop
               if Se = Standard_Standard then
                  return True;
               else
                  Se := Scope (Se);
               end if;
            end loop;
 
            return False;
         end if;
      end Is_Global;
 
      ------------------
      -- Reset_Entity --
      ------------------
 
      procedure Reset_Entity (N : Node_Id) is
 
         procedure Set_Global_Type (N : Node_Id; N2 : Node_Id);
         --  If the type of N2 is global to the generic unit, save the type in
         --  the generic node. Just as we perform name capture for explicit
         --  references within the generic, we must capture the global types
         --  of local entities because they may participate in resolution in
         --  the instance.
 
         function Top_Ancestor (E : Entity_Id) return Entity_Id;
         --  Find the ultimate ancestor of the current unit. If it is not a
         --  generic unit, then the name of the current unit in the prefix of
         --  an expanded name must be replaced with its generic homonym to
         --  ensure that it will be properly resolved in an instance.
 
         ---------------------
         -- Set_Global_Type --
         ---------------------
 
         procedure Set_Global_Type (N : Node_Id; N2 : Node_Id) is
            Typ : constant Entity_Id := Etype (N2);
 
         begin
            Set_Etype (N, Typ);
 
            if Entity (N) /= N2
              and then Has_Private_View (Entity (N))
            then
               --  If the entity of N is not the associated node, this is a
               --  nested generic and it has an associated node as well, whose
               --  type is already the full view (see below). Indicate that the
               --  original node has a private view.
 
               Set_Has_Private_View (N);
            end if;
 
            --  If not a private type, nothing else to do
 
            if not Is_Private_Type (Typ) then
               if Is_Array_Type (Typ)
                 and then Is_Private_Type (Component_Type (Typ))
               then
                  Set_Has_Private_View (N);
               end if;
 
            --  If it is a derivation of a private type in a context where no
            --  full view is needed, nothing to do either.
 
            elsif No (Full_View (Typ)) and then Typ /= Etype (Typ) then
               null;
 
            --  Otherwise mark the type for flipping and use the full view when
            --  available.
 
            else
               Set_Has_Private_View (N);
 
               if Present (Full_View (Typ)) then
                  Set_Etype (N2, Full_View (Typ));
               end if;
            end if;
         end Set_Global_Type;
 
         ------------------
         -- Top_Ancestor --
         ------------------
 
         function Top_Ancestor (E : Entity_Id) return Entity_Id is
            Par : Entity_Id;
 
         begin
            Par := E;
            while Is_Child_Unit (Par) loop
               Par := Scope (Par);
            end loop;
 
            return Par;
         end Top_Ancestor;
 
      --  Start of processing for Reset_Entity
 
      begin
         N2 := Get_Associated_Node (N);
         E := Entity (N2);
 
         if Present (E) then
 
            --  If the node is an entry call to an entry in an enclosing task,
            --  it is rewritten as a selected component. No global entity to
            --  preserve in this case, since the expansion will be redone in
            --  the instance.
 
            if not Nkind_In (E, N_Defining_Identifier,
                                N_Defining_Character_Literal,
                                N_Defining_Operator_Symbol)
            then
               Set_Associated_Node (N, Empty);
               Set_Etype  (N, Empty);
               return;
            end if;
 
            --  If the entity is an itype created as a subtype of an access
            --  type with a null exclusion restore source entity for proper
            --  visibility. The itype will be created anew in the instance.
 
            if Is_Itype (E)
              and then Ekind (E) = E_Access_Subtype
              and then Is_Entity_Name (N)
              and then Chars (Etype (E)) = Chars (N)
            then
               E := Etype (E);
               Set_Entity (N2, E);
               Set_Etype  (N2, E);
            end if;
 
            if Is_Global (E) then
               Set_Global_Type (N, N2);
 
            elsif Nkind (N) = N_Op_Concat
              and then Is_Generic_Type (Etype (N2))
              and then (Base_Type (Etype (Right_Opnd (N2))) = Etype (N2)
                         or else
                        Base_Type (Etype (Left_Opnd (N2)))  = Etype (N2))
              and then Is_Intrinsic_Subprogram (E)
            then
               null;
 
            else
               --  Entity is local. Mark generic node as unresolved.
               --  Note that now it does not have an entity.
 
               Set_Associated_Node (N, Empty);
               Set_Etype  (N, Empty);
            end if;
 
            if Nkind (Parent (N)) in N_Generic_Instantiation
              and then N = Name (Parent (N))
            then
               Save_Global_Defaults (Parent (N), Parent (N2));
            end if;
 
         elsif Nkind (Parent (N)) = N_Selected_Component
           and then Nkind (Parent (N2)) = N_Expanded_Name
         then
            if Is_Global (Entity (Parent (N2))) then
               Change_Selected_Component_To_Expanded_Name (Parent (N));
               Set_Associated_Node (Parent (N), Parent (N2));
               Set_Global_Type (Parent (N), Parent (N2));
               Save_Entity_Descendants (N);
 
            --  If this is a reference to the current generic entity, replace
            --  by the name of the generic homonym of the current package. This
            --  is because in an instantiation Par.P.Q will not resolve to the
            --  name of the instance, whose enclosing scope is not necessarily
            --  Par. We use the generic homonym rather that the name of the
            --  generic itself because it may be hidden by a local declaration.
 
            elsif In_Open_Scopes (Entity (Parent (N2)))
              and then not
                Is_Generic_Unit (Top_Ancestor (Entity (Prefix (Parent (N2)))))
            then
               if Ekind (Entity (Parent (N2))) = E_Generic_Package then
                  Rewrite (Parent (N),
                    Make_Identifier (Sloc (N),
                      Chars =>
                        Chars (Generic_Homonym (Entity (Parent (N2))))));
               else
                  Rewrite (Parent (N),
                    Make_Identifier (Sloc (N),
                      Chars => Chars (Selector_Name (Parent (N2)))));
               end if;
            end if;
 
            if Nkind (Parent (Parent (N))) in N_Generic_Instantiation
              and then Parent (N) = Name (Parent (Parent (N)))
            then
               Save_Global_Defaults
                 (Parent (Parent (N)), Parent (Parent ((N2))));
            end if;
 
         --  A selected component may denote a static constant that has been
         --  folded. If the static constant is global to the generic, capture
         --  its value. Otherwise the folding will happen in any instantiation.
 
         elsif Nkind (Parent (N)) = N_Selected_Component
           and then Nkind_In (Parent (N2), N_Integer_Literal, N_Real_Literal)
         then
            if Present (Entity (Original_Node (Parent (N2))))
              and then Is_Global (Entity (Original_Node (Parent (N2))))
            then
               Rewrite (Parent (N), New_Copy (Parent (N2)));
               Set_Analyzed (Parent (N), False);
 
            else
               null;
            end if;
 
         --  A selected component may be transformed into a parameterless
         --  function call. If the called entity is global, rewrite the node
         --  appropriately, i.e. as an extended name for the global entity.
 
         elsif Nkind (Parent (N)) = N_Selected_Component
           and then Nkind (Parent (N2)) = N_Function_Call
           and then N = Selector_Name (Parent (N))
         then
            if No (Parameter_Associations (Parent (N2))) then
               if Is_Global (Entity (Name (Parent (N2)))) then
                  Change_Selected_Component_To_Expanded_Name (Parent (N));
                  Set_Associated_Node (Parent (N), Name (Parent (N2)));
                  Set_Global_Type (Parent (N), Name (Parent (N2)));
                  Save_Entity_Descendants (N);
 
               else
                  Set_Is_Prefixed_Call (Parent (N));
                  Set_Associated_Node (N, Empty);
                  Set_Etype (N, Empty);
               end if;
 
            --  In Ada 2005, X.F may be a call to a primitive operation,
            --  rewritten as F (X). This rewriting will be done again in an
            --  instance, so keep the original node. Global entities will be
            --  captured as for other constructs. Indicate that this must
            --  resolve as a call, to prevent accidental overloading in the
            --  instance, if both a component and a primitive operation appear
            --  as candidates.
 
            else
               Set_Is_Prefixed_Call (Parent (N));
            end if;
 
         --  Entity is local. Reset in generic unit, so that node is resolved
         --  anew at the point of instantiation.
 
         else
            Set_Associated_Node (N, Empty);
            Set_Etype (N, Empty);
         end if;
      end Reset_Entity;
 
      -----------------------------
      -- Save_Entity_Descendants --
      -----------------------------
 
      procedure Save_Entity_Descendants (N : Node_Id) is
      begin
         case Nkind (N) is
            when N_Binary_Op =>
               Save_Global_Descendant (Union_Id (Left_Opnd (N)));
               Save_Global_Descendant (Union_Id (Right_Opnd (N)));
 
            when N_Unary_Op =>
               Save_Global_Descendant (Union_Id (Right_Opnd (N)));
 
            when N_Expanded_Name | N_Selected_Component =>
               Save_Global_Descendant (Union_Id (Prefix (N)));
               Save_Global_Descendant (Union_Id (Selector_Name (N)));
 
            when N_Identifier | N_Character_Literal | N_Operator_Symbol =>
               null;
 
            when others =>
               raise Program_Error;
         end case;
      end Save_Entity_Descendants;
 
      --------------------------
      -- Save_Global_Defaults --
      --------------------------
 
      procedure Save_Global_Defaults (N1, N2 : Node_Id) is
         Loc    : constant Source_Ptr := Sloc (N1);
         Assoc2 : constant List_Id    := Generic_Associations (N2);
         Gen_Id : constant Entity_Id  := Get_Generic_Entity (N2);
         Assoc1 : List_Id;
         Act1   : Node_Id;
         Act2   : Node_Id;
         Def    : Node_Id;
         Ndec   : Node_Id;
         Subp   : Entity_Id;
         Actual : Entity_Id;
 
      begin
         Assoc1 := Generic_Associations (N1);
 
         if Present (Assoc1) then
            Act1 := First (Assoc1);
         else
            Act1 := Empty;
            Set_Generic_Associations (N1, New_List);
            Assoc1 := Generic_Associations (N1);
         end if;
 
         if Present (Assoc2) then
            Act2 := First (Assoc2);
         else
            return;
         end if;
 
         while Present (Act1) and then Present (Act2) loop
            Next (Act1);
            Next (Act2);
         end loop;
 
         --  Find the associations added for default subprograms
 
         if Present (Act2) then
            while Nkind (Act2) /= N_Generic_Association
              or else No (Entity (Selector_Name (Act2)))
              or else not Is_Overloadable (Entity (Selector_Name (Act2)))
            loop
               Next (Act2);
            end loop;
 
            --  Add a similar association if the default is global. The
            --  renaming declaration for the actual has been analyzed, and
            --  its alias is the program it renames. Link the actual in the
            --  original generic tree with the node in the analyzed tree.
 
            while Present (Act2) loop
               Subp := Entity (Selector_Name (Act2));
               Def  := Explicit_Generic_Actual_Parameter (Act2);
 
               --  Following test is defence against rubbish errors
 
               if No (Alias (Subp)) then
                  return;
               end if;
 
               --  Retrieve the resolved actual from the renaming declaration
               --  created for the instantiated formal.
 
               Actual := Entity (Name (Parent (Parent (Subp))));
               Set_Entity (Def, Actual);
               Set_Etype (Def, Etype (Actual));
 
               if Is_Global (Actual) then
                  Ndec :=
                    Make_Generic_Association (Loc,
                      Selector_Name => New_Occurrence_Of (Subp, Loc),
                        Explicit_Generic_Actual_Parameter =>
                          New_Occurrence_Of (Actual, Loc));
 
                  Set_Associated_Node
                    (Explicit_Generic_Actual_Parameter (Ndec), Def);
 
                  Append (Ndec, Assoc1);
 
               --  If there are other defaults, add a dummy association in case
               --  there are other defaulted formals with the same name.
 
               elsif Present (Next (Act2)) then
                  Ndec :=
                    Make_Generic_Association (Loc,
                      Selector_Name => New_Occurrence_Of (Subp, Loc),
                        Explicit_Generic_Actual_Parameter => Empty);
 
                  Append (Ndec, Assoc1);
               end if;
 
               Next (Act2);
            end loop;
         end if;
 
         if Nkind (Name (N1)) = N_Identifier
           and then Is_Child_Unit (Gen_Id)
           and then Is_Global (Gen_Id)
           and then Is_Generic_Unit (Scope (Gen_Id))
           and then In_Open_Scopes (Scope (Gen_Id))
         then
            --  This is an instantiation of a child unit within a sibling, so
            --  that the generic parent is in scope. An eventual instance must
            --  occur within the scope of an instance of the parent. Make name
            --  in instance into an expanded name, to preserve the identifier
            --  of the parent, so it can be resolved subsequently.
 
            Rewrite (Name (N2),
              Make_Expanded_Name (Loc,
                Chars         => Chars (Gen_Id),
                Prefix        => New_Occurrence_Of (Scope (Gen_Id), Loc),
                Selector_Name => New_Occurrence_Of (Gen_Id, Loc)));
            Set_Entity (Name (N2), Gen_Id);
 
            Rewrite (Name (N1),
               Make_Expanded_Name (Loc,
                Chars         => Chars (Gen_Id),
                Prefix        => New_Occurrence_Of (Scope (Gen_Id), Loc),
                Selector_Name => New_Occurrence_Of (Gen_Id, Loc)));
 
            Set_Associated_Node (Name (N1), Name (N2));
            Set_Associated_Node (Prefix (Name (N1)), Empty);
            Set_Associated_Node
              (Selector_Name (Name (N1)), Selector_Name (Name (N2)));
            Set_Etype (Name (N1), Etype (Gen_Id));
         end if;
 
      end Save_Global_Defaults;
 
      ----------------------------
      -- Save_Global_Descendant --
      ----------------------------
 
      procedure Save_Global_Descendant (D : Union_Id) is
         N1 : Node_Id;
 
      begin
         if D in Node_Range then
            if D = Union_Id (Empty) then
               null;
 
            elsif Nkind (Node_Id (D)) /= N_Compilation_Unit then
               Save_References (Node_Id (D));
            end if;
 
         elsif D in List_Range then
            if D = Union_Id (No_List)
              or else Is_Empty_List (List_Id (D))
            then
               null;
 
            else
               N1 := First (List_Id (D));
               while Present (N1) loop
                  Save_References (N1);
                  Next (N1);
               end loop;
            end if;
 
         --  Element list or other non-node field, nothing to do
 
         else
            null;
         end if;
      end Save_Global_Descendant;
 
      ---------------------
      -- Save_References --
      ---------------------
 
      --  This is the recursive procedure that does the work once the enclosing
      --  generic scope has been established. We have to treat specially a
      --  number of node rewritings that are required by semantic processing
      --  and which change the kind of nodes in the generic copy: typically
      --  constant-folding, replacing an operator node by a string literal, or
      --  a selected component by an expanded name. In each of those cases, the
      --  transformation is propagated to the generic unit.
 
      procedure Save_References (N : Node_Id) is
         Loc : constant Source_Ptr := Sloc (N);
 
      begin
         if N = Empty then
            null;
 
         elsif Nkind_In (N, N_Character_Literal, N_Operator_Symbol) then
            if Nkind (N) = Nkind (Get_Associated_Node (N)) then
               Reset_Entity (N);
 
            elsif Nkind (N) = N_Operator_Symbol
              and then Nkind (Get_Associated_Node (N)) = N_String_Literal
            then
               Change_Operator_Symbol_To_String_Literal (N);
            end if;
 
         elsif Nkind (N) in N_Op then
            if Nkind (N) = Nkind (Get_Associated_Node (N)) then
               if Nkind (N) = N_Op_Concat then
                  Set_Is_Component_Left_Opnd (N,
                    Is_Component_Left_Opnd (Get_Associated_Node (N)));
 
                  Set_Is_Component_Right_Opnd (N,
                    Is_Component_Right_Opnd (Get_Associated_Node (N)));
               end if;
 
               Reset_Entity (N);
 
            else
               --  Node may be transformed into call to a user-defined operator
 
               N2 := Get_Associated_Node (N);
 
               if Nkind (N2) = N_Function_Call then
                  E := Entity (Name (N2));
 
                  if Present (E)
                    and then Is_Global (E)
                  then
                     Set_Etype (N, Etype (N2));
                  else
                     Set_Associated_Node (N, Empty);
                     Set_Etype (N, Empty);
                  end if;
 
               elsif Nkind_In (N2, N_Integer_Literal,
                                   N_Real_Literal,
                                   N_String_Literal)
               then
                  if Present (Original_Node (N2))
                    and then Nkind (Original_Node (N2)) = Nkind (N)
                  then
 
                     --  Operation was constant-folded. Whenever possible,
                     --  recover semantic information from unfolded node,
                     --  for ASIS use.
 
                     Set_Associated_Node (N, Original_Node (N2));
 
                     if Nkind (N) = N_Op_Concat then
                        Set_Is_Component_Left_Opnd (N,
                          Is_Component_Left_Opnd  (Get_Associated_Node (N)));
                        Set_Is_Component_Right_Opnd (N,
                          Is_Component_Right_Opnd (Get_Associated_Node (N)));
                     end if;
 
                     Reset_Entity (N);
 
                  else
                     --  If original node is already modified, propagate
                     --  constant-folding to template.
 
                     Rewrite (N, New_Copy (N2));
                     Set_Analyzed (N, False);
                  end if;
 
               elsif Nkind (N2) = N_Identifier
                 and then Ekind (Entity (N2)) = E_Enumeration_Literal
               then
                  --  Same if call was folded into a literal, but in this case
                  --  retain the entity to avoid spurious ambiguities if it is
                  --  overloaded at the point of instantiation or inlining.
 
                  Rewrite (N, New_Copy (N2));
                  Set_Analyzed (N, False);
               end if;
            end if;
 
            --  Complete operands check if node has not been constant-folded
 
            if Nkind (N) in N_Op then
               Save_Entity_Descendants (N);
            end if;
 
         elsif Nkind (N) = N_Identifier then
            if Nkind (N) = Nkind (Get_Associated_Node (N)) then
 
               --  If this is a discriminant reference, always save it. It is
               --  used in the instance to find the corresponding discriminant
               --  positionally rather than by name.
 
               Set_Original_Discriminant
                 (N, Original_Discriminant (Get_Associated_Node (N)));
               Reset_Entity (N);
 
            else
               N2 := Get_Associated_Node (N);
 
               if Nkind (N2) = N_Function_Call then
                  E := Entity (Name (N2));
 
                  --  Name resolves to a call to parameterless function. If
                  --  original entity is global, mark node as resolved.
 
                  if Present (E)
                    and then Is_Global (E)
                  then
                     Set_Etype (N, Etype (N2));
                  else
                     Set_Associated_Node (N, Empty);
                     Set_Etype (N, Empty);
                  end if;
 
               elsif Nkind_In (N2, N_Integer_Literal, N_Real_Literal)
                 and then Is_Entity_Name (Original_Node (N2))
               then
                  --  Name resolves to named number that is constant-folded,
                  --  We must preserve the original name for ASIS use, and
                  --  undo the constant-folding, which will be repeated in
                  --  each instance.
 
                  Set_Associated_Node (N, Original_Node (N2));
                  Reset_Entity (N);
 
               elsif Nkind (N2) = N_String_Literal then
 
                  --  Name resolves to string literal. Perform the same
                  --  replacement in generic.
 
                  Rewrite (N, New_Copy (N2));
 
               elsif Nkind (N2) = N_Explicit_Dereference then
 
                  --  An identifier is rewritten as a dereference if it is the
                  --  prefix in an implicit dereference (call or attribute).
                  --  The analysis of an instantiation will expand the node
                  --  again, so we preserve the original tree but link it to
                  --  the resolved entity in case it is global.
 
                  if Is_Entity_Name (Prefix (N2))
                    and then Present (Entity (Prefix (N2)))
                    and then Is_Global (Entity (Prefix (N2)))
                  then
                     Set_Associated_Node (N, Prefix (N2));
 
                  elsif Nkind (Prefix (N2)) = N_Function_Call
                    and then Is_Global (Entity (Name (Prefix (N2))))
                  then
                     Rewrite (N,
                       Make_Explicit_Dereference (Loc,
                          Prefix => Make_Function_Call (Loc,
                            Name =>
                              New_Occurrence_Of (Entity (Name (Prefix (N2))),
                                                 Loc))));
 
                  else
                     Set_Associated_Node (N, Empty);
                     Set_Etype (N, Empty);
                  end if;
 
               --  The subtype mark of a nominally unconstrained object is
               --  rewritten as a subtype indication using the bounds of the
               --  expression. Recover the original subtype mark.
 
               elsif Nkind (N2) = N_Subtype_Indication
                 and then Is_Entity_Name (Original_Node (N2))
               then
                  Set_Associated_Node (N, Original_Node (N2));
                  Reset_Entity (N);
 
               else
                  null;
               end if;
            end if;
 
         elsif Nkind (N) in N_Entity then
            null;
 
         else
            declare
               Qual : Node_Id := Empty;
               Typ  : Entity_Id := Empty;
               Nam  : Node_Id;
 
               use Atree.Unchecked_Access;
               --  This code section is part of implementing an untyped tree
               --  traversal, so it needs direct access to node fields.
 
            begin
               if Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
                  N2 := Get_Associated_Node (N);
 
                  if No (N2) then
                     Typ := Empty;
                  else
                     Typ := Etype (N2);
 
                     --  In an instance within a generic, use the name of the
                     --  actual and not the original generic parameter. If the
                     --  actual is global in the current generic it must be
                     --  preserved for its instantiation.
 
                     if Nkind (Parent (Typ)) = N_Subtype_Declaration
                       and then
                         Present (Generic_Parent_Type (Parent (Typ)))
                     then
                        Typ := Base_Type (Typ);
                        Set_Etype (N2, Typ);
                     end if;
                  end if;
 
                  if No (N2)
                    or else No (Typ)
                    or else not Is_Global (Typ)
                  then
                     Set_Associated_Node (N, Empty);
 
                     --  If the aggregate is an actual in a call, it has been
                     --  resolved in the current context, to some local type.
                     --  The enclosing call may have been disambiguated by the
                     --  aggregate, and this disambiguation might fail at
                     --  instantiation time because the type to which the
                     --  aggregate did resolve is not preserved. In order to
                     --  preserve some of this information, we wrap the
                     --  aggregate in a qualified expression, using the id of
                     --  its type. For further disambiguation we qualify the
                     --  type name with its scope (if visible) because both
                     --  id's will have corresponding entities in an instance.
                     --  This resolves most of the problems with missing type
                     --  information on aggregates in instances.
 
                     if Nkind (N2) = Nkind (N)
                       and then
                         Nkind_In (Parent (N2), N_Procedure_Call_Statement,
                                                N_Function_Call)
                       and then Comes_From_Source (Typ)
                     then
                        if Is_Immediately_Visible (Scope (Typ)) then
                           Nam := Make_Selected_Component (Loc,
                             Prefix =>
                               Make_Identifier (Loc, Chars (Scope (Typ))),
                             Selector_Name =>
                               Make_Identifier (Loc, Chars (Typ)));
                        else
                           Nam := Make_Identifier (Loc, Chars (Typ));
                        end if;
 
                        Qual :=
                          Make_Qualified_Expression (Loc,
                            Subtype_Mark => Nam,
                            Expression => Relocate_Node (N));
                     end if;
                  end if;
 
                  Save_Global_Descendant (Field1 (N));
                  Save_Global_Descendant (Field2 (N));
                  Save_Global_Descendant (Field3 (N));
                  Save_Global_Descendant (Field5 (N));
 
                  if Present (Qual) then
                     Rewrite (N, Qual);
                  end if;
 
               --  All other cases than aggregates
 
               else
                  Save_Global_Descendant (Field1 (N));
                  Save_Global_Descendant (Field2 (N));
                  Save_Global_Descendant (Field3 (N));
                  Save_Global_Descendant (Field4 (N));
                  Save_Global_Descendant (Field5 (N));
               end if;
            end;
         end if;
 
         --  If a node has aspects, references within their expressions must
         --  be saved separately, given that they are not directly in the
         --  tree.
 
         if Has_Aspects (N) then
            declare
               Aspect : Node_Id;
            begin
               Aspect := First (Aspect_Specifications (N));
               while Present (Aspect) loop
                  Save_Global_References (Expression (Aspect));
                  Next (Aspect);
               end loop;
            end;
         end if;
      end Save_References;
 
   --  Start of processing for Save_Global_References
 
   begin
      Gen_Scope := Current_Scope;
 
      --  If the generic unit is a child unit, references to entities in the
      --  parent are treated as local, because they will be resolved anew in
      --  the context of the instance of the parent.
 
      while Is_Child_Unit (Gen_Scope)
        and then Ekind (Scope (Gen_Scope)) = E_Generic_Package
      loop
         Gen_Scope := Scope (Gen_Scope);
      end loop;
 
      Save_References (N);
   end Save_Global_References;
 
   --------------------------------------
   -- Set_Copied_Sloc_For_Inlined_Body --
   --------------------------------------
 
   procedure Set_Copied_Sloc_For_Inlined_Body (N : Node_Id; E : Entity_Id) is
   begin
      Create_Instantiation_Source (N, E, True, S_Adjustment);
   end Set_Copied_Sloc_For_Inlined_Body;
 
   ---------------------
   -- Set_Instance_Of --
   ---------------------
 
   procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id) is
   begin
      Generic_Renamings.Table (Generic_Renamings.Last) := (A, B, Assoc_Null);
      Generic_Renamings_HTable.Set (Generic_Renamings.Last);
      Generic_Renamings.Increment_Last;
   end Set_Instance_Of;
 
   --------------------
   -- Set_Next_Assoc --
   --------------------
 
   procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr) is
   begin
      Generic_Renamings.Table (E).Next_In_HTable := Next;
   end Set_Next_Assoc;
 
   -------------------
   -- Start_Generic --
   -------------------
 
   procedure Start_Generic is
   begin
      --  ??? More things could be factored out in this routine.
      --  Should probably be done at a later stage.
 
      Generic_Flags.Append (Inside_A_Generic);
      Inside_A_Generic := True;
 
      Expander_Mode_Save_And_Set (False);
   end Start_Generic;
 
   ----------------------
   -- Set_Instance_Env --
   ----------------------
 
   procedure Set_Instance_Env
     (Gen_Unit : Entity_Id;
      Act_Unit : Entity_Id)
   is
   begin
      --  Regardless of the current mode, predefined units are analyzed in the
      --  most current Ada mode, and earlier version Ada checks do not apply
      --  to predefined units. Nothing needs to be done for non-internal units.
      --  These are always analyzed in the current mode.
 
      if Is_Internal_File_Name
           (Fname              => Unit_File_Name (Get_Source_Unit (Gen_Unit)),
            Renamings_Included => True)
      then
         Set_Opt_Config_Switches (True, Current_Sem_Unit = Main_Unit);
      end if;
 
      Current_Instantiated_Parent :=
        (Gen_Id         => Gen_Unit,
         Act_Id         => Act_Unit,
         Next_In_HTable => Assoc_Null);
   end Set_Instance_Env;
 
   -----------------
   -- Switch_View --
   -----------------
 
   procedure Switch_View (T : Entity_Id) is
      BT        : constant Entity_Id := Base_Type (T);
      Priv_Elmt : Elmt_Id := No_Elmt;
      Priv_Sub  : Entity_Id;
 
   begin
      --  T may be private but its base type may have been exchanged through
      --  some other occurrence, in which case there is nothing to switch
      --  besides T itself. Note that a private dependent subtype of a private
      --  type might not have been switched even if the base type has been,
      --  because of the last branch of Check_Private_View (see comment there).
 
      if not Is_Private_Type (BT) then
         Prepend_Elmt (Full_View (T), Exchanged_Views);
         Exchange_Declarations (T);
         return;
      end if;
 
      Priv_Elmt := First_Elmt (Private_Dependents (BT));
 
      if Present (Full_View (BT)) then
         Prepend_Elmt (Full_View (BT), Exchanged_Views);
         Exchange_Declarations (BT);
      end if;
 
      while Present (Priv_Elmt) loop
         Priv_Sub := (Node (Priv_Elmt));
 
         --  We avoid flipping the subtype if the Etype of its full view is
         --  private because this would result in a malformed subtype. This
         --  occurs when the Etype of the subtype full view is the full view of
         --  the base type (and since the base types were just switched, the
         --  subtype is pointing to the wrong view). This is currently the case
         --  for tagged record types, access types (maybe more?) and needs to
         --  be resolved. ???
 
         if Present (Full_View (Priv_Sub))
           and then not Is_Private_Type (Etype (Full_View (Priv_Sub)))
         then
            Prepend_Elmt (Full_View (Priv_Sub), Exchanged_Views);
            Exchange_Declarations (Priv_Sub);
         end if;
 
         Next_Elmt (Priv_Elmt);
      end loop;
   end Switch_View;
 
   -----------------
   -- True_Parent --
   -----------------
 
   function True_Parent (N : Node_Id) return Node_Id is
   begin
      if Nkind (Parent (N)) = N_Subunit then
         return Parent (Corresponding_Stub (Parent (N)));
      else
         return Parent (N);
      end if;
   end True_Parent;
 
   -----------------------------
   -- Valid_Default_Attribute --
   -----------------------------
 
   procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id) is
      Attr_Id : constant Attribute_Id :=
                  Get_Attribute_Id (Attribute_Name (Def));
      T       : constant Entity_Id := Entity (Prefix (Def));
      Is_Fun  : constant Boolean := (Ekind (Nam) = E_Function);
      F       : Entity_Id;
      Num_F   : Int;
      OK      : Boolean;
 
   begin
      if No (T)
        or else T = Any_Id
      then
         return;
      end if;
 
      Num_F := 0;
      F := First_Formal (Nam);
      while Present (F) loop
         Num_F := Num_F + 1;
         Next_Formal (F);
      end loop;
 
      case Attr_Id is
         when Attribute_Adjacent |  Attribute_Ceiling   | Attribute_Copy_Sign |
              Attribute_Floor    |  Attribute_Fraction  | Attribute_Machine   |
              Attribute_Model    |  Attribute_Remainder | Attribute_Rounding  |
              Attribute_Unbiased_Rounding  =>
            OK := Is_Fun
                    and then Num_F = 1
                    and then Is_Floating_Point_Type (T);
 
         when Attribute_Image    | Attribute_Pred       | Attribute_Succ |
              Attribute_Value    | Attribute_Wide_Image |
              Attribute_Wide_Value  =>
            OK := (Is_Fun and then Num_F = 1 and then Is_Scalar_Type (T));
 
         when Attribute_Max      |  Attribute_Min  =>
            OK := (Is_Fun and then Num_F = 2 and then Is_Scalar_Type (T));
 
         when Attribute_Input =>
            OK := (Is_Fun and then Num_F = 1);
 
         when Attribute_Output | Attribute_Read | Attribute_Write =>
            OK := (not Is_Fun and then Num_F = 2);
 
         when others =>
            OK := False;
      end case;
 
      if not OK then
         Error_Msg_N ("attribute reference has wrong profile for subprogram",
           Def);
      end if;
   end Valid_Default_Attribute;
 
end Sem_Ch12;
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.