OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [sem_ch13.adb] - Rev 706

Compare with Previous | Blame | View Log

------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                             S E M _ C H 1 3                              --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------
 
with Aspects;  use Aspects;
with Atree;    use Atree;
with Checks;   use Checks;
with Einfo;    use Einfo;
with Elists;   use Elists;
with Errout;   use Errout;
with Exp_Disp; use Exp_Disp;
with Exp_Tss;  use Exp_Tss;
with Exp_Util; use Exp_Util;
with Lib;      use Lib;
with Lib.Xref; use Lib.Xref;
with Namet;    use Namet;
with Nlists;   use Nlists;
with Nmake;    use Nmake;
with Opt;      use Opt;
with Restrict; use Restrict;
with Rident;   use Rident;
with Rtsfind;  use Rtsfind;
with Sem;      use Sem;
with Sem_Aux;  use Sem_Aux;
with Sem_Ch3;  use Sem_Ch3;
with Sem_Ch6;  use Sem_Ch6;
with Sem_Ch8;  use Sem_Ch8;
with Sem_Dim;  use Sem_Dim;
with Sem_Eval; use Sem_Eval;
with Sem_Res;  use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Sinput;   use Sinput;
with Snames;   use Snames;
with Stand;    use Stand;
with Sinfo;    use Sinfo;
with Stringt;  use Stringt;
with Targparm; use Targparm;
with Ttypes;   use Ttypes;
with Tbuild;   use Tbuild;
with Urealp;   use Urealp;
with Warnsw;   use Warnsw;
 
with GNAT.Heap_Sort_G;
 
package body Sem_Ch13 is
 
   SSU : constant Pos := System_Storage_Unit;
   --  Convenient short hand for commonly used constant
 
   -----------------------
   -- Local Subprograms --
   -----------------------
 
   procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
   --  This routine is called after setting one of the sizes of type entity
   --  Typ to Size. The purpose is to deal with the situation of a derived
   --  type whose inherited alignment is no longer appropriate for the new
   --  size value. In this case, we reset the Alignment to unknown.
 
   procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id);
   --  If Typ has predicates (indicated by Has_Predicates being set for Typ,
   --  then either there are pragma Invariant entries on the rep chain for the
   --  type (note that Predicate aspects are converted to pragma Predicate), or
   --  there are inherited aspects from a parent type, or ancestor subtypes.
   --  This procedure builds the spec and body for the Predicate function that
   --  tests these predicates. N is the freeze node for the type. The spec of
   --  the function is inserted before the freeze node, and the body of the
   --  function is inserted after the freeze node.
 
   procedure Build_Static_Predicate
     (Typ  : Entity_Id;
      Expr : Node_Id;
      Nam  : Name_Id);
   --  Given a predicated type Typ, where Typ is a discrete static subtype,
   --  whose predicate expression is Expr, tests if Expr is a static predicate,
   --  and if so, builds the predicate range list. Nam is the name of the one
   --  argument to the predicate function. Occurrences of the type name in the
   --  predicate expression have been replaced by identifier references to this
   --  name, which is unique, so any identifier with Chars matching Nam must be
   --  a reference to the type. If the predicate is non-static, this procedure
   --  returns doing nothing. If the predicate is static, then the predicate
   --  list is stored in Static_Predicate (Typ), and the Expr is rewritten as
   --  a canonicalized membership operation.
 
   function Get_Alignment_Value (Expr : Node_Id) return Uint;
   --  Given the expression for an alignment value, returns the corresponding
   --  Uint value. If the value is inappropriate, then error messages are
   --  posted as required, and a value of No_Uint is returned.
 
   function Is_Operational_Item (N : Node_Id) return Boolean;
   --  A specification for a stream attribute is allowed before the full type
   --  is declared, as explained in AI-00137 and the corrigendum. Attributes
   --  that do not specify a representation characteristic are operational
   --  attributes.
 
   procedure New_Stream_Subprogram
     (N    : Node_Id;
      Ent  : Entity_Id;
      Subp : Entity_Id;
      Nam  : TSS_Name_Type);
   --  Create a subprogram renaming of a given stream attribute to the
   --  designated subprogram and then in the tagged case, provide this as a
   --  primitive operation, or in the non-tagged case make an appropriate TSS
   --  entry. This is more properly an expansion activity than just semantics,
   --  but the presence of user-defined stream functions for limited types is a
   --  legality check, which is why this takes place here rather than in
   --  exp_ch13, where it was previously. Nam indicates the name of the TSS
   --  function to be generated.
   --
   --  To avoid elaboration anomalies with freeze nodes, for untagged types
   --  we generate both a subprogram declaration and a subprogram renaming
   --  declaration, so that the attribute specification is handled as a
   --  renaming_as_body. For tagged types, the specification is one of the
   --  primitive specs.
 
   generic
      with procedure Replace_Type_Reference (N : Node_Id);
   procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id);
   --  This is used to scan an expression for a predicate or invariant aspect
   --  replacing occurrences of the name TName (the name of the subtype to
   --  which the aspect applies) with appropriate references to the parameter
   --  of the predicate function or invariant procedure. The procedure passed
   --  as a generic parameter does the actual replacement of node N, which is
   --  either a simple direct reference to TName, or a selected component that
   --  represents an appropriately qualified occurrence of TName.
 
   procedure Set_Biased
     (E      : Entity_Id;
      N      : Node_Id;
      Msg    : String;
      Biased : Boolean := True);
   --  If Biased is True, sets Has_Biased_Representation flag for E, and
   --  outputs a warning message at node N if Warn_On_Biased_Representation is
   --  is True. This warning inserts the string Msg to describe the construct
   --  causing biasing.
 
   ----------------------------------------------
   -- Table for Validate_Unchecked_Conversions --
   ----------------------------------------------
 
   --  The following table collects unchecked conversions for validation.
   --  Entries are made by Validate_Unchecked_Conversion and then the call
   --  to Validate_Unchecked_Conversions does the actual error checking and
   --  posting of warnings. The reason for this delayed processing is to take
   --  advantage of back-annotations of size and alignment values performed by
   --  the back end.
 
   --  Note: the reason we store a Source_Ptr value instead of a Node_Id is
   --  that by the time Validate_Unchecked_Conversions is called, Sprint will
   --  already have modified all Sloc values if the -gnatD option is set.
 
   type UC_Entry is record
      Eloc   : Source_Ptr; -- node used for posting warnings
      Source : Entity_Id;  -- source type for unchecked conversion
      Target : Entity_Id;  -- target type for unchecked conversion
   end record;
 
   package Unchecked_Conversions is new Table.Table (
     Table_Component_Type => UC_Entry,
     Table_Index_Type     => Int,
     Table_Low_Bound      => 1,
     Table_Initial        => 50,
     Table_Increment      => 200,
     Table_Name           => "Unchecked_Conversions");
 
   ----------------------------------------
   -- Table for Validate_Address_Clauses --
   ----------------------------------------
 
   --  If an address clause has the form
 
   --    for X'Address use Expr
 
   --  where Expr is of the form Y'Address or recursively is a reference to a
   --  constant of either of these forms, and X and Y are entities of objects,
   --  then if Y has a smaller alignment than X, that merits a warning about
   --  possible bad alignment. The following table collects address clauses of
   --  this kind. We put these in a table so that they can be checked after the
   --  back end has completed annotation of the alignments of objects, since we
   --  can catch more cases that way.
 
   type Address_Clause_Check_Record is record
      N : Node_Id;
      --  The address clause
 
      X : Entity_Id;
      --  The entity of the object overlaying Y
 
      Y : Entity_Id;
      --  The entity of the object being overlaid
 
      Off : Boolean;
      --  Whether the address is offset within Y
   end record;
 
   package Address_Clause_Checks is new Table.Table (
     Table_Component_Type => Address_Clause_Check_Record,
     Table_Index_Type     => Int,
     Table_Low_Bound      => 1,
     Table_Initial        => 20,
     Table_Increment      => 200,
     Table_Name           => "Address_Clause_Checks");
 
   -----------------------------------------
   -- Adjust_Record_For_Reverse_Bit_Order --
   -----------------------------------------
 
   procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
      Comp : Node_Id;
      CC   : Node_Id;
 
   begin
      --  Processing depends on version of Ada
 
      --  For Ada 95, we just renumber bits within a storage unit. We do the
      --  same for Ada 83 mode, since we recognize the Bit_Order attribute in
      --  Ada 83, and are free to add this extension.
 
      if Ada_Version < Ada_2005 then
         Comp := First_Component_Or_Discriminant (R);
         while Present (Comp) loop
            CC := Component_Clause (Comp);
 
            --  If component clause is present, then deal with the non-default
            --  bit order case for Ada 95 mode.
 
            --  We only do this processing for the base type, and in fact that
            --  is important, since otherwise if there are record subtypes, we
            --  could reverse the bits once for each subtype, which is wrong.
 
            if Present (CC)
              and then Ekind (R) = E_Record_Type
            then
               declare
                  CFB : constant Uint    := Component_Bit_Offset (Comp);
                  CSZ : constant Uint    := Esize (Comp);
                  CLC : constant Node_Id := Component_Clause (Comp);
                  Pos : constant Node_Id := Position (CLC);
                  FB  : constant Node_Id := First_Bit (CLC);
 
                  Storage_Unit_Offset : constant Uint :=
                                          CFB / System_Storage_Unit;
 
                  Start_Bit : constant Uint :=
                                CFB mod System_Storage_Unit;
 
               begin
                  --  Cases where field goes over storage unit boundary
 
                  if Start_Bit + CSZ > System_Storage_Unit then
 
                     --  Allow multi-byte field but generate warning
 
                     if Start_Bit mod System_Storage_Unit = 0
                       and then CSZ mod System_Storage_Unit = 0
                     then
                        Error_Msg_N
                          ("multi-byte field specified with non-standard"
                           & " Bit_Order?", CLC);
 
                        if Bytes_Big_Endian then
                           Error_Msg_N
                             ("bytes are not reversed "
                              & "(component is big-endian)?", CLC);
                        else
                           Error_Msg_N
                             ("bytes are not reversed "
                              & "(component is little-endian)?", CLC);
                        end if;
 
                        --  Do not allow non-contiguous field
 
                     else
                        Error_Msg_N
                          ("attempt to specify non-contiguous field "
                           & "not permitted", CLC);
                        Error_Msg_N
                          ("\caused by non-standard Bit_Order "
                           & "specified", CLC);
                        Error_Msg_N
                          ("\consider possibility of using "
                           & "Ada 2005 mode here", CLC);
                     end if;
 
                  --  Case where field fits in one storage unit
 
                  else
                     --  Give warning if suspicious component clause
 
                     if Intval (FB) >= System_Storage_Unit
                       and then Warn_On_Reverse_Bit_Order
                     then
                        Error_Msg_N
                          ("?Bit_Order clause does not affect " &
                           "byte ordering", Pos);
                        Error_Msg_Uint_1 :=
                          Intval (Pos) + Intval (FB) /
                          System_Storage_Unit;
                        Error_Msg_N
                          ("?position normalized to ^ before bit " &
                           "order interpreted", Pos);
                     end if;
 
                     --  Here is where we fix up the Component_Bit_Offset value
                     --  to account for the reverse bit order. Some examples of
                     --  what needs to be done are:
 
                     --    First_Bit .. Last_Bit     Component_Bit_Offset
                     --      old          new          old       new
 
                     --     0 .. 0       7 .. 7         0         7
                     --     0 .. 1       6 .. 7         0         6
                     --     0 .. 2       5 .. 7         0         5
                     --     0 .. 7       0 .. 7         0         4
 
                     --     1 .. 1       6 .. 6         1         6
                     --     1 .. 4       3 .. 6         1         3
                     --     4 .. 7       0 .. 3         4         0
 
                     --  The rule is that the first bit is is obtained by
                     --  subtracting the old ending bit from storage_unit - 1.
 
                     Set_Component_Bit_Offset
                       (Comp,
                        (Storage_Unit_Offset * System_Storage_Unit) +
                          (System_Storage_Unit - 1) -
                          (Start_Bit + CSZ - 1));
 
                     Set_Normalized_First_Bit
                       (Comp,
                        Component_Bit_Offset (Comp) mod
                          System_Storage_Unit);
                  end if;
               end;
            end if;
 
            Next_Component_Or_Discriminant (Comp);
         end loop;
 
      --  For Ada 2005, we do machine scalar processing, as fully described In
      --  AI-133. This involves gathering all components which start at the
      --  same byte offset and processing them together. Same approach is still
      --  valid in later versions including Ada 2012.
 
      else
         declare
            Max_Machine_Scalar_Size : constant Uint :=
                                        UI_From_Int
                                          (Standard_Long_Long_Integer_Size);
            --  We use this as the maximum machine scalar size
 
            Num_CC : Natural;
            SSU    : constant Uint := UI_From_Int (System_Storage_Unit);
 
         begin
            --  This first loop through components does two things. First it
            --  deals with the case of components with component clauses whose
            --  length is greater than the maximum machine scalar size (either
            --  accepting them or rejecting as needed). Second, it counts the
            --  number of components with component clauses whose length does
            --  not exceed this maximum for later processing.
 
            Num_CC := 0;
            Comp   := First_Component_Or_Discriminant (R);
            while Present (Comp) loop
               CC := Component_Clause (Comp);
 
               if Present (CC) then
                  declare
                     Fbit : constant Uint :=
                              Static_Integer (First_Bit (CC));
                     Lbit : constant Uint :=
                              Static_Integer (Last_Bit (CC));
 
                  begin
                     --  Case of component with last bit >= max machine scalar
 
                     if Lbit >= Max_Machine_Scalar_Size then
 
                        --  This is allowed only if first bit is zero, and
                        --  last bit + 1 is a multiple of storage unit size.
 
                        if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
 
                           --  This is the case to give a warning if enabled
 
                           if Warn_On_Reverse_Bit_Order then
                              Error_Msg_N
                                ("multi-byte field specified with "
                                 & "  non-standard Bit_Order?", CC);
 
                              if Bytes_Big_Endian then
                                 Error_Msg_N
                                   ("\bytes are not reversed "
                                    & "(component is big-endian)?", CC);
                              else
                                 Error_Msg_N
                                   ("\bytes are not reversed "
                                    & "(component is little-endian)?", CC);
                              end if;
                           end if;
 
                        --  Give error message for RM 13.4.1(10) violation
 
                        else
                           Error_Msg_FE
                             ("machine scalar rules not followed for&",
                              First_Bit (CC), Comp);
 
                           Error_Msg_Uint_1 := Lbit;
                           Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
                           Error_Msg_F
                             ("\last bit (^) exceeds maximum machine "
                              & "scalar size (^)",
                              First_Bit (CC));
 
                           if (Lbit + 1) mod SSU /= 0 then
                              Error_Msg_Uint_1 := SSU;
                              Error_Msg_F
                                ("\and is not a multiple of Storage_Unit (^) "
                                 & "(RM 13.4.1(10))",
                                 First_Bit (CC));
 
                           else
                              Error_Msg_Uint_1 := Fbit;
                              Error_Msg_F
                                ("\and first bit (^) is non-zero "
                                 & "(RM 13.4.1(10))",
                                 First_Bit (CC));
                           end if;
                        end if;
 
                     --  OK case of machine scalar related component clause,
                     --  For now, just count them.
 
                     else
                        Num_CC := Num_CC + 1;
                     end if;
                  end;
               end if;
 
               Next_Component_Or_Discriminant (Comp);
            end loop;
 
            --  We need to sort the component clauses on the basis of the
            --  Position values in the clause, so we can group clauses with
            --  the same Position. together to determine the relevant machine
            --  scalar size.
 
            Sort_CC : declare
               Comps : array (0 .. Num_CC) of Entity_Id;
               --  Array to collect component and discriminant entities. The
               --  data starts at index 1, the 0'th entry is for the sort
               --  routine.
 
               function CP_Lt (Op1, Op2 : Natural) return Boolean;
               --  Compare routine for Sort
 
               procedure CP_Move (From : Natural; To : Natural);
               --  Move routine for Sort
 
               package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
 
               Start : Natural;
               Stop  : Natural;
               --  Start and stop positions in the component list of the set of
               --  components with the same starting position (that constitute
               --  components in a single machine scalar).
 
               MaxL  : Uint;
               --  Maximum last bit value of any component in this set
 
               MSS   : Uint;
               --  Corresponding machine scalar size
 
               -----------
               -- CP_Lt --
               -----------
 
               function CP_Lt (Op1, Op2 : Natural) return Boolean is
               begin
                  return Position (Component_Clause (Comps (Op1))) <
                    Position (Component_Clause (Comps (Op2)));
               end CP_Lt;
 
               -------------
               -- CP_Move --
               -------------
 
               procedure CP_Move (From : Natural; To : Natural) is
               begin
                  Comps (To) := Comps (From);
               end CP_Move;
 
               --  Start of processing for Sort_CC
 
            begin
               --  Collect the machine scalar relevant component clauses
 
               Num_CC := 0;
               Comp   := First_Component_Or_Discriminant (R);
               while Present (Comp) loop
                  declare
                     CC   : constant Node_Id := Component_Clause (Comp);
 
                  begin
                     --  Collect only component clauses whose last bit is less
                     --  than machine scalar size. Any component clause whose
                     --  last bit exceeds this value does not take part in
                     --  machine scalar layout considerations. The test for
                     --  Error_Posted makes sure we exclude component clauses
                     --  for which we already posted an error.
 
                     if Present (CC)
                       and then not Error_Posted (Last_Bit (CC))
                       and then Static_Integer (Last_Bit (CC)) <
                                                    Max_Machine_Scalar_Size
                     then
                        Num_CC := Num_CC + 1;
                        Comps (Num_CC) := Comp;
                     end if;
                  end;
 
                  Next_Component_Or_Discriminant (Comp);
               end loop;
 
               --  Sort by ascending position number
 
               Sorting.Sort (Num_CC);
 
               --  We now have all the components whose size does not exceed
               --  the max machine scalar value, sorted by starting position.
               --  In this loop we gather groups of clauses starting at the
               --  same position, to process them in accordance with AI-133.
 
               Stop := 0;
               while Stop < Num_CC loop
                  Start := Stop + 1;
                  Stop  := Start;
                  MaxL  :=
                    Static_Integer
                      (Last_Bit (Component_Clause (Comps (Start))));
                  while Stop < Num_CC loop
                     if Static_Integer
                          (Position (Component_Clause (Comps (Stop + 1)))) =
                        Static_Integer
                          (Position (Component_Clause (Comps (Stop))))
                     then
                        Stop := Stop + 1;
                        MaxL :=
                          UI_Max
                            (MaxL,
                             Static_Integer
                               (Last_Bit
                                  (Component_Clause (Comps (Stop)))));
                     else
                        exit;
                     end if;
                  end loop;
 
                  --  Now we have a group of component clauses from Start to
                  --  Stop whose positions are identical, and MaxL is the
                  --  maximum last bit value of any of these components.
 
                  --  We need to determine the corresponding machine scalar
                  --  size. This loop assumes that machine scalar sizes are
                  --  even, and that each possible machine scalar has twice
                  --  as many bits as the next smaller one.
 
                  MSS := Max_Machine_Scalar_Size;
                  while MSS mod 2 = 0
                    and then (MSS / 2) >= SSU
                    and then (MSS / 2) > MaxL
                  loop
                     MSS := MSS / 2;
                  end loop;
 
                  --  Here is where we fix up the Component_Bit_Offset value
                  --  to account for the reverse bit order. Some examples of
                  --  what needs to be done for the case of a machine scalar
                  --  size of 8 are:
 
                  --    First_Bit .. Last_Bit     Component_Bit_Offset
                  --      old          new          old       new
 
                  --     0 .. 0       7 .. 7         0         7
                  --     0 .. 1       6 .. 7         0         6
                  --     0 .. 2       5 .. 7         0         5
                  --     0 .. 7       0 .. 7         0         4
 
                  --     1 .. 1       6 .. 6         1         6
                  --     1 .. 4       3 .. 6         1         3
                  --     4 .. 7       0 .. 3         4         0
 
                  --  The rule is that the first bit is obtained by subtracting
                  --  the old ending bit from machine scalar size - 1.
 
                  for C in Start .. Stop loop
                     declare
                        Comp : constant Entity_Id := Comps (C);
                        CC   : constant Node_Id   :=
                                 Component_Clause (Comp);
                        LB   : constant Uint :=
                                 Static_Integer (Last_Bit (CC));
                        NFB  : constant Uint := MSS - Uint_1 - LB;
                        NLB  : constant Uint := NFB + Esize (Comp) - 1;
                        Pos  : constant Uint :=
                                 Static_Integer (Position (CC));
 
                     begin
                        if Warn_On_Reverse_Bit_Order then
                           Error_Msg_Uint_1 := MSS;
                           Error_Msg_N
                             ("info: reverse bit order in machine " &
                              "scalar of length^?", First_Bit (CC));
                           Error_Msg_Uint_1 := NFB;
                           Error_Msg_Uint_2 := NLB;
 
                           if Bytes_Big_Endian then
                              Error_Msg_NE
                                ("?\info: big-endian range for "
                                 & "component & is ^ .. ^",
                                 First_Bit (CC), Comp);
                           else
                              Error_Msg_NE
                                ("?\info: little-endian range "
                                 & "for component & is ^ .. ^",
                                 First_Bit (CC), Comp);
                           end if;
                        end if;
 
                        Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
                        Set_Normalized_First_Bit (Comp, NFB mod SSU);
                     end;
                  end loop;
               end loop;
            end Sort_CC;
         end;
      end if;
   end Adjust_Record_For_Reverse_Bit_Order;
 
   -------------------------------------
   -- Alignment_Check_For_Size_Change --
   -------------------------------------
 
   procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
   begin
      --  If the alignment is known, and not set by a rep clause, and is
      --  inconsistent with the size being set, then reset it to unknown,
      --  we assume in this case that the size overrides the inherited
      --  alignment, and that the alignment must be recomputed.
 
      if Known_Alignment (Typ)
        and then not Has_Alignment_Clause (Typ)
        and then Size mod (Alignment (Typ) * SSU) /= 0
      then
         Init_Alignment (Typ);
      end if;
   end Alignment_Check_For_Size_Change;
 
   -----------------------------------
   -- Analyze_Aspect_Specifications --
   -----------------------------------
 
   procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
      Aspect : Node_Id;
      Aitem  : Node_Id;
      Ent    : Node_Id;
 
      L : constant List_Id := Aspect_Specifications (N);
 
      Ins_Node : Node_Id := N;
      --  Insert pragmas (except Pre/Post/Invariant/Predicate) after this node
 
      --  The general processing involves building an attribute definition
      --  clause or a pragma node that corresponds to the aspect. Then one
      --  of two things happens:
 
      --  If we are required to delay the evaluation of this aspect to the
      --  freeze point, we attach the corresponding pragma/attribute definition
      --  clause to the aspect specification node, which is then placed in the
      --  Rep Item chain. In this case we mark the entity by setting the flag
      --  Has_Delayed_Aspects and we evaluate the rep item at the freeze point.
 
      --  If no delay is required, we just insert the pragma or attribute
      --  after the declaration, and it will get processed by the normal
      --  circuit. The From_Aspect_Specification flag is set on the pragma
      --  or attribute definition node in either case to activate special
      --  processing (e.g. not traversing the list of homonyms for inline).
 
      Delay_Required : Boolean := False;
      --  Set True if delay is required
 
   begin
      pragma Assert (Present (L));
 
      --  Loop through aspects
 
      Aspect := First (L);
      Aspect_Loop : while Present (Aspect) loop
         declare
            Loc  : constant Source_Ptr := Sloc (Aspect);
            Id   : constant Node_Id    := Identifier (Aspect);
            Expr : constant Node_Id    := Expression (Aspect);
            Nam  : constant Name_Id    := Chars (Id);
            A_Id : constant Aspect_Id  := Get_Aspect_Id (Nam);
            Anod : Node_Id;
 
            Eloc : Source_Ptr := No_Location;
            --  Source location of expression, modified when we split PPC's. It
            --  is set below when Expr is present.
 
            procedure Check_False_Aspect_For_Derived_Type;
            --  This procedure checks for the case of a false aspect for a
            --  derived type, which improperly tries to cancel an aspect
            --  inherited from the parent;
 
            -----------------------------------------
            -- Check_False_Aspect_For_Derived_Type --
            -----------------------------------------
 
            procedure Check_False_Aspect_For_Derived_Type is
            begin
               --  We are only checking derived types
 
               if not Is_Derived_Type (E) then
                  return;
               end if;
 
               case A_Id is
                  when Aspect_Atomic | Aspect_Shared =>
                     if not Is_Atomic (E) then
                        return;
                     end if;
 
                  when Aspect_Atomic_Components =>
                     if not Has_Atomic_Components (E) then
                        return;
                     end if;
 
                  when Aspect_Discard_Names =>
                     if not Discard_Names (E) then
                        return;
                     end if;
 
                  when Aspect_Pack =>
                     if not Is_Packed (E) then
                        return;
                     end if;
 
                  when Aspect_Unchecked_Union =>
                     if not Is_Unchecked_Union (E) then
                        return;
                     end if;
 
                  when Aspect_Volatile =>
                     if not Is_Volatile (E) then
                        return;
                     end if;
 
                  when Aspect_Volatile_Components =>
                     if not Has_Volatile_Components (E) then
                        return;
                     end if;
 
                  when others =>
                     return;
               end case;
 
               --  Fall through means we are canceling an inherited aspect
 
               Error_Msg_Name_1 := Nam;
               Error_Msg_NE
                 ("derived type& inherits aspect%, cannot cancel", Expr, E);
            end Check_False_Aspect_For_Derived_Type;
 
         --  Start of processing for Aspect_Loop
 
         begin
            --  Skip aspect if already analyzed (not clear if this is needed)
 
            if Analyzed (Aspect) then
               goto Continue;
            end if;
 
            --  Set the source location of expression, used in the case of
            --  a failed precondition/postcondition or invariant. Note that
            --  the source location of the expression is not usually the best
            --  choice here. For example, it gets located on the last AND
            --  keyword in a chain of boolean expressiond AND'ed together.
            --  It is best to put the message on the first character of the
            --  assertion, which is the effect of the First_Node call here.
 
            if Present (Expr) then
               Eloc := Sloc (First_Node (Expr));
            end if;
 
            --  Check restriction No_Implementation_Aspect_Specifications
 
            if Impl_Defined_Aspects (A_Id) then
               Check_Restriction
                 (No_Implementation_Aspect_Specifications, Aspect);
            end if;
 
            --  Check restriction No_Specification_Of_Aspect
 
            Check_Restriction_No_Specification_Of_Aspect (Aspect);
 
            --  Analyze this aspect
 
            Set_Analyzed (Aspect);
            Set_Entity (Aspect, E);
            Ent := New_Occurrence_Of (E, Sloc (Id));
 
            --  Check for duplicate aspect. Note that the Comes_From_Source
            --  test allows duplicate Pre/Post's that we generate internally
            --  to escape being flagged here.
 
            if No_Duplicates_Allowed (A_Id) then
               Anod := First (L);
               while Anod /= Aspect loop
                  if Same_Aspect
                      (A_Id, Get_Aspect_Id (Chars (Identifier (Anod))))
                    and then Comes_From_Source (Aspect)
                  then
                     Error_Msg_Name_1 := Nam;
                     Error_Msg_Sloc := Sloc (Anod);
 
                     --  Case of same aspect specified twice
 
                     if Class_Present (Anod) = Class_Present (Aspect) then
                        if not Class_Present (Anod) then
                           Error_Msg_NE
                             ("aspect% for & previously given#",
                              Id, E);
                        else
                           Error_Msg_NE
                             ("aspect `%''Class` for & previously given#",
                              Id, E);
                        end if;
 
                        --  Case of Pre and Pre'Class both specified
 
                     elsif Nam = Name_Pre then
                        if Class_Present (Aspect) then
                           Error_Msg_NE
                             ("aspect `Pre''Class` for & is not allowed here",
                              Id, E);
                           Error_Msg_NE
                             ("\since aspect `Pre` previously given#",
                              Id, E);
 
                        else
                           Error_Msg_NE
                             ("aspect `Pre` for & is not allowed here",
                              Id, E);
                           Error_Msg_NE
                             ("\since aspect `Pre''Class` previously given#",
                              Id, E);
                        end if;
                     end if;
 
                     --  Allowed case of X and X'Class both specified
                  end if;
 
                  Next (Anod);
               end loop;
            end if;
 
            --  Check some general restrictions on language defined aspects
 
            if not Impl_Defined_Aspects (A_Id) then
               Error_Msg_Name_1 := Nam;
 
               --  Not allowed for renaming declarations
 
               if Nkind (N) in N_Renaming_Declaration then
                  Error_Msg_N
                    ("aspect % not allowed for renaming declaration",
                     Aspect);
               end if;
 
               --  Not allowed for formal type declarations
 
               if Nkind (N) = N_Formal_Type_Declaration then
                  Error_Msg_N
                    ("aspect % not allowed for formal type declaration",
                     Aspect);
               end if;
            end if;
 
            --  Copy expression for later processing by the procedures
            --  Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
 
            Set_Entity (Id, New_Copy_Tree (Expr));
 
            --  Processing based on specific aspect
 
            case A_Id is
 
               --  No_Aspect should be impossible
 
               when No_Aspect =>
                  raise Program_Error;
 
               --  Aspects taking an optional boolean argument. For all of
               --  these we just create a matching pragma and insert it, if
               --  the expression is missing or set to True. If the expression
               --  is False, we can ignore the aspect with the exception that
               --  in the case of a derived type, we must check for an illegal
               --  attempt to cancel an inherited aspect.
 
               when Boolean_Aspects =>
                  Set_Is_Boolean_Aspect (Aspect);
 
                  if Present (Expr)
                    and then Is_False (Static_Boolean (Expr))
                  then
                     Check_False_Aspect_For_Derived_Type;
                     goto Continue;
                  end if;
 
                  --  If True, build corresponding pragma node
 
                  Aitem :=
                    Make_Pragma (Loc,
                      Pragma_Argument_Associations => New_List (Ent),
                      Pragma_Identifier            =>
                        Make_Identifier (Sloc (Id), Chars (Id)));
 
                  --  Never need to delay for boolean aspects
 
                  pragma Assert (not Delay_Required);
 
               --  Library unit aspects. These are boolean aspects, but we
               --  have to do special things with the insertion, since the
               --  pragma belongs inside the declarations of a package.
 
               when Library_Unit_Aspects =>
                  if Present (Expr)
                    and then Is_False (Static_Boolean (Expr))
                  then
                     goto Continue;
                  end if;
 
                  --  Build corresponding pragma node
 
                  Aitem :=
                    Make_Pragma (Loc,
                      Pragma_Argument_Associations => New_List (Ent),
                      Pragma_Identifier            =>
                        Make_Identifier (Sloc (Id), Chars (Id)));
 
                  --  This requires special handling in the case of a package
                  --  declaration, the pragma needs to be inserted in the list
                  --  of declarations for the associated package. There is no
                  --  issue of visibility delay for these aspects.
 
                  if Nkind (N) = N_Package_Declaration then
                     if Nkind (Parent (N)) /= N_Compilation_Unit then
                        Error_Msg_N
                          ("incorrect context for library unit aspect&", Id);
                     else
                        Prepend
                          (Aitem, Visible_Declarations (Specification (N)));
                     end if;
 
                     goto Continue;
                  end if;
 
                  --  If not package declaration, no delay is required
 
                  pragma Assert (not Delay_Required);
 
               --  Aspects related to container iterators. These aspects denote
               --  subprograms, and thus must be delayed.
 
               when Aspect_Constant_Indexing    |
                    Aspect_Variable_Indexing    =>
 
                  if not Is_Type (E) or else not Is_Tagged_Type (E) then
                     Error_Msg_N ("indexing applies to a tagged type", N);
                  end if;
 
                  Aitem :=
                    Make_Attribute_Definition_Clause (Loc,
                      Name       => Ent,
                      Chars      => Chars (Id),
                      Expression => Relocate_Node (Expr));
 
                  Delay_Required := True;
                  Set_Is_Delayed_Aspect (Aspect);
 
               when Aspect_Default_Iterator     |
                    Aspect_Iterator_Element     =>
 
                  Aitem :=
                    Make_Attribute_Definition_Clause (Loc,
                      Name       => Ent,
                      Chars      => Chars (Id),
                      Expression => Relocate_Node (Expr));
 
                  Delay_Required := True;
                  Set_Is_Delayed_Aspect (Aspect);
 
               when Aspect_Implicit_Dereference =>
                  if not Is_Type (E)
                    or else not Has_Discriminants (E)
                  then
                     Error_Msg_N
                       ("Aspect must apply to a type with discriminants", N);
                     goto Continue;
 
                  else
                     declare
                        Disc : Entity_Id;
 
                     begin
                        Disc := First_Discriminant (E);
                        while Present (Disc) loop
                           if Chars (Expr) = Chars (Disc)
                             and then Ekind (Etype (Disc)) =
                               E_Anonymous_Access_Type
                           then
                              Set_Has_Implicit_Dereference (E);
                              Set_Has_Implicit_Dereference (Disc);
                              goto Continue;
                           end if;
 
                           Next_Discriminant (Disc);
                        end loop;
 
                        --  Error if no proper access discriminant.
 
                        Error_Msg_NE
                         ("not an access discriminant of&", Expr, E);
                     end;
 
                     goto Continue;
                  end if;
 
               --  Aspects corresponding to attribute definition clauses
 
               when Aspect_Address             |
                    Aspect_Alignment           |
                    Aspect_Bit_Order           |
                    Aspect_Component_Size      |
                    Aspect_External_Tag        |
                    Aspect_Input               |
                    Aspect_Machine_Radix       |
                    Aspect_Object_Size         |
                    Aspect_Output              |
                    Aspect_Read                |
                    Aspect_Size                |
                    Aspect_Small               |
                    Aspect_Simple_Storage_Pool |
                    Aspect_Storage_Pool        |
                    Aspect_Storage_Size        |
                    Aspect_Stream_Size         |
                    Aspect_Value_Size          |
                    Aspect_Write               =>
 
                  --  Construct the attribute definition clause
 
                  Aitem :=
                    Make_Attribute_Definition_Clause (Loc,
                      Name       => Ent,
                      Chars      => Chars (Id),
                      Expression => Relocate_Node (Expr));
 
                  --  A delay is required except in the common case where
                  --  the expression is a literal, in which case it is fine
                  --  to take care of it right away.
 
                  if Nkind_In (Expr, N_Integer_Literal, N_String_Literal) then
                     pragma Assert (not Delay_Required);
                     null;
                  else
                     Delay_Required := True;
                     Set_Is_Delayed_Aspect (Aspect);
                  end if;
 
               --  Aspects corresponding to pragmas with two arguments, where
               --  the first argument is a local name referring to the entity,
               --  and the second argument is the aspect definition expression
               --  which is an expression that does not get analyzed.
 
               when Aspect_Suppress   |
                    Aspect_Unsuppress =>
 
                  --  Construct the pragma
 
                  Aitem :=
                    Make_Pragma (Loc,
                      Pragma_Argument_Associations => New_List (
                        New_Occurrence_Of (E, Loc),
                        Relocate_Node (Expr)),
                      Pragma_Identifier            =>
                        Make_Identifier (Sloc (Id), Chars (Id)));
 
                  --  We don't have to play the delay game here, since the only
                  --  values are check names which don't get analyzed anyway.
 
                  pragma Assert (not Delay_Required);
 
               when Aspect_Synchronization =>
 
                  --  The aspect corresponds to pragma Implemented.
                  --  Construct the pragma
 
                  Aitem :=
                    Make_Pragma (Loc,
                      Pragma_Argument_Associations => New_List (
                        New_Occurrence_Of (E, Loc),
                        Relocate_Node (Expr)),
                      Pragma_Identifier            =>
                        Make_Identifier (Sloc (Id), Name_Implemented));
 
                  pragma Assert (not Delay_Required);
 
               --  Aspects corresponding to pragmas with two arguments, where
               --  the second argument is a local name referring to the entity,
               --  and the first argument is the aspect definition expression.
 
               when Aspect_Warnings =>
 
                  --  Construct the pragma
 
                  Aitem :=
                    Make_Pragma (Loc,
                      Pragma_Argument_Associations => New_List (
                        Relocate_Node (Expr),
                        New_Occurrence_Of (E, Loc)),
                      Pragma_Identifier            =>
                        Make_Identifier (Sloc (Id), Chars (Id)),
                      Class_Present                => Class_Present (Aspect));
 
                  --  We don't have to play the delay game here, since the only
                  --  values are ON/OFF which don't get analyzed anyway.
 
                  pragma Assert (not Delay_Required);
 
               --  Default_Value and Default_Component_Value aspects. These
               --  are specially handled because they have no corresponding
               --  pragmas or attributes.
 
               when Aspect_Default_Value | Aspect_Default_Component_Value =>
                  Error_Msg_Name_1 := Chars (Id);
 
                  if not Is_Type (E) then
                     Error_Msg_N ("aspect% can only apply to a type", Id);
                     goto Continue;
 
                  elsif not Is_First_Subtype (E) then
                     Error_Msg_N ("aspect% cannot apply to subtype", Id);
                     goto Continue;
 
                  elsif A_Id = Aspect_Default_Value
                    and then not Is_Scalar_Type (E)
                  then
                     Error_Msg_N
                       ("aspect% can only be applied to scalar type", Id);
                     goto Continue;
 
                  elsif A_Id = Aspect_Default_Component_Value then
                     if not Is_Array_Type (E) then
                        Error_Msg_N
                          ("aspect% can only be applied to array type", Id);
                        goto Continue;
                     elsif not Is_Scalar_Type (Component_Type (E)) then
                        Error_Msg_N
                          ("aspect% requires scalar components", Id);
                        goto Continue;
                     end if;
                  end if;
 
                  Aitem := Empty;
                  Delay_Required := True;
                  Set_Is_Delayed_Aspect (Aspect);
                  Set_Has_Default_Aspect (Base_Type (Entity (Ent)));
 
                  if Is_Scalar_Type (E) then
                     Set_Default_Aspect_Value (Entity (Ent), Expr);
                  else
                     Set_Default_Aspect_Component_Value (Entity (Ent), Expr);
                  end if;
 
               when Aspect_Attach_Handler =>
                  Aitem :=
                    Make_Pragma (Loc,
                      Pragma_Identifier            =>
                        Make_Identifier (Sloc (Id), Name_Attach_Handler),
                      Pragma_Argument_Associations =>
                        New_List (Ent, Relocate_Node (Expr)));
 
                  Set_From_Aspect_Specification (Aitem, True);
                  Set_Corresponding_Aspect (Aitem, Aspect);
 
                  pragma Assert (not Delay_Required);
 
               when Aspect_Priority           |
                    Aspect_Interrupt_Priority |
                    Aspect_Dispatching_Domain |
                    Aspect_CPU                =>
                  declare
                     Pname : Name_Id;
 
                  begin
                     if A_Id = Aspect_Priority then
                        Pname := Name_Priority;
 
                     elsif A_Id = Aspect_Interrupt_Priority then
                        Pname := Name_Interrupt_Priority;
 
                     elsif A_Id = Aspect_CPU then
                        Pname := Name_CPU;
 
                     else
                        Pname := Name_Dispatching_Domain;
                     end if;
 
                     Aitem :=
                       Make_Pragma (Loc,
                           Pragma_Identifier            =>
                             Make_Identifier (Sloc (Id), Pname),
                           Pragma_Argument_Associations =>
                             New_List
                               (Make_Pragma_Argument_Association
                                  (Sloc       => Sloc (Id),
                                   Expression => Relocate_Node (Expr))));
 
                     Set_From_Aspect_Specification (Aitem, True);
                     Set_Corresponding_Aspect (Aitem, Aspect);
 
                     pragma Assert (not Delay_Required);
                  end;
 
               --  Aspects Pre/Post generate Precondition/Postcondition pragmas
               --  with a first argument that is the expression, and a second
               --  argument that is an informative message if the test fails.
               --  This is inserted right after the declaration, to get the
               --  required pragma placement. The processing for the pragmas
               --  takes care of the required delay.
 
               when Pre_Post_Aspects => declare
                  Pname : Name_Id;
 
               begin
                  if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
                     Pname := Name_Precondition;
                  else
                     Pname := Name_Postcondition;
                  end if;
 
                  --  If the expressions is of the form A and then B, then
                  --  we generate separate Pre/Post aspects for the separate
                  --  clauses. Since we allow multiple pragmas, there is no
                  --  problem in allowing multiple Pre/Post aspects internally.
                  --  These should be treated in reverse order (B first and
                  --  A second) since they are later inserted just after N in
                  --  the order they are treated. This way, the pragma for A
                  --  ends up preceding the pragma for B, which may have an
                  --  importance for the error raised (either constraint error
                  --  or precondition error).
 
                  --  We do not do this for Pre'Class, since we have to put
                  --  these conditions together in a complex OR expression
 
                  --  We do not do this in ASIS mode, as ASIS relies on the
                  --  original node representing the complete expression, when
                  --  retrieving it through the source aspect table.
 
                  if not ASIS_Mode
                    and then (Pname = Name_Postcondition
                               or else not Class_Present (Aspect))
                  then
                     while Nkind (Expr) = N_And_Then loop
                        Insert_After (Aspect,
                          Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
                            Identifier    => Identifier (Aspect),
                            Expression    => Relocate_Node (Left_Opnd (Expr)),
                            Class_Present => Class_Present (Aspect),
                            Split_PPC     => True));
                        Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
                        Eloc := Sloc (Expr);
                     end loop;
                  end if;
 
                  --  Build the precondition/postcondition pragma
 
                  Aitem :=
                    Make_Pragma (Loc,
                      Pragma_Identifier            =>
                        Make_Identifier (Sloc (Id), Pname),
                      Class_Present                => Class_Present (Aspect),
                      Split_PPC                    => Split_PPC (Aspect),
                      Pragma_Argument_Associations => New_List (
                        Make_Pragma_Argument_Association (Eloc,
                          Chars      => Name_Check,
                          Expression => Relocate_Node (Expr))));
 
                  --  Add message unless exception messages are suppressed
 
                  if not Opt.Exception_Locations_Suppressed then
                     Append_To (Pragma_Argument_Associations (Aitem),
                       Make_Pragma_Argument_Association (Eloc,
                         Chars     => Name_Message,
                         Expression =>
                           Make_String_Literal (Eloc,
                             Strval => "failed "
                                       & Get_Name_String (Pname)
                                       & " from "
                                       & Build_Location_String (Eloc))));
                  end if;
 
                  Set_From_Aspect_Specification (Aitem, True);
                  Set_Corresponding_Aspect (Aitem, Aspect);
                  Set_Is_Delayed_Aspect (Aspect);
 
                  --  For Pre/Post cases, insert immediately after the entity
                  --  declaration, since that is the required pragma placement.
                  --  Note that for these aspects, we do not have to worry
                  --  about delay issues, since the pragmas themselves deal
                  --  with delay of visibility for the expression analysis.
 
                  --  If the entity is a library-level subprogram, the pre/
                  --  postconditions must be treated as late pragmas.
 
                  if Nkind (Parent (N)) = N_Compilation_Unit then
                     Add_Global_Declaration (Aitem);
                  else
                     Insert_After (N, Aitem);
                  end if;
 
                  goto Continue;
               end;
 
               --  Invariant aspects generate a corresponding pragma with a
               --  first argument that is the entity, a second argument that is
               --  the expression and a third argument that is an appropriate
               --  message. This is inserted right after the declaration, to
               --  get the required pragma placement. The pragma processing
               --  takes care of the required delay.
 
               when Aspect_Invariant      |
                    Aspect_Type_Invariant =>
 
                  --  Analysis of the pragma will verify placement legality:
                  --  an invariant must apply to a private type, or appear in
                  --  the private part of a spec and apply to a completion.
 
                  --  Construct the pragma
 
                  Aitem :=
                    Make_Pragma (Loc,
                      Pragma_Argument_Associations =>
                        New_List (Ent, Relocate_Node (Expr)),
                      Class_Present                => Class_Present (Aspect),
                      Pragma_Identifier            =>
                        Make_Identifier (Sloc (Id), Name_Invariant));
 
                  --  Add message unless exception messages are suppressed
 
                  if not Opt.Exception_Locations_Suppressed then
                     Append_To (Pragma_Argument_Associations (Aitem),
                       Make_Pragma_Argument_Association (Eloc,
                         Chars      => Name_Message,
                         Expression =>
                           Make_String_Literal (Eloc,
                             Strval => "failed invariant from "
                                       & Build_Location_String (Eloc))));
                  end if;
 
                  Set_From_Aspect_Specification (Aitem, True);
                  Set_Corresponding_Aspect (Aitem, Aspect);
                  Set_Is_Delayed_Aspect (Aspect);
 
                  --  For Invariant case, insert immediately after the entity
                  --  declaration. We do not have to worry about delay issues
                  --  since the pragma processing takes care of this.
 
                  Insert_After (N, Aitem);
                  goto Continue;
 
               --  Predicate aspects generate a corresponding pragma with a
               --  first argument that is the entity, and the second argument
               --  is the expression.
 
               when Aspect_Dynamic_Predicate |
                    Aspect_Predicate         |
                    Aspect_Static_Predicate  =>
 
                  --  Construct the pragma (always a pragma Predicate, with
                  --  flags recording whether it is static/dynamic).
 
                  Aitem :=
                    Make_Pragma (Loc,
                      Pragma_Argument_Associations =>
                        New_List (Ent, Relocate_Node (Expr)),
                      Class_Present                => Class_Present (Aspect),
                      Pragma_Identifier            =>
                        Make_Identifier (Sloc (Id), Name_Predicate));
 
                  Set_From_Aspect_Specification (Aitem, True);
                  Set_Corresponding_Aspect (Aitem, Aspect);
 
                  --  Make sure we have a freeze node (it might otherwise be
                  --  missing in cases like subtype X is Y, and we would not
                  --  have a place to build the predicate function).
 
                  --  If the type is private, indicate that its completion
                  --  has a freeze node, because that is the one that will be
                  --  visible at freeze time.
 
                  Set_Has_Predicates (E);
 
                  if Is_Private_Type (E)
                    and then Present (Full_View (E))
                  then
                     Set_Has_Predicates (Full_View (E));
                     Set_Has_Delayed_Aspects (Full_View (E));
                     Ensure_Freeze_Node (Full_View (E));
                  end if;
 
                  Ensure_Freeze_Node (E);
                  Set_Is_Delayed_Aspect (Aspect);
                  Delay_Required := True;
 
               when Aspect_Test_Case => declare
                  Args      : List_Id;
                  Comp_Expr : Node_Id;
                  Comp_Assn : Node_Id;
                  New_Expr  : Node_Id;
 
               begin
                  Args := New_List;
 
                  if Nkind (Parent (N)) = N_Compilation_Unit then
                     Error_Msg_N
                       ("incorrect placement of aspect `Test_Case`", E);
                     goto Continue;
                  end if;
 
                  if Nkind (Expr) /= N_Aggregate then
                     Error_Msg_NE
                       ("wrong syntax for aspect `Test_Case` for &", Id, E);
                     goto Continue;
                  end if;
 
                  --  Make pragma expressions refer to the original aspect
                  --  expressions through the Original_Node link. This is used
                  --  in semantic analysis for ASIS mode, so that the original
                  --  expression also gets analyzed.
 
                  Comp_Expr := First (Expressions (Expr));
                  while Present (Comp_Expr) loop
                     New_Expr := Relocate_Node (Comp_Expr);
                     Set_Original_Node (New_Expr, Comp_Expr);
                     Append
                       (Make_Pragma_Argument_Association (Sloc (Comp_Expr),
                          Expression => New_Expr),
                       Args);
                     Next (Comp_Expr);
                  end loop;
 
                  Comp_Assn := First (Component_Associations (Expr));
                  while Present (Comp_Assn) loop
                     if List_Length (Choices (Comp_Assn)) /= 1
                       or else
                         Nkind (First (Choices (Comp_Assn))) /= N_Identifier
                     then
                        Error_Msg_NE
                          ("wrong syntax for aspect `Test_Case` for &", Id, E);
                        goto Continue;
                     end if;
 
                     New_Expr := Relocate_Node (Expression (Comp_Assn));
                     Set_Original_Node (New_Expr, Expression (Comp_Assn));
                     Append (Make_Pragma_Argument_Association (
                       Sloc       => Sloc (Comp_Assn),
                       Chars      => Chars (First (Choices (Comp_Assn))),
                       Expression => New_Expr),
                       Args);
                     Next (Comp_Assn);
                  end loop;
 
                  --  Build the test-case pragma
 
                  Aitem :=
                    Make_Pragma (Loc,
                      Pragma_Identifier            =>
                        Make_Identifier (Sloc (Id), Name_Test_Case),
                      Pragma_Argument_Associations =>
                        Args);
 
                  Set_From_Aspect_Specification (Aitem, True);
                  Set_Corresponding_Aspect (Aitem, Aspect);
                  Set_Is_Delayed_Aspect (Aspect);
 
                  --  Insert immediately after the entity declaration
 
                  Insert_After (N, Aitem);
 
                  goto Continue;
               end;
 
               when Aspect_Dimension =>
                  Analyze_Aspect_Dimension (N, Id, Expr);
                  goto Continue;
 
               when Aspect_Dimension_System =>
                  Analyze_Aspect_Dimension_System (N, Id, Expr);
                  goto Continue;
 
            end case;
 
            --  If a delay is required, we delay the freeze (not much point in
            --  delaying the aspect if we don't delay the freeze!). The pragma
            --  or attribute clause if there is one is then attached to the
            --  aspect specification which is placed in the rep item list.
 
            if Delay_Required then
               if Present (Aitem) then
                  Set_From_Aspect_Specification (Aitem, True);
 
                  if Nkind (Aitem) = N_Pragma then
                     Set_Corresponding_Aspect (Aitem, Aspect);
                  end if;
 
                  Set_Is_Delayed_Aspect (Aitem);
                  Set_Aspect_Rep_Item (Aspect, Aitem);
               end if;
 
               Ensure_Freeze_Node (E);
               Set_Has_Delayed_Aspects (E);
               Record_Rep_Item (E, Aspect);
 
            --  If no delay required, insert the pragma/clause in the tree
 
            else
               Set_From_Aspect_Specification (Aitem, True);
 
               if Nkind (Aitem) = N_Pragma then
                  Set_Corresponding_Aspect (Aitem, Aspect);
               end if;
 
               --  If this is a compilation unit, we will put the pragma in
               --  the Pragmas_After list of the N_Compilation_Unit_Aux node.
 
               if Nkind (Parent (Ins_Node)) = N_Compilation_Unit then
                  declare
                     Aux : constant Node_Id :=
                             Aux_Decls_Node (Parent (Ins_Node));
 
                  begin
                     pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
 
                     if No (Pragmas_After (Aux)) then
                        Set_Pragmas_After (Aux, Empty_List);
                     end if;
 
                     --  For Pre_Post put at start of list, otherwise at end
 
                     if A_Id in Pre_Post_Aspects then
                        Prepend (Aitem, Pragmas_After (Aux));
                     else
                        Append (Aitem, Pragmas_After (Aux));
                     end if;
                  end;
 
               --  Here if not compilation unit case
 
               else
                  case A_Id is
 
                     --  For Pre/Post cases, insert immediately after the
                     --  entity declaration, since that is the required pragma
                     --  placement.
 
                     when Pre_Post_Aspects =>
                        Insert_After (N, Aitem);
 
                     --  For Priority aspects, insert into the task or
                     --  protected definition, which we need to create if it's
                     --  not there. The same applies to CPU and
                     --  Dispatching_Domain but only to tasks.
 
                     when Aspect_Priority           |
                          Aspect_Interrupt_Priority |
                          Aspect_Dispatching_Domain |
                          Aspect_CPU                =>
                        declare
                           T : Node_Id; -- the type declaration
                           L : List_Id; -- list of decls of task/protected
 
                        begin
                           if Nkind (N) = N_Object_Declaration then
                              T := Parent (Etype (Defining_Identifier (N)));
                           else
                              T := N;
                           end if;
 
                           if Nkind (T) = N_Protected_Type_Declaration
                             and then A_Id /= Aspect_Dispatching_Domain
                             and then A_Id /= Aspect_CPU
                           then
                              pragma Assert
                                (Present (Protected_Definition (T)));
 
                              L := Visible_Declarations
                                     (Protected_Definition (T));
 
                           elsif Nkind (T) = N_Task_Type_Declaration then
                              if No (Task_Definition (T)) then
                                 Set_Task_Definition
                                   (T,
                                    Make_Task_Definition
                                      (Sloc (T),
                                       Visible_Declarations => New_List,
                                       End_Label => Empty));
                              end if;
 
                              L := Visible_Declarations (Task_Definition (T));
 
                           else
                              raise Program_Error;
                           end if;
 
                           Prepend (Aitem, To => L);
 
                           --  Analyze rewritten pragma. Otherwise, its
                           --  analysis is done too late, after the task or
                           --  protected object has been created.
 
                           Analyze (Aitem);
                        end;
 
                     --  For all other cases, insert in sequence
 
                     when others =>
                        Insert_After (Ins_Node, Aitem);
                        Ins_Node := Aitem;
                  end case;
               end if;
            end if;
         end;
 
      <<Continue>>
         Next (Aspect);
      end loop Aspect_Loop;
   end Analyze_Aspect_Specifications;
 
   -----------------------
   -- Analyze_At_Clause --
   -----------------------
 
   --  An at clause is replaced by the corresponding Address attribute
   --  definition clause that is the preferred approach in Ada 95.
 
   procedure Analyze_At_Clause (N : Node_Id) is
      CS : constant Boolean := Comes_From_Source (N);
 
   begin
      --  This is an obsolescent feature
 
      Check_Restriction (No_Obsolescent_Features, N);
 
      if Warn_On_Obsolescent_Feature then
         Error_Msg_N
           ("at clause is an obsolescent feature (RM J.7(2))?", N);
         Error_Msg_N
           ("\use address attribute definition clause instead?", N);
      end if;
 
      --  Rewrite as address clause
 
      Rewrite (N,
        Make_Attribute_Definition_Clause (Sloc (N),
          Name  => Identifier (N),
          Chars => Name_Address,
          Expression => Expression (N)));
 
      --  We preserve Comes_From_Source, since logically the clause still
      --  comes from the source program even though it is changed in form.
 
      Set_Comes_From_Source (N, CS);
 
      --  Analyze rewritten clause
 
      Analyze_Attribute_Definition_Clause (N);
   end Analyze_At_Clause;
 
   -----------------------------------------
   -- Analyze_Attribute_Definition_Clause --
   -----------------------------------------
 
   procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
      Loc   : constant Source_Ptr   := Sloc (N);
      Nam   : constant Node_Id      := Name (N);
      Attr  : constant Name_Id      := Chars (N);
      Expr  : constant Node_Id      := Expression (N);
      Id    : constant Attribute_Id := Get_Attribute_Id (Attr);
 
      Ent : Entity_Id;
      --  The entity of Nam after it is analyzed. In the case of an incomplete
      --  type, this is the underlying type.
 
      U_Ent : Entity_Id;
      --  The underlying entity to which the attribute applies. Generally this
      --  is the Underlying_Type of Ent, except in the case where the clause
      --  applies to full view of incomplete type or private type in which case
      --  U_Ent is just a copy of Ent.
 
      FOnly : Boolean := False;
      --  Reset to True for subtype specific attribute (Alignment, Size)
      --  and for stream attributes, i.e. those cases where in the call
      --  to Rep_Item_Too_Late, FOnly is set True so that only the freezing
      --  rules are checked. Note that the case of stream attributes is not
      --  clear from the RM, but see AI95-00137. Also, the RM seems to
      --  disallow Storage_Size for derived task types, but that is also
      --  clearly unintentional.
 
      procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
      --  Common processing for 'Read, 'Write, 'Input and 'Output attribute
      --  definition clauses.
 
      function Duplicate_Clause return Boolean;
      --  This routine checks if the aspect for U_Ent being given by attribute
      --  definition clause N is for an aspect that has already been specified,
      --  and if so gives an error message. If there is a duplicate, True is
      --  returned, otherwise if there is no error, False is returned.
 
      procedure Check_Indexing_Functions;
      --  Check that the function in Constant_Indexing or Variable_Indexing
      --  attribute has the proper type structure. If the name is overloaded,
      --  check that all interpretations are legal.
 
      procedure Check_Iterator_Functions;
      --  Check that there is a single function in Default_Iterator attribute
      --  has the proper type structure.
 
      function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
      --  Common legality check for the previous two
 
      -----------------------------------
      -- Analyze_Stream_TSS_Definition --
      -----------------------------------
 
      procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
         Subp : Entity_Id := Empty;
         I    : Interp_Index;
         It   : Interp;
         Pnam : Entity_Id;
 
         Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
         --  True for Read attribute, false for other attributes
 
         function Has_Good_Profile (Subp : Entity_Id) return Boolean;
         --  Return true if the entity is a subprogram with an appropriate
         --  profile for the attribute being defined.
 
         ----------------------
         -- Has_Good_Profile --
         ----------------------
 
         function Has_Good_Profile (Subp : Entity_Id) return Boolean is
            F              : Entity_Id;
            Is_Function    : constant Boolean := (TSS_Nam = TSS_Stream_Input);
            Expected_Ekind : constant array (Boolean) of Entity_Kind :=
                               (False => E_Procedure, True => E_Function);
            Typ            : Entity_Id;
 
         begin
            if Ekind (Subp) /= Expected_Ekind (Is_Function) then
               return False;
            end if;
 
            F := First_Formal (Subp);
 
            if No (F)
              or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
              or else Designated_Type (Etype (F)) /=
                               Class_Wide_Type (RTE (RE_Root_Stream_Type))
            then
               return False;
            end if;
 
            if not Is_Function then
               Next_Formal (F);
 
               declare
                  Expected_Mode : constant array (Boolean) of Entity_Kind :=
                                    (False => E_In_Parameter,
                                     True  => E_Out_Parameter);
               begin
                  if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
                     return False;
                  end if;
               end;
 
               Typ := Etype (F);
 
            else
               Typ := Etype (Subp);
            end if;
 
            return Base_Type (Typ) = Base_Type (Ent)
              and then No (Next_Formal (F));
         end Has_Good_Profile;
 
      --  Start of processing for Analyze_Stream_TSS_Definition
 
      begin
         FOnly := True;
 
         if not Is_Type (U_Ent) then
            Error_Msg_N ("local name must be a subtype", Nam);
            return;
         end if;
 
         Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
 
         --  If Pnam is present, it can be either inherited from an ancestor
         --  type (in which case it is legal to redefine it for this type), or
         --  be a previous definition of the attribute for the same type (in
         --  which case it is illegal).
 
         --  In the first case, it will have been analyzed already, and we
         --  can check that its profile does not match the expected profile
         --  for a stream attribute of U_Ent. In the second case, either Pnam
         --  has been analyzed (and has the expected profile), or it has not
         --  been analyzed yet (case of a type that has not been frozen yet
         --  and for which the stream attribute has been set using Set_TSS).
 
         if Present (Pnam)
           and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
         then
            Error_Msg_Sloc := Sloc (Pnam);
            Error_Msg_Name_1 := Attr;
            Error_Msg_N ("% attribute already defined #", Nam);
            return;
         end if;
 
         Analyze (Expr);
 
         if Is_Entity_Name (Expr) then
            if not Is_Overloaded (Expr) then
               if Has_Good_Profile (Entity (Expr)) then
                  Subp := Entity (Expr);
               end if;
 
            else
               Get_First_Interp (Expr, I, It);
               while Present (It.Nam) loop
                  if Has_Good_Profile (It.Nam) then
                     Subp := It.Nam;
                     exit;
                  end if;
 
                  Get_Next_Interp (I, It);
               end loop;
            end if;
         end if;
 
         if Present (Subp) then
            if Is_Abstract_Subprogram (Subp) then
               Error_Msg_N ("stream subprogram must not be abstract", Expr);
               return;
            end if;
 
            Set_Entity (Expr, Subp);
            Set_Etype (Expr, Etype (Subp));
 
            New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
 
         else
            Error_Msg_Name_1 := Attr;
            Error_Msg_N ("incorrect expression for% attribute", Expr);
         end if;
      end Analyze_Stream_TSS_Definition;
 
      ------------------------------
      -- Check_Indexing_Functions --
      ------------------------------
 
      procedure Check_Indexing_Functions is
 
         procedure Check_One_Function (Subp : Entity_Id);
         --  Check one possible interpretation
 
         ------------------------
         -- Check_One_Function --
         ------------------------
 
         procedure Check_One_Function (Subp : Entity_Id) is
            Default_Element : constant Node_Id :=
                                Find_Aspect
                                  (Etype (First_Formal (Subp)),
                                   Aspect_Iterator_Element);
 
         begin
            if not Check_Primitive_Function (Subp) then
               Error_Msg_NE
                 ("aspect Indexing requires a function that applies to type&",
                   Subp, Ent);
            end if;
 
            --  An indexing function must return either the default element of
            --  the container, or a reference type.
 
            if Present (Default_Element) then
               Analyze (Default_Element);
               if Is_Entity_Name (Default_Element)
                 and then Covers (Entity (Default_Element), Etype (Subp))
               then
                  return;
               end if;
            end if;
 
            --  Otherwise the return type must be a reference type.
 
            if not Has_Implicit_Dereference (Etype (Subp)) then
               Error_Msg_N
                 ("function for indexing must return a reference type", Subp);
            end if;
         end Check_One_Function;
 
      --  Start of processing for Check_Indexing_Functions
 
      begin
         if In_Instance then
            return;
         end if;
 
         Analyze (Expr);
 
         if not Is_Overloaded (Expr) then
            Check_One_Function (Entity (Expr));
 
         else
            declare
               I  : Interp_Index;
               It : Interp;
 
            begin
               Get_First_Interp (Expr, I, It);
               while Present (It.Nam) loop
 
                  --  Note that analysis will have added the interpretation
                  --  that corresponds to the dereference. We only check the
                  --  subprogram itself.
 
                  if Is_Overloadable (It.Nam) then
                     Check_One_Function (It.Nam);
                  end if;
 
                  Get_Next_Interp (I, It);
               end loop;
            end;
         end if;
      end Check_Indexing_Functions;
 
      ------------------------------
      -- Check_Iterator_Functions --
      ------------------------------
 
      procedure Check_Iterator_Functions is
         Default : Entity_Id;
 
         function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
         --  Check one possible interpretation for validity
 
         ----------------------------
         -- Valid_Default_Iterator --
         ----------------------------
 
         function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
            Formal : Entity_Id;
 
         begin
            if not Check_Primitive_Function (Subp) then
               return False;
            else
               Formal := First_Formal (Subp);
            end if;
 
            --  False if any subsequent formal has no default expression
 
            Formal := Next_Formal (Formal);
            while Present (Formal) loop
               if No (Expression (Parent (Formal))) then
                  return False;
               end if;
 
               Next_Formal (Formal);
            end loop;
 
            --  True if all subsequent formals have default expressions
 
            return True;
         end Valid_Default_Iterator;
 
      --  Start of processing for Check_Iterator_Functions
 
      begin
         Analyze (Expr);
 
         if not Is_Entity_Name (Expr) then
            Error_Msg_N ("aspect Iterator must be a function name", Expr);
         end if;
 
         if not Is_Overloaded (Expr) then
            if not Check_Primitive_Function (Entity (Expr)) then
               Error_Msg_NE
                 ("aspect Indexing requires a function that applies to type&",
                   Entity (Expr), Ent);
            end if;
 
            if not Valid_Default_Iterator (Entity (Expr)) then
               Error_Msg_N ("improper function for default iterator", Expr);
            end if;
 
         else
            Default := Empty;
            declare
               I : Interp_Index;
               It : Interp;
 
            begin
               Get_First_Interp (Expr, I, It);
               while Present (It.Nam) loop
                  if not Check_Primitive_Function (It.Nam)
                    or else not Valid_Default_Iterator (It.Nam)
                  then
                     Remove_Interp (I);
 
                  elsif Present (Default) then
                     Error_Msg_N ("default iterator must be unique", Expr);
 
                  else
                     Default := It.Nam;
                  end if;
 
                  Get_Next_Interp (I, It);
               end loop;
            end;
 
            if Present (Default) then
               Set_Entity (Expr, Default);
               Set_Is_Overloaded (Expr, False);
            end if;
         end if;
      end Check_Iterator_Functions;
 
      -------------------------------
      -- Check_Primitive_Function  --
      -------------------------------
 
      function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
         Ctrl : Entity_Id;
 
      begin
         if Ekind (Subp) /= E_Function then
            return False;
         end if;
 
         if No (First_Formal (Subp)) then
            return False;
         else
            Ctrl := Etype (First_Formal (Subp));
         end if;
 
         if Ctrl = Ent
           or else Ctrl = Class_Wide_Type (Ent)
           or else
             (Ekind (Ctrl) = E_Anonymous_Access_Type
               and then
                 (Designated_Type (Ctrl) = Ent
                   or else Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
         then
            null;
 
         else
            return False;
         end if;
 
         return True;
      end Check_Primitive_Function;
 
      ----------------------
      -- Duplicate_Clause --
      ----------------------
 
      function Duplicate_Clause return Boolean is
         A : Node_Id;
 
      begin
         --  Nothing to do if this attribute definition clause comes from
         --  an aspect specification, since we could not be duplicating an
         --  explicit clause, and we dealt with the case of duplicated aspects
         --  in Analyze_Aspect_Specifications.
 
         if From_Aspect_Specification (N) then
            return False;
         end if;
 
         --  Otherwise current clause may duplicate previous clause or a
         --  previously given aspect specification for the same aspect.
 
         A := Get_Rep_Item_For_Entity (U_Ent, Chars (N));
 
         if Present (A) then
            if Entity (A) = U_Ent then
               Error_Msg_Name_1 := Chars (N);
               Error_Msg_Sloc := Sloc (A);
               Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
               return True;
            end if;
         end if;
 
         return False;
      end Duplicate_Clause;
 
   --  Start of processing for Analyze_Attribute_Definition_Clause
 
   begin
      --  The following code is a defense against recursion. Not clear that
      --  this can happen legitimately, but perhaps some error situations
      --  can cause it, and we did see this recursion during testing.
 
      if Analyzed (N) then
         return;
      else
         Set_Analyzed (N, True);
      end if;
 
      --  Ignore some selected attributes in CodePeer mode since they are not
      --  relevant in this context.
 
      if CodePeer_Mode then
         case Id is
 
            --  Ignore Component_Size in CodePeer mode, to avoid changing the
            --  internal representation of types by implicitly packing them.
 
            when Attribute_Component_Size =>
               Rewrite (N, Make_Null_Statement (Sloc (N)));
               return;
 
            when others =>
               null;
         end case;
      end if;
 
      --  Process Ignore_Rep_Clauses option
 
      if Ignore_Rep_Clauses then
         case Id is
 
            --  The following should be ignored. They do not affect legality
            --  and may be target dependent. The basic idea of -gnatI is to
            --  ignore any rep clauses that may be target dependent but do not
            --  affect legality (except possibly to be rejected because they
            --  are incompatible with the compilation target).
 
            when Attribute_Alignment      |
                 Attribute_Bit_Order      |
                 Attribute_Component_Size |
                 Attribute_Machine_Radix  |
                 Attribute_Object_Size    |
                 Attribute_Size           |
                 Attribute_Stream_Size    |
                 Attribute_Value_Size     =>
               Rewrite (N, Make_Null_Statement (Sloc (N)));
               return;
 
            --  Perhaps 'Small should not be ignored by Ignore_Rep_Clauses ???
 
            when Attribute_Small =>
               if Ignore_Rep_Clauses then
                  Rewrite (N, Make_Null_Statement (Sloc (N)));
                  return;
               end if;
 
            --  The following should not be ignored, because in the first place
            --  they are reasonably portable, and should not cause problems in
            --  compiling code from another target, and also they do affect
            --  legality, e.g. failing to provide a stream attribute for a
            --  type may make a program illegal.
 
            when Attribute_External_Tag        |
                 Attribute_Input               |
                 Attribute_Output              |
                 Attribute_Read                |
                 Attribute_Simple_Storage_Pool |
                 Attribute_Storage_Pool        |
                 Attribute_Storage_Size        |
                 Attribute_Write               =>
               null;
 
            --  Other cases are errors ("attribute& cannot be set with
            --  definition clause"), which will be caught below.
 
            when others =>
               null;
         end case;
      end if;
 
      Analyze (Nam);
      Ent := Entity (Nam);
 
      if Rep_Item_Too_Early (Ent, N) then
         return;
      end if;
 
      --  Rep clause applies to full view of incomplete type or private type if
      --  we have one (if not, this is a premature use of the type). However,
      --  certain semantic checks need to be done on the specified entity (i.e.
      --  the private view), so we save it in Ent.
 
      if Is_Private_Type (Ent)
        and then Is_Derived_Type (Ent)
        and then not Is_Tagged_Type (Ent)
        and then No (Full_View (Ent))
      then
         --  If this is a private type whose completion is a derivation from
         --  another private type, there is no full view, and the attribute
         --  belongs to the type itself, not its underlying parent.
 
         U_Ent := Ent;
 
      elsif Ekind (Ent) = E_Incomplete_Type then
 
         --  The attribute applies to the full view, set the entity of the
         --  attribute definition accordingly.
 
         Ent := Underlying_Type (Ent);
         U_Ent := Ent;
         Set_Entity (Nam, Ent);
 
      else
         U_Ent := Underlying_Type (Ent);
      end if;
 
      --  Avoid cascaded error
 
      if Etype (Nam) = Any_Type then
         return;
 
      --  Must be declared in current scope
 
      elsif Scope (Ent) /= Current_Scope then
         Error_Msg_N ("entity must be declared in this scope", Nam);
         return;
 
      --  Must not be a source renaming (we do have some cases where the
      --  expander generates a renaming, and those cases are OK, in such
      --  cases any attribute applies to the renamed object as well).
 
      elsif Is_Object (Ent)
        and then Present (Renamed_Object (Ent))
      then
         --  Case of renamed object from source, this is an error
 
         if Comes_From_Source (Renamed_Object (Ent)) then
            Get_Name_String (Chars (N));
            Error_Msg_Strlen := Name_Len;
            Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
            Error_Msg_N
              ("~ clause not allowed for a renaming declaration "
               & "(RM 13.1(6))", Nam);
            return;
 
         --  For the case of a compiler generated renaming, the attribute
         --  definition clause applies to the renamed object created by the
         --  expander. The easiest general way to handle this is to create a
         --  copy of the attribute definition clause for this object.
 
         else
            Insert_Action (N,
              Make_Attribute_Definition_Clause (Loc,
                Name       =>
                  New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
                Chars      => Chars (N),
                Expression => Duplicate_Subexpr (Expression (N))));
         end if;
 
      --  If no underlying entity, use entity itself, applies to some
      --  previously detected error cases ???
 
      elsif No (U_Ent) then
         U_Ent := Ent;
 
      --  Cannot specify for a subtype (exception Object/Value_Size)
 
      elsif Is_Type (U_Ent)
        and then not Is_First_Subtype (U_Ent)
        and then Id /= Attribute_Object_Size
        and then Id /= Attribute_Value_Size
        and then not From_At_Mod (N)
      then
         Error_Msg_N ("cannot specify attribute for subtype", Nam);
         return;
      end if;
 
      Set_Entity (N, U_Ent);
 
      --  Switch on particular attribute
 
      case Id is
 
         -------------
         -- Address --
         -------------
 
         --  Address attribute definition clause
 
         when Attribute_Address => Address : begin
 
            --  A little error check, catch for X'Address use X'Address;
 
            if Nkind (Nam) = N_Identifier
              and then Nkind (Expr) = N_Attribute_Reference
              and then Attribute_Name (Expr) = Name_Address
              and then Nkind (Prefix (Expr)) = N_Identifier
              and then Chars (Nam) = Chars (Prefix (Expr))
            then
               Error_Msg_NE
                 ("address for & is self-referencing", Prefix (Expr), Ent);
               return;
            end if;
 
            --  Not that special case, carry on with analysis of expression
 
            Analyze_And_Resolve (Expr, RTE (RE_Address));
 
            --  Even when ignoring rep clauses we need to indicate that the
            --  entity has an address clause and thus it is legal to declare
            --  it imported.
 
            if Ignore_Rep_Clauses then
               if Ekind_In (U_Ent, E_Variable, E_Constant) then
                  Record_Rep_Item (U_Ent, N);
               end if;
 
               return;
            end if;
 
            if Duplicate_Clause then
               null;
 
            --  Case of address clause for subprogram
 
            elsif Is_Subprogram (U_Ent) then
               if Has_Homonym (U_Ent) then
                  Error_Msg_N
                    ("address clause cannot be given " &
                     "for overloaded subprogram",
                     Nam);
                  return;
               end if;
 
               --  For subprograms, all address clauses are permitted, and we
               --  mark the subprogram as having a deferred freeze so that Gigi
               --  will not elaborate it too soon.
 
               --  Above needs more comments, what is too soon about???
 
               Set_Has_Delayed_Freeze (U_Ent);
 
            --  Case of address clause for entry
 
            elsif Ekind (U_Ent) = E_Entry then
               if Nkind (Parent (N)) = N_Task_Body then
                  Error_Msg_N
                    ("entry address must be specified in task spec", Nam);
                  return;
               end if;
 
               --  For entries, we require a constant address
 
               Check_Constant_Address_Clause (Expr, U_Ent);
 
               --  Special checks for task types
 
               if Is_Task_Type (Scope (U_Ent))
                 and then Comes_From_Source (Scope (U_Ent))
               then
                  Error_Msg_N
                    ("?entry address declared for entry in task type", N);
                  Error_Msg_N
                    ("\?only one task can be declared of this type", N);
               end if;
 
               --  Entry address clauses are obsolescent
 
               Check_Restriction (No_Obsolescent_Features, N);
 
               if Warn_On_Obsolescent_Feature then
                  Error_Msg_N
                    ("attaching interrupt to task entry is an " &
                     "obsolescent feature (RM J.7.1)?", N);
                  Error_Msg_N
                    ("\use interrupt procedure instead?", N);
               end if;
 
            --  Case of an address clause for a controlled object which we
            --  consider to be erroneous.
 
            elsif Is_Controlled (Etype (U_Ent))
              or else Has_Controlled_Component (Etype (U_Ent))
            then
               Error_Msg_NE
                 ("?controlled object& must not be overlaid", Nam, U_Ent);
               Error_Msg_N
                 ("\?Program_Error will be raised at run time", Nam);
               Insert_Action (Declaration_Node (U_Ent),
                 Make_Raise_Program_Error (Loc,
                   Reason => PE_Overlaid_Controlled_Object));
               return;
 
            --  Case of address clause for a (non-controlled) object
 
            elsif
              Ekind (U_Ent) = E_Variable
                or else
              Ekind (U_Ent) = E_Constant
            then
               declare
                  Expr  : constant Node_Id := Expression (N);
                  O_Ent : Entity_Id;
                  Off   : Boolean;
 
               begin
                  --  Exported variables cannot have an address clause, because
                  --  this cancels the effect of the pragma Export.
 
                  if Is_Exported (U_Ent) then
                     Error_Msg_N
                       ("cannot export object with address clause", Nam);
                     return;
                  end if;
 
                  Find_Overlaid_Entity (N, O_Ent, Off);
 
                  --  Overlaying controlled objects is erroneous
 
                  if Present (O_Ent)
                    and then (Has_Controlled_Component (Etype (O_Ent))
                                or else Is_Controlled (Etype (O_Ent)))
                  then
                     Error_Msg_N
                       ("?cannot overlay with controlled object", Expr);
                     Error_Msg_N
                       ("\?Program_Error will be raised at run time", Expr);
                     Insert_Action (Declaration_Node (U_Ent),
                       Make_Raise_Program_Error (Loc,
                         Reason => PE_Overlaid_Controlled_Object));
                     return;
 
                  elsif Present (O_Ent)
                    and then Ekind (U_Ent) = E_Constant
                    and then not Is_Constant_Object (O_Ent)
                  then
                     Error_Msg_N ("constant overlays a variable?", Expr);
 
                  --  Imported variables can have an address clause, but then
                  --  the import is pretty meaningless except to suppress
                  --  initializations, so we do not need such variables to
                  --  be statically allocated (and in fact it causes trouble
                  --  if the address clause is a local value).
 
                  elsif Is_Imported (U_Ent) then
                     Set_Is_Statically_Allocated (U_Ent, False);
                  end if;
 
                  --  We mark a possible modification of a variable with an
                  --  address clause, since it is likely aliasing is occurring.
 
                  Note_Possible_Modification (Nam, Sure => False);
 
                  --  Here we are checking for explicit overlap of one variable
                  --  by another, and if we find this then mark the overlapped
                  --  variable as also being volatile to prevent unwanted
                  --  optimizations. This is a significant pessimization so
                  --  avoid it when there is an offset, i.e. when the object
                  --  is composite; they cannot be optimized easily anyway.
 
                  if Present (O_Ent)
                    and then Is_Object (O_Ent)
                    and then not Off
                  then
                     Set_Treat_As_Volatile (O_Ent);
                  end if;
 
                  --  Legality checks on the address clause for initialized
                  --  objects is deferred until the freeze point, because
                  --  a subsequent pragma might indicate that the object is
                  --  imported and thus not initialized.
 
                  Set_Has_Delayed_Freeze (U_Ent);
 
                  --  If an initialization call has been generated for this
                  --  object, it needs to be deferred to after the freeze node
                  --  we have just now added, otherwise GIGI will see a
                  --  reference to the variable (as actual to the IP call)
                  --  before its definition.
 
                  declare
                     Init_Call : constant Node_Id := Find_Init_Call (U_Ent, N);
                  begin
                     if Present (Init_Call) then
                        Remove (Init_Call);
                        Append_Freeze_Action (U_Ent, Init_Call);
                     end if;
                  end;
 
                  if Is_Exported (U_Ent) then
                     Error_Msg_N
                       ("& cannot be exported if an address clause is given",
                        Nam);
                     Error_Msg_N
                       ("\define and export a variable " &
                        "that holds its address instead",
                        Nam);
                  end if;
 
                  --  Entity has delayed freeze, so we will generate an
                  --  alignment check at the freeze point unless suppressed.
 
                  if not Range_Checks_Suppressed (U_Ent)
                    and then not Alignment_Checks_Suppressed (U_Ent)
                  then
                     Set_Check_Address_Alignment (N);
                  end if;
 
                  --  Kill the size check code, since we are not allocating
                  --  the variable, it is somewhere else.
 
                  Kill_Size_Check_Code (U_Ent);
 
                  --  If the address clause is of the form:
 
                  --    for Y'Address use X'Address
 
                  --  or
 
                  --    Const : constant Address := X'Address;
                  --    ...
                  --    for Y'Address use Const;
 
                  --  then we make an entry in the table for checking the size
                  --  and alignment of the overlaying variable. We defer this
                  --  check till after code generation to take full advantage
                  --  of the annotation done by the back end. This entry is
                  --  only made if the address clause comes from source.
 
                  --  If the entity has a generic type, the check will be
                  --  performed in the instance if the actual type justifies
                  --  it, and we do not insert the clause in the table to
                  --  prevent spurious warnings.
 
                  if Address_Clause_Overlay_Warnings
                    and then Comes_From_Source (N)
                    and then Present (O_Ent)
                    and then Is_Object (O_Ent)
                  then
                     if not Is_Generic_Type (Etype (U_Ent)) then
                        Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
                     end if;
 
                     --  If variable overlays a constant view, and we are
                     --  warning on overlays, then mark the variable as
                     --  overlaying a constant (we will give warnings later
                     --  if this variable is assigned).
 
                     if Is_Constant_Object (O_Ent)
                       and then Ekind (U_Ent) = E_Variable
                     then
                        Set_Overlays_Constant (U_Ent);
                     end if;
                  end if;
               end;
 
            --  Not a valid entity for an address clause
 
            else
               Error_Msg_N ("address cannot be given for &", Nam);
            end if;
         end Address;
 
         ---------------
         -- Alignment --
         ---------------
 
         --  Alignment attribute definition clause
 
         when Attribute_Alignment => Alignment : declare
            Align     : constant Uint := Get_Alignment_Value (Expr);
            Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
 
         begin
            FOnly := True;
 
            if not Is_Type (U_Ent)
              and then Ekind (U_Ent) /= E_Variable
              and then Ekind (U_Ent) /= E_Constant
            then
               Error_Msg_N ("alignment cannot be given for &", Nam);
 
            elsif Duplicate_Clause then
               null;
 
            elsif Align /= No_Uint then
               Set_Has_Alignment_Clause (U_Ent);
 
               --  Tagged type case, check for attempt to set alignment to a
               --  value greater than Max_Align, and reset if so.
 
               if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
                  Error_Msg_N
                    ("?alignment for & set to Maximum_Aligment", Nam);
                     Set_Alignment (U_Ent, Max_Align);
 
               --  All other cases
 
               else
                  Set_Alignment (U_Ent, Align);
               end if;
 
               --  For an array type, U_Ent is the first subtype. In that case,
               --  also set the alignment of the anonymous base type so that
               --  other subtypes (such as the itypes for aggregates of the
               --  type) also receive the expected alignment.
 
               if Is_Array_Type (U_Ent) then
                  Set_Alignment (Base_Type (U_Ent), Align);
               end if;
            end if;
         end Alignment;
 
         ---------------
         -- Bit_Order --
         ---------------
 
         --  Bit_Order attribute definition clause
 
         when Attribute_Bit_Order => Bit_Order : declare
         begin
            if not Is_Record_Type (U_Ent) then
               Error_Msg_N
                 ("Bit_Order can only be defined for record type", Nam);
 
            elsif Duplicate_Clause then
               null;
 
            else
               Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
 
               if Etype (Expr) = Any_Type then
                  return;
 
               elsif not Is_Static_Expression (Expr) then
                  Flag_Non_Static_Expr
                    ("Bit_Order requires static expression!", Expr);
 
               else
                  if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
                     Set_Reverse_Bit_Order (U_Ent, True);
                  end if;
               end if;
            end if;
         end Bit_Order;
 
         --------------------
         -- Component_Size --
         --------------------
 
         --  Component_Size attribute definition clause
 
         when Attribute_Component_Size => Component_Size_Case : declare
            Csize    : constant Uint := Static_Integer (Expr);
            Ctyp     : Entity_Id;
            Btype    : Entity_Id;
            Biased   : Boolean;
            New_Ctyp : Entity_Id;
            Decl     : Node_Id;
 
         begin
            if not Is_Array_Type (U_Ent) then
               Error_Msg_N ("component size requires array type", Nam);
               return;
            end if;
 
            Btype := Base_Type (U_Ent);
            Ctyp := Component_Type (Btype);
 
            if Duplicate_Clause then
               null;
 
            elsif Rep_Item_Too_Early (Btype, N) then
               null;
 
            elsif Csize /= No_Uint then
               Check_Size (Expr, Ctyp, Csize, Biased);
 
               --  For the biased case, build a declaration for a subtype that
               --  will be used to represent the biased subtype that reflects
               --  the biased representation of components. We need the subtype
               --  to get proper conversions on referencing elements of the
               --  array. Note: component size clauses are ignored in VM mode.
 
               if VM_Target = No_VM then
                  if Biased then
                     New_Ctyp :=
                       Make_Defining_Identifier (Loc,
                         Chars =>
                           New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
 
                     Decl :=
                       Make_Subtype_Declaration (Loc,
                         Defining_Identifier => New_Ctyp,
                         Subtype_Indication  =>
                           New_Occurrence_Of (Component_Type (Btype), Loc));
 
                     Set_Parent (Decl, N);
                     Analyze (Decl, Suppress => All_Checks);
 
                     Set_Has_Delayed_Freeze        (New_Ctyp, False);
                     Set_Esize                     (New_Ctyp, Csize);
                     Set_RM_Size                   (New_Ctyp, Csize);
                     Init_Alignment                (New_Ctyp);
                     Set_Is_Itype                  (New_Ctyp, True);
                     Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
 
                     Set_Component_Type (Btype, New_Ctyp);
                     Set_Biased (New_Ctyp, N, "component size clause");
                  end if;
 
                  Set_Component_Size (Btype, Csize);
 
               --  For VM case, we ignore component size clauses
 
               else
                  --  Give a warning unless we are in GNAT mode, in which case
                  --  the warning is suppressed since it is not useful.
 
                  if not GNAT_Mode then
                     Error_Msg_N
                       ("?component size ignored in this configuration", N);
                  end if;
               end if;
 
               --  Deal with warning on overridden size
 
               if Warn_On_Overridden_Size
                 and then Has_Size_Clause (Ctyp)
                 and then RM_Size (Ctyp) /= Csize
               then
                  Error_Msg_NE
                    ("?component size overrides size clause for&",
                     N, Ctyp);
               end if;
 
               Set_Has_Component_Size_Clause (Btype, True);
               Set_Has_Non_Standard_Rep (Btype, True);
            end if;
         end Component_Size_Case;
 
         -----------------------
         -- Constant_Indexing --
         -----------------------
 
         when Attribute_Constant_Indexing =>
            Check_Indexing_Functions;
 
         ----------------------
         -- Default_Iterator --
         ----------------------
 
         when Attribute_Default_Iterator =>  Default_Iterator : declare
            Func : Entity_Id;
 
         begin
            if not Is_Tagged_Type (U_Ent) then
               Error_Msg_N
                 ("aspect Default_Iterator applies to  tagged type", Nam);
            end if;
 
            Check_Iterator_Functions;
 
            Analyze (Expr);
 
            if not Is_Entity_Name (Expr)
              or else Ekind (Entity (Expr)) /= E_Function
            then
               Error_Msg_N ("aspect Iterator must be a function", Expr);
            else
               Func := Entity (Expr);
            end if;
 
            if No (First_Formal (Func))
              or else Etype (First_Formal (Func)) /= U_Ent
            then
               Error_Msg_NE
                 ("Default Iterator must be a primitive of&", Func, U_Ent);
            end if;
         end Default_Iterator;
 
         ------------------
         -- External_Tag --
         ------------------
 
         when Attribute_External_Tag => External_Tag :
         begin
            if not Is_Tagged_Type (U_Ent) then
               Error_Msg_N ("should be a tagged type", Nam);
            end if;
 
            if Duplicate_Clause then
               null;
 
            else
               Analyze_And_Resolve (Expr, Standard_String);
 
               if not Is_Static_Expression (Expr) then
                  Flag_Non_Static_Expr
                    ("static string required for tag name!", Nam);
               end if;
 
               if VM_Target = No_VM then
                  Set_Has_External_Tag_Rep_Clause (U_Ent);
               else
                  Error_Msg_Name_1 := Attr;
                  Error_Msg_N
                    ("% attribute unsupported in this configuration", Nam);
               end if;
 
               if not Is_Library_Level_Entity (U_Ent) then
                  Error_Msg_NE
                    ("?non-unique external tag supplied for &", N, U_Ent);
                  Error_Msg_N
                    ("?\same external tag applies to all subprogram calls", N);
                  Error_Msg_N
                    ("?\corresponding internal tag cannot be obtained", N);
               end if;
            end if;
         end External_Tag;
 
         --------------------------
         -- Implicit_Dereference --
         --------------------------
 
         when Attribute_Implicit_Dereference =>
 
            --  Legality checks already performed at the point of
            --  the type declaration, aspect is not delayed.
 
            null;
 
         -----------
         -- Input --
         -----------
 
         when Attribute_Input =>
            Analyze_Stream_TSS_Definition (TSS_Stream_Input);
            Set_Has_Specified_Stream_Input (Ent);
 
         ----------------------
         -- Iterator_Element --
         ----------------------
 
         when Attribute_Iterator_Element =>
            Analyze (Expr);
 
            if not Is_Entity_Name (Expr)
              or else not Is_Type (Entity (Expr))
            then
               Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
            end if;
 
         -------------------
         -- Machine_Radix --
         -------------------
 
         --  Machine radix attribute definition clause
 
         when Attribute_Machine_Radix => Machine_Radix : declare
            Radix : constant Uint := Static_Integer (Expr);
 
         begin
            if not Is_Decimal_Fixed_Point_Type (U_Ent) then
               Error_Msg_N ("decimal fixed-point type expected for &", Nam);
 
            elsif Duplicate_Clause then
               null;
 
            elsif Radix /= No_Uint then
               Set_Has_Machine_Radix_Clause (U_Ent);
               Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
 
               if Radix = 2 then
                  null;
               elsif Radix = 10 then
                  Set_Machine_Radix_10 (U_Ent);
               else
                  Error_Msg_N ("machine radix value must be 2 or 10", Expr);
               end if;
            end if;
         end Machine_Radix;
 
         -----------------
         -- Object_Size --
         -----------------
 
         --  Object_Size attribute definition clause
 
         when Attribute_Object_Size => Object_Size : declare
            Size : constant Uint := Static_Integer (Expr);
 
            Biased : Boolean;
            pragma Warnings (Off, Biased);
 
         begin
            if not Is_Type (U_Ent) then
               Error_Msg_N ("Object_Size cannot be given for &", Nam);
 
            elsif Duplicate_Clause then
               null;
 
            else
               Check_Size (Expr, U_Ent, Size, Biased);
 
               if Size /= 8
                    and then
                  Size /= 16
                    and then
                  Size /= 32
                    and then
                  UI_Mod (Size, 64) /= 0
               then
                  Error_Msg_N
                    ("Object_Size must be 8, 16, 32, or multiple of 64",
                     Expr);
               end if;
 
               Set_Esize (U_Ent, Size);
               Set_Has_Object_Size_Clause (U_Ent);
               Alignment_Check_For_Size_Change (U_Ent, Size);
            end if;
         end Object_Size;
 
         ------------
         -- Output --
         ------------
 
         when Attribute_Output =>
            Analyze_Stream_TSS_Definition (TSS_Stream_Output);
            Set_Has_Specified_Stream_Output (Ent);
 
         ----------
         -- Read --
         ----------
 
         when Attribute_Read =>
            Analyze_Stream_TSS_Definition (TSS_Stream_Read);
            Set_Has_Specified_Stream_Read (Ent);
 
         ----------
         -- Size --
         ----------
 
         --  Size attribute definition clause
 
         when Attribute_Size => Size : declare
            Size   : constant Uint := Static_Integer (Expr);
            Etyp   : Entity_Id;
            Biased : Boolean;
 
         begin
            FOnly := True;
 
            if Duplicate_Clause then
               null;
 
            elsif not Is_Type (U_Ent)
              and then Ekind (U_Ent) /= E_Variable
              and then Ekind (U_Ent) /= E_Constant
            then
               Error_Msg_N ("size cannot be given for &", Nam);
 
            elsif Is_Array_Type (U_Ent)
              and then not Is_Constrained (U_Ent)
            then
               Error_Msg_N
                 ("size cannot be given for unconstrained array", Nam);
 
            elsif Size /= No_Uint then
               if VM_Target /= No_VM and then not GNAT_Mode then
 
                  --  Size clause is not handled properly on VM targets.
                  --  Display a warning unless we are in GNAT mode, in which
                  --  case this is useless.
 
                  Error_Msg_N
                    ("?size clauses are ignored in this configuration", N);
               end if;
 
               if Is_Type (U_Ent) then
                  Etyp := U_Ent;
               else
                  Etyp := Etype (U_Ent);
               end if;
 
               --  Check size, note that Gigi is in charge of checking that the
               --  size of an array or record type is OK. Also we do not check
               --  the size in the ordinary fixed-point case, since it is too
               --  early to do so (there may be subsequent small clause that
               --  affects the size). We can check the size if a small clause
               --  has already been given.
 
               if not Is_Ordinary_Fixed_Point_Type (U_Ent)
                 or else Has_Small_Clause (U_Ent)
               then
                  Check_Size (Expr, Etyp, Size, Biased);
                  Set_Biased (U_Ent, N, "size clause", Biased);
               end if;
 
               --  For types set RM_Size and Esize if possible
 
               if Is_Type (U_Ent) then
                  Set_RM_Size (U_Ent, Size);
 
                  --  For elementary types, increase Object_Size to power of 2,
                  --  but not less than a storage unit in any case (normally
                  --  this means it will be byte addressable).
 
                  --  For all other types, nothing else to do, we leave Esize
                  --  (object size) unset, the back end will set it from the
                  --  size and alignment in an appropriate manner.
 
                  --  In both cases, we check whether the alignment must be
                  --  reset in the wake of the size change.
 
                  if Is_Elementary_Type (U_Ent) then
                     if Size <= System_Storage_Unit then
                        Init_Esize (U_Ent, System_Storage_Unit);
                     elsif Size <= 16 then
                        Init_Esize (U_Ent, 16);
                     elsif Size <= 32 then
                        Init_Esize (U_Ent, 32);
                     else
                        Set_Esize  (U_Ent, (Size + 63) / 64 * 64);
                     end if;
 
                     Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
                  else
                     Alignment_Check_For_Size_Change (U_Ent, Size);
                  end if;
 
               --  For objects, set Esize only
 
               else
                  if Is_Elementary_Type (Etyp) then
                     if Size /= System_Storage_Unit
                          and then
                        Size /= System_Storage_Unit * 2
                          and then
                        Size /= System_Storage_Unit * 4
                           and then
                        Size /= System_Storage_Unit * 8
                     then
                        Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
                        Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
                        Error_Msg_N
                          ("size for primitive object must be a power of 2"
                            & " in the range ^-^", N);
                     end if;
                  end if;
 
                  Set_Esize (U_Ent, Size);
               end if;
 
               Set_Has_Size_Clause (U_Ent);
            end if;
         end Size;
 
         -----------
         -- Small --
         -----------
 
         --  Small attribute definition clause
 
         when Attribute_Small => Small : declare
            Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
            Small         : Ureal;
 
         begin
            Analyze_And_Resolve (Expr, Any_Real);
 
            if Etype (Expr) = Any_Type then
               return;
 
            elsif not Is_Static_Expression (Expr) then
               Flag_Non_Static_Expr
                 ("small requires static expression!", Expr);
               return;
 
            else
               Small := Expr_Value_R (Expr);
 
               if Small <= Ureal_0 then
                  Error_Msg_N ("small value must be greater than zero", Expr);
                  return;
               end if;
 
            end if;
 
            if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
               Error_Msg_N
                 ("small requires an ordinary fixed point type", Nam);
 
            elsif Has_Small_Clause (U_Ent) then
               Error_Msg_N ("small already given for &", Nam);
 
            elsif Small > Delta_Value (U_Ent) then
               Error_Msg_N
                 ("small value must not be greater then delta value", Nam);
 
            else
               Set_Small_Value (U_Ent, Small);
               Set_Small_Value (Implicit_Base, Small);
               Set_Has_Small_Clause (U_Ent);
               Set_Has_Small_Clause (Implicit_Base);
               Set_Has_Non_Standard_Rep (Implicit_Base);
            end if;
         end Small;
 
         ------------------
         -- Storage_Pool --
         ------------------
 
         --  Storage_Pool attribute definition clause
 
         when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
            Pool : Entity_Id;
            T    : Entity_Id;
 
         begin
            if Ekind (U_Ent) = E_Access_Subprogram_Type then
               Error_Msg_N
                 ("storage pool cannot be given for access-to-subprogram type",
                  Nam);
               return;
 
            elsif not
              Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
            then
               Error_Msg_N
                 ("storage pool can only be given for access types", Nam);
               return;
 
            elsif Is_Derived_Type (U_Ent) then
               Error_Msg_N
                 ("storage pool cannot be given for a derived access type",
                  Nam);
 
            elsif Duplicate_Clause then
               return;
 
            elsif Present (Associated_Storage_Pool (U_Ent)) then
               Error_Msg_N ("storage pool already given for &", Nam);
               return;
            end if;
 
            if Id = Attribute_Storage_Pool then
               Analyze_And_Resolve
                 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
 
            --  In the Simple_Storage_Pool case, we allow a variable of any
            --  simple storage pool type, so we Resolve without imposing an
            --  expected type.
 
            else
               Analyze_And_Resolve (Expr);
 
               if not Present (Get_Rep_Pragma
                                 (Etype (Expr), Name_Simple_Storage_Pool_Type))
               then
                  Error_Msg_N
                    ("expression must be of a simple storage pool type", Expr);
               end if;
            end if;
 
            if not Denotes_Variable (Expr) then
               Error_Msg_N ("storage pool must be a variable", Expr);
               return;
            end if;
 
            if Nkind (Expr) = N_Type_Conversion then
               T := Etype (Expression (Expr));
            else
               T := Etype (Expr);
            end if;
 
            --  The Stack_Bounded_Pool is used internally for implementing
            --  access types with a Storage_Size. Since it only work properly
            --  when used on one specific type, we need to check that it is not
            --  hijacked improperly:
 
            --    type T is access Integer;
            --    for T'Storage_Size use n;
            --    type Q is access Float;
            --    for Q'Storage_Size use T'Storage_Size; -- incorrect
 
            if RTE_Available (RE_Stack_Bounded_Pool)
              and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
            then
               Error_Msg_N ("non-shareable internal Pool", Expr);
               return;
            end if;
 
            --  If the argument is a name that is not an entity name, then
            --  we construct a renaming operation to define an entity of
            --  type storage pool.
 
            if not Is_Entity_Name (Expr)
              and then Is_Object_Reference (Expr)
            then
               Pool := Make_Temporary (Loc, 'P', Expr);
 
               declare
                  Rnode : constant Node_Id :=
                            Make_Object_Renaming_Declaration (Loc,
                              Defining_Identifier => Pool,
                              Subtype_Mark        =>
                                New_Occurrence_Of (Etype (Expr), Loc),
                              Name                => Expr);
 
               begin
                  Insert_Before (N, Rnode);
                  Analyze (Rnode);
                  Set_Associated_Storage_Pool (U_Ent, Pool);
               end;
 
            elsif Is_Entity_Name (Expr) then
               Pool := Entity (Expr);
 
               --  If pool is a renamed object, get original one. This can
               --  happen with an explicit renaming, and within instances.
 
               while Present (Renamed_Object (Pool))
                 and then Is_Entity_Name (Renamed_Object (Pool))
               loop
                  Pool := Entity (Renamed_Object (Pool));
               end loop;
 
               if Present (Renamed_Object (Pool))
                 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
                 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
               then
                  Pool := Entity (Expression (Renamed_Object (Pool)));
               end if;
 
               Set_Associated_Storage_Pool (U_Ent, Pool);
 
            elsif Nkind (Expr) = N_Type_Conversion
              and then Is_Entity_Name (Expression (Expr))
              and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
            then
               Pool := Entity (Expression (Expr));
               Set_Associated_Storage_Pool (U_Ent, Pool);
 
            else
               Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
               return;
            end if;
         end;
 
         ------------------
         -- Storage_Size --
         ------------------
 
         --  Storage_Size attribute definition clause
 
         when Attribute_Storage_Size => Storage_Size : declare
            Btype : constant Entity_Id := Base_Type (U_Ent);
            Sprag : Node_Id;
 
         begin
            if Is_Task_Type (U_Ent) then
               Check_Restriction (No_Obsolescent_Features, N);
 
               if Warn_On_Obsolescent_Feature then
                  Error_Msg_N
                    ("storage size clause for task is an " &
                     "obsolescent feature (RM J.9)?", N);
                  Error_Msg_N ("\use Storage_Size pragma instead?", N);
               end if;
 
               FOnly := True;
            end if;
 
            if not Is_Access_Type (U_Ent)
              and then Ekind (U_Ent) /= E_Task_Type
            then
               Error_Msg_N ("storage size cannot be given for &", Nam);
 
            elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
               Error_Msg_N
                 ("storage size cannot be given for a derived access type",
                  Nam);
 
            elsif Duplicate_Clause then
               null;
 
            else
               Analyze_And_Resolve (Expr, Any_Integer);
 
               if Is_Access_Type (U_Ent) then
                  if Present (Associated_Storage_Pool (U_Ent)) then
                     Error_Msg_N ("storage pool already given for &", Nam);
                     return;
                  end if;
 
                  if Is_OK_Static_Expression (Expr)
                    and then Expr_Value (Expr) = 0
                  then
                     Set_No_Pool_Assigned (Btype);
                  end if;
 
               else -- Is_Task_Type (U_Ent)
                  Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
 
                  if Present (Sprag) then
                     Error_Msg_Sloc := Sloc (Sprag);
                     Error_Msg_N
                       ("Storage_Size already specified#", Nam);
                     return;
                  end if;
               end if;
 
               Set_Has_Storage_Size_Clause (Btype);
            end if;
         end Storage_Size;
 
         -----------------
         -- Stream_Size --
         -----------------
 
         when Attribute_Stream_Size => Stream_Size : declare
            Size : constant Uint := Static_Integer (Expr);
 
         begin
            if Ada_Version <= Ada_95 then
               Check_Restriction (No_Implementation_Attributes, N);
            end if;
 
            if Duplicate_Clause then
               null;
 
            elsif Is_Elementary_Type (U_Ent) then
               if Size /= System_Storage_Unit
                    and then
                  Size /= System_Storage_Unit * 2
                    and then
                  Size /= System_Storage_Unit * 4
                     and then
                  Size /= System_Storage_Unit * 8
               then
                  Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
                  Error_Msg_N
                    ("stream size for elementary type must be a"
                       & " power of 2 and at least ^", N);
 
               elsif RM_Size (U_Ent) > Size then
                  Error_Msg_Uint_1 := RM_Size (U_Ent);
                  Error_Msg_N
                    ("stream size for elementary type must be a"
                       & " power of 2 and at least ^", N);
               end if;
 
               Set_Has_Stream_Size_Clause (U_Ent);
 
            else
               Error_Msg_N ("Stream_Size cannot be given for &", Nam);
            end if;
         end Stream_Size;
 
         ----------------
         -- Value_Size --
         ----------------
 
         --  Value_Size attribute definition clause
 
         when Attribute_Value_Size => Value_Size : declare
            Size   : constant Uint := Static_Integer (Expr);
            Biased : Boolean;
 
         begin
            if not Is_Type (U_Ent) then
               Error_Msg_N ("Value_Size cannot be given for &", Nam);
 
            elsif Duplicate_Clause then
               null;
 
            elsif Is_Array_Type (U_Ent)
              and then not Is_Constrained (U_Ent)
            then
               Error_Msg_N
                 ("Value_Size cannot be given for unconstrained array", Nam);
 
            else
               if Is_Elementary_Type (U_Ent) then
                  Check_Size (Expr, U_Ent, Size, Biased);
                  Set_Biased (U_Ent, N, "value size clause", Biased);
               end if;
 
               Set_RM_Size (U_Ent, Size);
            end if;
         end Value_Size;
 
         -----------------------
         -- Variable_Indexing --
         -----------------------
 
         when Attribute_Variable_Indexing =>
            Check_Indexing_Functions;
 
         -----------
         -- Write --
         -----------
 
         when Attribute_Write =>
            Analyze_Stream_TSS_Definition (TSS_Stream_Write);
            Set_Has_Specified_Stream_Write (Ent);
 
         --  All other attributes cannot be set
 
         when others =>
            Error_Msg_N
              ("attribute& cannot be set with definition clause", N);
      end case;
 
      --  The test for the type being frozen must be performed after any
      --  expression the clause has been analyzed since the expression itself
      --  might cause freezing that makes the clause illegal.
 
      if Rep_Item_Too_Late (U_Ent, N, FOnly) then
         return;
      end if;
   end Analyze_Attribute_Definition_Clause;
 
   ----------------------------
   -- Analyze_Code_Statement --
   ----------------------------
 
   procedure Analyze_Code_Statement (N : Node_Id) is
      HSS   : constant Node_Id   := Parent (N);
      SBody : constant Node_Id   := Parent (HSS);
      Subp  : constant Entity_Id := Current_Scope;
      Stmt  : Node_Id;
      Decl  : Node_Id;
      StmtO : Node_Id;
      DeclO : Node_Id;
 
   begin
      --  Analyze and check we get right type, note that this implements the
      --  requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
      --  is the only way that Asm_Insn could possibly be visible.
 
      Analyze_And_Resolve (Expression (N));
 
      if Etype (Expression (N)) = Any_Type then
         return;
      elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
         Error_Msg_N ("incorrect type for code statement", N);
         return;
      end if;
 
      Check_Code_Statement (N);
 
      --  Make sure we appear in the handled statement sequence of a
      --  subprogram (RM 13.8(3)).
 
      if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
        or else Nkind (SBody) /= N_Subprogram_Body
      then
         Error_Msg_N
           ("code statement can only appear in body of subprogram", N);
         return;
      end if;
 
      --  Do remaining checks (RM 13.8(3)) if not already done
 
      if not Is_Machine_Code_Subprogram (Subp) then
         Set_Is_Machine_Code_Subprogram (Subp);
 
         --  No exception handlers allowed
 
         if Present (Exception_Handlers (HSS)) then
            Error_Msg_N
              ("exception handlers not permitted in machine code subprogram",
               First (Exception_Handlers (HSS)));
         end if;
 
         --  No declarations other than use clauses and pragmas (we allow
         --  certain internally generated declarations as well).
 
         Decl := First (Declarations (SBody));
         while Present (Decl) loop
            DeclO := Original_Node (Decl);
            if Comes_From_Source (DeclO)
              and not Nkind_In (DeclO, N_Pragma,
                                       N_Use_Package_Clause,
                                       N_Use_Type_Clause,
                                       N_Implicit_Label_Declaration)
            then
               Error_Msg_N
                 ("this declaration not allowed in machine code subprogram",
                  DeclO);
            end if;
 
            Next (Decl);
         end loop;
 
         --  No statements other than code statements, pragmas, and labels.
         --  Again we allow certain internally generated statements.
 
         --  In Ada 2012, qualified expressions are names, and the code
         --  statement is initially parsed as a procedure call.
 
         Stmt := First (Statements (HSS));
         while Present (Stmt) loop
            StmtO := Original_Node (Stmt);
 
            --  A procedure call transformed into a code statement is OK.
 
            if Ada_Version >= Ada_2012
              and then Nkind (StmtO) = N_Procedure_Call_Statement
              and then Nkind (Name (StmtO)) = N_Qualified_Expression
            then
               null;
 
            elsif Comes_From_Source (StmtO)
              and then not Nkind_In (StmtO, N_Pragma,
                                            N_Label,
                                            N_Code_Statement)
            then
               Error_Msg_N
                 ("this statement is not allowed in machine code subprogram",
                  StmtO);
            end if;
 
            Next (Stmt);
         end loop;
      end if;
   end Analyze_Code_Statement;
 
   -----------------------------------------------
   -- Analyze_Enumeration_Representation_Clause --
   -----------------------------------------------
 
   procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
      Ident    : constant Node_Id    := Identifier (N);
      Aggr     : constant Node_Id    := Array_Aggregate (N);
      Enumtype : Entity_Id;
      Elit     : Entity_Id;
      Expr     : Node_Id;
      Assoc    : Node_Id;
      Choice   : Node_Id;
      Val      : Uint;
 
      Err : Boolean := False;
      --  Set True to avoid cascade errors and crashes on incorrect source code
 
      Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
      Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
      --  Allowed range of universal integer (= allowed range of enum lit vals)
 
      Min : Uint;
      Max : Uint;
      --  Minimum and maximum values of entries
 
      Max_Node : Node_Id;
      --  Pointer to node for literal providing max value
 
   begin
      if Ignore_Rep_Clauses then
         return;
      end if;
 
      --  First some basic error checks
 
      Find_Type (Ident);
      Enumtype := Entity (Ident);
 
      if Enumtype = Any_Type
        or else Rep_Item_Too_Early (Enumtype, N)
      then
         return;
      else
         Enumtype := Underlying_Type (Enumtype);
      end if;
 
      if not Is_Enumeration_Type (Enumtype) then
         Error_Msg_NE
           ("enumeration type required, found}",
            Ident, First_Subtype (Enumtype));
         return;
      end if;
 
      --  Ignore rep clause on generic actual type. This will already have
      --  been flagged on the template as an error, and this is the safest
      --  way to ensure we don't get a junk cascaded message in the instance.
 
      if Is_Generic_Actual_Type (Enumtype) then
         return;
 
      --  Type must be in current scope
 
      elsif Scope (Enumtype) /= Current_Scope then
         Error_Msg_N ("type must be declared in this scope", Ident);
         return;
 
      --  Type must be a first subtype
 
      elsif not Is_First_Subtype (Enumtype) then
         Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
         return;
 
      --  Ignore duplicate rep clause
 
      elsif Has_Enumeration_Rep_Clause (Enumtype) then
         Error_Msg_N ("duplicate enumeration rep clause ignored", N);
         return;
 
      --  Don't allow rep clause for standard [wide_[wide_]]character
 
      elsif Is_Standard_Character_Type (Enumtype) then
         Error_Msg_N ("enumeration rep clause not allowed for this type", N);
         return;
 
      --  Check that the expression is a proper aggregate (no parentheses)
 
      elsif Paren_Count (Aggr) /= 0 then
         Error_Msg
           ("extra parentheses surrounding aggregate not allowed",
            First_Sloc (Aggr));
         return;
 
      --  All tests passed, so set rep clause in place
 
      else
         Set_Has_Enumeration_Rep_Clause (Enumtype);
         Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
      end if;
 
      --  Now we process the aggregate. Note that we don't use the normal
      --  aggregate code for this purpose, because we don't want any of the
      --  normal expansion activities, and a number of special semantic
      --  rules apply (including the component type being any integer type)
 
      Elit := First_Literal (Enumtype);
 
      --  First the positional entries if any
 
      if Present (Expressions (Aggr)) then
         Expr := First (Expressions (Aggr));
         while Present (Expr) loop
            if No (Elit) then
               Error_Msg_N ("too many entries in aggregate", Expr);
               return;
            end if;
 
            Val := Static_Integer (Expr);
 
            --  Err signals that we found some incorrect entries processing
            --  the list. The final checks for completeness and ordering are
            --  skipped in this case.
 
            if Val = No_Uint then
               Err := True;
            elsif Val < Lo or else Hi < Val then
               Error_Msg_N ("value outside permitted range", Expr);
               Err := True;
            end if;
 
            Set_Enumeration_Rep (Elit, Val);
            Set_Enumeration_Rep_Expr (Elit, Expr);
            Next (Expr);
            Next (Elit);
         end loop;
      end if;
 
      --  Now process the named entries if present
 
      if Present (Component_Associations (Aggr)) then
         Assoc := First (Component_Associations (Aggr));
         while Present (Assoc) loop
            Choice := First (Choices (Assoc));
 
            if Present (Next (Choice)) then
               Error_Msg_N
                 ("multiple choice not allowed here", Next (Choice));
               Err := True;
            end if;
 
            if Nkind (Choice) = N_Others_Choice then
               Error_Msg_N ("others choice not allowed here", Choice);
               Err := True;
 
            elsif Nkind (Choice) = N_Range then
 
               --  ??? should allow zero/one element range here
 
               Error_Msg_N ("range not allowed here", Choice);
               Err := True;
 
            else
               Analyze_And_Resolve (Choice, Enumtype);
 
               if Error_Posted (Choice) then
                  Err := True;
               end if;
 
               if not Err then
                  if Is_Entity_Name (Choice)
                    and then Is_Type (Entity (Choice))
                  then
                     Error_Msg_N ("subtype name not allowed here", Choice);
                     Err := True;
 
                     --  ??? should allow static subtype with zero/one entry
 
                  elsif Etype (Choice) = Base_Type (Enumtype) then
                     if not Is_Static_Expression (Choice) then
                        Flag_Non_Static_Expr
                          ("non-static expression used for choice!", Choice);
                        Err := True;
 
                     else
                        Elit := Expr_Value_E (Choice);
 
                        if Present (Enumeration_Rep_Expr (Elit)) then
                           Error_Msg_Sloc :=
                             Sloc (Enumeration_Rep_Expr (Elit));
                           Error_Msg_NE
                             ("representation for& previously given#",
                              Choice, Elit);
                           Err := True;
                        end if;
 
                        Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
 
                        Expr := Expression (Assoc);
                        Val := Static_Integer (Expr);
 
                        if Val = No_Uint then
                           Err := True;
 
                        elsif Val < Lo or else Hi < Val then
                           Error_Msg_N ("value outside permitted range", Expr);
                           Err := True;
                        end if;
 
                        Set_Enumeration_Rep (Elit, Val);
                     end if;
                  end if;
               end if;
            end if;
 
            Next (Assoc);
         end loop;
      end if;
 
      --  Aggregate is fully processed. Now we check that a full set of
      --  representations was given, and that they are in range and in order.
      --  These checks are only done if no other errors occurred.
 
      if not Err then
         Min  := No_Uint;
         Max  := No_Uint;
 
         Elit := First_Literal (Enumtype);
         while Present (Elit) loop
            if No (Enumeration_Rep_Expr (Elit)) then
               Error_Msg_NE ("missing representation for&!", N, Elit);
 
            else
               Val := Enumeration_Rep (Elit);
 
               if Min = No_Uint then
                  Min := Val;
               end if;
 
               if Val /= No_Uint then
                  if Max /= No_Uint and then Val <= Max then
                     Error_Msg_NE
                       ("enumeration value for& not ordered!",
                        Enumeration_Rep_Expr (Elit), Elit);
                  end if;
 
                  Max_Node := Enumeration_Rep_Expr (Elit);
                  Max := Val;
               end if;
 
               --  If there is at least one literal whose representation is not
               --  equal to the Pos value, then note that this enumeration type
               --  has a non-standard representation.
 
               if Val /= Enumeration_Pos (Elit) then
                  Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
               end if;
            end if;
 
            Next (Elit);
         end loop;
 
         --  Now set proper size information
 
         declare
            Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
 
         begin
            if Has_Size_Clause (Enumtype) then
 
               --  All OK, if size is OK now
 
               if RM_Size (Enumtype) >= Minsize then
                  null;
 
               else
                  --  Try if we can get by with biasing
 
                  Minsize :=
                    UI_From_Int (Minimum_Size (Enumtype, Biased => True));
 
                  --  Error message if even biasing does not work
 
                  if RM_Size (Enumtype) < Minsize then
                     Error_Msg_Uint_1 := RM_Size (Enumtype);
                     Error_Msg_Uint_2 := Max;
                     Error_Msg_N
                       ("previously given size (^) is too small "
                        & "for this value (^)", Max_Node);
 
                  --  If biasing worked, indicate that we now have biased rep
 
                  else
                     Set_Biased
                       (Enumtype, Size_Clause (Enumtype), "size clause");
                  end if;
               end if;
 
            else
               Set_RM_Size    (Enumtype, Minsize);
               Set_Enum_Esize (Enumtype);
            end if;
 
            Set_RM_Size   (Base_Type (Enumtype), RM_Size   (Enumtype));
            Set_Esize     (Base_Type (Enumtype), Esize     (Enumtype));
            Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
         end;
      end if;
 
      --  We repeat the too late test in case it froze itself!
 
      if Rep_Item_Too_Late (Enumtype, N) then
         null;
      end if;
   end Analyze_Enumeration_Representation_Clause;
 
   ----------------------------
   -- Analyze_Free_Statement --
   ----------------------------
 
   procedure Analyze_Free_Statement (N : Node_Id) is
   begin
      Analyze (Expression (N));
   end Analyze_Free_Statement;
 
   ---------------------------
   -- Analyze_Freeze_Entity --
   ---------------------------
 
   procedure Analyze_Freeze_Entity (N : Node_Id) is
      E : constant Entity_Id := Entity (N);
 
   begin
      --  Remember that we are processing a freezing entity. Required to
      --  ensure correct decoration of internal entities associated with
      --  interfaces (see New_Overloaded_Entity).
 
      Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
 
      --  For tagged types covering interfaces add internal entities that link
      --  the primitives of the interfaces with the primitives that cover them.
      --  Note: These entities were originally generated only when generating
      --  code because their main purpose was to provide support to initialize
      --  the secondary dispatch tables. They are now generated also when
      --  compiling with no code generation to provide ASIS the relationship
      --  between interface primitives and tagged type primitives. They are
      --  also used to locate primitives covering interfaces when processing
      --  generics (see Derive_Subprograms).
 
      if Ada_Version >= Ada_2005
        and then Ekind (E) = E_Record_Type
        and then Is_Tagged_Type (E)
        and then not Is_Interface (E)
        and then Has_Interfaces (E)
      then
         --  This would be a good common place to call the routine that checks
         --  overriding of interface primitives (and thus factorize calls to
         --  Check_Abstract_Overriding located at different contexts in the
         --  compiler). However, this is not possible because it causes
         --  spurious errors in case of late overriding.
 
         Add_Internal_Interface_Entities (E);
      end if;
 
      --  Check CPP types
 
      if Ekind (E) = E_Record_Type
        and then Is_CPP_Class (E)
        and then Is_Tagged_Type (E)
        and then Tagged_Type_Expansion
        and then Expander_Active
      then
         if CPP_Num_Prims (E) = 0 then
 
            --  If the CPP type has user defined components then it must import
            --  primitives from C++. This is required because if the C++ class
            --  has no primitives then the C++ compiler does not added the _tag
            --  component to the type.
 
            pragma Assert (Chars (First_Entity (E)) = Name_uTag);
 
            if First_Entity (E) /= Last_Entity (E) then
               Error_Msg_N
                 ("?'C'P'P type must import at least one primitive from C++",
                  E);
            end if;
         end if;
 
         --  Check that all its primitives are abstract or imported from C++.
         --  Check also availability of the C++ constructor.
 
         declare
            Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
            Elmt             : Elmt_Id;
            Error_Reported   : Boolean := False;
            Prim             : Node_Id;
 
         begin
            Elmt := First_Elmt (Primitive_Operations (E));
            while Present (Elmt) loop
               Prim := Node (Elmt);
 
               if Comes_From_Source (Prim) then
                  if Is_Abstract_Subprogram (Prim) then
                     null;
 
                  elsif not Is_Imported (Prim)
                    or else Convention (Prim) /= Convention_CPP
                  then
                     Error_Msg_N
                       ("?primitives of 'C'P'P types must be imported from C++"
                        & " or abstract", Prim);
 
                  elsif not Has_Constructors
                     and then not Error_Reported
                  then
                     Error_Msg_Name_1 := Chars (E);
                     Error_Msg_N
                       ("?'C'P'P constructor required for type %", Prim);
                     Error_Reported := True;
                  end if;
               end if;
 
               Next_Elmt (Elmt);
            end loop;
         end;
      end if;
 
      Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
 
      --  If we have a type with predicates, build predicate function
 
      if Is_Type (E) and then Has_Predicates (E) then
         Build_Predicate_Function (E, N);
      end if;
 
      --  If type has delayed aspects, this is where we do the preanalysis at
      --  the freeze point, as part of the consistent visibility check. Note
      --  that this must be done after calling Build_Predicate_Function or
      --  Build_Invariant_Procedure since these subprograms fix occurrences of
      --  the subtype name in the saved expression so that they will not cause
      --  trouble in the preanalysis.
 
      if Has_Delayed_Aspects (E) then
         declare
            Ritem : Node_Id;
 
         begin
            --  Look for aspect specification entries for this entity
 
            Ritem := First_Rep_Item (E);
            while Present (Ritem) loop
               if Nkind (Ritem) = N_Aspect_Specification
                 and then Entity (Ritem) = E
                 and then Is_Delayed_Aspect (Ritem)
                 and then Scope (E) = Current_Scope
               then
                  Check_Aspect_At_Freeze_Point (Ritem);
               end if;
 
               Next_Rep_Item (Ritem);
            end loop;
         end;
      end if;
   end Analyze_Freeze_Entity;
 
   ------------------------------------------
   -- Analyze_Record_Representation_Clause --
   ------------------------------------------
 
   --  Note: we check as much as we can here, but we can't do any checks
   --  based on the position values (e.g. overlap checks) until freeze time
   --  because especially in Ada 2005 (machine scalar mode), the processing
   --  for non-standard bit order can substantially change the positions.
   --  See procedure Check_Record_Representation_Clause (called from Freeze)
   --  for the remainder of this processing.
 
   procedure Analyze_Record_Representation_Clause (N : Node_Id) is
      Ident   : constant Node_Id := Identifier (N);
      Biased  : Boolean;
      CC      : Node_Id;
      Comp    : Entity_Id;
      Fbit    : Uint;
      Hbit    : Uint := Uint_0;
      Lbit    : Uint;
      Ocomp   : Entity_Id;
      Posit   : Uint;
      Rectype : Entity_Id;
 
      CR_Pragma : Node_Id := Empty;
      --  Points to N_Pragma node if Complete_Representation pragma present
 
   begin
      if Ignore_Rep_Clauses then
         return;
      end if;
 
      Find_Type (Ident);
      Rectype := Entity (Ident);
 
      if Rectype = Any_Type
        or else Rep_Item_Too_Early (Rectype, N)
      then
         return;
      else
         Rectype := Underlying_Type (Rectype);
      end if;
 
      --  First some basic error checks
 
      if not Is_Record_Type (Rectype) then
         Error_Msg_NE
           ("record type required, found}", Ident, First_Subtype (Rectype));
         return;
 
      elsif Scope (Rectype) /= Current_Scope then
         Error_Msg_N ("type must be declared in this scope", N);
         return;
 
      elsif not Is_First_Subtype (Rectype) then
         Error_Msg_N ("cannot give record rep clause for subtype", N);
         return;
 
      elsif Has_Record_Rep_Clause (Rectype) then
         Error_Msg_N ("duplicate record rep clause ignored", N);
         return;
 
      elsif Rep_Item_Too_Late (Rectype, N) then
         return;
      end if;
 
      if Present (Mod_Clause (N)) then
         declare
            Loc     : constant Source_Ptr := Sloc (N);
            M       : constant Node_Id := Mod_Clause (N);
            P       : constant List_Id := Pragmas_Before (M);
            AtM_Nod : Node_Id;
 
            Mod_Val : Uint;
            pragma Warnings (Off, Mod_Val);
 
         begin
            Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
 
            if Warn_On_Obsolescent_Feature then
               Error_Msg_N
                 ("mod clause is an obsolescent feature (RM J.8)?", N);
               Error_Msg_N
                 ("\use alignment attribute definition clause instead?", N);
            end if;
 
            if Present (P) then
               Analyze_List (P);
            end if;
 
            --  In ASIS_Mode mode, expansion is disabled, but we must convert
            --  the Mod clause into an alignment clause anyway, so that the
            --  back-end can compute and back-annotate properly the size and
            --  alignment of types that may include this record.
 
            --  This seems dubious, this destroys the source tree in a manner
            --  not detectable by ASIS ???
 
            if Operating_Mode = Check_Semantics and then ASIS_Mode then
               AtM_Nod :=
                 Make_Attribute_Definition_Clause (Loc,
                   Name       => New_Reference_To (Base_Type (Rectype), Loc),
                   Chars      => Name_Alignment,
                   Expression => Relocate_Node (Expression (M)));
 
               Set_From_At_Mod (AtM_Nod);
               Insert_After (N, AtM_Nod);
               Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
               Set_Mod_Clause (N, Empty);
 
            else
               --  Get the alignment value to perform error checking
 
               Mod_Val := Get_Alignment_Value (Expression (M));
            end if;
         end;
      end if;
 
      --  For untagged types, clear any existing component clauses for the
      --  type. If the type is derived, this is what allows us to override
      --  a rep clause for the parent. For type extensions, the representation
      --  of the inherited components is inherited, so we want to keep previous
      --  component clauses for completeness.
 
      if not Is_Tagged_Type (Rectype) then
         Comp := First_Component_Or_Discriminant (Rectype);
         while Present (Comp) loop
            Set_Component_Clause (Comp, Empty);
            Next_Component_Or_Discriminant (Comp);
         end loop;
      end if;
 
      --  All done if no component clauses
 
      CC := First (Component_Clauses (N));
 
      if No (CC) then
         return;
      end if;
 
      --  A representation like this applies to the base type
 
      Set_Has_Record_Rep_Clause (Base_Type (Rectype));
      Set_Has_Non_Standard_Rep  (Base_Type (Rectype));
      Set_Has_Specified_Layout  (Base_Type (Rectype));
 
      --  Process the component clauses
 
      while Present (CC) loop
 
         --  Pragma
 
         if Nkind (CC) = N_Pragma then
            Analyze (CC);
 
            --  The only pragma of interest is Complete_Representation
 
            if Pragma_Name (CC) = Name_Complete_Representation then
               CR_Pragma := CC;
            end if;
 
         --  Processing for real component clause
 
         else
            Posit := Static_Integer (Position  (CC));
            Fbit  := Static_Integer (First_Bit (CC));
            Lbit  := Static_Integer (Last_Bit  (CC));
 
            if Posit /= No_Uint
              and then Fbit /= No_Uint
              and then Lbit /= No_Uint
            then
               if Posit < 0 then
                  Error_Msg_N
                    ("position cannot be negative", Position (CC));
 
               elsif Fbit < 0 then
                  Error_Msg_N
                    ("first bit cannot be negative", First_Bit (CC));
 
               --  The Last_Bit specified in a component clause must not be
               --  less than the First_Bit minus one (RM-13.5.1(10)).
 
               elsif Lbit < Fbit - 1 then
                  Error_Msg_N
                    ("last bit cannot be less than first bit minus one",
                     Last_Bit (CC));
 
               --  Values look OK, so find the corresponding record component
               --  Even though the syntax allows an attribute reference for
               --  implementation-defined components, GNAT does not allow the
               --  tag to get an explicit position.
 
               elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
                  if Attribute_Name (Component_Name (CC)) = Name_Tag then
                     Error_Msg_N ("position of tag cannot be specified", CC);
                  else
                     Error_Msg_N ("illegal component name", CC);
                  end if;
 
               else
                  Comp := First_Entity (Rectype);
                  while Present (Comp) loop
                     exit when Chars (Comp) = Chars (Component_Name (CC));
                     Next_Entity (Comp);
                  end loop;
 
                  if No (Comp) then
 
                     --  Maybe component of base type that is absent from
                     --  statically constrained first subtype.
 
                     Comp := First_Entity (Base_Type (Rectype));
                     while Present (Comp) loop
                        exit when Chars (Comp) = Chars (Component_Name (CC));
                        Next_Entity (Comp);
                     end loop;
                  end if;
 
                  if No (Comp) then
                     Error_Msg_N
                       ("component clause is for non-existent field", CC);
 
                  --  Ada 2012 (AI05-0026): Any name that denotes a
                  --  discriminant of an object of an unchecked union type
                  --  shall not occur within a record_representation_clause.
 
                  --  The general restriction of using record rep clauses on
                  --  Unchecked_Union types has now been lifted. Since it is
                  --  possible to introduce a record rep clause which mentions
                  --  the discriminant of an Unchecked_Union in non-Ada 2012
                  --  code, this check is applied to all versions of the
                  --  language.
 
                  elsif Ekind (Comp) = E_Discriminant
                    and then Is_Unchecked_Union (Rectype)
                  then
                     Error_Msg_N
                       ("cannot reference discriminant of Unchecked_Union",
                        Component_Name (CC));
 
                  elsif Present (Component_Clause (Comp)) then
 
                     --  Diagnose duplicate rep clause, or check consistency
                     --  if this is an inherited component. In a double fault,
                     --  there may be a duplicate inconsistent clause for an
                     --  inherited component.
 
                     if Scope (Original_Record_Component (Comp)) = Rectype
                       or else Parent (Component_Clause (Comp)) = N
                     then
                        Error_Msg_Sloc := Sloc (Component_Clause (Comp));
                        Error_Msg_N ("component clause previously given#", CC);
 
                     else
                        declare
                           Rep1 : constant Node_Id := Component_Clause (Comp);
                        begin
                           if Intval (Position (Rep1)) /=
                                                   Intval (Position (CC))
                             or else Intval (First_Bit (Rep1)) /=
                                                   Intval (First_Bit (CC))
                             or else Intval (Last_Bit (Rep1)) /=
                                                   Intval (Last_Bit (CC))
                           then
                              Error_Msg_N ("component clause inconsistent "
                                & "with representation of ancestor", CC);
                           elsif Warn_On_Redundant_Constructs then
                              Error_Msg_N ("?redundant component clause "
                                & "for inherited component!", CC);
                           end if;
                        end;
                     end if;
 
                  --  Normal case where this is the first component clause we
                  --  have seen for this entity, so set it up properly.
 
                  else
                     --  Make reference for field in record rep clause and set
                     --  appropriate entity field in the field identifier.
 
                     Generate_Reference
                       (Comp, Component_Name (CC), Set_Ref => False);
                     Set_Entity (Component_Name (CC), Comp);
 
                     --  Update Fbit and Lbit to the actual bit number
 
                     Fbit := Fbit + UI_From_Int (SSU) * Posit;
                     Lbit := Lbit + UI_From_Int (SSU) * Posit;
 
                     if Has_Size_Clause (Rectype)
                       and then RM_Size (Rectype) <= Lbit
                     then
                        Error_Msg_N
                          ("bit number out of range of specified size",
                           Last_Bit (CC));
                     else
                        Set_Component_Clause     (Comp, CC);
                        Set_Component_Bit_Offset (Comp, Fbit);
                        Set_Esize                (Comp, 1 + (Lbit - Fbit));
                        Set_Normalized_First_Bit (Comp, Fbit mod SSU);
                        Set_Normalized_Position  (Comp, Fbit / SSU);
 
                        if Warn_On_Overridden_Size
                          and then Has_Size_Clause (Etype (Comp))
                          and then RM_Size (Etype (Comp)) /= Esize (Comp)
                        then
                           Error_Msg_NE
                             ("?component size overrides size clause for&",
                              Component_Name (CC), Etype (Comp));
                        end if;
 
                        --  This information is also set in the corresponding
                        --  component of the base type, found by accessing the
                        --  Original_Record_Component link if it is present.
 
                        Ocomp := Original_Record_Component (Comp);
 
                        if Hbit < Lbit then
                           Hbit := Lbit;
                        end if;
 
                        Check_Size
                          (Component_Name (CC),
                           Etype (Comp),
                           Esize (Comp),
                           Biased);
 
                        Set_Biased
                          (Comp, First_Node (CC), "component clause", Biased);
 
                        if Present (Ocomp) then
                           Set_Component_Clause     (Ocomp, CC);
                           Set_Component_Bit_Offset (Ocomp, Fbit);
                           Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
                           Set_Normalized_Position  (Ocomp, Fbit / SSU);
                           Set_Esize                (Ocomp, 1 + (Lbit - Fbit));
 
                           Set_Normalized_Position_Max
                             (Ocomp, Normalized_Position (Ocomp));
 
                           --  Note: we don't use Set_Biased here, because we
                           --  already gave a warning above if needed, and we
                           --  would get a duplicate for the same name here.
 
                           Set_Has_Biased_Representation
                             (Ocomp, Has_Biased_Representation (Comp));
                        end if;
 
                        if Esize (Comp) < 0 then
                           Error_Msg_N ("component size is negative", CC);
                        end if;
                     end if;
                  end if;
               end if;
            end if;
         end if;
 
         Next (CC);
      end loop;
 
      --  Check missing components if Complete_Representation pragma appeared
 
      if Present (CR_Pragma) then
         Comp := First_Component_Or_Discriminant (Rectype);
         while Present (Comp) loop
            if No (Component_Clause (Comp)) then
               Error_Msg_NE
                 ("missing component clause for &", CR_Pragma, Comp);
            end if;
 
            Next_Component_Or_Discriminant (Comp);
         end loop;
 
         --  If no Complete_Representation pragma, warn if missing components
 
      elsif Warn_On_Unrepped_Components then
         declare
            Num_Repped_Components   : Nat := 0;
            Num_Unrepped_Components : Nat := 0;
 
         begin
            --  First count number of repped and unrepped components
 
            Comp := First_Component_Or_Discriminant (Rectype);
            while Present (Comp) loop
               if Present (Component_Clause (Comp)) then
                  Num_Repped_Components := Num_Repped_Components + 1;
               else
                  Num_Unrepped_Components := Num_Unrepped_Components + 1;
               end if;
 
               Next_Component_Or_Discriminant (Comp);
            end loop;
 
            --  We are only interested in the case where there is at least one
            --  unrepped component, and at least half the components have rep
            --  clauses. We figure that if less than half have them, then the
            --  partial rep clause is really intentional. If the component
            --  type has no underlying type set at this point (as for a generic
            --  formal type), we don't know enough to give a warning on the
            --  component.
 
            if Num_Unrepped_Components > 0
              and then Num_Unrepped_Components < Num_Repped_Components
            then
               Comp := First_Component_Or_Discriminant (Rectype);
               while Present (Comp) loop
                  if No (Component_Clause (Comp))
                    and then Comes_From_Source (Comp)
                    and then Present (Underlying_Type (Etype (Comp)))
                    and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
                               or else Size_Known_At_Compile_Time
                                         (Underlying_Type (Etype (Comp))))
                    and then not Has_Warnings_Off (Rectype)
                  then
                     Error_Msg_Sloc := Sloc (Comp);
                     Error_Msg_NE
                       ("?no component clause given for & declared #",
                        N, Comp);
                  end if;
 
                  Next_Component_Or_Discriminant (Comp);
               end loop;
            end if;
         end;
      end if;
   end Analyze_Record_Representation_Clause;
 
   -------------------------------
   -- Build_Invariant_Procedure --
   -------------------------------
 
   --  The procedure that is constructed here has the form
 
   --  procedure typInvariant (Ixxx : typ) is
   --  begin
   --     pragma Check (Invariant, exp, "failed invariant from xxx");
   --     pragma Check (Invariant, exp, "failed invariant from xxx");
   --     ...
   --     pragma Check (Invariant, exp, "failed inherited invariant from xxx");
   --     ...
   --  end typInvariant;
 
   procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
      Loc   : constant Source_Ptr := Sloc (Typ);
      Stmts : List_Id;
      Spec  : Node_Id;
      SId   : Entity_Id;
      PDecl : Node_Id;
      PBody : Node_Id;
 
      Visible_Decls : constant List_Id := Visible_Declarations (N);
      Private_Decls : constant List_Id := Private_Declarations (N);
 
      procedure Add_Invariants (T : Entity_Id; Inherit : Boolean);
      --  Appends statements to Stmts for any invariants in the rep item chain
      --  of the given type. If Inherit is False, then we only process entries
      --  on the chain for the type Typ. If Inherit is True, then we ignore any
      --  Invariant aspects, but we process all Invariant'Class aspects, adding
      --  "inherited" to the exception message and generating an informational
      --  message about the inheritance of an invariant.
 
      Object_Name : constant Name_Id := New_Internal_Name ('I');
      --  Name for argument of invariant procedure
 
      Object_Entity : constant Node_Id :=
                        Make_Defining_Identifier (Loc, Object_Name);
      --  The procedure declaration entity for the argument
 
      --------------------
      -- Add_Invariants --
      --------------------
 
      procedure Add_Invariants (T : Entity_Id; Inherit : Boolean) is
         Ritem : Node_Id;
         Arg1  : Node_Id;
         Arg2  : Node_Id;
         Arg3  : Node_Id;
         Exp   : Node_Id;
         Loc   : Source_Ptr;
         Assoc : List_Id;
         Str   : String_Id;
 
         procedure Replace_Type_Reference (N : Node_Id);
         --  Replace a single occurrence N of the subtype name with a reference
         --  to the formal of the predicate function. N can be an identifier
         --  referencing the subtype, or a selected component, representing an
         --  appropriately qualified occurrence of the subtype name.
 
         procedure Replace_Type_References is
           new Replace_Type_References_Generic (Replace_Type_Reference);
         --  Traverse an expression replacing all occurrences of the subtype
         --  name with appropriate references to the object that is the formal
         --  parameter of the predicate function. Note that we must ensure
         --  that the type and entity information is properly set in the
         --  replacement node, since we will do a Preanalyze call of this
         --  expression without proper visibility of the procedure argument.
 
         ----------------------------
         -- Replace_Type_Reference --
         ----------------------------
 
         procedure Replace_Type_Reference (N : Node_Id) is
         begin
            --  Invariant'Class, replace with T'Class (obj)
 
            if Class_Present (Ritem) then
               Rewrite (N,
                 Make_Type_Conversion (Loc,
                   Subtype_Mark =>
                     Make_Attribute_Reference (Loc,
                       Prefix         => New_Occurrence_Of (T, Loc),
                       Attribute_Name => Name_Class),
                   Expression   => Make_Identifier (Loc, Object_Name)));
 
               Set_Entity (Expression (N), Object_Entity);
               Set_Etype  (Expression (N), Typ);
 
            --  Invariant, replace with obj
 
            else
               Rewrite (N, Make_Identifier (Loc, Object_Name));
               Set_Entity (N, Object_Entity);
               Set_Etype  (N, Typ);
            end if;
         end Replace_Type_Reference;
 
      --  Start of processing for Add_Invariants
 
      begin
         Ritem := First_Rep_Item (T);
         while Present (Ritem) loop
            if Nkind (Ritem) = N_Pragma
              and then Pragma_Name (Ritem) = Name_Invariant
            then
               Arg1 := First (Pragma_Argument_Associations (Ritem));
               Arg2 := Next (Arg1);
               Arg3 := Next (Arg2);
 
               Arg1 := Get_Pragma_Arg (Arg1);
               Arg2 := Get_Pragma_Arg (Arg2);
 
               --  For Inherit case, ignore Invariant, process only Class case
 
               if Inherit then
                  if not Class_Present (Ritem) then
                     goto Continue;
                  end if;
 
               --  For Inherit false, process only item for right type
 
               else
                  if Entity (Arg1) /= Typ then
                     goto Continue;
                  end if;
               end if;
 
               if No (Stmts) then
                  Stmts := Empty_List;
               end if;
 
               Exp := New_Copy_Tree (Arg2);
               Loc := Sloc (Exp);
 
               --  We need to replace any occurrences of the name of the type
               --  with references to the object, converted to type'Class in
               --  the case of Invariant'Class aspects.
 
               Replace_Type_References (Exp, Chars (T));
 
               --  If this invariant comes from an aspect, find the aspect
               --  specification, and replace the saved expression because
               --  we need the subtype references replaced for the calls to
               --  Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
               --  and Check_Aspect_At_End_Of_Declarations.
 
               if From_Aspect_Specification (Ritem) then
                  declare
                     Aitem : Node_Id;
 
                  begin
                     --  Loop to find corresponding aspect, note that this
                     --  must be present given the pragma is marked delayed.
 
                     Aitem := Next_Rep_Item (Ritem);
                     while Present (Aitem) loop
                        if Nkind (Aitem) = N_Aspect_Specification
                          and then Aspect_Rep_Item (Aitem) = Ritem
                        then
                           Set_Entity
                             (Identifier (Aitem), New_Copy_Tree (Exp));
                           exit;
                        end if;
 
                        Aitem := Next_Rep_Item (Aitem);
                     end loop;
                  end;
               end if;
 
               --  Now we need to preanalyze the expression to properly capture
               --  the visibility in the visible part. The expression will not
               --  be analyzed for real until the body is analyzed, but that is
               --  at the end of the private part and has the wrong visibility.
 
               Set_Parent (Exp, N);
               Preanalyze_Spec_Expression (Exp, Standard_Boolean);
 
               --  Build first two arguments for Check pragma
 
               Assoc := New_List (
                 Make_Pragma_Argument_Association (Loc,
                   Expression => Make_Identifier (Loc, Name_Invariant)),
                 Make_Pragma_Argument_Association (Loc, Expression => Exp));
 
               --  Add message if present in Invariant pragma
 
               if Present (Arg3) then
                  Str := Strval (Get_Pragma_Arg (Arg3));
 
                  --  If inherited case, and message starts "failed invariant",
                  --  change it to be "failed inherited invariant".
 
                  if Inherit then
                     String_To_Name_Buffer (Str);
 
                     if Name_Buffer (1 .. 16) = "failed invariant" then
                        Insert_Str_In_Name_Buffer ("inherited ", 8);
                        Str := String_From_Name_Buffer;
                     end if;
                  end if;
 
                  Append_To (Assoc,
                    Make_Pragma_Argument_Association (Loc,
                      Expression => Make_String_Literal (Loc, Str)));
               end if;
 
               --  Add Check pragma to list of statements
 
               Append_To (Stmts,
                 Make_Pragma (Loc,
                   Pragma_Identifier            =>
                     Make_Identifier (Loc, Name_Check),
                   Pragma_Argument_Associations => Assoc));
 
               --  If Inherited case and option enabled, output info msg. Note
               --  that we know this is a case of Invariant'Class.
 
               if Inherit and Opt.List_Inherited_Aspects then
                  Error_Msg_Sloc := Sloc (Ritem);
                  Error_Msg_N
                    ("?info: & inherits `Invariant''Class` aspect from #",
                     Typ);
               end if;
            end if;
 
         <<Continue>>
            Next_Rep_Item (Ritem);
         end loop;
      end Add_Invariants;
 
   --  Start of processing for Build_Invariant_Procedure
 
   begin
      Stmts := No_List;
      PDecl := Empty;
      PBody := Empty;
      Set_Etype (Object_Entity, Typ);
 
      --  Add invariants for the current type
 
      Add_Invariants (Typ, Inherit => False);
 
      --  Add invariants for parent types
 
      declare
         Current_Typ : Entity_Id;
         Parent_Typ  : Entity_Id;
 
      begin
         Current_Typ := Typ;
         loop
            Parent_Typ := Etype (Current_Typ);
 
            if Is_Private_Type (Parent_Typ)
              and then Present (Full_View (Base_Type (Parent_Typ)))
            then
               Parent_Typ := Full_View (Base_Type (Parent_Typ));
            end if;
 
            exit when Parent_Typ = Current_Typ;
 
            Current_Typ := Parent_Typ;
            Add_Invariants (Current_Typ, Inherit => True);
         end loop;
      end;
 
      --  Build the procedure if we generated at least one Check pragma
 
      if Stmts /= No_List then
 
         --  Build procedure declaration
 
         SId :=
           Make_Defining_Identifier (Loc,
             Chars => New_External_Name (Chars (Typ), "Invariant"));
         Set_Has_Invariants (SId);
         Set_Invariant_Procedure (Typ, SId);
 
         Spec :=
           Make_Procedure_Specification (Loc,
             Defining_Unit_Name       => SId,
             Parameter_Specifications => New_List (
               Make_Parameter_Specification (Loc,
                 Defining_Identifier => Object_Entity,
                 Parameter_Type      => New_Occurrence_Of (Typ, Loc))));
 
         PDecl := Make_Subprogram_Declaration (Loc, Specification => Spec);
 
         --  Build procedure body
 
         SId :=
           Make_Defining_Identifier (Loc,
             Chars => New_External_Name (Chars (Typ), "Invariant"));
 
         Spec :=
           Make_Procedure_Specification (Loc,
             Defining_Unit_Name       => SId,
             Parameter_Specifications => New_List (
               Make_Parameter_Specification (Loc,
                 Defining_Identifier =>
                   Make_Defining_Identifier (Loc, Object_Name),
                 Parameter_Type => New_Occurrence_Of (Typ, Loc))));
 
         PBody :=
           Make_Subprogram_Body (Loc,
             Specification              => Spec,
             Declarations               => Empty_List,
             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => Stmts));
 
         --  Insert procedure declaration and spec at the appropriate points.
         --  Skip this if there are no private declarations (that's an error
         --  that will be diagnosed elsewhere, and there is no point in having
         --  an invariant procedure set if the full declaration is missing).
 
         if Present (Private_Decls) then
 
            --  The spec goes at the end of visible declarations, but they have
            --  already been analyzed, so we need to explicitly do the analyze.
 
            Append_To (Visible_Decls, PDecl);
            Analyze (PDecl);
 
            --  The body goes at the end of the private declarations, which we
            --  have not analyzed yet, so we do not need to perform an explicit
            --  analyze call. We skip this if there are no private declarations
            --  (this is an error that will be caught elsewhere);
 
            Append_To (Private_Decls, PBody);
 
            --  If the invariant appears on the full view of a type, the
            --  analysis of the private part is complete, and we must
            --  analyze the new body explicitly.
 
            if In_Private_Part (Current_Scope) then
               Analyze (PBody);
            end if;
         end if;
      end if;
   end Build_Invariant_Procedure;
 
   ------------------------------
   -- Build_Predicate_Function --
   ------------------------------
 
   --  The procedure that is constructed here has the form
 
   --  function typPredicate (Ixxx : typ) return Boolean is
   --  begin
   --     return
   --        exp1 and then exp2 and then ...
   --        and then typ1Predicate (typ1 (Ixxx))
   --        and then typ2Predicate (typ2 (Ixxx))
   --        and then ...;
   --  end typPredicate;
 
   --  Here exp1, and exp2 are expressions from Predicate pragmas. Note that
   --  this is the point at which these expressions get analyzed, providing the
   --  required delay, and typ1, typ2, are entities from which predicates are
   --  inherited. Note that we do NOT generate Check pragmas, that's because we
   --  use this function even if checks are off, e.g. for membership tests.
 
   procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id) is
      Loc  : constant Source_Ptr := Sloc (Typ);
      Spec : Node_Id;
      SId  : Entity_Id;
      FDecl : Node_Id;
      FBody : Node_Id;
 
      Expr : Node_Id;
      --  This is the expression for the return statement in the function. It
      --  is build by connecting the component predicates with AND THEN.
 
      procedure Add_Call (T : Entity_Id);
      --  Includes a call to the predicate function for type T in Expr if T
      --  has predicates and Predicate_Function (T) is non-empty.
 
      procedure Add_Predicates;
      --  Appends expressions for any Predicate pragmas in the rep item chain
      --  Typ to Expr. Note that we look only at items for this exact entity.
      --  Inheritance of predicates for the parent type is done by calling the
      --  Predicate_Function of the parent type, using Add_Call above.
 
      Object_Name : constant Name_Id := New_Internal_Name ('I');
      --  Name for argument of Predicate procedure
 
      Object_Entity : constant Entity_Id :=
                        Make_Defining_Identifier (Loc, Object_Name);
      --  The entity for the spec entity for the argument
 
      Dynamic_Predicate_Present : Boolean := False;
      --  Set True if a dynamic predicate is present, results in the entire
      --  predicate being considered dynamic even if it looks static
 
      Static_Predicate_Present : Node_Id := Empty;
      --  Set to N_Pragma node for a static predicate if one is encountered.
 
      --------------
      -- Add_Call --
      --------------
 
      procedure Add_Call (T : Entity_Id) is
         Exp : Node_Id;
 
      begin
         if Present (T) and then Present (Predicate_Function (T)) then
            Set_Has_Predicates (Typ);
 
            --  Build the call to the predicate function of T
 
            Exp :=
              Make_Predicate_Call
                (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
 
            --  Add call to evolving expression, using AND THEN if needed
 
            if No (Expr) then
               Expr := Exp;
            else
               Expr :=
                 Make_And_Then (Loc,
                   Left_Opnd  => Relocate_Node (Expr),
                   Right_Opnd => Exp);
            end if;
 
            --  Output info message on inheritance if required. Note we do not
            --  give this information for generic actual types, since it is
            --  unwelcome noise in that case in instantiations. We also
            --  generally suppress the message in instantiations, and also
            --  if it involves internal names.
 
            if Opt.List_Inherited_Aspects
              and then not Is_Generic_Actual_Type (Typ)
              and then Instantiation_Depth (Sloc (Typ)) = 0
              and then not Is_Internal_Name (Chars (T))
              and then not Is_Internal_Name (Chars (Typ))
            then
               Error_Msg_Sloc := Sloc (Predicate_Function (T));
               Error_Msg_Node_2 := T;
               Error_Msg_N ("?info: & inherits predicate from & #", Typ);
            end if;
         end if;
      end Add_Call;
 
      --------------------
      -- Add_Predicates --
      --------------------
 
      procedure Add_Predicates is
         Ritem : Node_Id;
         Arg1  : Node_Id;
         Arg2  : Node_Id;
 
         procedure Replace_Type_Reference (N : Node_Id);
         --  Replace a single occurrence N of the subtype name with a reference
         --  to the formal of the predicate function. N can be an identifier
         --  referencing the subtype, or a selected component, representing an
         --  appropriately qualified occurrence of the subtype name.
 
         procedure Replace_Type_References is
           new Replace_Type_References_Generic (Replace_Type_Reference);
         --  Traverse an expression changing every occurrence of an identifier
         --  whose name matches the name of the subtype with a reference to
         --  the formal parameter of the predicate function.
 
         ----------------------------
         -- Replace_Type_Reference --
         ----------------------------
 
         procedure Replace_Type_Reference (N : Node_Id) is
         begin
            Rewrite (N, Make_Identifier (Loc, Object_Name));
            Set_Entity (N, Object_Entity);
            Set_Etype (N, Typ);
         end Replace_Type_Reference;
 
      --  Start of processing for Add_Predicates
 
      begin
         Ritem := First_Rep_Item (Typ);
         while Present (Ritem) loop
            if Nkind (Ritem) = N_Pragma
              and then Pragma_Name (Ritem) = Name_Predicate
            then
               if Present (Corresponding_Aspect (Ritem)) then
                  case Chars (Identifier (Corresponding_Aspect (Ritem))) is
                     when Name_Dynamic_Predicate =>
                        Dynamic_Predicate_Present := True;
                     when Name_Static_Predicate =>
                        Static_Predicate_Present := Ritem;
                     when others =>
                        null;
                  end case;
               end if;
 
               --  Acquire arguments
 
               Arg1 := First (Pragma_Argument_Associations (Ritem));
               Arg2 := Next (Arg1);
 
               Arg1 := Get_Pragma_Arg (Arg1);
               Arg2 := Get_Pragma_Arg (Arg2);
 
               --  See if this predicate pragma is for the current type or for
               --  its full view. A predicate on a private completion is placed
               --  on the partial view beause this is the visible entity that
               --  is frozen.
 
               if Entity (Arg1) = Typ
                 or else Full_View (Entity (Arg1)) = Typ
               then
 
                  --  We have a match, this entry is for our subtype
 
                  --  We need to replace any occurrences of the name of the
                  --  type with references to the object.
 
                  Replace_Type_References (Arg2, Chars (Typ));
 
                  --  If this predicate comes from an aspect, find the aspect
                  --  specification, and replace the saved expression because
                  --  we need the subtype references replaced for the calls to
                  --  Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
                  --  and Check_Aspect_At_End_Of_Declarations.
 
                  if From_Aspect_Specification (Ritem) then
                     declare
                        Aitem : Node_Id;
 
                     begin
                        --  Loop to find corresponding aspect, note that this
                        --  must be present given the pragma is marked delayed.
 
                        Aitem := Next_Rep_Item (Ritem);
                        loop
                           if Nkind (Aitem) = N_Aspect_Specification
                             and then Aspect_Rep_Item (Aitem) = Ritem
                           then
                              Set_Entity
                                (Identifier (Aitem), New_Copy_Tree (Arg2));
                              exit;
                           end if;
 
                           Aitem := Next_Rep_Item (Aitem);
                        end loop;
                     end;
                  end if;
 
                  --  Now we can add the expression
 
                  if No (Expr) then
                     Expr := Relocate_Node (Arg2);
 
                  --  There already was a predicate, so add to it
 
                  else
                     Expr :=
                       Make_And_Then (Loc,
                         Left_Opnd  => Relocate_Node (Expr),
                         Right_Opnd => Relocate_Node (Arg2));
                  end if;
               end if;
            end if;
 
            Next_Rep_Item (Ritem);
         end loop;
      end Add_Predicates;
 
   --  Start of processing for Build_Predicate_Function
 
   begin
      --  Initialize for construction of statement list
 
      Expr := Empty;
 
      --  Return if already built or if type does not have predicates
 
      if not Has_Predicates (Typ)
        or else Present (Predicate_Function (Typ))
      then
         return;
      end if;
 
      --  Add Predicates for the current type
 
      Add_Predicates;
 
      --  Add predicates for ancestor if present
 
      declare
         Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
      begin
         if Present (Atyp) then
            Add_Call (Atyp);
         end if;
      end;
 
      --  If we have predicates, build the function
 
      if Present (Expr) then
 
         --  Build function declaration
 
         pragma Assert (Has_Predicates (Typ));
         SId :=
           Make_Defining_Identifier (Loc,
             Chars => New_External_Name (Chars (Typ), "Predicate"));
         Set_Has_Predicates (SId);
         Set_Predicate_Function (Typ, SId);
 
         --  The predicate function is shared between views of a type.
 
         if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
            Set_Predicate_Function (Full_View (Typ), SId);
         end if;
 
         Spec :=
           Make_Function_Specification (Loc,
             Defining_Unit_Name       => SId,
             Parameter_Specifications => New_List (
               Make_Parameter_Specification (Loc,
                 Defining_Identifier => Object_Entity,
                 Parameter_Type      => New_Occurrence_Of (Typ, Loc))),
             Result_Definition        =>
               New_Occurrence_Of (Standard_Boolean, Loc));
 
         FDecl := Make_Subprogram_Declaration (Loc, Specification => Spec);
 
         --  Build function body
 
         SId :=
           Make_Defining_Identifier (Loc,
             Chars => New_External_Name (Chars (Typ), "Predicate"));
 
         Spec :=
           Make_Function_Specification (Loc,
             Defining_Unit_Name       => SId,
             Parameter_Specifications => New_List (
               Make_Parameter_Specification (Loc,
                 Defining_Identifier =>
                   Make_Defining_Identifier (Loc, Object_Name),
                 Parameter_Type =>
                   New_Occurrence_Of (Typ, Loc))),
             Result_Definition        =>
               New_Occurrence_Of (Standard_Boolean, Loc));
 
         FBody :=
           Make_Subprogram_Body (Loc,
             Specification              => Spec,
             Declarations               => Empty_List,
             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => New_List (
                   Make_Simple_Return_Statement (Loc,
                     Expression => Expr))));
 
         --  Insert declaration before freeze node and body after
 
         Insert_Before_And_Analyze (N, FDecl);
         Insert_After_And_Analyze  (N, FBody);
 
         --  Deal with static predicate case
 
         if Ekind_In (Typ, E_Enumeration_Subtype,
                           E_Modular_Integer_Subtype,
                           E_Signed_Integer_Subtype)
           and then Is_Static_Subtype (Typ)
           and then not Dynamic_Predicate_Present
         then
            Build_Static_Predicate (Typ, Expr, Object_Name);
 
            if Present (Static_Predicate_Present)
              and No (Static_Predicate (Typ))
            then
               Error_Msg_F
                 ("expression does not have required form for "
                  & "static predicate",
                  Next (First (Pragma_Argument_Associations
                                (Static_Predicate_Present))));
            end if;
         end if;
      end if;
   end Build_Predicate_Function;
 
   ----------------------------
   -- Build_Static_Predicate --
   ----------------------------
 
   procedure Build_Static_Predicate
     (Typ  : Entity_Id;
      Expr : Node_Id;
      Nam  : Name_Id)
   is
      Loc : constant Source_Ptr := Sloc (Expr);
 
      Non_Static : exception;
      --  Raised if something non-static is found
 
      Btyp : constant Entity_Id := Base_Type (Typ);
 
      BLo : constant Uint := Expr_Value (Type_Low_Bound  (Btyp));
      BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
      --  Low bound and high bound value of base type of Typ
 
      TLo : constant Uint := Expr_Value (Type_Low_Bound  (Typ));
      THi : constant Uint := Expr_Value (Type_High_Bound (Typ));
      --  Low bound and high bound values of static subtype Typ
 
      type REnt is record
         Lo, Hi : Uint;
      end record;
      --  One entry in a Rlist value, a single REnt (range entry) value
      --  denotes one range from Lo to Hi. To represent a single value
      --  range Lo = Hi = value.
 
      type RList is array (Nat range <>) of REnt;
      --  A list of ranges. The ranges are sorted in increasing order,
      --  and are disjoint (there is a gap of at least one value between
      --  each range in the table). A value is in the set of ranges in
      --  Rlist if it lies within one of these ranges
 
      False_Range : constant RList :=
                      RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
      --  An empty set of ranges represents a range list that can never be
      --  satisfied, since there are no ranges in which the value could lie,
      --  so it does not lie in any of them. False_Range is a canonical value
      --  for this empty set, but general processing should test for an Rlist
      --  with length zero (see Is_False predicate), since other null ranges
      --  may appear which must be treated as False.
 
      True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
      --  Range representing True, value must be in the base range
 
      function "and" (Left, Right : RList) return RList;
      --  And's together two range lists, returning a range list. This is
      --  a set intersection operation.
 
      function "or" (Left, Right : RList) return RList;
      --  Or's together two range lists, returning a range list. This is a
      --  set union operation.
 
      function "not" (Right : RList) return RList;
      --  Returns complement of a given range list, i.e. a range list
      --  representing all the values in TLo .. THi that are not in the
      --  input operand Right.
 
      function Build_Val (V : Uint) return Node_Id;
      --  Return an analyzed N_Identifier node referencing this value, suitable
      --  for use as an entry in the Static_Predicate list. This node is typed
      --  with the base type.
 
      function Build_Range (Lo, Hi : Uint) return Node_Id;
      --  Return an analyzed N_Range node referencing this range, suitable
      --  for use as an entry in the Static_Predicate list. This node is typed
      --  with the base type.
 
      function Get_RList (Exp : Node_Id) return RList;
      --  This is a recursive routine that converts the given expression into
      --  a list of ranges, suitable for use in building the static predicate.
 
      function Is_False (R : RList) return Boolean;
      pragma Inline (Is_False);
      --  Returns True if the given range list is empty, and thus represents
      --  a False list of ranges that can never be satisfied.
 
      function Is_True (R : RList) return Boolean;
      --  Returns True if R trivially represents the True predicate by having
      --  a single range from BLo to BHi.
 
      function Is_Type_Ref (N : Node_Id) return Boolean;
      pragma Inline (Is_Type_Ref);
      --  Returns if True if N is a reference to the type for the predicate in
      --  the expression (i.e. if it is an identifier whose Chars field matches
      --  the Nam given in the call).
 
      function Lo_Val (N : Node_Id) return Uint;
      --  Given static expression or static range from a Static_Predicate list,
      --  gets expression value or low bound of range.
 
      function Hi_Val (N : Node_Id) return Uint;
      --  Given static expression or static range from a Static_Predicate list,
      --  gets expression value of high bound of range.
 
      function Membership_Entry (N : Node_Id) return RList;
      --  Given a single membership entry (range, value, or subtype), returns
      --  the corresponding range list. Raises Static_Error if not static.
 
      function Membership_Entries (N : Node_Id) return RList;
      --  Given an element on an alternatives list of a membership operation,
      --  returns the range list corresponding to this entry and all following
      --  entries (i.e. returns the "or" of this list of values).
 
      function Stat_Pred (Typ : Entity_Id) return RList;
      --  Given a type, if it has a static predicate, then return the predicate
      --  as a range list, otherwise raise Non_Static.
 
      -----------
      -- "and" --
      -----------
 
      function "and" (Left, Right : RList) return RList is
         FEnt : REnt;
         --  First range of result
 
         SLeft : Nat := Left'First;
         --  Start of rest of left entries
 
         SRight : Nat := Right'First;
         --  Start of rest of right entries
 
      begin
         --  If either range is True, return the other
 
         if Is_True (Left) then
            return Right;
         elsif Is_True (Right) then
            return Left;
         end if;
 
         --  If either range is False, return False
 
         if Is_False (Left) or else Is_False (Right) then
            return False_Range;
         end if;
 
         --  Loop to remove entries at start that are disjoint, and thus
         --  just get discarded from the result entirely.
 
         loop
            --  If no operands left in either operand, result is false
 
            if SLeft > Left'Last or else SRight > Right'Last then
               return False_Range;
 
            --  Discard first left operand entry if disjoint with right
 
            elsif Left (SLeft).Hi < Right (SRight).Lo then
               SLeft := SLeft + 1;
 
            --  Discard first right operand entry if disjoint with left
 
            elsif Right (SRight).Hi < Left (SLeft).Lo then
               SRight := SRight + 1;
 
            --  Otherwise we have an overlapping entry
 
            else
               exit;
            end if;
         end loop;
 
         --  Now we have two non-null operands, and first entries overlap.
         --  The first entry in the result will be the overlapping part of
         --  these two entries.
 
         FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
                       Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
 
         --  Now we can remove the entry that ended at a lower value, since
         --  its contribution is entirely contained in Fent.
 
         if Left (SLeft).Hi <= Right (SRight).Hi then
            SLeft := SLeft + 1;
         else
            SRight := SRight + 1;
         end if;
 
         --  Compute result by concatenating this first entry with the "and"
         --  of the remaining parts of the left and right operands. Note that
         --  if either of these is empty, "and" will yield empty, so that we
         --  will end up with just Fent, which is what we want in that case.
 
         return
           FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
      end "and";
 
      -----------
      -- "not" --
      -----------
 
      function "not" (Right : RList) return RList is
      begin
         --  Return True if False range
 
         if Is_False (Right) then
            return True_Range;
         end if;
 
         --  Return False if True range
 
         if Is_True (Right) then
            return False_Range;
         end if;
 
         --  Here if not trivial case
 
         declare
            Result : RList (1 .. Right'Length + 1);
            --  May need one more entry for gap at beginning and end
 
            Count : Nat := 0;
            --  Number of entries stored in Result
 
         begin
            --  Gap at start
 
            if Right (Right'First).Lo > TLo then
               Count := Count + 1;
               Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
            end if;
 
            --  Gaps between ranges
 
            for J in Right'First .. Right'Last - 1 loop
               Count := Count + 1;
               Result (Count) :=
                 REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
            end loop;
 
            --  Gap at end
 
            if Right (Right'Last).Hi < THi then
               Count := Count + 1;
               Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
            end if;
 
            return Result (1 .. Count);
         end;
      end "not";
 
      ----------
      -- "or" --
      ----------
 
      function "or" (Left, Right : RList) return RList is
         FEnt : REnt;
         --  First range of result
 
         SLeft : Nat := Left'First;
         --  Start of rest of left entries
 
         SRight : Nat := Right'First;
         --  Start of rest of right entries
 
      begin
         --  If either range is True, return True
 
         if Is_True (Left) or else Is_True (Right) then
            return True_Range;
         end if;
 
         --  If either range is False (empty), return the other
 
         if Is_False (Left) then
            return Right;
         elsif Is_False (Right) then
            return Left;
         end if;
 
         --  Initialize result first entry from left or right operand
         --  depending on which starts with the lower range.
 
         if Left (SLeft).Lo < Right (SRight).Lo then
            FEnt := Left (SLeft);
            SLeft := SLeft + 1;
         else
            FEnt := Right (SRight);
            SRight := SRight + 1;
         end if;
 
         --  This loop eats ranges from left and right operands that
         --  are contiguous with the first range we are gathering.
 
         loop
            --  Eat first entry in left operand if contiguous or
            --  overlapped by gathered first operand of result.
 
            if SLeft <= Left'Last
              and then Left (SLeft).Lo <= FEnt.Hi + 1
            then
               FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
               SLeft := SLeft + 1;
 
               --  Eat first entry in right operand if contiguous or
               --  overlapped by gathered right operand of result.
 
            elsif SRight <= Right'Last
              and then Right (SRight).Lo <= FEnt.Hi + 1
            then
               FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
               SRight := SRight + 1;
 
               --  All done if no more entries to eat!
 
            else
               exit;
            end if;
         end loop;
 
         --  Obtain result as the first entry we just computed, concatenated
         --  to the "or" of the remaining results (if one operand is empty,
         --  this will just concatenate with the other
 
         return
           FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
      end "or";
 
      -----------------
      -- Build_Range --
      -----------------
 
      function Build_Range (Lo, Hi : Uint) return Node_Id is
         Result : Node_Id;
      begin
         if Lo = Hi then
            return Build_Val (Hi);
         else
            Result :=
              Make_Range (Loc,
                Low_Bound  => Build_Val (Lo),
                High_Bound => Build_Val (Hi));
            Set_Etype (Result, Btyp);
            Set_Analyzed (Result);
            return Result;
         end if;
      end Build_Range;
 
      ---------------
      -- Build_Val --
      ---------------
 
      function Build_Val (V : Uint) return Node_Id is
         Result : Node_Id;
 
      begin
         if Is_Enumeration_Type (Typ) then
            Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
         else
            Result := Make_Integer_Literal (Loc, V);
         end if;
 
         Set_Etype (Result, Btyp);
         Set_Is_Static_Expression (Result);
         Set_Analyzed (Result);
         return Result;
      end Build_Val;
 
      ---------------
      -- Get_RList --
      ---------------
 
      function Get_RList (Exp : Node_Id) return RList is
         Op  : Node_Kind;
         Val : Uint;
 
      begin
         --  Static expression can only be true or false
 
         if Is_OK_Static_Expression (Exp) then
 
            --  For False
 
            if Expr_Value (Exp) = 0 then
               return False_Range;
            else
               return True_Range;
            end if;
         end if;
 
         --  Otherwise test node type
 
         Op := Nkind (Exp);
 
         case Op is
 
            --  And
 
            when N_Op_And | N_And_Then =>
               return Get_RList (Left_Opnd (Exp))
                        and
                      Get_RList (Right_Opnd (Exp));
 
            --  Or
 
            when N_Op_Or | N_Or_Else =>
               return Get_RList (Left_Opnd (Exp))
                        or
                      Get_RList (Right_Opnd (Exp));
 
            --  Not
 
            when N_Op_Not =>
               return not Get_RList (Right_Opnd (Exp));
 
            --  Comparisons of type with static value
 
            when N_Op_Compare =>
               --  Type is left operand
 
               if Is_Type_Ref (Left_Opnd (Exp))
                 and then Is_OK_Static_Expression (Right_Opnd (Exp))
               then
                  Val := Expr_Value (Right_Opnd (Exp));
 
                  --  Typ is right operand
 
               elsif Is_Type_Ref (Right_Opnd (Exp))
                 and then Is_OK_Static_Expression (Left_Opnd (Exp))
               then
                  Val := Expr_Value (Left_Opnd (Exp));
 
                  --  Invert sense of comparison
 
                  case Op is
                     when N_Op_Gt => Op := N_Op_Lt;
                     when N_Op_Lt => Op := N_Op_Gt;
                     when N_Op_Ge => Op := N_Op_Le;
                     when N_Op_Le => Op := N_Op_Ge;
                     when others  => null;
                  end case;
 
                  --  Other cases are non-static
 
               else
                  raise Non_Static;
               end if;
 
               --  Construct range according to comparison operation
 
               case Op is
                  when N_Op_Eq =>
                     return RList'(1 => REnt'(Val, Val));
 
                  when N_Op_Ge =>
                     return RList'(1 => REnt'(Val, BHi));
 
                  when N_Op_Gt =>
                     return RList'(1 => REnt'(Val + 1, BHi));
 
                  when N_Op_Le =>
                     return RList'(1 => REnt'(BLo, Val));
 
                  when N_Op_Lt =>
                     return RList'(1 => REnt'(BLo, Val - 1));
 
                  when N_Op_Ne =>
                     return RList'(REnt'(BLo, Val - 1),
                                   REnt'(Val + 1, BHi));
 
                  when others  =>
                     raise Program_Error;
               end case;
 
            --  Membership (IN)
 
            when N_In =>
               if not Is_Type_Ref (Left_Opnd (Exp)) then
                  raise Non_Static;
               end if;
 
               if Present (Right_Opnd (Exp)) then
                  return Membership_Entry (Right_Opnd (Exp));
               else
                  return Membership_Entries (First (Alternatives (Exp)));
               end if;
 
            --  Negative membership (NOT IN)
 
            when N_Not_In =>
               if not Is_Type_Ref (Left_Opnd (Exp)) then
                  raise Non_Static;
               end if;
 
               if Present (Right_Opnd (Exp)) then
                  return not Membership_Entry (Right_Opnd (Exp));
               else
                  return not Membership_Entries (First (Alternatives (Exp)));
               end if;
 
            --  Function call, may be call to static predicate
 
            when N_Function_Call =>
               if Is_Entity_Name (Name (Exp)) then
                  declare
                     Ent : constant Entity_Id := Entity (Name (Exp));
                  begin
                     if Has_Predicates (Ent) then
                        return Stat_Pred (Etype (First_Formal (Ent)));
                     end if;
                  end;
               end if;
 
               --  Other function call cases are non-static
 
               raise Non_Static;
 
            --  Qualified expression, dig out the expression
 
            when N_Qualified_Expression =>
               return Get_RList (Expression (Exp));
 
            --  Xor operator
 
            when N_Op_Xor =>
               return (Get_RList (Left_Opnd (Exp))
                        and not Get_RList (Right_Opnd (Exp)))
                 or   (Get_RList (Right_Opnd (Exp))
                        and not Get_RList (Left_Opnd (Exp)));
 
            --  Any other node type is non-static
 
            when others =>
               raise Non_Static;
         end case;
      end Get_RList;
 
      ------------
      -- Hi_Val --
      ------------
 
      function Hi_Val (N : Node_Id) return Uint is
      begin
         if Is_Static_Expression (N) then
            return Expr_Value (N);
         else
            pragma Assert (Nkind (N) = N_Range);
            return Expr_Value (High_Bound (N));
         end if;
      end Hi_Val;
 
      --------------
      -- Is_False --
      --------------
 
      function Is_False (R : RList) return Boolean is
      begin
         return R'Length = 0;
      end Is_False;
 
      -------------
      -- Is_True --
      -------------
 
      function Is_True (R : RList) return Boolean is
      begin
         return R'Length = 1
           and then R (R'First).Lo = BLo
           and then R (R'First).Hi = BHi;
      end Is_True;
 
      -----------------
      -- Is_Type_Ref --
      -----------------
 
      function Is_Type_Ref (N : Node_Id) return Boolean is
      begin
         return Nkind (N) = N_Identifier and then Chars (N) = Nam;
      end Is_Type_Ref;
 
      ------------
      -- Lo_Val --
      ------------
 
      function Lo_Val (N : Node_Id) return Uint is
      begin
         if Is_Static_Expression (N) then
            return Expr_Value (N);
         else
            pragma Assert (Nkind (N) = N_Range);
            return Expr_Value (Low_Bound (N));
         end if;
      end Lo_Val;
 
      ------------------------
      -- Membership_Entries --
      ------------------------
 
      function Membership_Entries (N : Node_Id) return RList is
      begin
         if No (Next (N)) then
            return Membership_Entry (N);
         else
            return Membership_Entry (N) or Membership_Entries (Next (N));
         end if;
      end Membership_Entries;
 
      ----------------------
      -- Membership_Entry --
      ----------------------
 
      function Membership_Entry (N : Node_Id) return RList is
         Val : Uint;
         SLo : Uint;
         SHi : Uint;
 
      begin
         --  Range case
 
         if Nkind (N) = N_Range then
            if not Is_Static_Expression (Low_Bound (N))
                 or else
               not Is_Static_Expression (High_Bound (N))
            then
               raise Non_Static;
            else
               SLo := Expr_Value (Low_Bound  (N));
               SHi := Expr_Value (High_Bound (N));
               return RList'(1 => REnt'(SLo, SHi));
            end if;
 
         --  Static expression case
 
         elsif Is_Static_Expression (N) then
            Val := Expr_Value (N);
            return RList'(1 => REnt'(Val, Val));
 
         --  Identifier (other than static expression) case
 
         else pragma Assert (Nkind (N) = N_Identifier);
 
            --  Type case
 
            if Is_Type (Entity (N)) then
 
               --  If type has predicates, process them
 
               if Has_Predicates (Entity (N)) then
                  return Stat_Pred (Entity (N));
 
               --  For static subtype without predicates, get range
 
               elsif Is_Static_Subtype (Entity (N)) then
                  SLo := Expr_Value (Type_Low_Bound  (Entity (N)));
                  SHi := Expr_Value (Type_High_Bound (Entity (N)));
                  return RList'(1 => REnt'(SLo, SHi));
 
               --  Any other type makes us non-static
 
               else
                  raise Non_Static;
               end if;
 
            --  Any other kind of identifier in predicate (e.g. a non-static
            --  expression value) means this is not a static predicate.
 
            else
               raise Non_Static;
            end if;
         end if;
      end Membership_Entry;
 
      ---------------
      -- Stat_Pred --
      ---------------
 
      function Stat_Pred (Typ : Entity_Id) return RList is
      begin
         --  Not static if type does not have static predicates
 
         if not Has_Predicates (Typ)
           or else No (Static_Predicate (Typ))
         then
            raise Non_Static;
         end if;
 
         --  Otherwise we convert the predicate list to a range list
 
         declare
            Result : RList (1 .. List_Length (Static_Predicate (Typ)));
            P      : Node_Id;
 
         begin
            P := First (Static_Predicate (Typ));
            for J in Result'Range loop
               Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
               Next (P);
            end loop;
 
            return Result;
         end;
      end Stat_Pred;
 
   --  Start of processing for Build_Static_Predicate
 
   begin
      --  Now analyze the expression to see if it is a static predicate
 
      declare
         Ranges : constant RList := Get_RList (Expr);
         --  Range list from expression if it is static
 
         Plist : List_Id;
 
      begin
         --  Convert range list into a form for the static predicate. In the
         --  Ranges array, we just have raw ranges, these must be converted
         --  to properly typed and analyzed static expressions or range nodes.
 
         --  Note: here we limit ranges to the ranges of the subtype, so that
         --  a predicate is always false for values outside the subtype. That
         --  seems fine, such values are invalid anyway, and considering them
         --  to fail the predicate seems allowed and friendly, and furthermore
         --  simplifies processing for case statements and loops.
 
         Plist := New_List;
 
         for J in Ranges'Range loop
            declare
               Lo : Uint := Ranges (J).Lo;
               Hi : Uint := Ranges (J).Hi;
 
            begin
               --  Ignore completely out of range entry
 
               if Hi < TLo or else Lo > THi then
                  null;
 
                  --  Otherwise process entry
 
               else
                  --  Adjust out of range value to subtype range
 
                  if Lo < TLo then
                     Lo := TLo;
                  end if;
 
                  if Hi > THi then
                     Hi := THi;
                  end if;
 
                  --  Convert range into required form
 
                  if Lo = Hi then
                     Append_To (Plist, Build_Val (Lo));
                  else
                     Append_To (Plist, Build_Range (Lo, Hi));
                  end if;
               end if;
            end;
         end loop;
 
         --  Processing was successful and all entries were static, so now we
         --  can store the result as the predicate list.
 
         Set_Static_Predicate (Typ, Plist);
 
         --  The processing for static predicates put the expression into
         --  canonical form as a series of ranges. It also eliminated
         --  duplicates and collapsed and combined ranges. We might as well
         --  replace the alternatives list of the right operand of the
         --  membership test with the static predicate list, which will
         --  usually be more efficient.
 
         declare
            New_Alts : constant List_Id := New_List;
            Old_Node : Node_Id;
            New_Node : Node_Id;
 
         begin
            Old_Node := First (Plist);
            while Present (Old_Node) loop
               New_Node := New_Copy (Old_Node);
 
               if Nkind (New_Node) = N_Range then
                  Set_Low_Bound  (New_Node, New_Copy (Low_Bound  (Old_Node)));
                  Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
               end if;
 
               Append_To (New_Alts, New_Node);
               Next (Old_Node);
            end loop;
 
            --  If empty list, replace by False
 
            if Is_Empty_List (New_Alts) then
               Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
 
            --  Else replace by set membership test
 
            else
               Rewrite (Expr,
                 Make_In (Loc,
                   Left_Opnd    => Make_Identifier (Loc, Nam),
                   Right_Opnd   => Empty,
                   Alternatives => New_Alts));
 
               --  Resolve new expression in function context
 
               Install_Formals (Predicate_Function (Typ));
               Push_Scope (Predicate_Function (Typ));
               Analyze_And_Resolve (Expr, Standard_Boolean);
               Pop_Scope;
            end if;
         end;
      end;
 
   --  If non-static, return doing nothing
 
   exception
      when Non_Static =>
         return;
   end Build_Static_Predicate;
 
   -----------------------------------------
   -- Check_Aspect_At_End_Of_Declarations --
   -----------------------------------------
 
   procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
      Ent   : constant Entity_Id := Entity     (ASN);
      Ident : constant Node_Id   := Identifier (ASN);
 
      Freeze_Expr : constant Node_Id := Expression (ASN);
      --  Expression from call to Check_Aspect_At_Freeze_Point
 
      End_Decl_Expr : constant Node_Id := Entity (Ident);
      --  Expression to be analyzed at end of declarations
 
      T : constant Entity_Id := Etype (Freeze_Expr);
      --  Type required for preanalyze call
 
      A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
 
      Err : Boolean;
      --  Set False if error
 
      --  On entry to this procedure, Entity (Ident) contains a copy of the
      --  original expression from the aspect, saved for this purpose, and
      --  but Expression (Ident) is a preanalyzed copy of the expression,
      --  preanalyzed just after the freeze point.
 
   begin
      --  Case of stream attributes, just have to compare entities
 
      if A_Id = Aspect_Input  or else
         A_Id = Aspect_Output or else
         A_Id = Aspect_Read   or else
         A_Id = Aspect_Write
      then
         Analyze (End_Decl_Expr);
         Err := Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
 
      elsif A_Id = Aspect_Variable_Indexing or else
            A_Id = Aspect_Constant_Indexing or else
            A_Id = Aspect_Default_Iterator  or else
            A_Id = Aspect_Iterator_Element
      then
         --  Make type unfrozen before analysis, to prevent spurious errors
         --  about late attributes.
 
         Set_Is_Frozen (Ent, False);
         Analyze (End_Decl_Expr);
         Analyze (Aspect_Rep_Item (ASN));
         Set_Is_Frozen (Ent, True);
 
         --  If the end of declarations comes before any other freeze
         --  point, the Freeze_Expr is not analyzed: no check needed.
 
         Err :=
           Analyzed (Freeze_Expr)
             and then not In_Instance
             and then Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
 
      --  All other cases
 
      else
         --  In a generic context the aspect expressions have not been
         --  preanalyzed, so do it now. There are no conformance checks
         --  to perform in this case.
 
         if No (T) then
            Check_Aspect_At_Freeze_Point (ASN);
            return;
 
         --  The default values attributes may be defined in the private part,
         --  and the analysis of the expression may take place when only the
         --  partial view is visible. The expression must be scalar, so use
         --  the full view to resolve.
 
         elsif (A_Id = Aspect_Default_Value
                  or else
                A_Id = Aspect_Default_Component_Value)
            and then Is_Private_Type (T)
         then
            Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
         else
            Preanalyze_Spec_Expression (End_Decl_Expr, T);
         end if;
 
         Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
      end if;
 
      --  Output error message if error
 
      if Err then
         Error_Msg_NE
           ("visibility of aspect for& changes after freeze point",
            ASN, Ent);
         Error_Msg_NE
           ("?info: & is frozen here, aspects evaluated at this point",
            Freeze_Node (Ent), Ent);
      end if;
   end Check_Aspect_At_End_Of_Declarations;
 
   ----------------------------------
   -- Check_Aspect_At_Freeze_Point --
   ----------------------------------
 
   procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
      Ident : constant Node_Id := Identifier (ASN);
      --  Identifier (use Entity field to save expression)
 
      T : Entity_Id;
      --  Type required for preanalyze call
 
      A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
 
   begin
      --  On entry to this procedure, Entity (Ident) contains a copy of the
      --  original expression from the aspect, saved for this purpose.
 
      --  On exit from this procedure Entity (Ident) is unchanged, still
      --  containing that copy, but Expression (Ident) is a preanalyzed copy
      --  of the expression, preanalyzed just after the freeze point.
 
      --  Make a copy of the expression to be preanalyed
 
      Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
 
      --  Find type for preanalyze call
 
      case A_Id is
 
         --  No_Aspect should be impossible
 
         when No_Aspect =>
            raise Program_Error;
 
         --  Library unit aspects should be impossible (never delayed)
 
         when Library_Unit_Aspects =>
            raise Program_Error;
 
         --  Aspects taking an optional boolean argument. Should be impossible
         --  since these are never delayed.
 
         when Boolean_Aspects =>
            raise Program_Error;
 
         --  Test_Case aspect applies to entries and subprograms, hence should
         --  never be delayed.
 
         when Aspect_Test_Case =>
            raise Program_Error;
 
         when Aspect_Attach_Handler =>
            T := RTE (RE_Interrupt_ID);
 
         --  Default_Value is resolved with the type entity in question
 
         when Aspect_Default_Value =>
            T := Entity (ASN);
 
         --  Default_Component_Value is resolved with the component type
 
         when Aspect_Default_Component_Value =>
            T := Component_Type (Entity (ASN));
 
         --  Aspects corresponding to attribute definition clauses
 
         when Aspect_Address =>
            T := RTE (RE_Address);
 
         when Aspect_Bit_Order =>
            T := RTE (RE_Bit_Order);
 
         when Aspect_CPU =>
            T := RTE (RE_CPU_Range);
 
         when Aspect_Dispatching_Domain =>
            T := RTE (RE_Dispatching_Domain);
 
         when Aspect_External_Tag =>
            T := Standard_String;
 
         when Aspect_Priority | Aspect_Interrupt_Priority =>
            T := Standard_Integer;
 
         when Aspect_Small =>
            T := Universal_Real;
 
         --  For a simple storage pool, we have to retrieve the type of the
         --  pool object associated with the aspect's corresponding attribute
         --  definition clause.
 
         when Aspect_Simple_Storage_Pool =>
            T := Etype (Expression (Aspect_Rep_Item (ASN)));
 
         when Aspect_Storage_Pool =>
            T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
 
         when Aspect_Alignment      |
              Aspect_Component_Size |
              Aspect_Machine_Radix  |
              Aspect_Object_Size    |
              Aspect_Size           |
              Aspect_Storage_Size   |
              Aspect_Stream_Size    |
              Aspect_Value_Size     =>
            T := Any_Integer;
 
         --  Stream attribute. Special case, the expression is just an entity
         --  that does not need any resolution, so just analyze.
 
         when Aspect_Input  |
              Aspect_Output |
              Aspect_Read   |
              Aspect_Write  =>
            Analyze (Expression (ASN));
            return;
 
         --  Same for Iterator aspects, where the expression is a function
         --  name. Legality rules are checked separately.
 
         when Aspect_Constant_Indexing    |
              Aspect_Default_Iterator     |
              Aspect_Iterator_Element     |
              Aspect_Implicit_Dereference |
              Aspect_Variable_Indexing    =>
            Analyze (Expression (ASN));
            return;
 
         --  Suppress/Unsuppress/Synchronization/Warnings should not be delayed
 
         when Aspect_Suppress        |
              Aspect_Unsuppress      |
              Aspect_Synchronization |
              Aspect_Warnings        =>
            raise Program_Error;
 
         --  Pre/Post/Invariant/Predicate take boolean expressions
 
         when Aspect_Dynamic_Predicate |
              Aspect_Invariant         |
              Aspect_Pre               |
              Aspect_Precondition      |
              Aspect_Post              |
              Aspect_Postcondition     |
              Aspect_Predicate         |
              Aspect_Static_Predicate  |
              Aspect_Type_Invariant    =>
            T := Standard_Boolean;
 
         when Aspect_Dimension        |
              Aspect_Dimension_System =>
            raise Program_Error;
 
      end case;
 
      --  Do the preanalyze call
 
      Preanalyze_Spec_Expression (Expression (ASN), T);
   end Check_Aspect_At_Freeze_Point;
 
   -----------------------------------
   -- Check_Constant_Address_Clause --
   -----------------------------------
 
   procedure Check_Constant_Address_Clause
     (Expr  : Node_Id;
      U_Ent : Entity_Id)
   is
      procedure Check_At_Constant_Address (Nod : Node_Id);
      --  Checks that the given node N represents a name whose 'Address is
      --  constant (in the same sense as OK_Constant_Address_Clause, i.e. the
      --  address value is the same at the point of declaration of U_Ent and at
      --  the time of elaboration of the address clause.
 
      procedure Check_Expr_Constants (Nod : Node_Id);
      --  Checks that Nod meets the requirements for a constant address clause
      --  in the sense of the enclosing procedure.
 
      procedure Check_List_Constants (Lst : List_Id);
      --  Check that all elements of list Lst meet the requirements for a
      --  constant address clause in the sense of the enclosing procedure.
 
      -------------------------------
      -- Check_At_Constant_Address --
      -------------------------------
 
      procedure Check_At_Constant_Address (Nod : Node_Id) is
      begin
         if Is_Entity_Name (Nod) then
            if Present (Address_Clause (Entity ((Nod)))) then
               Error_Msg_NE
                 ("invalid address clause for initialized object &!",
                           Nod, U_Ent);
               Error_Msg_NE
                 ("address for& cannot" &
                    " depend on another address clause! (RM 13.1(22))!",
                  Nod, U_Ent);
 
            elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
              and then Sloc (U_Ent) < Sloc (Entity (Nod))
            then
               Error_Msg_NE
                 ("invalid address clause for initialized object &!",
                  Nod, U_Ent);
               Error_Msg_Node_2 := U_Ent;
               Error_Msg_NE
                 ("\& must be defined before & (RM 13.1(22))!",
                  Nod, Entity (Nod));
            end if;
 
         elsif Nkind (Nod) = N_Selected_Component then
            declare
               T : constant Entity_Id := Etype (Prefix (Nod));
 
            begin
               if (Is_Record_Type (T)
                    and then Has_Discriminants (T))
                 or else
                  (Is_Access_Type (T)
                     and then Is_Record_Type (Designated_Type (T))
                     and then Has_Discriminants (Designated_Type (T)))
               then
                  Error_Msg_NE
                    ("invalid address clause for initialized object &!",
                     Nod, U_Ent);
                  Error_Msg_N
                    ("\address cannot depend on component" &
                     " of discriminated record (RM 13.1(22))!",
                     Nod);
               else
                  Check_At_Constant_Address (Prefix (Nod));
               end if;
            end;
 
         elsif Nkind (Nod) = N_Indexed_Component then
            Check_At_Constant_Address (Prefix (Nod));
            Check_List_Constants (Expressions (Nod));
 
         else
            Check_Expr_Constants (Nod);
         end if;
      end Check_At_Constant_Address;
 
      --------------------------
      -- Check_Expr_Constants --
      --------------------------
 
      procedure Check_Expr_Constants (Nod : Node_Id) is
         Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
         Ent       : Entity_Id           := Empty;
 
      begin
         if Nkind (Nod) in N_Has_Etype
           and then Etype (Nod) = Any_Type
         then
            return;
         end if;
 
         case Nkind (Nod) is
            when N_Empty | N_Error =>
               return;
 
            when N_Identifier | N_Expanded_Name =>
               Ent := Entity (Nod);
 
               --  We need to look at the original node if it is different
               --  from the node, since we may have rewritten things and
               --  substituted an identifier representing the rewrite.
 
               if Original_Node (Nod) /= Nod then
                  Check_Expr_Constants (Original_Node (Nod));
 
                  --  If the node is an object declaration without initial
                  --  value, some code has been expanded, and the expression
                  --  is not constant, even if the constituents might be
                  --  acceptable, as in A'Address + offset.
 
                  if Ekind (Ent) = E_Variable
                    and then
                      Nkind (Declaration_Node (Ent)) = N_Object_Declaration
                    and then
                      No (Expression (Declaration_Node (Ent)))
                  then
                     Error_Msg_NE
                       ("invalid address clause for initialized object &!",
                        Nod, U_Ent);
 
                  --  If entity is constant, it may be the result of expanding
                  --  a check. We must verify that its declaration appears
                  --  before the object in question, else we also reject the
                  --  address clause.
 
                  elsif Ekind (Ent) = E_Constant
                    and then In_Same_Source_Unit (Ent, U_Ent)
                    and then Sloc (Ent) > Loc_U_Ent
                  then
                     Error_Msg_NE
                       ("invalid address clause for initialized object &!",
                        Nod, U_Ent);
                  end if;
 
                  return;
               end if;
 
               --  Otherwise look at the identifier and see if it is OK
 
               if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
                 or else Is_Type (Ent)
               then
                  return;
 
               elsif
                  Ekind (Ent) = E_Constant
                    or else
                  Ekind (Ent) = E_In_Parameter
               then
                  --  This is the case where we must have Ent defined before
                  --  U_Ent. Clearly if they are in different units this
                  --  requirement is met since the unit containing Ent is
                  --  already processed.
 
                  if not In_Same_Source_Unit (Ent, U_Ent) then
                     return;
 
                  --  Otherwise location of Ent must be before the location
                  --  of U_Ent, that's what prior defined means.
 
                  elsif Sloc (Ent) < Loc_U_Ent then
                     return;
 
                  else
                     Error_Msg_NE
                       ("invalid address clause for initialized object &!",
                        Nod, U_Ent);
                     Error_Msg_Node_2 := U_Ent;
                     Error_Msg_NE
                       ("\& must be defined before & (RM 13.1(22))!",
                        Nod, Ent);
                  end if;
 
               elsif Nkind (Original_Node (Nod)) = N_Function_Call then
                  Check_Expr_Constants (Original_Node (Nod));
 
               else
                  Error_Msg_NE
                    ("invalid address clause for initialized object &!",
                     Nod, U_Ent);
 
                  if Comes_From_Source (Ent) then
                     Error_Msg_NE
                       ("\reference to variable& not allowed"
                          & " (RM 13.1(22))!", Nod, Ent);
                  else
                     Error_Msg_N
                       ("non-static expression not allowed"
                          & " (RM 13.1(22))!", Nod);
                  end if;
               end if;
 
            when N_Integer_Literal   =>
 
               --  If this is a rewritten unchecked conversion, in a system
               --  where Address is an integer type, always use the base type
               --  for a literal value. This is user-friendly and prevents
               --  order-of-elaboration issues with instances of unchecked
               --  conversion.
 
               if Nkind (Original_Node (Nod)) = N_Function_Call then
                  Set_Etype (Nod, Base_Type (Etype (Nod)));
               end if;
 
            when N_Real_Literal      |
                 N_String_Literal    |
                 N_Character_Literal =>
               return;
 
            when N_Range =>
               Check_Expr_Constants (Low_Bound (Nod));
               Check_Expr_Constants (High_Bound (Nod));
 
            when N_Explicit_Dereference =>
               Check_Expr_Constants (Prefix (Nod));
 
            when N_Indexed_Component =>
               Check_Expr_Constants (Prefix (Nod));
               Check_List_Constants (Expressions (Nod));
 
            when N_Slice =>
               Check_Expr_Constants (Prefix (Nod));
               Check_Expr_Constants (Discrete_Range (Nod));
 
            when N_Selected_Component =>
               Check_Expr_Constants (Prefix (Nod));
 
            when N_Attribute_Reference =>
               if Attribute_Name (Nod) = Name_Address
                   or else
                  Attribute_Name (Nod) = Name_Access
                    or else
                  Attribute_Name (Nod) = Name_Unchecked_Access
                    or else
                  Attribute_Name (Nod) = Name_Unrestricted_Access
               then
                  Check_At_Constant_Address (Prefix (Nod));
 
               else
                  Check_Expr_Constants (Prefix (Nod));
                  Check_List_Constants (Expressions (Nod));
               end if;
 
            when N_Aggregate =>
               Check_List_Constants (Component_Associations (Nod));
               Check_List_Constants (Expressions (Nod));
 
            when N_Component_Association =>
               Check_Expr_Constants (Expression (Nod));
 
            when N_Extension_Aggregate =>
               Check_Expr_Constants (Ancestor_Part (Nod));
               Check_List_Constants (Component_Associations (Nod));
               Check_List_Constants (Expressions (Nod));
 
            when N_Null =>
               return;
 
            when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
               Check_Expr_Constants (Left_Opnd (Nod));
               Check_Expr_Constants (Right_Opnd (Nod));
 
            when N_Unary_Op =>
               Check_Expr_Constants (Right_Opnd (Nod));
 
            when N_Type_Conversion           |
                 N_Qualified_Expression      |
                 N_Allocator                 =>
               Check_Expr_Constants (Expression (Nod));
 
            when N_Unchecked_Type_Conversion =>
               Check_Expr_Constants (Expression (Nod));
 
               --  If this is a rewritten unchecked conversion, subtypes in
               --  this node are those created within the instance. To avoid
               --  order of elaboration issues, replace them with their base
               --  types. Note that address clauses can cause order of
               --  elaboration problems because they are elaborated by the
               --  back-end at the point of definition, and may mention
               --  entities declared in between (as long as everything is
               --  static). It is user-friendly to allow unchecked conversions
               --  in this context.
 
               if Nkind (Original_Node (Nod)) = N_Function_Call then
                  Set_Etype (Expression (Nod),
                    Base_Type (Etype (Expression (Nod))));
                  Set_Etype (Nod, Base_Type (Etype (Nod)));
               end if;
 
            when N_Function_Call =>
               if not Is_Pure (Entity (Name (Nod))) then
                  Error_Msg_NE
                    ("invalid address clause for initialized object &!",
                     Nod, U_Ent);
 
                  Error_Msg_NE
                    ("\function & is not pure (RM 13.1(22))!",
                     Nod, Entity (Name (Nod)));
 
               else
                  Check_List_Constants (Parameter_Associations (Nod));
               end if;
 
            when N_Parameter_Association =>
               Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
 
            when others =>
               Error_Msg_NE
                 ("invalid address clause for initialized object &!",
                  Nod, U_Ent);
               Error_Msg_NE
                 ("\must be constant defined before& (RM 13.1(22))!",
                  Nod, U_Ent);
         end case;
      end Check_Expr_Constants;
 
      --------------------------
      -- Check_List_Constants --
      --------------------------
 
      procedure Check_List_Constants (Lst : List_Id) is
         Nod1 : Node_Id;
 
      begin
         if Present (Lst) then
            Nod1 := First (Lst);
            while Present (Nod1) loop
               Check_Expr_Constants (Nod1);
               Next (Nod1);
            end loop;
         end if;
      end Check_List_Constants;
 
   --  Start of processing for Check_Constant_Address_Clause
 
   begin
      --  If rep_clauses are to be ignored, no need for legality checks. In
      --  particular, no need to pester user about rep clauses that violate
      --  the rule on constant addresses, given that these clauses will be
      --  removed by Freeze before they reach the back end.
 
      if not Ignore_Rep_Clauses then
         Check_Expr_Constants (Expr);
      end if;
   end Check_Constant_Address_Clause;
 
   ----------------------------------------
   -- Check_Record_Representation_Clause --
   ----------------------------------------
 
   procedure Check_Record_Representation_Clause (N : Node_Id) is
      Loc     : constant Source_Ptr := Sloc (N);
      Ident   : constant Node_Id    := Identifier (N);
      Rectype : Entity_Id;
      Fent    : Entity_Id;
      CC      : Node_Id;
      Fbit    : Uint;
      Lbit    : Uint;
      Hbit    : Uint := Uint_0;
      Comp    : Entity_Id;
      Pcomp   : Entity_Id;
 
      Max_Bit_So_Far : Uint;
      --  Records the maximum bit position so far. If all field positions
      --  are monotonically increasing, then we can skip the circuit for
      --  checking for overlap, since no overlap is possible.
 
      Tagged_Parent : Entity_Id := Empty;
      --  This is set in the case of a derived tagged type for which we have
      --  Is_Fully_Repped_Tagged_Type True (indicating that all components are
      --  positioned by record representation clauses). In this case we must
      --  check for overlap between components of this tagged type, and the
      --  components of its parent. Tagged_Parent will point to this parent
      --  type. For all other cases Tagged_Parent is left set to Empty.
 
      Parent_Last_Bit : Uint;
      --  Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
      --  last bit position for any field in the parent type. We only need to
      --  check overlap for fields starting below this point.
 
      Overlap_Check_Required : Boolean;
      --  Used to keep track of whether or not an overlap check is required
 
      Overlap_Detected : Boolean := False;
      --  Set True if an overlap is detected
 
      Ccount : Natural := 0;
      --  Number of component clauses in record rep clause
 
      procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
      --  Given two entities for record components or discriminants, checks
      --  if they have overlapping component clauses and issues errors if so.
 
      procedure Find_Component;
      --  Finds component entity corresponding to current component clause (in
      --  CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
      --  start/stop bits for the field. If there is no matching component or
      --  if the matching component does not have a component clause, then
      --  that's an error and Comp is set to Empty, but no error message is
      --  issued, since the message was already given. Comp is also set to
      --  Empty if the current "component clause" is in fact a pragma.
 
      -----------------------------
      -- Check_Component_Overlap --
      -----------------------------
 
      procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
         CC1 : constant Node_Id := Component_Clause (C1_Ent);
         CC2 : constant Node_Id := Component_Clause (C2_Ent);
 
      begin
         if Present (CC1) and then Present (CC2) then
 
            --  Exclude odd case where we have two tag fields in the same
            --  record, both at location zero. This seems a bit strange, but
            --  it seems to happen in some circumstances, perhaps on an error.
 
            if Chars (C1_Ent) = Name_uTag
                 and then
               Chars (C2_Ent) = Name_uTag
            then
               return;
            end if;
 
            --  Here we check if the two fields overlap
 
            declare
               S1 : constant Uint := Component_Bit_Offset (C1_Ent);
               S2 : constant Uint := Component_Bit_Offset (C2_Ent);
               E1 : constant Uint := S1 + Esize (C1_Ent);
               E2 : constant Uint := S2 + Esize (C2_Ent);
 
            begin
               if E2 <= S1 or else E1 <= S2 then
                  null;
               else
                  Error_Msg_Node_2 := Component_Name (CC2);
                  Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
                  Error_Msg_Node_1 := Component_Name (CC1);
                  Error_Msg_N
                    ("component& overlaps & #", Component_Name (CC1));
                  Overlap_Detected := True;
               end if;
            end;
         end if;
      end Check_Component_Overlap;
 
      --------------------
      -- Find_Component --
      --------------------
 
      procedure Find_Component is
 
         procedure Search_Component (R : Entity_Id);
         --  Search components of R for a match. If found, Comp is set.
 
         ----------------------
         -- Search_Component --
         ----------------------
 
         procedure Search_Component (R : Entity_Id) is
         begin
            Comp := First_Component_Or_Discriminant (R);
            while Present (Comp) loop
 
               --  Ignore error of attribute name for component name (we
               --  already gave an error message for this, so no need to
               --  complain here)
 
               if Nkind (Component_Name (CC)) = N_Attribute_Reference then
                  null;
               else
                  exit when Chars (Comp) = Chars (Component_Name (CC));
               end if;
 
               Next_Component_Or_Discriminant (Comp);
            end loop;
         end Search_Component;
 
      --  Start of processing for Find_Component
 
      begin
         --  Return with Comp set to Empty if we have a pragma
 
         if Nkind (CC) = N_Pragma then
            Comp := Empty;
            return;
         end if;
 
         --  Search current record for matching component
 
         Search_Component (Rectype);
 
         --  If not found, maybe component of base type that is absent from
         --  statically constrained first subtype.
 
         if No (Comp) then
            Search_Component (Base_Type (Rectype));
         end if;
 
         --  If no component, or the component does not reference the component
         --  clause in question, then there was some previous error for which
         --  we already gave a message, so just return with Comp Empty.
 
         if No (Comp)
           or else Component_Clause (Comp) /= CC
         then
            Comp := Empty;
 
         --  Normal case where we have a component clause
 
         else
            Fbit := Component_Bit_Offset (Comp);
            Lbit := Fbit + Esize (Comp) - 1;
         end if;
      end Find_Component;
 
   --  Start of processing for Check_Record_Representation_Clause
 
   begin
      Find_Type (Ident);
      Rectype := Entity (Ident);
 
      if Rectype = Any_Type then
         return;
      else
         Rectype := Underlying_Type (Rectype);
      end if;
 
      --  See if we have a fully repped derived tagged type
 
      declare
         PS : constant Entity_Id := Parent_Subtype (Rectype);
 
      begin
         if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
            Tagged_Parent := PS;
 
            --  Find maximum bit of any component of the parent type
 
            Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
            Pcomp := First_Entity (Tagged_Parent);
            while Present (Pcomp) loop
               if Ekind_In (Pcomp, E_Discriminant, E_Component) then
                  if Component_Bit_Offset (Pcomp) /= No_Uint
                    and then Known_Static_Esize (Pcomp)
                  then
                     Parent_Last_Bit :=
                       UI_Max
                         (Parent_Last_Bit,
                          Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
                  end if;
 
                  Next_Entity (Pcomp);
               end if;
            end loop;
         end if;
      end;
 
      --  All done if no component clauses
 
      CC := First (Component_Clauses (N));
 
      if No (CC) then
         return;
      end if;
 
      --  If a tag is present, then create a component clause that places it
      --  at the start of the record (otherwise gigi may place it after other
      --  fields that have rep clauses).
 
      Fent := First_Entity (Rectype);
 
      if Nkind (Fent) = N_Defining_Identifier
        and then Chars (Fent) = Name_uTag
      then
         Set_Component_Bit_Offset    (Fent, Uint_0);
         Set_Normalized_Position     (Fent, Uint_0);
         Set_Normalized_First_Bit    (Fent, Uint_0);
         Set_Normalized_Position_Max (Fent, Uint_0);
         Init_Esize                  (Fent, System_Address_Size);
 
         Set_Component_Clause (Fent,
           Make_Component_Clause (Loc,
             Component_Name => Make_Identifier (Loc, Name_uTag),
 
             Position  => Make_Integer_Literal (Loc, Uint_0),
             First_Bit => Make_Integer_Literal (Loc, Uint_0),
             Last_Bit  =>
               Make_Integer_Literal (Loc,
                 UI_From_Int (System_Address_Size))));
 
         Ccount := Ccount + 1;
      end if;
 
      Max_Bit_So_Far := Uint_Minus_1;
      Overlap_Check_Required := False;
 
      --  Process the component clauses
 
      while Present (CC) loop
         Find_Component;
 
         if Present (Comp) then
            Ccount := Ccount + 1;
 
            --  We need a full overlap check if record positions non-monotonic
 
            if Fbit <= Max_Bit_So_Far then
               Overlap_Check_Required := True;
            end if;
 
            Max_Bit_So_Far := Lbit;
 
            --  Check bit position out of range of specified size
 
            if Has_Size_Clause (Rectype)
              and then RM_Size (Rectype) <= Lbit
            then
               Error_Msg_N
                 ("bit number out of range of specified size",
                  Last_Bit (CC));
 
               --  Check for overlap with tag field
 
            else
               if Is_Tagged_Type (Rectype)
                 and then Fbit < System_Address_Size
               then
                  Error_Msg_NE
                    ("component overlaps tag field of&",
                     Component_Name (CC), Rectype);
                  Overlap_Detected := True;
               end if;
 
               if Hbit < Lbit then
                  Hbit := Lbit;
               end if;
            end if;
 
            --  Check parent overlap if component might overlap parent field
 
            if Present (Tagged_Parent)
              and then Fbit <= Parent_Last_Bit
            then
               Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
               while Present (Pcomp) loop
                  if not Is_Tag (Pcomp)
                    and then Chars (Pcomp) /= Name_uParent
                  then
                     Check_Component_Overlap (Comp, Pcomp);
                  end if;
 
                  Next_Component_Or_Discriminant (Pcomp);
               end loop;
            end if;
         end if;
 
         Next (CC);
      end loop;
 
      --  Now that we have processed all the component clauses, check for
      --  overlap. We have to leave this till last, since the components can
      --  appear in any arbitrary order in the representation clause.
 
      --  We do not need this check if all specified ranges were monotonic,
      --  as recorded by Overlap_Check_Required being False at this stage.
 
      --  This first section checks if there are any overlapping entries at
      --  all. It does this by sorting all entries and then seeing if there are
      --  any overlaps. If there are none, then that is decisive, but if there
      --  are overlaps, they may still be OK (they may result from fields in
      --  different variants).
 
      if Overlap_Check_Required then
         Overlap_Check1 : declare
 
            OC_Fbit : array (0 .. Ccount) of Uint;
            --  First-bit values for component clauses, the value is the offset
            --  of the first bit of the field from start of record. The zero
            --  entry is for use in sorting.
 
            OC_Lbit : array (0 .. Ccount) of Uint;
            --  Last-bit values for component clauses, the value is the offset
            --  of the last bit of the field from start of record. The zero
            --  entry is for use in sorting.
 
            OC_Count : Natural := 0;
            --  Count of entries in OC_Fbit and OC_Lbit
 
            function OC_Lt (Op1, Op2 : Natural) return Boolean;
            --  Compare routine for Sort
 
            procedure OC_Move (From : Natural; To : Natural);
            --  Move routine for Sort
 
            package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
 
            -----------
            -- OC_Lt --
            -----------
 
            function OC_Lt (Op1, Op2 : Natural) return Boolean is
            begin
               return OC_Fbit (Op1) < OC_Fbit (Op2);
            end OC_Lt;
 
            -------------
            -- OC_Move --
            -------------
 
            procedure OC_Move (From : Natural; To : Natural) is
            begin
               OC_Fbit (To) := OC_Fbit (From);
               OC_Lbit (To) := OC_Lbit (From);
            end OC_Move;
 
            --  Start of processing for Overlap_Check
 
         begin
            CC := First (Component_Clauses (N));
            while Present (CC) loop
 
               --  Exclude component clause already marked in error
 
               if not Error_Posted (CC) then
                  Find_Component;
 
                  if Present (Comp) then
                     OC_Count := OC_Count + 1;
                     OC_Fbit (OC_Count) := Fbit;
                     OC_Lbit (OC_Count) := Lbit;
                  end if;
               end if;
 
               Next (CC);
            end loop;
 
            Sorting.Sort (OC_Count);
 
            Overlap_Check_Required := False;
            for J in 1 .. OC_Count - 1 loop
               if OC_Lbit (J) >= OC_Fbit (J + 1) then
                  Overlap_Check_Required := True;
                  exit;
               end if;
            end loop;
         end Overlap_Check1;
      end if;
 
      --  If Overlap_Check_Required is still True, then we have to do the full
      --  scale overlap check, since we have at least two fields that do
      --  overlap, and we need to know if that is OK since they are in
      --  different variant, or whether we have a definite problem.
 
      if Overlap_Check_Required then
         Overlap_Check2 : declare
            C1_Ent, C2_Ent : Entity_Id;
            --  Entities of components being checked for overlap
 
            Clist : Node_Id;
            --  Component_List node whose Component_Items are being checked
 
            Citem : Node_Id;
            --  Component declaration for component being checked
 
         begin
            C1_Ent := First_Entity (Base_Type (Rectype));
 
            --  Loop through all components in record. For each component check
            --  for overlap with any of the preceding elements on the component
            --  list containing the component and also, if the component is in
            --  a variant, check against components outside the case structure.
            --  This latter test is repeated recursively up the variant tree.
 
            Main_Component_Loop : while Present (C1_Ent) loop
               if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
                  goto Continue_Main_Component_Loop;
               end if;
 
               --  Skip overlap check if entity has no declaration node. This
               --  happens with discriminants in constrained derived types.
               --  Possibly we are missing some checks as a result, but that
               --  does not seem terribly serious.
 
               if No (Declaration_Node (C1_Ent)) then
                  goto Continue_Main_Component_Loop;
               end if;
 
               Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
 
               --  Loop through component lists that need checking. Check the
               --  current component list and all lists in variants above us.
 
               Component_List_Loop : loop
 
                  --  If derived type definition, go to full declaration
                  --  If at outer level, check discriminants if there are any.
 
                  if Nkind (Clist) = N_Derived_Type_Definition then
                     Clist := Parent (Clist);
                  end if;
 
                  --  Outer level of record definition, check discriminants
 
                  if Nkind_In (Clist, N_Full_Type_Declaration,
                               N_Private_Type_Declaration)
                  then
                     if Has_Discriminants (Defining_Identifier (Clist)) then
                        C2_Ent :=
                          First_Discriminant (Defining_Identifier (Clist));
                        while Present (C2_Ent) loop
                           exit when C1_Ent = C2_Ent;
                           Check_Component_Overlap (C1_Ent, C2_Ent);
                           Next_Discriminant (C2_Ent);
                        end loop;
                     end if;
 
                     --  Record extension case
 
                  elsif Nkind (Clist) = N_Derived_Type_Definition then
                     Clist := Empty;
 
                     --  Otherwise check one component list
 
                  else
                     Citem := First (Component_Items (Clist));
                     while Present (Citem) loop
                        if Nkind (Citem) = N_Component_Declaration then
                           C2_Ent := Defining_Identifier (Citem);
                           exit when C1_Ent = C2_Ent;
                           Check_Component_Overlap (C1_Ent, C2_Ent);
                        end if;
 
                        Next (Citem);
                     end loop;
                  end if;
 
                  --  Check for variants above us (the parent of the Clist can
                  --  be a variant, in which case its parent is a variant part,
                  --  and the parent of the variant part is a component list
                  --  whose components must all be checked against the current
                  --  component for overlap).
 
                  if Nkind (Parent (Clist)) = N_Variant then
                     Clist := Parent (Parent (Parent (Clist)));
 
                     --  Check for possible discriminant part in record, this
                     --  is treated essentially as another level in the
                     --  recursion. For this case the parent of the component
                     --  list is the record definition, and its parent is the
                     --  full type declaration containing the discriminant
                     --  specifications.
 
                  elsif Nkind (Parent (Clist)) = N_Record_Definition then
                     Clist := Parent (Parent ((Clist)));
 
                     --  If neither of these two cases, we are at the top of
                     --  the tree.
 
                  else
                     exit Component_List_Loop;
                  end if;
               end loop Component_List_Loop;
 
               <<Continue_Main_Component_Loop>>
               Next_Entity (C1_Ent);
 
            end loop Main_Component_Loop;
         end Overlap_Check2;
      end if;
 
      --  The following circuit deals with warning on record holes (gaps). We
      --  skip this check if overlap was detected, since it makes sense for the
      --  programmer to fix this illegality before worrying about warnings.
 
      if not Overlap_Detected and Warn_On_Record_Holes then
         Record_Hole_Check : declare
            Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
            --  Full declaration of record type
 
            procedure Check_Component_List
              (CL   : Node_Id;
               Sbit : Uint;
               DS   : List_Id);
            --  Check component list CL for holes. The starting bit should be
            --  Sbit. which is zero for the main record component list and set
            --  appropriately for recursive calls for variants. DS is set to
            --  a list of discriminant specifications to be included in the
            --  consideration of components. It is No_List if none to consider.
 
            --------------------------
            -- Check_Component_List --
            --------------------------
 
            procedure Check_Component_List
              (CL   : Node_Id;
               Sbit : Uint;
               DS   : List_Id)
            is
               Compl : Integer;
 
            begin
               Compl := Integer (List_Length (Component_Items (CL)));
 
               if DS /= No_List then
                  Compl := Compl + Integer (List_Length (DS));
               end if;
 
               declare
                  Comps : array (Natural range 0 .. Compl) of Entity_Id;
                  --  Gather components (zero entry is for sort routine)
 
                  Ncomps : Natural := 0;
                  --  Number of entries stored in Comps (starting at Comps (1))
 
                  Citem : Node_Id;
                  --  One component item or discriminant specification
 
                  Nbit  : Uint;
                  --  Starting bit for next component
 
                  CEnt  : Entity_Id;
                  --  Component entity
 
                  Variant : Node_Id;
                  --  One variant
 
                  function Lt (Op1, Op2 : Natural) return Boolean;
                  --  Compare routine for Sort
 
                  procedure Move (From : Natural; To : Natural);
                  --  Move routine for Sort
 
                  package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
 
                  --------
                  -- Lt --
                  --------
 
                  function Lt (Op1, Op2 : Natural) return Boolean is
                  begin
                     return Component_Bit_Offset (Comps (Op1))
                       <
                       Component_Bit_Offset (Comps (Op2));
                  end Lt;
 
                  ----------
                  -- Move --
                  ----------
 
                  procedure Move (From : Natural; To : Natural) is
                  begin
                     Comps (To) := Comps (From);
                  end Move;
 
               begin
                  --  Gather discriminants into Comp
 
                  if DS /= No_List then
                     Citem := First (DS);
                     while Present (Citem) loop
                        if Nkind (Citem) = N_Discriminant_Specification then
                           declare
                              Ent : constant Entity_Id :=
                                      Defining_Identifier (Citem);
                           begin
                              if Ekind (Ent) = E_Discriminant then
                                 Ncomps := Ncomps + 1;
                                 Comps (Ncomps) := Ent;
                              end if;
                           end;
                        end if;
 
                        Next (Citem);
                     end loop;
                  end if;
 
                  --  Gather component entities into Comp
 
                  Citem := First (Component_Items (CL));
                  while Present (Citem) loop
                     if Nkind (Citem) = N_Component_Declaration then
                        Ncomps := Ncomps + 1;
                        Comps (Ncomps) := Defining_Identifier (Citem);
                     end if;
 
                     Next (Citem);
                  end loop;
 
                  --  Now sort the component entities based on the first bit.
                  --  Note we already know there are no overlapping components.
 
                  Sorting.Sort (Ncomps);
 
                  --  Loop through entries checking for holes
 
                  Nbit := Sbit;
                  for J in 1 .. Ncomps loop
                     CEnt := Comps (J);
                     Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
 
                     if Error_Msg_Uint_1 > 0 then
                        Error_Msg_NE
                          ("?^-bit gap before component&",
                           Component_Name (Component_Clause (CEnt)), CEnt);
                     end if;
 
                     Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
                  end loop;
 
                  --  Process variant parts recursively if present
 
                  if Present (Variant_Part (CL)) then
                     Variant := First (Variants (Variant_Part (CL)));
                     while Present (Variant) loop
                        Check_Component_List
                          (Component_List (Variant), Nbit, No_List);
                        Next (Variant);
                     end loop;
                  end if;
               end;
            end Check_Component_List;
 
         --  Start of processing for Record_Hole_Check
 
         begin
            declare
               Sbit : Uint;
 
            begin
               if Is_Tagged_Type (Rectype) then
                  Sbit := UI_From_Int (System_Address_Size);
               else
                  Sbit := Uint_0;
               end if;
 
               if Nkind (Decl) = N_Full_Type_Declaration
                 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
               then
                  Check_Component_List
                    (Component_List (Type_Definition (Decl)),
                     Sbit,
                     Discriminant_Specifications (Decl));
               end if;
            end;
         end Record_Hole_Check;
      end if;
 
      --  For records that have component clauses for all components, and whose
      --  size is less than or equal to 32, we need to know the size in the
      --  front end to activate possible packed array processing where the
      --  component type is a record.
 
      --  At this stage Hbit + 1 represents the first unused bit from all the
      --  component clauses processed, so if the component clauses are
      --  complete, then this is the length of the record.
 
      --  For records longer than System.Storage_Unit, and for those where not
      --  all components have component clauses, the back end determines the
      --  length (it may for example be appropriate to round up the size
      --  to some convenient boundary, based on alignment considerations, etc).
 
      if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
 
         --  Nothing to do if at least one component has no component clause
 
         Comp := First_Component_Or_Discriminant (Rectype);
         while Present (Comp) loop
            exit when No (Component_Clause (Comp));
            Next_Component_Or_Discriminant (Comp);
         end loop;
 
         --  If we fall out of loop, all components have component clauses
         --  and so we can set the size to the maximum value.
 
         if No (Comp) then
            Set_RM_Size (Rectype, Hbit + 1);
         end if;
      end if;
   end Check_Record_Representation_Clause;
 
   ----------------
   -- Check_Size --
   ----------------
 
   procedure Check_Size
     (N      : Node_Id;
      T      : Entity_Id;
      Siz    : Uint;
      Biased : out Boolean)
   is
      UT : constant Entity_Id := Underlying_Type (T);
      M  : Uint;
 
   begin
      Biased := False;
 
      --  Dismiss cases for generic types or types with previous errors
 
      if No (UT)
        or else UT = Any_Type
        or else Is_Generic_Type (UT)
        or else Is_Generic_Type (Root_Type (UT))
      then
         return;
 
      --  Check case of bit packed array
 
      elsif Is_Array_Type (UT)
        and then Known_Static_Component_Size (UT)
        and then Is_Bit_Packed_Array (UT)
      then
         declare
            Asiz : Uint;
            Indx : Node_Id;
            Ityp : Entity_Id;
 
         begin
            Asiz := Component_Size (UT);
            Indx := First_Index (UT);
            loop
               Ityp := Etype (Indx);
 
               --  If non-static bound, then we are not in the business of
               --  trying to check the length, and indeed an error will be
               --  issued elsewhere, since sizes of non-static array types
               --  cannot be set implicitly or explicitly.
 
               if not Is_Static_Subtype (Ityp) then
                  return;
               end if;
 
               --  Otherwise accumulate next dimension
 
               Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
                               Expr_Value (Type_Low_Bound  (Ityp)) +
                               Uint_1);
 
               Next_Index (Indx);
               exit when No (Indx);
            end loop;
 
            if Asiz <= Siz then
               return;
            else
               Error_Msg_Uint_1 := Asiz;
               Error_Msg_NE
                 ("size for& too small, minimum allowed is ^", N, T);
               Set_Esize   (T, Asiz);
               Set_RM_Size (T, Asiz);
            end if;
         end;
 
      --  All other composite types are ignored
 
      elsif Is_Composite_Type (UT) then
         return;
 
      --  For fixed-point types, don't check minimum if type is not frozen,
      --  since we don't know all the characteristics of the type that can
      --  affect the size (e.g. a specified small) till freeze time.
 
      elsif Is_Fixed_Point_Type (UT)
        and then not Is_Frozen (UT)
      then
         null;
 
      --  Cases for which a minimum check is required
 
      else
         --  Ignore if specified size is correct for the type
 
         if Known_Esize (UT) and then Siz = Esize (UT) then
            return;
         end if;
 
         --  Otherwise get minimum size
 
         M := UI_From_Int (Minimum_Size (UT));
 
         if Siz < M then
 
            --  Size is less than minimum size, but one possibility remains
            --  that we can manage with the new size if we bias the type.
 
            M := UI_From_Int (Minimum_Size (UT, Biased => True));
 
            if Siz < M then
               Error_Msg_Uint_1 := M;
               Error_Msg_NE
                 ("size for& too small, minimum allowed is ^", N, T);
               Set_Esize (T, M);
               Set_RM_Size (T, M);
            else
               Biased := True;
            end if;
         end if;
      end if;
   end Check_Size;
 
   -------------------------
   -- Get_Alignment_Value --
   -------------------------
 
   function Get_Alignment_Value (Expr : Node_Id) return Uint is
      Align : constant Uint := Static_Integer (Expr);
 
   begin
      if Align = No_Uint then
         return No_Uint;
 
      elsif Align <= 0 then
         Error_Msg_N ("alignment value must be positive", Expr);
         return No_Uint;
 
      else
         for J in Int range 0 .. 64 loop
            declare
               M : constant Uint := Uint_2 ** J;
 
            begin
               exit when M = Align;
 
               if M > Align then
                  Error_Msg_N
                    ("alignment value must be power of 2", Expr);
                  return No_Uint;
               end if;
            end;
         end loop;
 
         return Align;
      end if;
   end Get_Alignment_Value;
 
   ----------------
   -- Initialize --
   ----------------
 
   procedure Initialize is
   begin
      Address_Clause_Checks.Init;
      Independence_Checks.Init;
      Unchecked_Conversions.Init;
   end Initialize;
 
   -------------------------
   -- Is_Operational_Item --
   -------------------------
 
   function Is_Operational_Item (N : Node_Id) return Boolean is
   begin
      if Nkind (N) /= N_Attribute_Definition_Clause then
         return False;
      else
         declare
            Id    : constant Attribute_Id := Get_Attribute_Id (Chars (N));
         begin
            return   Id = Attribute_Input
              or else Id = Attribute_Output
              or else Id = Attribute_Read
              or else Id = Attribute_Write
              or else Id = Attribute_External_Tag;
         end;
      end if;
   end Is_Operational_Item;
 
   ------------------
   -- Minimum_Size --
   ------------------
 
   function Minimum_Size
     (T      : Entity_Id;
      Biased : Boolean := False) return Nat
   is
      Lo     : Uint    := No_Uint;
      Hi     : Uint    := No_Uint;
      LoR    : Ureal   := No_Ureal;
      HiR    : Ureal   := No_Ureal;
      LoSet  : Boolean := False;
      HiSet  : Boolean := False;
      B      : Uint;
      S      : Nat;
      Ancest : Entity_Id;
      R_Typ  : constant Entity_Id := Root_Type (T);
 
   begin
      --  If bad type, return 0
 
      if T = Any_Type then
         return 0;
 
      --  For generic types, just return zero. There cannot be any legitimate
      --  need to know such a size, but this routine may be called with a
      --  generic type as part of normal processing.
 
      elsif Is_Generic_Type (R_Typ)
        or else R_Typ = Any_Type
      then
         return 0;
 
         --  Access types. Normally an access type cannot have a size smaller
         --  than the size of System.Address. The exception is on VMS, where
         --  we have short and long addresses, and it is possible for an access
         --  type to have a short address size (and thus be less than the size
         --  of System.Address itself). We simply skip the check for VMS, and
         --  leave it to the back end to do the check.
 
      elsif Is_Access_Type (T) then
         if OpenVMS_On_Target then
            return 0;
         else
            return System_Address_Size;
         end if;
 
      --  Floating-point types
 
      elsif Is_Floating_Point_Type (T) then
         return UI_To_Int (Esize (R_Typ));
 
      --  Discrete types
 
      elsif Is_Discrete_Type (T) then
 
         --  The following loop is looking for the nearest compile time known
         --  bounds following the ancestor subtype chain. The idea is to find
         --  the most restrictive known bounds information.
 
         Ancest := T;
         loop
            if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
               return 0;
            end if;
 
            if not LoSet then
               if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
                  Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
                  LoSet := True;
                  exit when HiSet;
               end if;
            end if;
 
            if not HiSet then
               if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
                  Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
                  HiSet := True;
                  exit when LoSet;
               end if;
            end if;
 
            Ancest := Ancestor_Subtype (Ancest);
 
            if No (Ancest) then
               Ancest := Base_Type (T);
 
               if Is_Generic_Type (Ancest) then
                  return 0;
               end if;
            end if;
         end loop;
 
      --  Fixed-point types. We can't simply use Expr_Value to get the
      --  Corresponding_Integer_Value values of the bounds, since these do not
      --  get set till the type is frozen, and this routine can be called
      --  before the type is frozen. Similarly the test for bounds being static
      --  needs to include the case where we have unanalyzed real literals for
      --  the same reason.
 
      elsif Is_Fixed_Point_Type (T) then
 
         --  The following loop is looking for the nearest compile time known
         --  bounds following the ancestor subtype chain. The idea is to find
         --  the most restrictive known bounds information.
 
         Ancest := T;
         loop
            if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
               return 0;
            end if;
 
            --  Note: In the following two tests for LoSet and HiSet, it may
            --  seem redundant to test for N_Real_Literal here since normally
            --  one would assume that the test for the value being known at
            --  compile time includes this case. However, there is a glitch.
            --  If the real literal comes from folding a non-static expression,
            --  then we don't consider any non- static expression to be known
            --  at compile time if we are in configurable run time mode (needed
            --  in some cases to give a clearer definition of what is and what
            --  is not accepted). So the test is indeed needed. Without it, we
            --  would set neither Lo_Set nor Hi_Set and get an infinite loop.
 
            if not LoSet then
               if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
                 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
               then
                  LoR := Expr_Value_R (Type_Low_Bound (Ancest));
                  LoSet := True;
                  exit when HiSet;
               end if;
            end if;
 
            if not HiSet then
               if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
                 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
               then
                  HiR := Expr_Value_R (Type_High_Bound (Ancest));
                  HiSet := True;
                  exit when LoSet;
               end if;
            end if;
 
            Ancest := Ancestor_Subtype (Ancest);
 
            if No (Ancest) then
               Ancest := Base_Type (T);
 
               if Is_Generic_Type (Ancest) then
                  return 0;
               end if;
            end if;
         end loop;
 
         Lo := UR_To_Uint (LoR / Small_Value (T));
         Hi := UR_To_Uint (HiR / Small_Value (T));
 
      --  No other types allowed
 
      else
         raise Program_Error;
      end if;
 
      --  Fall through with Hi and Lo set. Deal with biased case
 
      if (Biased
           and then not Is_Fixed_Point_Type (T)
           and then not (Is_Enumeration_Type (T)
                          and then Has_Non_Standard_Rep (T)))
        or else Has_Biased_Representation (T)
      then
         Hi := Hi - Lo;
         Lo := Uint_0;
      end if;
 
      --  Signed case. Note that we consider types like range 1 .. -1 to be
      --  signed for the purpose of computing the size, since the bounds have
      --  to be accommodated in the base type.
 
      if Lo < 0 or else Hi < 0 then
         S := 1;
         B := Uint_1;
 
         --  S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
         --  Note that we accommodate the case where the bounds cross. This
         --  can happen either because of the way the bounds are declared
         --  or because of the algorithm in Freeze_Fixed_Point_Type.
 
         while Lo < -B
           or else Hi < -B
           or else Lo >= B
           or else Hi >= B
         loop
            B := Uint_2 ** S;
            S := S + 1;
         end loop;
 
      --  Unsigned case
 
      else
         --  If both bounds are positive, make sure that both are represen-
         --  table in the case where the bounds are crossed. This can happen
         --  either because of the way the bounds are declared, or because of
         --  the algorithm in Freeze_Fixed_Point_Type.
 
         if Lo > Hi then
            Hi := Lo;
         end if;
 
         --  S = size, (can accommodate 0 .. (2**size - 1))
 
         S := 0;
         while Hi >= Uint_2 ** S loop
            S := S + 1;
         end loop;
      end if;
 
      return S;
   end Minimum_Size;
 
   ---------------------------
   -- New_Stream_Subprogram --
   ---------------------------
 
   procedure New_Stream_Subprogram
     (N     : Node_Id;
      Ent   : Entity_Id;
      Subp  : Entity_Id;
      Nam   : TSS_Name_Type)
   is
      Loc       : constant Source_Ptr := Sloc (N);
      Sname     : constant Name_Id    := Make_TSS_Name (Base_Type (Ent), Nam);
      Subp_Id   : Entity_Id;
      Subp_Decl : Node_Id;
      F         : Entity_Id;
      Etyp      : Entity_Id;
 
      Defer_Declaration : constant Boolean :=
                            Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
      --  For a tagged type, there is a declaration for each stream attribute
      --  at the freeze point, and we must generate only a completion of this
      --  declaration. We do the same for private types, because the full view
      --  might be tagged. Otherwise we generate a declaration at the point of
      --  the attribute definition clause.
 
      function Build_Spec return Node_Id;
      --  Used for declaration and renaming declaration, so that this is
      --  treated as a renaming_as_body.
 
      ----------------
      -- Build_Spec --
      ----------------
 
      function Build_Spec return Node_Id is
         Out_P   : constant Boolean := (Nam = TSS_Stream_Read);
         Formals : List_Id;
         Spec    : Node_Id;
         T_Ref   : constant Node_Id := New_Reference_To (Etyp, Loc);
 
      begin
         Subp_Id := Make_Defining_Identifier (Loc, Sname);
 
         --  S : access Root_Stream_Type'Class
 
         Formals := New_List (
                      Make_Parameter_Specification (Loc,
                        Defining_Identifier =>
                          Make_Defining_Identifier (Loc, Name_S),
                        Parameter_Type =>
                          Make_Access_Definition (Loc,
                            Subtype_Mark =>
                              New_Reference_To (
                                Designated_Type (Etype (F)), Loc))));
 
         if Nam = TSS_Stream_Input then
            Spec := Make_Function_Specification (Loc,
                      Defining_Unit_Name       => Subp_Id,
                      Parameter_Specifications => Formals,
                      Result_Definition        => T_Ref);
         else
            --  V : [out] T
 
            Append_To (Formals,
              Make_Parameter_Specification (Loc,
                Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
                Out_Present         => Out_P,
                Parameter_Type      => T_Ref));
 
            Spec :=
              Make_Procedure_Specification (Loc,
                Defining_Unit_Name       => Subp_Id,
                Parameter_Specifications => Formals);
         end if;
 
         return Spec;
      end Build_Spec;
 
   --  Start of processing for New_Stream_Subprogram
 
   begin
      F := First_Formal (Subp);
 
      if Ekind (Subp) = E_Procedure then
         Etyp := Etype (Next_Formal (F));
      else
         Etyp := Etype (Subp);
      end if;
 
      --  Prepare subprogram declaration and insert it as an action on the
      --  clause node. The visibility for this entity is used to test for
      --  visibility of the attribute definition clause (in the sense of
      --  8.3(23) as amended by AI-195).
 
      if not Defer_Declaration then
         Subp_Decl :=
           Make_Subprogram_Declaration (Loc,
             Specification => Build_Spec);
 
      --  For a tagged type, there is always a visible declaration for each
      --  stream TSS (it is a predefined primitive operation), and the
      --  completion of this declaration occurs at the freeze point, which is
      --  not always visible at places where the attribute definition clause is
      --  visible. So, we create a dummy entity here for the purpose of
      --  tracking the visibility of the attribute definition clause itself.
 
      else
         Subp_Id :=
           Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
         Subp_Decl :=
           Make_Object_Declaration (Loc,
             Defining_Identifier => Subp_Id,
             Object_Definition   => New_Occurrence_Of (Standard_Boolean, Loc));
      end if;
 
      Insert_Action (N, Subp_Decl);
      Set_Entity (N, Subp_Id);
 
      Subp_Decl :=
        Make_Subprogram_Renaming_Declaration (Loc,
          Specification => Build_Spec,
          Name => New_Reference_To (Subp, Loc));
 
      if Defer_Declaration then
         Set_TSS (Base_Type (Ent), Subp_Id);
      else
         Insert_Action (N, Subp_Decl);
         Copy_TSS (Subp_Id, Base_Type (Ent));
      end if;
   end New_Stream_Subprogram;
 
   ------------------------
   -- Rep_Item_Too_Early --
   ------------------------
 
   function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
   begin
      --  Cannot apply non-operational rep items to generic types
 
      if Is_Operational_Item (N) then
         return False;
 
      elsif Is_Type (T)
        and then Is_Generic_Type (Root_Type (T))
      then
         Error_Msg_N ("representation item not allowed for generic type", N);
         return True;
      end if;
 
      --  Otherwise check for incomplete type
 
      if Is_Incomplete_Or_Private_Type (T)
        and then No (Underlying_Type (T))
        and then
          (Nkind (N) /= N_Pragma
            or else Get_Pragma_Id (N) /= Pragma_Import)
      then
         Error_Msg_N
           ("representation item must be after full type declaration", N);
         return True;
 
      --  If the type has incomplete components, a representation clause is
      --  illegal but stream attributes and Convention pragmas are correct.
 
      elsif Has_Private_Component (T) then
         if Nkind (N) = N_Pragma then
            return False;
         else
            Error_Msg_N
              ("representation item must appear after type is fully defined",
                N);
            return True;
         end if;
      else
         return False;
      end if;
   end Rep_Item_Too_Early;
 
   -----------------------
   -- Rep_Item_Too_Late --
   -----------------------
 
   function Rep_Item_Too_Late
     (T     : Entity_Id;
      N     : Node_Id;
      FOnly : Boolean := False) return Boolean
   is
      S           : Entity_Id;
      Parent_Type : Entity_Id;
 
      procedure Too_Late;
      --  Output the too late message. Note that this is not considered a
      --  serious error, since the effect is simply that we ignore the
      --  representation clause in this case.
 
      --------------
      -- Too_Late --
      --------------
 
      procedure Too_Late is
      begin
         Error_Msg_N ("|representation item appears too late!", N);
      end Too_Late;
 
   --  Start of processing for Rep_Item_Too_Late
 
   begin
      --  First make sure entity is not frozen (RM 13.1(9))
 
      if Is_Frozen (T)
 
        --  Exclude imported types, which may be frozen if they appear in a
        --  representation clause for a local type.
 
        and then not From_With_Type (T)
 
        --  Exclude generated entitiesa (not coming from source). The common
        --  case is when we generate a renaming which prematurely freezes the
        --  renamed internal entity, but we still want to be able to set copies
        --  of attribute values such as Size/Alignment.
 
        and then Comes_From_Source (T)
      then
         Too_Late;
         S := First_Subtype (T);
 
         if Present (Freeze_Node (S)) then
            Error_Msg_NE
              ("?no more representation items for }", Freeze_Node (S), S);
         end if;
 
         return True;
 
      --  Check for case of non-tagged derived type whose parent either has
      --  primitive operations, or is a by reference type (RM 13.1(10)).
 
      elsif Is_Type (T)
        and then not FOnly
        and then Is_Derived_Type (T)
        and then not Is_Tagged_Type (T)
      then
         Parent_Type := Etype (Base_Type (T));
 
         if Has_Primitive_Operations (Parent_Type) then
            Too_Late;
            Error_Msg_NE
              ("primitive operations already defined for&!", N, Parent_Type);
            return True;
 
         elsif Is_By_Reference_Type (Parent_Type) then
            Too_Late;
            Error_Msg_NE
              ("parent type & is a by reference type!", N, Parent_Type);
            return True;
         end if;
      end if;
 
      --  No error, link item into head of chain of rep items for the entity,
      --  but avoid chaining if we have an overloadable entity, and the pragma
      --  is one that can apply to multiple overloaded entities.
 
      if Is_Overloadable (T)
        and then Nkind (N) = N_Pragma
      then
         declare
            Pname : constant Name_Id := Pragma_Name (N);
         begin
            if Pname = Name_Convention or else
               Pname = Name_Import     or else
               Pname = Name_Export     or else
               Pname = Name_External   or else
               Pname = Name_Interface
            then
               return False;
            end if;
         end;
      end if;
 
      Record_Rep_Item (T, N);
      return False;
   end Rep_Item_Too_Late;
 
   -------------------------------------
   -- Replace_Type_References_Generic --
   -------------------------------------
 
   procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id) is
 
      function Replace_Node (N : Node_Id) return Traverse_Result;
      --  Processes a single node in the traversal procedure below, checking
      --  if node N should be replaced, and if so, doing the replacement.
 
      procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
      --  This instantiation provides the body of Replace_Type_References
 
      ------------------
      -- Replace_Node --
      ------------------
 
      function Replace_Node (N : Node_Id) return Traverse_Result is
         S : Entity_Id;
         P : Node_Id;
 
      begin
         --  Case of identifier
 
         if Nkind (N) = N_Identifier then
 
            --  If not the type name, all done with this node
 
            if Chars (N) /= TName then
               return Skip;
 
            --  Otherwise do the replacement and we are done with this node
 
            else
               Replace_Type_Reference (N);
               return Skip;
            end if;
 
         --  Case of selected component (which is what a qualification
         --  looks like in the unanalyzed tree, which is what we have.
 
         elsif Nkind (N) = N_Selected_Component then
 
            --  If selector name is not our type, keeping going (we might
            --  still have an occurrence of the type in the prefix).
 
            if Nkind (Selector_Name (N)) /= N_Identifier
              or else Chars (Selector_Name (N)) /= TName
            then
               return OK;
 
            --  Selector name is our type, check qualification
 
            else
               --  Loop through scopes and prefixes, doing comparison
 
               S := Current_Scope;
               P := Prefix (N);
               loop
                  --  Continue if no more scopes or scope with no name
 
                  if No (S) or else Nkind (S) not in N_Has_Chars then
                     return OK;
                  end if;
 
                  --  Do replace if prefix is an identifier matching the
                  --  scope that we are currently looking at.
 
                  if Nkind (P) = N_Identifier
                    and then Chars (P) = Chars (S)
                  then
                     Replace_Type_Reference (N);
                     return Skip;
                  end if;
 
                  --  Go check scope above us if prefix is itself of the
                  --  form of a selected component, whose selector matches
                  --  the scope we are currently looking at.
 
                  if Nkind (P) = N_Selected_Component
                    and then Nkind (Selector_Name (P)) = N_Identifier
                    and then Chars (Selector_Name (P)) = Chars (S)
                  then
                     S := Scope (S);
                     P := Prefix (P);
 
                  --  For anything else, we don't have a match, so keep on
                  --  going, there are still some weird cases where we may
                  --  still have a replacement within the prefix.
 
                  else
                     return OK;
                  end if;
               end loop;
            end if;
 
            --  Continue for any other node kind
 
         else
            return OK;
         end if;
      end Replace_Node;
 
   begin
      Replace_Type_Refs (N);
   end Replace_Type_References_Generic;
 
   -------------------------
   -- Same_Representation --
   -------------------------
 
   function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
      T1 : constant Entity_Id := Underlying_Type (Typ1);
      T2 : constant Entity_Id := Underlying_Type (Typ2);
 
   begin
      --  A quick check, if base types are the same, then we definitely have
      --  the same representation, because the subtype specific representation
      --  attributes (Size and Alignment) do not affect representation from
      --  the point of view of this test.
 
      if Base_Type (T1) = Base_Type (T2) then
         return True;
 
      elsif Is_Private_Type (Base_Type (T2))
        and then Base_Type (T1) = Full_View (Base_Type (T2))
      then
         return True;
      end if;
 
      --  Tagged types never have differing representations
 
      if Is_Tagged_Type (T1) then
         return True;
      end if;
 
      --  Representations are definitely different if conventions differ
 
      if Convention (T1) /= Convention (T2) then
         return False;
      end if;
 
      --  Representations are different if component alignments differ
 
      if (Is_Record_Type (T1) or else Is_Array_Type (T1))
        and then
         (Is_Record_Type (T2) or else Is_Array_Type (T2))
        and then Component_Alignment (T1) /= Component_Alignment (T2)
      then
         return False;
      end if;
 
      --  For arrays, the only real issue is component size. If we know the
      --  component size for both arrays, and it is the same, then that's
      --  good enough to know we don't have a change of representation.
 
      if Is_Array_Type (T1) then
         if Known_Component_Size (T1)
           and then Known_Component_Size (T2)
           and then Component_Size (T1) = Component_Size (T2)
         then
            if VM_Target = No_VM then
               return True;
 
            --  In VM targets the representation of arrays with aliased
            --  components differs from arrays with non-aliased components
 
            else
               return Has_Aliased_Components (Base_Type (T1))
                        =
                      Has_Aliased_Components (Base_Type (T2));
            end if;
         end if;
      end if;
 
      --  Types definitely have same representation if neither has non-standard
      --  representation since default representations are always consistent.
      --  If only one has non-standard representation, and the other does not,
      --  then we consider that they do not have the same representation. They
      --  might, but there is no way of telling early enough.
 
      if Has_Non_Standard_Rep (T1) then
         if not Has_Non_Standard_Rep (T2) then
            return False;
         end if;
      else
         return not Has_Non_Standard_Rep (T2);
      end if;
 
      --  Here the two types both have non-standard representation, and we need
      --  to determine if they have the same non-standard representation.
 
      --  For arrays, we simply need to test if the component sizes are the
      --  same. Pragma Pack is reflected in modified component sizes, so this
      --  check also deals with pragma Pack.
 
      if Is_Array_Type (T1) then
         return Component_Size (T1) = Component_Size (T2);
 
      --  Tagged types always have the same representation, because it is not
      --  possible to specify different representations for common fields.
 
      elsif Is_Tagged_Type (T1) then
         return True;
 
      --  Case of record types
 
      elsif Is_Record_Type (T1) then
 
         --  Packed status must conform
 
         if Is_Packed (T1) /= Is_Packed (T2) then
            return False;
 
         --  Otherwise we must check components. Typ2 maybe a constrained
         --  subtype with fewer components, so we compare the components
         --  of the base types.
 
         else
            Record_Case : declare
               CD1, CD2 : Entity_Id;
 
               function Same_Rep return Boolean;
               --  CD1 and CD2 are either components or discriminants. This
               --  function tests whether the two have the same representation
 
               --------------
               -- Same_Rep --
               --------------
 
               function Same_Rep return Boolean is
               begin
                  if No (Component_Clause (CD1)) then
                     return No (Component_Clause (CD2));
 
                  else
                     return
                        Present (Component_Clause (CD2))
                          and then
                        Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
                          and then
                        Esize (CD1) = Esize (CD2);
                  end if;
               end Same_Rep;
 
            --  Start of processing for Record_Case
 
            begin
               if Has_Discriminants (T1) then
                  CD1 := First_Discriminant (T1);
                  CD2 := First_Discriminant (T2);
 
                  --  The number of discriminants may be different if the
                  --  derived type has fewer (constrained by values). The
                  --  invisible discriminants retain the representation of
                  --  the original, so the discrepancy does not per se
                  --  indicate a different representation.
 
                  while Present (CD1)
                    and then Present (CD2)
                  loop
                     if not Same_Rep then
                        return False;
                     else
                        Next_Discriminant (CD1);
                        Next_Discriminant (CD2);
                     end if;
                  end loop;
               end if;
 
               CD1 := First_Component (Underlying_Type (Base_Type (T1)));
               CD2 := First_Component (Underlying_Type (Base_Type (T2)));
 
               while Present (CD1) loop
                  if not Same_Rep then
                     return False;
                  else
                     Next_Component (CD1);
                     Next_Component (CD2);
                  end if;
               end loop;
 
               return True;
            end Record_Case;
         end if;
 
      --  For enumeration types, we must check each literal to see if the
      --  representation is the same. Note that we do not permit enumeration
      --  representation clauses for Character and Wide_Character, so these
      --  cases were already dealt with.
 
      elsif Is_Enumeration_Type (T1) then
         Enumeration_Case : declare
            L1, L2 : Entity_Id;
 
         begin
            L1 := First_Literal (T1);
            L2 := First_Literal (T2);
 
            while Present (L1) loop
               if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
                  return False;
               else
                  Next_Literal (L1);
                  Next_Literal (L2);
               end if;
            end loop;
 
            return True;
 
         end Enumeration_Case;
 
      --  Any other types have the same representation for these purposes
 
      else
         return True;
      end if;
   end Same_Representation;
 
   ----------------
   -- Set_Biased --
   ----------------
 
   procedure Set_Biased
     (E      : Entity_Id;
      N      : Node_Id;
      Msg    : String;
      Biased : Boolean := True)
   is
   begin
      if Biased then
         Set_Has_Biased_Representation (E);
 
         if Warn_On_Biased_Representation then
            Error_Msg_NE
              ("?" & Msg & " forces biased representation for&", N, E);
         end if;
      end if;
   end Set_Biased;
 
   --------------------
   -- Set_Enum_Esize --
   --------------------
 
   procedure Set_Enum_Esize (T : Entity_Id) is
      Lo : Uint;
      Hi : Uint;
      Sz : Nat;
 
   begin
      Init_Alignment (T);
 
      --  Find the minimum standard size (8,16,32,64) that fits
 
      Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
      Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
 
      if Lo < 0 then
         if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
            Sz := Standard_Character_Size;  -- May be > 8 on some targets
 
         elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
            Sz := 16;
 
         elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
            Sz := 32;
 
         else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
            Sz := 64;
         end if;
 
      else
         if Hi < Uint_2**08 then
            Sz := Standard_Character_Size;  -- May be > 8 on some targets
 
         elsif Hi < Uint_2**16 then
            Sz := 16;
 
         elsif Hi < Uint_2**32 then
            Sz := 32;
 
         else pragma Assert (Hi < Uint_2**63);
            Sz := 64;
         end if;
      end if;
 
      --  That minimum is the proper size unless we have a foreign convention
      --  and the size required is 32 or less, in which case we bump the size
      --  up to 32. This is required for C and C++ and seems reasonable for
      --  all other foreign conventions.
 
      if Has_Foreign_Convention (T)
        and then Esize (T) < Standard_Integer_Size
      then
         Init_Esize (T, Standard_Integer_Size);
      else
         Init_Esize (T, Sz);
      end if;
   end Set_Enum_Esize;
 
   ------------------------------
   -- Validate_Address_Clauses --
   ------------------------------
 
   procedure Validate_Address_Clauses is
   begin
      for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
         declare
            ACCR : Address_Clause_Check_Record
                     renames Address_Clause_Checks.Table (J);
 
            Expr : Node_Id;
 
            X_Alignment : Uint;
            Y_Alignment : Uint;
 
            X_Size : Uint;
            Y_Size : Uint;
 
         begin
            --  Skip processing of this entry if warning already posted
 
            if not Address_Warning_Posted (ACCR.N) then
 
               Expr := Original_Node (Expression (ACCR.N));
 
               --  Get alignments
 
               X_Alignment := Alignment (ACCR.X);
               Y_Alignment := Alignment (ACCR.Y);
 
               --  Similarly obtain sizes
 
               X_Size := Esize (ACCR.X);
               Y_Size := Esize (ACCR.Y);
 
               --  Check for large object overlaying smaller one
 
               if Y_Size > Uint_0
                 and then X_Size > Uint_0
                 and then X_Size > Y_Size
               then
                  Error_Msg_NE
                    ("?& overlays smaller object", ACCR.N, ACCR.X);
                  Error_Msg_N
                    ("\?program execution may be erroneous", ACCR.N);
                  Error_Msg_Uint_1 := X_Size;
                  Error_Msg_NE
                    ("\?size of & is ^", ACCR.N, ACCR.X);
                  Error_Msg_Uint_1 := Y_Size;
                  Error_Msg_NE
                    ("\?size of & is ^", ACCR.N, ACCR.Y);
 
               --  Check for inadequate alignment, both of the base object
               --  and of the offset, if any.
 
               --  Note: we do not check the alignment if we gave a size
               --  warning, since it would likely be redundant.
 
               elsif Y_Alignment /= Uint_0
                 and then (Y_Alignment < X_Alignment
                             or else (ACCR.Off
                                        and then
                                          Nkind (Expr) = N_Attribute_Reference
                                        and then
                                          Attribute_Name (Expr) = Name_Address
                                        and then
                                          Has_Compatible_Alignment
                                            (ACCR.X, Prefix (Expr))
                                             /= Known_Compatible))
               then
                  Error_Msg_NE
                    ("?specified address for& may be inconsistent "
                       & "with alignment",
                     ACCR.N, ACCR.X);
                  Error_Msg_N
                    ("\?program execution may be erroneous (RM 13.3(27))",
                     ACCR.N);
                  Error_Msg_Uint_1 := X_Alignment;
                  Error_Msg_NE
                    ("\?alignment of & is ^",
                     ACCR.N, ACCR.X);
                  Error_Msg_Uint_1 := Y_Alignment;
                  Error_Msg_NE
                    ("\?alignment of & is ^",
                     ACCR.N, ACCR.Y);
                  if Y_Alignment >= X_Alignment then
                     Error_Msg_N
                      ("\?but offset is not multiple of alignment",
                       ACCR.N);
                  end if;
               end if;
            end if;
         end;
      end loop;
   end Validate_Address_Clauses;
 
   ---------------------------
   -- Validate_Independence --
   ---------------------------
 
   procedure Validate_Independence is
      SU   : constant Uint := UI_From_Int (System_Storage_Unit);
      N    : Node_Id;
      E    : Entity_Id;
      IC   : Boolean;
      Comp : Entity_Id;
      Addr : Node_Id;
      P    : Node_Id;
 
      procedure Check_Array_Type (Atyp : Entity_Id);
      --  Checks if the array type Atyp has independent components, and
      --  if not, outputs an appropriate set of error messages.
 
      procedure No_Independence;
      --  Output message that independence cannot be guaranteed
 
      function OK_Component (C : Entity_Id) return Boolean;
      --  Checks one component to see if it is independently accessible, and
      --  if so yields True, otherwise yields False if independent access
      --  cannot be guaranteed. This is a conservative routine, it only
      --  returns True if it knows for sure, it returns False if it knows
      --  there is a problem, or it cannot be sure there is no problem.
 
      procedure Reason_Bad_Component (C : Entity_Id);
      --  Outputs continuation message if a reason can be determined for
      --  the component C being bad.
 
      ----------------------
      -- Check_Array_Type --
      ----------------------
 
      procedure Check_Array_Type (Atyp : Entity_Id) is
         Ctyp : constant Entity_Id := Component_Type (Atyp);
 
      begin
         --  OK if no alignment clause, no pack, and no component size
 
         if not Has_Component_Size_Clause (Atyp)
           and then not Has_Alignment_Clause (Atyp)
           and then not Is_Packed (Atyp)
         then
            return;
         end if;
 
         --  Check actual component size
 
         if not Known_Component_Size (Atyp)
           or else not (Addressable (Component_Size (Atyp))
                          and then Component_Size (Atyp) < 64)
           or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
         then
            No_Independence;
 
            --  Bad component size, check reason
 
            if Has_Component_Size_Clause (Atyp) then
               P :=
                 Get_Attribute_Definition_Clause
                   (Atyp, Attribute_Component_Size);
 
               if Present (P) then
                  Error_Msg_Sloc := Sloc (P);
                  Error_Msg_N ("\because of Component_Size clause#", N);
                  return;
               end if;
            end if;
 
            if Is_Packed (Atyp) then
               P := Get_Rep_Pragma (Atyp, Name_Pack);
 
               if Present (P) then
                  Error_Msg_Sloc := Sloc (P);
                  Error_Msg_N ("\because of pragma Pack#", N);
                  return;
               end if;
            end if;
 
            --  No reason found, just return
 
            return;
         end if;
 
         --  Array type is OK independence-wise
 
         return;
      end Check_Array_Type;
 
      ---------------------
      -- No_Independence --
      ---------------------
 
      procedure No_Independence is
      begin
         if Pragma_Name (N) = Name_Independent then
            Error_Msg_NE
              ("independence cannot be guaranteed for&", N, E);
         else
            Error_Msg_NE
              ("independent components cannot be guaranteed for&", N, E);
         end if;
      end No_Independence;
 
      ------------------
      -- OK_Component --
      ------------------
 
      function OK_Component (C : Entity_Id) return Boolean is
         Rec  : constant Entity_Id := Scope (C);
         Ctyp : constant Entity_Id := Etype (C);
 
      begin
         --  OK if no component clause, no Pack, and no alignment clause
 
         if No (Component_Clause (C))
           and then not Is_Packed (Rec)
           and then not Has_Alignment_Clause (Rec)
         then
            return True;
         end if;
 
         --  Here we look at the actual component layout. A component is
         --  addressable if its size is a multiple of the Esize of the
         --  component type, and its starting position in the record has
         --  appropriate alignment, and the record itself has appropriate
         --  alignment to guarantee the component alignment.
 
         --  Make sure sizes are static, always assume the worst for any
         --  cases where we cannot check static values.
 
         if not (Known_Static_Esize (C)
                  and then Known_Static_Esize (Ctyp))
         then
            return False;
         end if;
 
         --  Size of component must be addressable or greater than 64 bits
         --  and a multiple of bytes.
 
         if not Addressable (Esize (C))
           and then Esize (C) < Uint_64
         then
            return False;
         end if;
 
         --  Check size is proper multiple
 
         if Esize (C) mod Esize (Ctyp) /= 0 then
            return False;
         end if;
 
         --  Check alignment of component is OK
 
         if not Known_Component_Bit_Offset (C)
           or else Component_Bit_Offset (C) < Uint_0
           or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
         then
            return False;
         end if;
 
         --  Check alignment of record type is OK
 
         if not Known_Alignment (Rec)
           or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
         then
            return False;
         end if;
 
         --  All tests passed, component is addressable
 
         return True;
      end OK_Component;
 
      --------------------------
      -- Reason_Bad_Component --
      --------------------------
 
      procedure Reason_Bad_Component (C : Entity_Id) is
         Rec  : constant Entity_Id := Scope (C);
         Ctyp : constant Entity_Id := Etype (C);
 
      begin
         --  If component clause present assume that's the problem
 
         if Present (Component_Clause (C)) then
            Error_Msg_Sloc := Sloc (Component_Clause (C));
            Error_Msg_N ("\because of Component_Clause#", N);
            return;
         end if;
 
         --  If pragma Pack clause present, assume that's the problem
 
         if Is_Packed (Rec) then
            P := Get_Rep_Pragma (Rec, Name_Pack);
 
            if Present (P) then
               Error_Msg_Sloc := Sloc (P);
               Error_Msg_N ("\because of pragma Pack#", N);
               return;
            end if;
         end if;
 
         --  See if record has bad alignment clause
 
         if Has_Alignment_Clause (Rec)
           and then Known_Alignment (Rec)
           and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
         then
            P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
 
            if Present (P) then
               Error_Msg_Sloc := Sloc (P);
               Error_Msg_N ("\because of Alignment clause#", N);
            end if;
         end if;
 
         --  Couldn't find a reason, so return without a message
 
         return;
      end Reason_Bad_Component;
 
   --  Start of processing for Validate_Independence
 
   begin
      for J in Independence_Checks.First .. Independence_Checks.Last loop
         N  := Independence_Checks.Table (J).N;
         E  := Independence_Checks.Table (J).E;
         IC := Pragma_Name (N) = Name_Independent_Components;
 
         --  Deal with component case
 
         if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
            if not OK_Component (E) then
               No_Independence;
               Reason_Bad_Component (E);
               goto Continue;
            end if;
         end if;
 
         --  Deal with record with Independent_Components
 
         if IC and then Is_Record_Type (E) then
            Comp := First_Component_Or_Discriminant (E);
            while Present (Comp) loop
               if not OK_Component (Comp) then
                  No_Independence;
                  Reason_Bad_Component (Comp);
                  goto Continue;
               end if;
 
               Next_Component_Or_Discriminant (Comp);
            end loop;
         end if;
 
         --  Deal with address clause case
 
         if Is_Object (E) then
            Addr := Address_Clause (E);
 
            if Present (Addr) then
               No_Independence;
               Error_Msg_Sloc := Sloc (Addr);
               Error_Msg_N ("\because of Address clause#", N);
               goto Continue;
            end if;
         end if;
 
         --  Deal with independent components for array type
 
         if IC and then Is_Array_Type (E) then
            Check_Array_Type (E);
         end if;
 
         --  Deal with independent components for array object
 
         if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
            Check_Array_Type (Etype (E));
         end if;
 
      <<Continue>> null;
      end loop;
   end Validate_Independence;
 
   -----------------------------------
   -- Validate_Unchecked_Conversion --
   -----------------------------------
 
   procedure Validate_Unchecked_Conversion
     (N        : Node_Id;
      Act_Unit : Entity_Id)
   is
      Source : Entity_Id;
      Target : Entity_Id;
      Vnode  : Node_Id;
 
   begin
      --  Obtain source and target types. Note that we call Ancestor_Subtype
      --  here because the processing for generic instantiation always makes
      --  subtypes, and we want the original frozen actual types.
 
      --  If we are dealing with private types, then do the check on their
      --  fully declared counterparts if the full declarations have been
      --  encountered (they don't have to be visible, but they must exist!)
 
      Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
 
      if Is_Private_Type (Source)
        and then Present (Underlying_Type (Source))
      then
         Source := Underlying_Type (Source);
      end if;
 
      Target := Ancestor_Subtype (Etype (Act_Unit));
 
      --  If either type is generic, the instantiation happens within a generic
      --  unit, and there is nothing to check. The proper check will happen
      --  when the enclosing generic is instantiated.
 
      if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
         return;
      end if;
 
      if Is_Private_Type (Target)
        and then Present (Underlying_Type (Target))
      then
         Target := Underlying_Type (Target);
      end if;
 
      --  Source may be unconstrained array, but not target
 
      if Is_Array_Type (Target)
        and then not Is_Constrained (Target)
      then
         Error_Msg_N
           ("unchecked conversion to unconstrained array not allowed", N);
         return;
      end if;
 
      --  Warn if conversion between two different convention pointers
 
      if Is_Access_Type (Target)
        and then Is_Access_Type (Source)
        and then Convention (Target) /= Convention (Source)
        and then Warn_On_Unchecked_Conversion
      then
         --  Give warnings for subprogram pointers only on most targets. The
         --  exception is VMS, where data pointers can have different lengths
         --  depending on the pointer convention.
 
         if Is_Access_Subprogram_Type (Target)
           or else Is_Access_Subprogram_Type (Source)
           or else OpenVMS_On_Target
         then
            Error_Msg_N
              ("?conversion between pointers with different conventions!", N);
         end if;
      end if;
 
      --  Warn if one of the operands is Ada.Calendar.Time. Do not emit a
      --  warning when compiling GNAT-related sources.
 
      if Warn_On_Unchecked_Conversion
        and then not In_Predefined_Unit (N)
        and then RTU_Loaded (Ada_Calendar)
        and then
          (Chars (Source) = Name_Time
             or else
           Chars (Target) = Name_Time)
      then
         --  If Ada.Calendar is loaded and the name of one of the operands is
         --  Time, there is a good chance that this is Ada.Calendar.Time.
 
         declare
            Calendar_Time : constant Entity_Id :=
                              Full_View (RTE (RO_CA_Time));
         begin
            pragma Assert (Present (Calendar_Time));
 
            if Source = Calendar_Time
              or else Target = Calendar_Time
            then
               Error_Msg_N
                 ("?representation of 'Time values may change between " &
                  "'G'N'A'T versions", N);
            end if;
         end;
      end if;
 
      --  Make entry in unchecked conversion table for later processing by
      --  Validate_Unchecked_Conversions, which will check sizes and alignments
      --  (using values set by the back-end where possible). This is only done
      --  if the appropriate warning is active.
 
      if Warn_On_Unchecked_Conversion then
         Unchecked_Conversions.Append
           (New_Val => UC_Entry'
              (Eloc   => Sloc (N),
               Source => Source,
               Target => Target));
 
         --  If both sizes are known statically now, then back end annotation
         --  is not required to do a proper check but if either size is not
         --  known statically, then we need the annotation.
 
         if Known_Static_RM_Size (Source)
           and then Known_Static_RM_Size (Target)
         then
            null;
         else
            Back_Annotate_Rep_Info := True;
         end if;
      end if;
 
      --  If unchecked conversion to access type, and access type is declared
      --  in the same unit as the unchecked conversion, then set the flag
      --  No_Strict_Aliasing (no strict aliasing is implicit here)
 
      if Is_Access_Type (Target) and then
        In_Same_Source_Unit (Target, N)
      then
         Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
      end if;
 
      --  Generate N_Validate_Unchecked_Conversion node for back end in case
      --  the back end needs to perform special validation checks.
 
      --  Shouldn't this be in Exp_Ch13, since the check only gets done if we
      --  have full expansion and the back end is called ???
 
      Vnode :=
        Make_Validate_Unchecked_Conversion (Sloc (N));
      Set_Source_Type (Vnode, Source);
      Set_Target_Type (Vnode, Target);
 
      --  If the unchecked conversion node is in a list, just insert before it.
      --  If not we have some strange case, not worth bothering about.
 
      if Is_List_Member (N) then
         Insert_After (N, Vnode);
      end if;
   end Validate_Unchecked_Conversion;
 
   ------------------------------------
   -- Validate_Unchecked_Conversions --
   ------------------------------------
 
   procedure Validate_Unchecked_Conversions is
   begin
      for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
         declare
            T : UC_Entry renames Unchecked_Conversions.Table (N);
 
            Eloc   : constant Source_Ptr := T.Eloc;
            Source : constant Entity_Id  := T.Source;
            Target : constant Entity_Id  := T.Target;
 
            Source_Siz : Uint;
            Target_Siz : Uint;
 
         begin
            --  This validation check, which warns if we have unequal sizes for
            --  unchecked conversion, and thus potentially implementation
            --  dependent semantics, is one of the few occasions on which we
            --  use the official RM size instead of Esize. See description in
            --  Einfo "Handling of Type'Size Values" for details.
 
            if Serious_Errors_Detected = 0
              and then Known_Static_RM_Size (Source)
              and then Known_Static_RM_Size (Target)
 
              --  Don't do the check if warnings off for either type, note the
              --  deliberate use of OR here instead of OR ELSE to get the flag
              --  Warnings_Off_Used set for both types if appropriate.
 
              and then not (Has_Warnings_Off (Source)
                              or
                            Has_Warnings_Off (Target))
            then
               Source_Siz := RM_Size (Source);
               Target_Siz := RM_Size (Target);
 
               if Source_Siz /= Target_Siz then
                  Error_Msg
                    ("?types for unchecked conversion have different sizes!",
                     Eloc);
 
                  if All_Errors_Mode then
                     Error_Msg_Name_1 := Chars (Source);
                     Error_Msg_Uint_1 := Source_Siz;
                     Error_Msg_Name_2 := Chars (Target);
                     Error_Msg_Uint_2 := Target_Siz;
                     Error_Msg ("\size of % is ^, size of % is ^?", Eloc);
 
                     Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
 
                     if Is_Discrete_Type (Source)
                       and then Is_Discrete_Type (Target)
                     then
                        if Source_Siz > Target_Siz then
                           Error_Msg
                             ("\?^ high order bits of source will be ignored!",
                              Eloc);
 
                        elsif Is_Unsigned_Type (Source) then
                           Error_Msg
                             ("\?source will be extended with ^ high order " &
                              "zero bits?!", Eloc);
 
                        else
                           Error_Msg
                             ("\?source will be extended with ^ high order " &
                              "sign bits!",
                              Eloc);
                        end if;
 
                     elsif Source_Siz < Target_Siz then
                        if Is_Discrete_Type (Target) then
                           if Bytes_Big_Endian then
                              Error_Msg
                                ("\?target value will include ^ undefined " &
                                 "low order bits!",
                                 Eloc);
                           else
                              Error_Msg
                                ("\?target value will include ^ undefined " &
                                 "high order bits!",
                                 Eloc);
                           end if;
 
                        else
                           Error_Msg
                             ("\?^ trailing bits of target value will be " &
                              "undefined!", Eloc);
                        end if;
 
                     else pragma Assert (Source_Siz > Target_Siz);
                        Error_Msg
                          ("\?^ trailing bits of source will be ignored!",
                           Eloc);
                     end if;
                  end if;
               end if;
            end if;
 
            --  If both types are access types, we need to check the alignment.
            --  If the alignment of both is specified, we can do it here.
 
            if Serious_Errors_Detected = 0
              and then Ekind (Source) in Access_Kind
              and then Ekind (Target) in Access_Kind
              and then Target_Strict_Alignment
              and then Present (Designated_Type (Source))
              and then Present (Designated_Type (Target))
            then
               declare
                  D_Source : constant Entity_Id := Designated_Type (Source);
                  D_Target : constant Entity_Id := Designated_Type (Target);
 
               begin
                  if Known_Alignment (D_Source)
                    and then Known_Alignment (D_Target)
                  then
                     declare
                        Source_Align : constant Uint := Alignment (D_Source);
                        Target_Align : constant Uint := Alignment (D_Target);
 
                     begin
                        if Source_Align < Target_Align
                          and then not Is_Tagged_Type (D_Source)
 
                          --  Suppress warning if warnings suppressed on either
                          --  type or either designated type. Note the use of
                          --  OR here instead of OR ELSE. That is intentional,
                          --  we would like to set flag Warnings_Off_Used in
                          --  all types for which warnings are suppressed.
 
                          and then not (Has_Warnings_Off (D_Source)
                                          or
                                        Has_Warnings_Off (D_Target)
                                          or
                                        Has_Warnings_Off (Source)
                                          or
                                        Has_Warnings_Off (Target))
                        then
                           Error_Msg_Uint_1 := Target_Align;
                           Error_Msg_Uint_2 := Source_Align;
                           Error_Msg_Node_1 := D_Target;
                           Error_Msg_Node_2 := D_Source;
                           Error_Msg
                             ("?alignment of & (^) is stricter than " &
                              "alignment of & (^)!", Eloc);
                           Error_Msg
                             ("\?resulting access value may have invalid " &
                              "alignment!", Eloc);
                        end if;
                     end;
                  end if;
               end;
            end if;
         end;
      end loop;
   end Validate_Unchecked_Conversions;
 
end Sem_Ch13;
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.