URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [sem_util.adb] - Rev 774
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- S E M _ U T I L -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2012, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Atree; use Atree; with Casing; use Casing; with Checks; use Checks; with Debug; use Debug; with Errout; use Errout; with Elists; use Elists; with Exp_Ch11; use Exp_Ch11; with Exp_Disp; use Exp_Disp; with Exp_Util; use Exp_Util; with Fname; use Fname; with Freeze; use Freeze; with Lib; use Lib; with Lib.Xref; use Lib.Xref; with Nlists; use Nlists; with Output; use Output; with Opt; use Opt; with Restrict; use Restrict; with Rident; use Rident; with Rtsfind; use Rtsfind; with Sem; use Sem; with Sem_Aux; use Sem_Aux; with Sem_Attr; use Sem_Attr; with Sem_Ch8; use Sem_Ch8; with Sem_Disp; use Sem_Disp; with Sem_Eval; use Sem_Eval; with Sem_Res; use Sem_Res; with Sem_Type; use Sem_Type; with Sinfo; use Sinfo; with Sinput; use Sinput; with Stand; use Stand; with Style; with Stringt; use Stringt; with Table; with Targparm; use Targparm; with Tbuild; use Tbuild; with Ttypes; use Ttypes; with Uname; use Uname; with GNAT.HTable; use GNAT.HTable; package body Sem_Util is ---------------------------------------- -- Global_Variables for New_Copy_Tree -- ---------------------------------------- -- These global variables are used by New_Copy_Tree. See description -- of the body of this subprogram for details. Global variables can be -- safely used by New_Copy_Tree, since there is no case of a recursive -- call from the processing inside New_Copy_Tree. NCT_Hash_Threshold : constant := 20; -- If there are more than this number of pairs of entries in the -- map, then Hash_Tables_Used will be set, and the hash tables will -- be initialized and used for the searches. NCT_Hash_Tables_Used : Boolean := False; -- Set to True if hash tables are in use NCT_Table_Entries : Nat; -- Count entries in table to see if threshold is reached NCT_Hash_Table_Setup : Boolean := False; -- Set to True if hash table contains data. We set this True if we -- setup the hash table with data, and leave it set permanently -- from then on, this is a signal that second and subsequent users -- of the hash table must clear the old entries before reuse. subtype NCT_Header_Num is Int range 0 .. 511; -- Defines range of headers in hash tables (512 headers) ---------------------------------- -- Order Dependence (AI05-0144) -- ---------------------------------- -- Each actual in a call is entered into the table below. A flag indicates -- whether the corresponding formal is OUT or IN OUT. Each top-level call -- (procedure call, condition, assignment) examines all the actuals for a -- possible order dependence. The table is reset after each such check. -- The actuals to be checked in a call to Check_Order_Dependence are at -- positions 1 .. Last. type Actual_Name is record Act : Node_Id; Is_Writable : Boolean; end record; package Actuals_In_Call is new Table.Table ( Table_Component_Type => Actual_Name, Table_Index_Type => Int, Table_Low_Bound => 0, Table_Initial => 10, Table_Increment => 100, Table_Name => "Actuals"); ----------------------- -- Local Subprograms -- ----------------------- function Build_Component_Subtype (C : List_Id; Loc : Source_Ptr; T : Entity_Id) return Node_Id; -- This function builds the subtype for Build_Actual_Subtype_Of_Component -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints, -- Loc is the source location, T is the original subtype. function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean; -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type -- with discriminants whose default values are static, examine only the -- components in the selected variant to determine whether all of them -- have a default. function Has_Null_Extension (T : Entity_Id) return Boolean; -- T is a derived tagged type. Check whether the type extension is null. -- If the parent type is fully initialized, T can be treated as such. ------------------------------ -- Abstract_Interface_List -- ------------------------------ function Abstract_Interface_List (Typ : Entity_Id) return List_Id is Nod : Node_Id; begin if Is_Concurrent_Type (Typ) then -- If we are dealing with a synchronized subtype, go to the base -- type, whose declaration has the interface list. -- Shouldn't this be Declaration_Node??? Nod := Parent (Base_Type (Typ)); if Nkind (Nod) = N_Full_Type_Declaration then return Empty_List; end if; elsif Ekind (Typ) = E_Record_Type_With_Private then if Nkind (Parent (Typ)) = N_Full_Type_Declaration then Nod := Type_Definition (Parent (Typ)); elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then if Present (Full_View (Typ)) and then Nkind (Parent (Full_View (Typ))) = N_Full_Type_Declaration then Nod := Type_Definition (Parent (Full_View (Typ))); -- If the full-view is not available we cannot do anything else -- here (the source has errors). else return Empty_List; end if; -- Support for generic formals with interfaces is still missing ??? elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then return Empty_List; else pragma Assert (Nkind (Parent (Typ)) = N_Private_Extension_Declaration); Nod := Parent (Typ); end if; elsif Ekind (Typ) = E_Record_Subtype then Nod := Type_Definition (Parent (Etype (Typ))); elsif Ekind (Typ) = E_Record_Subtype_With_Private then -- Recurse, because parent may still be a private extension. Also -- note that the full view of the subtype or the full view of its -- base type may (both) be unavailable. return Abstract_Interface_List (Etype (Typ)); else pragma Assert ((Ekind (Typ)) = E_Record_Type); if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then Nod := Formal_Type_Definition (Parent (Typ)); else Nod := Type_Definition (Parent (Typ)); end if; end if; return Interface_List (Nod); end Abstract_Interface_List; -------------------------------- -- Add_Access_Type_To_Process -- -------------------------------- procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is L : Elist_Id; begin Ensure_Freeze_Node (E); L := Access_Types_To_Process (Freeze_Node (E)); if No (L) then L := New_Elmt_List; Set_Access_Types_To_Process (Freeze_Node (E), L); end if; Append_Elmt (A, L); end Add_Access_Type_To_Process; ---------------------------- -- Add_Global_Declaration -- ---------------------------- procedure Add_Global_Declaration (N : Node_Id) is Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit)); begin if No (Declarations (Aux_Node)) then Set_Declarations (Aux_Node, New_List); end if; Append_To (Declarations (Aux_Node), N); Analyze (N); end Add_Global_Declaration; ----------------- -- Addressable -- ----------------- -- For now, just 8/16/32/64. but analyze later if AAMP is special??? function Addressable (V : Uint) return Boolean is begin return V = Uint_8 or else V = Uint_16 or else V = Uint_32 or else V = Uint_64; end Addressable; function Addressable (V : Int) return Boolean is begin return V = 8 or else V = 16 or else V = 32 or else V = 64; end Addressable; ----------------------- -- Alignment_In_Bits -- ----------------------- function Alignment_In_Bits (E : Entity_Id) return Uint is begin return Alignment (E) * System_Storage_Unit; end Alignment_In_Bits; ----------------------------------------- -- Apply_Compile_Time_Constraint_Error -- ----------------------------------------- procedure Apply_Compile_Time_Constraint_Error (N : Node_Id; Msg : String; Reason : RT_Exception_Code; Ent : Entity_Id := Empty; Typ : Entity_Id := Empty; Loc : Source_Ptr := No_Location; Rep : Boolean := True; Warn : Boolean := False) is Stat : constant Boolean := Is_Static_Expression (N); R_Stat : constant Node_Id := Make_Raise_Constraint_Error (Sloc (N), Reason => Reason); Rtyp : Entity_Id; begin if No (Typ) then Rtyp := Etype (N); else Rtyp := Typ; end if; Discard_Node (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn)); if not Rep then return; end if; -- Now we replace the node by an N_Raise_Constraint_Error node -- This does not need reanalyzing, so set it as analyzed now. Rewrite (N, R_Stat); Set_Analyzed (N, True); Set_Etype (N, Rtyp); Set_Raises_Constraint_Error (N); -- Now deal with possible local raise handling Possible_Local_Raise (N, Standard_Constraint_Error); -- If the original expression was marked as static, the result is -- still marked as static, but the Raises_Constraint_Error flag is -- always set so that further static evaluation is not attempted. if Stat then Set_Is_Static_Expression (N); end if; end Apply_Compile_Time_Constraint_Error; -------------------------------------- -- Available_Full_View_Of_Component -- -------------------------------------- function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is ST : constant Entity_Id := Scope (T); SCT : constant Entity_Id := Scope (Component_Type (T)); begin return In_Open_Scopes (ST) and then In_Open_Scopes (SCT) and then Scope_Depth (ST) >= Scope_Depth (SCT); end Available_Full_View_Of_Component; -------------------------------- -- Bad_Predicated_Subtype_Use -- -------------------------------- procedure Bad_Predicated_Subtype_Use (Msg : String; N : Node_Id; Typ : Entity_Id) is begin if Has_Predicates (Typ) then if Is_Generic_Actual_Type (Typ) then Error_Msg_FE (Msg & '?', N, Typ); Error_Msg_F ("\Program_Error will be raised at run time?", N); Insert_Action (N, Make_Raise_Program_Error (Sloc (N), Reason => PE_Bad_Predicated_Generic_Type)); else Error_Msg_FE (Msg, N, Typ); end if; end if; end Bad_Predicated_Subtype_Use; -------------------------- -- Build_Actual_Subtype -- -------------------------- function Build_Actual_Subtype (T : Entity_Id; N : Node_Or_Entity_Id) return Node_Id is Loc : Source_Ptr; -- Normally Sloc (N), but may point to corresponding body in some cases Constraints : List_Id; Decl : Node_Id; Discr : Entity_Id; Hi : Node_Id; Lo : Node_Id; Subt : Entity_Id; Disc_Type : Entity_Id; Obj : Node_Id; begin Loc := Sloc (N); if Nkind (N) = N_Defining_Identifier then Obj := New_Reference_To (N, Loc); -- If this is a formal parameter of a subprogram declaration, and -- we are compiling the body, we want the declaration for the -- actual subtype to carry the source position of the body, to -- prevent anomalies in gdb when stepping through the code. if Is_Formal (N) then declare Decl : constant Node_Id := Unit_Declaration_Node (Scope (N)); begin if Nkind (Decl) = N_Subprogram_Declaration and then Present (Corresponding_Body (Decl)) then Loc := Sloc (Corresponding_Body (Decl)); end if; end; end if; else Obj := N; end if; if Is_Array_Type (T) then Constraints := New_List; for J in 1 .. Number_Dimensions (T) loop -- Build an array subtype declaration with the nominal subtype and -- the bounds of the actual. Add the declaration in front of the -- local declarations for the subprogram, for analysis before any -- reference to the formal in the body. Lo := Make_Attribute_Reference (Loc, Prefix => Duplicate_Subexpr_No_Checks (Obj, Name_Req => True), Attribute_Name => Name_First, Expressions => New_List ( Make_Integer_Literal (Loc, J))); Hi := Make_Attribute_Reference (Loc, Prefix => Duplicate_Subexpr_No_Checks (Obj, Name_Req => True), Attribute_Name => Name_Last, Expressions => New_List ( Make_Integer_Literal (Loc, J))); Append (Make_Range (Loc, Lo, Hi), Constraints); end loop; -- If the type has unknown discriminants there is no constrained -- subtype to build. This is never called for a formal or for a -- lhs, so returning the type is ok ??? elsif Has_Unknown_Discriminants (T) then return T; else Constraints := New_List; -- Type T is a generic derived type, inherit the discriminants from -- the parent type. if Is_Private_Type (T) and then No (Full_View (T)) -- T was flagged as an error if it was declared as a formal -- derived type with known discriminants. In this case there -- is no need to look at the parent type since T already carries -- its own discriminants. and then not Error_Posted (T) then Disc_Type := Etype (Base_Type (T)); else Disc_Type := T; end if; Discr := First_Discriminant (Disc_Type); while Present (Discr) loop Append_To (Constraints, Make_Selected_Component (Loc, Prefix => Duplicate_Subexpr_No_Checks (Obj), Selector_Name => New_Occurrence_Of (Discr, Loc))); Next_Discriminant (Discr); end loop; end if; Subt := Make_Temporary (Loc, 'S', Related_Node => N); Set_Is_Internal (Subt); Decl := Make_Subtype_Declaration (Loc, Defining_Identifier => Subt, Subtype_Indication => Make_Subtype_Indication (Loc, Subtype_Mark => New_Reference_To (T, Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => Constraints))); Mark_Rewrite_Insertion (Decl); return Decl; end Build_Actual_Subtype; --------------------------------------- -- Build_Actual_Subtype_Of_Component -- --------------------------------------- function Build_Actual_Subtype_Of_Component (T : Entity_Id; N : Node_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (N); P : constant Node_Id := Prefix (N); D : Elmt_Id; Id : Node_Id; Index_Typ : Entity_Id; Desig_Typ : Entity_Id; -- This is either a copy of T, or if T is an access type, then it is -- the directly designated type of this access type. function Build_Actual_Array_Constraint return List_Id; -- If one or more of the bounds of the component depends on -- discriminants, build actual constraint using the discriminants -- of the prefix. function Build_Actual_Record_Constraint return List_Id; -- Similar to previous one, for discriminated components constrained -- by the discriminant of the enclosing object. ----------------------------------- -- Build_Actual_Array_Constraint -- ----------------------------------- function Build_Actual_Array_Constraint return List_Id is Constraints : constant List_Id := New_List; Indx : Node_Id; Hi : Node_Id; Lo : Node_Id; Old_Hi : Node_Id; Old_Lo : Node_Id; begin Indx := First_Index (Desig_Typ); while Present (Indx) loop Old_Lo := Type_Low_Bound (Etype (Indx)); Old_Hi := Type_High_Bound (Etype (Indx)); if Denotes_Discriminant (Old_Lo) then Lo := Make_Selected_Component (Loc, Prefix => New_Copy_Tree (P), Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc)); else Lo := New_Copy_Tree (Old_Lo); -- The new bound will be reanalyzed in the enclosing -- declaration. For literal bounds that come from a type -- declaration, the type of the context must be imposed, so -- insure that analysis will take place. For non-universal -- types this is not strictly necessary. Set_Analyzed (Lo, False); end if; if Denotes_Discriminant (Old_Hi) then Hi := Make_Selected_Component (Loc, Prefix => New_Copy_Tree (P), Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc)); else Hi := New_Copy_Tree (Old_Hi); Set_Analyzed (Hi, False); end if; Append (Make_Range (Loc, Lo, Hi), Constraints); Next_Index (Indx); end loop; return Constraints; end Build_Actual_Array_Constraint; ------------------------------------ -- Build_Actual_Record_Constraint -- ------------------------------------ function Build_Actual_Record_Constraint return List_Id is Constraints : constant List_Id := New_List; D : Elmt_Id; D_Val : Node_Id; begin D := First_Elmt (Discriminant_Constraint (Desig_Typ)); while Present (D) loop if Denotes_Discriminant (Node (D)) then D_Val := Make_Selected_Component (Loc, Prefix => New_Copy_Tree (P), Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc)); else D_Val := New_Copy_Tree (Node (D)); end if; Append (D_Val, Constraints); Next_Elmt (D); end loop; return Constraints; end Build_Actual_Record_Constraint; -- Start of processing for Build_Actual_Subtype_Of_Component begin -- Why the test for Spec_Expression mode here??? if In_Spec_Expression then return Empty; -- More comments for the rest of this body would be good ??? elsif Nkind (N) = N_Explicit_Dereference then if Is_Composite_Type (T) and then not Is_Constrained (T) and then not (Is_Class_Wide_Type (T) and then Is_Constrained (Root_Type (T))) and then not Has_Unknown_Discriminants (T) then -- If the type of the dereference is already constrained, it is an -- actual subtype. if Is_Array_Type (Etype (N)) and then Is_Constrained (Etype (N)) then return Empty; else Remove_Side_Effects (P); return Build_Actual_Subtype (T, N); end if; else return Empty; end if; end if; if Ekind (T) = E_Access_Subtype then Desig_Typ := Designated_Type (T); else Desig_Typ := T; end if; if Ekind (Desig_Typ) = E_Array_Subtype then Id := First_Index (Desig_Typ); while Present (Id) loop Index_Typ := Underlying_Type (Etype (Id)); if Denotes_Discriminant (Type_Low_Bound (Index_Typ)) or else Denotes_Discriminant (Type_High_Bound (Index_Typ)) then Remove_Side_Effects (P); return Build_Component_Subtype (Build_Actual_Array_Constraint, Loc, Base_Type (T)); end if; Next_Index (Id); end loop; elsif Is_Composite_Type (Desig_Typ) and then Has_Discriminants (Desig_Typ) and then not Has_Unknown_Discriminants (Desig_Typ) then if Is_Private_Type (Desig_Typ) and then No (Discriminant_Constraint (Desig_Typ)) then Desig_Typ := Full_View (Desig_Typ); end if; D := First_Elmt (Discriminant_Constraint (Desig_Typ)); while Present (D) loop if Denotes_Discriminant (Node (D)) then Remove_Side_Effects (P); return Build_Component_Subtype ( Build_Actual_Record_Constraint, Loc, Base_Type (T)); end if; Next_Elmt (D); end loop; end if; -- If none of the above, the actual and nominal subtypes are the same return Empty; end Build_Actual_Subtype_Of_Component; ----------------------------- -- Build_Component_Subtype -- ----------------------------- function Build_Component_Subtype (C : List_Id; Loc : Source_Ptr; T : Entity_Id) return Node_Id is Subt : Entity_Id; Decl : Node_Id; begin -- Unchecked_Union components do not require component subtypes if Is_Unchecked_Union (T) then return Empty; end if; Subt := Make_Temporary (Loc, 'S'); Set_Is_Internal (Subt); Decl := Make_Subtype_Declaration (Loc, Defining_Identifier => Subt, Subtype_Indication => Make_Subtype_Indication (Loc, Subtype_Mark => New_Reference_To (Base_Type (T), Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => C))); Mark_Rewrite_Insertion (Decl); return Decl; end Build_Component_Subtype; --------------------------- -- Build_Default_Subtype -- --------------------------- function Build_Default_Subtype (T : Entity_Id; N : Node_Id) return Entity_Id is Loc : constant Source_Ptr := Sloc (N); Disc : Entity_Id; begin if not Has_Discriminants (T) or else Is_Constrained (T) then return T; end if; Disc := First_Discriminant (T); if No (Discriminant_Default_Value (Disc)) then return T; end if; declare Act : constant Entity_Id := Make_Temporary (Loc, 'S'); Constraints : constant List_Id := New_List; Decl : Node_Id; begin while Present (Disc) loop Append_To (Constraints, New_Copy_Tree (Discriminant_Default_Value (Disc))); Next_Discriminant (Disc); end loop; Decl := Make_Subtype_Declaration (Loc, Defining_Identifier => Act, Subtype_Indication => Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (T, Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => Constraints))); Insert_Action (N, Decl); Analyze (Decl); return Act; end; end Build_Default_Subtype; -------------------------------------------- -- Build_Discriminal_Subtype_Of_Component -- -------------------------------------------- function Build_Discriminal_Subtype_Of_Component (T : Entity_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (T); D : Elmt_Id; Id : Node_Id; function Build_Discriminal_Array_Constraint return List_Id; -- If one or more of the bounds of the component depends on -- discriminants, build actual constraint using the discriminants -- of the prefix. function Build_Discriminal_Record_Constraint return List_Id; -- Similar to previous one, for discriminated components constrained -- by the discriminant of the enclosing object. ---------------------------------------- -- Build_Discriminal_Array_Constraint -- ---------------------------------------- function Build_Discriminal_Array_Constraint return List_Id is Constraints : constant List_Id := New_List; Indx : Node_Id; Hi : Node_Id; Lo : Node_Id; Old_Hi : Node_Id; Old_Lo : Node_Id; begin Indx := First_Index (T); while Present (Indx) loop Old_Lo := Type_Low_Bound (Etype (Indx)); Old_Hi := Type_High_Bound (Etype (Indx)); if Denotes_Discriminant (Old_Lo) then Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc); else Lo := New_Copy_Tree (Old_Lo); end if; if Denotes_Discriminant (Old_Hi) then Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc); else Hi := New_Copy_Tree (Old_Hi); end if; Append (Make_Range (Loc, Lo, Hi), Constraints); Next_Index (Indx); end loop; return Constraints; end Build_Discriminal_Array_Constraint; ----------------------------------------- -- Build_Discriminal_Record_Constraint -- ----------------------------------------- function Build_Discriminal_Record_Constraint return List_Id is Constraints : constant List_Id := New_List; D : Elmt_Id; D_Val : Node_Id; begin D := First_Elmt (Discriminant_Constraint (T)); while Present (D) loop if Denotes_Discriminant (Node (D)) then D_Val := New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc); else D_Val := New_Copy_Tree (Node (D)); end if; Append (D_Val, Constraints); Next_Elmt (D); end loop; return Constraints; end Build_Discriminal_Record_Constraint; -- Start of processing for Build_Discriminal_Subtype_Of_Component begin if Ekind (T) = E_Array_Subtype then Id := First_Index (T); while Present (Id) loop if Denotes_Discriminant (Type_Low_Bound (Etype (Id))) or else Denotes_Discriminant (Type_High_Bound (Etype (Id))) then return Build_Component_Subtype (Build_Discriminal_Array_Constraint, Loc, T); end if; Next_Index (Id); end loop; elsif Ekind (T) = E_Record_Subtype and then Has_Discriminants (T) and then not Has_Unknown_Discriminants (T) then D := First_Elmt (Discriminant_Constraint (T)); while Present (D) loop if Denotes_Discriminant (Node (D)) then return Build_Component_Subtype (Build_Discriminal_Record_Constraint, Loc, T); end if; Next_Elmt (D); end loop; end if; -- If none of the above, the actual and nominal subtypes are the same return Empty; end Build_Discriminal_Subtype_Of_Component; ------------------------------ -- Build_Elaboration_Entity -- ------------------------------ procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is Loc : constant Source_Ptr := Sloc (N); Decl : Node_Id; Elab_Ent : Entity_Id; procedure Set_Package_Name (Ent : Entity_Id); -- Given an entity, sets the fully qualified name of the entity in -- Name_Buffer, with components separated by double underscores. This -- is a recursive routine that climbs the scope chain to Standard. ---------------------- -- Set_Package_Name -- ---------------------- procedure Set_Package_Name (Ent : Entity_Id) is begin if Scope (Ent) /= Standard_Standard then Set_Package_Name (Scope (Ent)); declare Nam : constant String := Get_Name_String (Chars (Ent)); begin Name_Buffer (Name_Len + 1) := '_'; Name_Buffer (Name_Len + 2) := '_'; Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam; Name_Len := Name_Len + Nam'Length + 2; end; else Get_Name_String (Chars (Ent)); end if; end Set_Package_Name; -- Start of processing for Build_Elaboration_Entity begin -- Ignore if already constructed if Present (Elaboration_Entity (Spec_Id)) then return; end if; -- Construct name of elaboration entity as xxx_E, where xxx is the unit -- name with dots replaced by double underscore. We have to manually -- construct this name, since it will be elaborated in the outer scope, -- and thus will not have the unit name automatically prepended. Set_Package_Name (Spec_Id); -- Append _E Name_Buffer (Name_Len + 1) := '_'; Name_Buffer (Name_Len + 2) := 'E'; Name_Len := Name_Len + 2; -- Create elaboration counter Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find); Set_Elaboration_Entity (Spec_Id, Elab_Ent); Decl := Make_Object_Declaration (Loc, Defining_Identifier => Elab_Ent, Object_Definition => New_Occurrence_Of (Standard_Short_Integer, Loc), Expression => Make_Integer_Literal (Loc, Uint_0)); Push_Scope (Standard_Standard); Add_Global_Declaration (Decl); Pop_Scope; -- Reset True_Constant indication, since we will indeed assign a value -- to the variable in the binder main. We also kill the Current_Value -- and Last_Assignment fields for the same reason. Set_Is_True_Constant (Elab_Ent, False); Set_Current_Value (Elab_Ent, Empty); Set_Last_Assignment (Elab_Ent, Empty); -- We do not want any further qualification of the name (if we did -- not do this, we would pick up the name of the generic package -- in the case of a library level generic instantiation). Set_Has_Qualified_Name (Elab_Ent); Set_Has_Fully_Qualified_Name (Elab_Ent); end Build_Elaboration_Entity; -------------------------------- -- Build_Explicit_Dereference -- -------------------------------- procedure Build_Explicit_Dereference (Expr : Node_Id; Disc : Entity_Id) is Loc : constant Source_Ptr := Sloc (Expr); begin Set_Is_Overloaded (Expr, False); Rewrite (Expr, Make_Explicit_Dereference (Loc, Prefix => Make_Selected_Component (Loc, Prefix => Relocate_Node (Expr), Selector_Name => New_Occurrence_Of (Disc, Loc)))); Set_Etype (Prefix (Expr), Etype (Disc)); Set_Etype (Expr, Designated_Type (Etype (Disc))); end Build_Explicit_Dereference; ----------------------------------- -- Cannot_Raise_Constraint_Error -- ----------------------------------- function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is begin if Compile_Time_Known_Value (Expr) then return True; elsif Do_Range_Check (Expr) then return False; elsif Raises_Constraint_Error (Expr) then return False; else case Nkind (Expr) is when N_Identifier => return True; when N_Expanded_Name => return True; when N_Selected_Component => return not Do_Discriminant_Check (Expr); when N_Attribute_Reference => if Do_Overflow_Check (Expr) then return False; elsif No (Expressions (Expr)) then return True; else declare N : Node_Id; begin N := First (Expressions (Expr)); while Present (N) loop if Cannot_Raise_Constraint_Error (N) then Next (N); else return False; end if; end loop; return True; end; end if; when N_Type_Conversion => if Do_Overflow_Check (Expr) or else Do_Length_Check (Expr) or else Do_Tag_Check (Expr) then return False; else return Cannot_Raise_Constraint_Error (Expression (Expr)); end if; when N_Unchecked_Type_Conversion => return Cannot_Raise_Constraint_Error (Expression (Expr)); when N_Unary_Op => if Do_Overflow_Check (Expr) then return False; else return Cannot_Raise_Constraint_Error (Right_Opnd (Expr)); end if; when N_Op_Divide | N_Op_Mod | N_Op_Rem => if Do_Division_Check (Expr) or else Do_Overflow_Check (Expr) then return False; else return Cannot_Raise_Constraint_Error (Left_Opnd (Expr)) and then Cannot_Raise_Constraint_Error (Right_Opnd (Expr)); end if; when N_Op_Add | N_Op_And | N_Op_Concat | N_Op_Eq | N_Op_Expon | N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt | N_Op_Multiply | N_Op_Ne | N_Op_Or | N_Op_Rotate_Left | N_Op_Rotate_Right | N_Op_Shift_Left | N_Op_Shift_Right | N_Op_Shift_Right_Arithmetic | N_Op_Subtract | N_Op_Xor => if Do_Overflow_Check (Expr) then return False; else return Cannot_Raise_Constraint_Error (Left_Opnd (Expr)) and then Cannot_Raise_Constraint_Error (Right_Opnd (Expr)); end if; when others => return False; end case; end if; end Cannot_Raise_Constraint_Error; -------------------------------- -- Check_Implicit_Dereference -- -------------------------------- procedure Check_Implicit_Dereference (Nam : Node_Id; Typ : Entity_Id) is Disc : Entity_Id; Desig : Entity_Id; begin if Ada_Version < Ada_2012 or else not Has_Implicit_Dereference (Base_Type (Typ)) then return; elsif not Comes_From_Source (Nam) then return; elsif Is_Entity_Name (Nam) and then Is_Type (Entity (Nam)) then null; else Disc := First_Discriminant (Typ); while Present (Disc) loop if Has_Implicit_Dereference (Disc) then Desig := Designated_Type (Etype (Disc)); Add_One_Interp (Nam, Disc, Desig); exit; end if; Next_Discriminant (Disc); end loop; end if; end Check_Implicit_Dereference; --------------------------------------- -- Check_Later_Vs_Basic_Declarations -- --------------------------------------- procedure Check_Later_Vs_Basic_Declarations (Decls : List_Id; During_Parsing : Boolean) is Body_Sloc : Source_Ptr; Decl : Node_Id; function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean; -- Return whether Decl is considered as a declarative item. -- When During_Parsing is True, the semantics of Ada 83 is followed. -- When During_Parsing is False, the semantics of SPARK is followed. ------------------------------- -- Is_Later_Declarative_Item -- ------------------------------- function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is begin if Nkind (Decl) in N_Later_Decl_Item then return True; elsif Nkind (Decl) = N_Pragma then return True; elsif During_Parsing then return False; -- In SPARK, a package declaration is not considered as a later -- declarative item. elsif Nkind (Decl) = N_Package_Declaration then return False; -- In SPARK, a renaming is considered as a later declarative item elsif Nkind (Decl) in N_Renaming_Declaration then return True; else return False; end if; end Is_Later_Declarative_Item; -- Start of Check_Later_Vs_Basic_Declarations begin Decl := First (Decls); -- Loop through sequence of basic declarative items Outer : while Present (Decl) loop if Nkind (Decl) /= N_Subprogram_Body and then Nkind (Decl) /= N_Package_Body and then Nkind (Decl) /= N_Task_Body and then Nkind (Decl) not in N_Body_Stub then Next (Decl); -- Once a body is encountered, we only allow later declarative -- items. The inner loop checks the rest of the list. else Body_Sloc := Sloc (Decl); Inner : while Present (Decl) loop if not Is_Later_Declarative_Item (Decl) then if During_Parsing then if Ada_Version = Ada_83 then Error_Msg_Sloc := Body_Sloc; Error_Msg_N ("(Ada 83) decl cannot appear after body#", Decl); end if; else Error_Msg_Sloc := Body_Sloc; Check_SPARK_Restriction ("decl cannot appear after body#", Decl); end if; end if; Next (Decl); end loop Inner; end if; end loop Outer; end Check_Later_Vs_Basic_Declarations; ----------------------------------------- -- Check_Dynamically_Tagged_Expression -- ----------------------------------------- procedure Check_Dynamically_Tagged_Expression (Expr : Node_Id; Typ : Entity_Id; Related_Nod : Node_Id) is begin pragma Assert (Is_Tagged_Type (Typ)); -- In order to avoid spurious errors when analyzing the expanded code, -- this check is done only for nodes that come from source and for -- actuals of generic instantiations. if (Comes_From_Source (Related_Nod) or else In_Generic_Actual (Expr)) and then (Is_Class_Wide_Type (Etype (Expr)) or else Is_Dynamically_Tagged (Expr)) and then Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then Error_Msg_N ("dynamically tagged expression not allowed!", Expr); end if; end Check_Dynamically_Tagged_Expression; -------------------------- -- Check_Fully_Declared -- -------------------------- procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is begin if Ekind (T) = E_Incomplete_Type then -- Ada 2005 (AI-50217): If the type is available through a limited -- with_clause, verify that its full view has been analyzed. if From_With_Type (T) and then Present (Non_Limited_View (T)) and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type then -- The non-limited view is fully declared null; else Error_Msg_NE ("premature usage of incomplete}", N, First_Subtype (T)); end if; -- Need comments for these tests ??? elsif Has_Private_Component (T) and then not Is_Generic_Type (Root_Type (T)) and then not In_Spec_Expression then -- Special case: if T is the anonymous type created for a single -- task or protected object, use the name of the source object. if Is_Concurrent_Type (T) and then not Comes_From_Source (T) and then Nkind (N) = N_Object_Declaration then Error_Msg_NE ("type of& has incomplete component", N, Defining_Identifier (N)); else Error_Msg_NE ("premature usage of incomplete}", N, First_Subtype (T)); end if; end if; end Check_Fully_Declared; ------------------------- -- Check_Nested_Access -- ------------------------- procedure Check_Nested_Access (Ent : Entity_Id) is Scop : constant Entity_Id := Current_Scope; Current_Subp : Entity_Id; Enclosing : Entity_Id; begin -- Currently only enabled for VM back-ends for efficiency, should we -- enable it more systematically ??? -- Check for Is_Imported needs commenting below ??? if VM_Target /= No_VM and then (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant or else Ekind (Ent) = E_Loop_Parameter) and then Scope (Ent) /= Empty and then not Is_Library_Level_Entity (Ent) and then not Is_Imported (Ent) then if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) or else Is_Entry (Scop) then Current_Subp := Scop; else Current_Subp := Current_Subprogram; end if; Enclosing := Enclosing_Subprogram (Ent); if Enclosing /= Empty and then Enclosing /= Current_Subp then Set_Has_Up_Level_Access (Ent, True); end if; end if; end Check_Nested_Access; ---------------------------- -- Check_Order_Dependence -- ---------------------------- procedure Check_Order_Dependence is Act1 : Node_Id; Act2 : Node_Id; begin if Ada_Version < Ada_2012 then return; end if; -- Ada 2012 AI05-0144-2: Dangerous order dependence. Actuals in nested -- calls within a construct have been collected. If one of them is -- writable and overlaps with another one, evaluation of the enclosing -- construct is nondeterministic. This is illegal in Ada 2012, but is -- treated as a warning for now. for J in 1 .. Actuals_In_Call.Last loop if Actuals_In_Call.Table (J).Is_Writable then Act1 := Actuals_In_Call.Table (J).Act; if Nkind (Act1) = N_Attribute_Reference then Act1 := Prefix (Act1); end if; for K in 1 .. Actuals_In_Call.Last loop if K /= J then Act2 := Actuals_In_Call.Table (K).Act; if Nkind (Act2) = N_Attribute_Reference then Act2 := Prefix (Act2); end if; if Actuals_In_Call.Table (K).Is_Writable and then K < J then -- Already checked null; elsif Denotes_Same_Object (Act1, Act2) and then Parent (Act1) /= Parent (Act2) then Error_Msg_N ("result may differ if evaluated " & "after other actual in expression?", Act1); end if; end if; end loop; end if; end loop; -- Remove checked actuals from table Actuals_In_Call.Set_Last (0); end Check_Order_Dependence; ------------------------------------------ -- Check_Potentially_Blocking_Operation -- ------------------------------------------ procedure Check_Potentially_Blocking_Operation (N : Node_Id) is S : Entity_Id; begin -- N is one of the potentially blocking operations listed in 9.5.1(8). -- When pragma Detect_Blocking is active, the run time will raise -- Program_Error. Here we only issue a warning, since we generally -- support the use of potentially blocking operations in the absence -- of the pragma. -- Indirect blocking through a subprogram call cannot be diagnosed -- statically without interprocedural analysis, so we do not attempt -- to do it here. S := Scope (Current_Scope); while Present (S) and then S /= Standard_Standard loop if Is_Protected_Type (S) then Error_Msg_N ("potentially blocking operation in protected operation?", N); return; end if; S := Scope (S); end loop; end Check_Potentially_Blocking_Operation; ------------------------------ -- Check_Unprotected_Access -- ------------------------------ procedure Check_Unprotected_Access (Context : Node_Id; Expr : Node_Id) is Cont_Encl_Typ : Entity_Id; Pref_Encl_Typ : Entity_Id; function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id; -- Check whether Obj is a private component of a protected object. -- Return the protected type where the component resides, Empty -- otherwise. function Is_Public_Operation return Boolean; -- Verify that the enclosing operation is callable from outside the -- protected object, to minimize false positives. ------------------------------ -- Enclosing_Protected_Type -- ------------------------------ function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is begin if Is_Entity_Name (Obj) then declare Ent : Entity_Id := Entity (Obj); begin -- The object can be a renaming of a private component, use -- the original record component. if Is_Prival (Ent) then Ent := Prival_Link (Ent); end if; if Is_Protected_Type (Scope (Ent)) then return Scope (Ent); end if; end; end if; -- For indexed and selected components, recursively check the prefix if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then return Enclosing_Protected_Type (Prefix (Obj)); -- The object does not denote a protected component else return Empty; end if; end Enclosing_Protected_Type; ------------------------- -- Is_Public_Operation -- ------------------------- function Is_Public_Operation return Boolean is S : Entity_Id; E : Entity_Id; begin S := Current_Scope; while Present (S) and then S /= Pref_Encl_Typ loop if Scope (S) = Pref_Encl_Typ then E := First_Entity (Pref_Encl_Typ); while Present (E) and then E /= First_Private_Entity (Pref_Encl_Typ) loop if E = S then return True; end if; Next_Entity (E); end loop; end if; S := Scope (S); end loop; return False; end Is_Public_Operation; -- Start of processing for Check_Unprotected_Access begin if Nkind (Expr) = N_Attribute_Reference and then Attribute_Name (Expr) = Name_Unchecked_Access then Cont_Encl_Typ := Enclosing_Protected_Type (Context); Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr)); -- Check whether we are trying to export a protected component to a -- context with an equal or lower access level. if Present (Pref_Encl_Typ) and then No (Cont_Encl_Typ) and then Is_Public_Operation and then Scope_Depth (Pref_Encl_Typ) >= Object_Access_Level (Context) then Error_Msg_N ("?possible unprotected access to protected data", Expr); end if; end if; end Check_Unprotected_Access; --------------- -- Check_VMS -- --------------- procedure Check_VMS (Construct : Node_Id) is begin if not OpenVMS_On_Target then Error_Msg_N ("this construct is allowed only in Open'V'M'S", Construct); end if; end Check_VMS; ------------------------ -- Collect_Interfaces -- ------------------------ procedure Collect_Interfaces (T : Entity_Id; Ifaces_List : out Elist_Id; Exclude_Parents : Boolean := False; Use_Full_View : Boolean := True) is procedure Collect (Typ : Entity_Id); -- Subsidiary subprogram used to traverse the whole list -- of directly and indirectly implemented interfaces ------------- -- Collect -- ------------- procedure Collect (Typ : Entity_Id) is Ancestor : Entity_Id; Full_T : Entity_Id; Id : Node_Id; Iface : Entity_Id; begin Full_T := Typ; -- Handle private types if Use_Full_View and then Is_Private_Type (Typ) and then Present (Full_View (Typ)) then Full_T := Full_View (Typ); end if; -- Include the ancestor if we are generating the whole list of -- abstract interfaces. if Etype (Full_T) /= Typ -- Protect the frontend against wrong sources. For example: -- package P is -- type A is tagged null record; -- type B is new A with private; -- type C is new A with private; -- private -- type B is new C with null record; -- type C is new B with null record; -- end P; and then Etype (Full_T) /= T then Ancestor := Etype (Full_T); Collect (Ancestor); if Is_Interface (Ancestor) and then not Exclude_Parents then Append_Unique_Elmt (Ancestor, Ifaces_List); end if; end if; -- Traverse the graph of ancestor interfaces if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then Id := First (Abstract_Interface_List (Full_T)); while Present (Id) loop Iface := Etype (Id); -- Protect against wrong uses. For example: -- type I is interface; -- type O is tagged null record; -- type Wrong is new I and O with null record; -- ERROR if Is_Interface (Iface) then if Exclude_Parents and then Etype (T) /= T and then Interface_Present_In_Ancestor (Etype (T), Iface) then null; else Collect (Iface); Append_Unique_Elmt (Iface, Ifaces_List); end if; end if; Next (Id); end loop; end if; end Collect; -- Start of processing for Collect_Interfaces begin pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T)); Ifaces_List := New_Elmt_List; Collect (T); end Collect_Interfaces; ---------------------------------- -- Collect_Interface_Components -- ---------------------------------- procedure Collect_Interface_Components (Tagged_Type : Entity_Id; Components_List : out Elist_Id) is procedure Collect (Typ : Entity_Id); -- Subsidiary subprogram used to climb to the parents ------------- -- Collect -- ------------- procedure Collect (Typ : Entity_Id) is Tag_Comp : Entity_Id; Parent_Typ : Entity_Id; begin -- Handle private types if Present (Full_View (Etype (Typ))) then Parent_Typ := Full_View (Etype (Typ)); else Parent_Typ := Etype (Typ); end if; if Parent_Typ /= Typ -- Protect the frontend against wrong sources. For example: -- package P is -- type A is tagged null record; -- type B is new A with private; -- type C is new A with private; -- private -- type B is new C with null record; -- type C is new B with null record; -- end P; and then Parent_Typ /= Tagged_Type then Collect (Parent_Typ); end if; -- Collect the components containing tags of secondary dispatch -- tables. Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ)); while Present (Tag_Comp) loop pragma Assert (Present (Related_Type (Tag_Comp))); Append_Elmt (Tag_Comp, Components_List); Tag_Comp := Next_Tag_Component (Tag_Comp); end loop; end Collect; -- Start of processing for Collect_Interface_Components begin pragma Assert (Ekind (Tagged_Type) = E_Record_Type and then Is_Tagged_Type (Tagged_Type)); Components_List := New_Elmt_List; Collect (Tagged_Type); end Collect_Interface_Components; ----------------------------- -- Collect_Interfaces_Info -- ----------------------------- procedure Collect_Interfaces_Info (T : Entity_Id; Ifaces_List : out Elist_Id; Components_List : out Elist_Id; Tags_List : out Elist_Id) is Comps_List : Elist_Id; Comp_Elmt : Elmt_Id; Comp_Iface : Entity_Id; Iface_Elmt : Elmt_Id; Iface : Entity_Id; function Search_Tag (Iface : Entity_Id) return Entity_Id; -- Search for the secondary tag associated with the interface type -- Iface that is implemented by T. ---------------- -- Search_Tag -- ---------------- function Search_Tag (Iface : Entity_Id) return Entity_Id is ADT : Elmt_Id; begin if not Is_CPP_Class (T) then ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T)))); else ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T))); end if; while Present (ADT) and then Is_Tag (Node (ADT)) and then Related_Type (Node (ADT)) /= Iface loop -- Skip secondary dispatch table referencing thunks to user -- defined primitives covered by this interface. pragma Assert (Has_Suffix (Node (ADT), 'P')); Next_Elmt (ADT); -- Skip secondary dispatch tables of Ada types if not Is_CPP_Class (T) then -- Skip secondary dispatch table referencing thunks to -- predefined primitives. pragma Assert (Has_Suffix (Node (ADT), 'Y')); Next_Elmt (ADT); -- Skip secondary dispatch table referencing user-defined -- primitives covered by this interface. pragma Assert (Has_Suffix (Node (ADT), 'D')); Next_Elmt (ADT); -- Skip secondary dispatch table referencing predefined -- primitives. pragma Assert (Has_Suffix (Node (ADT), 'Z')); Next_Elmt (ADT); end if; end loop; pragma Assert (Is_Tag (Node (ADT))); return Node (ADT); end Search_Tag; -- Start of processing for Collect_Interfaces_Info begin Collect_Interfaces (T, Ifaces_List); Collect_Interface_Components (T, Comps_List); -- Search for the record component and tag associated with each -- interface type of T. Components_List := New_Elmt_List; Tags_List := New_Elmt_List; Iface_Elmt := First_Elmt (Ifaces_List); while Present (Iface_Elmt) loop Iface := Node (Iface_Elmt); -- Associate the primary tag component and the primary dispatch table -- with all the interfaces that are parents of T if Is_Ancestor (Iface, T, Use_Full_View => True) then Append_Elmt (First_Tag_Component (T), Components_List); Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List); -- Otherwise search for the tag component and secondary dispatch -- table of Iface else Comp_Elmt := First_Elmt (Comps_List); while Present (Comp_Elmt) loop Comp_Iface := Related_Type (Node (Comp_Elmt)); if Comp_Iface = Iface or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True) then Append_Elmt (Node (Comp_Elmt), Components_List); Append_Elmt (Search_Tag (Comp_Iface), Tags_List); exit; end if; Next_Elmt (Comp_Elmt); end loop; pragma Assert (Present (Comp_Elmt)); end if; Next_Elmt (Iface_Elmt); end loop; end Collect_Interfaces_Info; --------------------- -- Collect_Parents -- --------------------- procedure Collect_Parents (T : Entity_Id; List : out Elist_Id; Use_Full_View : Boolean := True) is Current_Typ : Entity_Id := T; Parent_Typ : Entity_Id; begin List := New_Elmt_List; -- No action if the if the type has no parents if T = Etype (T) then return; end if; loop Parent_Typ := Etype (Current_Typ); if Is_Private_Type (Parent_Typ) and then Present (Full_View (Parent_Typ)) and then Use_Full_View then Parent_Typ := Full_View (Base_Type (Parent_Typ)); end if; Append_Elmt (Parent_Typ, List); exit when Parent_Typ = Current_Typ; Current_Typ := Parent_Typ; end loop; end Collect_Parents; ---------------------------------- -- Collect_Primitive_Operations -- ---------------------------------- function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is B_Type : constant Entity_Id := Base_Type (T); B_Decl : constant Node_Id := Original_Node (Parent (B_Type)); B_Scope : Entity_Id := Scope (B_Type); Op_List : Elist_Id; Formal : Entity_Id; Is_Prim : Boolean; Formal_Derived : Boolean := False; Id : Entity_Id; function Match (E : Entity_Id) return Boolean; -- True if E's base type is B_Type, or E is of an anonymous access type -- and the base type of its designated type is B_Type. ----------- -- Match -- ----------- function Match (E : Entity_Id) return Boolean is Etyp : Entity_Id := Etype (E); begin if Ekind (Etyp) = E_Anonymous_Access_Type then Etyp := Designated_Type (Etyp); end if; return Base_Type (Etyp) = B_Type; end Match; -- Start of processing for Collect_Primitive_Operations begin -- For tagged types, the primitive operations are collected as they -- are declared, and held in an explicit list which is simply returned. if Is_Tagged_Type (B_Type) then return Primitive_Operations (B_Type); -- An untagged generic type that is a derived type inherits the -- primitive operations of its parent type. Other formal types only -- have predefined operators, which are not explicitly represented. elsif Is_Generic_Type (B_Type) then if Nkind (B_Decl) = N_Formal_Type_Declaration and then Nkind (Formal_Type_Definition (B_Decl)) = N_Formal_Derived_Type_Definition then Formal_Derived := True; else return New_Elmt_List; end if; end if; Op_List := New_Elmt_List; if B_Scope = Standard_Standard then if B_Type = Standard_String then Append_Elmt (Standard_Op_Concat, Op_List); elsif B_Type = Standard_Wide_String then Append_Elmt (Standard_Op_Concatw, Op_List); else null; end if; elsif (Is_Package_Or_Generic_Package (B_Scope) and then Nkind (Parent (Declaration_Node (First_Subtype (T)))) /= N_Package_Body) or else Is_Derived_Type (B_Type) then -- The primitive operations appear after the base type, except -- if the derivation happens within the private part of B_Scope -- and the type is a private type, in which case both the type -- and some primitive operations may appear before the base -- type, and the list of candidates starts after the type. if In_Open_Scopes (B_Scope) and then Scope (T) = B_Scope and then In_Private_Part (B_Scope) then Id := Next_Entity (T); else Id := Next_Entity (B_Type); end if; while Present (Id) loop -- Note that generic formal subprograms are not -- considered to be primitive operations and thus -- are never inherited. if Is_Overloadable (Id) and then Nkind (Parent (Parent (Id))) not in N_Formal_Subprogram_Declaration then Is_Prim := False; if Match (Id) then Is_Prim := True; else Formal := First_Formal (Id); while Present (Formal) loop if Match (Formal) then Is_Prim := True; exit; end if; Next_Formal (Formal); end loop; end if; -- For a formal derived type, the only primitives are the -- ones inherited from the parent type. Operations appearing -- in the package declaration are not primitive for it. if Is_Prim and then (not Formal_Derived or else Present (Alias (Id))) then -- In the special case of an equality operator aliased to -- an overriding dispatching equality belonging to the same -- type, we don't include it in the list of primitives. -- This avoids inheriting multiple equality operators when -- deriving from untagged private types whose full type is -- tagged, which can otherwise cause ambiguities. Note that -- this should only happen for this kind of untagged parent -- type, since normally dispatching operations are inherited -- using the type's Primitive_Operations list. if Chars (Id) = Name_Op_Eq and then Is_Dispatching_Operation (Id) and then Present (Alias (Id)) and then Present (Overridden_Operation (Alias (Id))) and then Base_Type (Etype (First_Entity (Id))) = Base_Type (Etype (First_Entity (Alias (Id)))) then null; -- Include the subprogram in the list of primitives else Append_Elmt (Id, Op_List); end if; end if; end if; Next_Entity (Id); -- For a type declared in System, some of its operations may -- appear in the target-specific extension to System. if No (Id) and then B_Scope = RTU_Entity (System) and then Present_System_Aux then B_Scope := System_Aux_Id; Id := First_Entity (System_Aux_Id); end if; end loop; end if; return Op_List; end Collect_Primitive_Operations; ----------------------------------- -- Compile_Time_Constraint_Error -- ----------------------------------- function Compile_Time_Constraint_Error (N : Node_Id; Msg : String; Ent : Entity_Id := Empty; Loc : Source_Ptr := No_Location; Warn : Boolean := False) return Node_Id is Msgc : String (1 .. Msg'Length + 2); -- Copy of message, with room for possible ? and ! at end Msgl : Natural; Wmsg : Boolean; P : Node_Id; OldP : Node_Id; Msgs : Boolean; Eloc : Source_Ptr; begin -- A static constraint error in an instance body is not a fatal error. -- we choose to inhibit the message altogether, because there is no -- obvious node (for now) on which to post it. On the other hand the -- offending node must be replaced with a constraint_error in any case. -- No messages are generated if we already posted an error on this node if not Error_Posted (N) then if Loc /= No_Location then Eloc := Loc; else Eloc := Sloc (N); end if; Msgc (1 .. Msg'Length) := Msg; Msgl := Msg'Length; -- Message is a warning, even in Ada 95 case if Msg (Msg'Last) = '?' then Wmsg := True; -- In Ada 83, all messages are warnings. In the private part and -- the body of an instance, constraint_checks are only warnings. -- We also make this a warning if the Warn parameter is set. elsif Warn or else (Ada_Version = Ada_83 and then Comes_From_Source (N)) then Msgl := Msgl + 1; Msgc (Msgl) := '?'; Wmsg := True; elsif In_Instance_Not_Visible then Msgl := Msgl + 1; Msgc (Msgl) := '?'; Wmsg := True; -- Otherwise we have a real error message (Ada 95 static case) -- and we make this an unconditional message. Note that in the -- warning case we do not make the message unconditional, it seems -- quite reasonable to delete messages like this (about exceptions -- that will be raised) in dead code. else Wmsg := False; Msgl := Msgl + 1; Msgc (Msgl) := '!'; end if; -- Should we generate a warning? The answer is not quite yes. The -- very annoying exception occurs in the case of a short circuit -- operator where the left operand is static and decisive. Climb -- parents to see if that is the case we have here. Conditional -- expressions with decisive conditions are a similar situation. Msgs := True; P := N; loop OldP := P; P := Parent (P); -- And then with False as left operand if Nkind (P) = N_And_Then and then Compile_Time_Known_Value (Left_Opnd (P)) and then Is_False (Expr_Value (Left_Opnd (P))) then Msgs := False; exit; -- OR ELSE with True as left operand elsif Nkind (P) = N_Or_Else and then Compile_Time_Known_Value (Left_Opnd (P)) and then Is_True (Expr_Value (Left_Opnd (P))) then Msgs := False; exit; -- Conditional expression elsif Nkind (P) = N_Conditional_Expression then declare Cond : constant Node_Id := First (Expressions (P)); Texp : constant Node_Id := Next (Cond); Fexp : constant Node_Id := Next (Texp); begin if Compile_Time_Known_Value (Cond) then -- Condition is True and we are in the right operand if Is_True (Expr_Value (Cond)) and then OldP = Fexp then Msgs := False; exit; -- Condition is False and we are in the left operand elsif Is_False (Expr_Value (Cond)) and then OldP = Texp then Msgs := False; exit; end if; end if; end; -- Special case for component association in aggregates, where -- we want to keep climbing up to the parent aggregate. elsif Nkind (P) = N_Component_Association and then Nkind (Parent (P)) = N_Aggregate then null; -- Keep going if within subexpression else exit when Nkind (P) not in N_Subexpr; end if; end loop; if Msgs then if Present (Ent) then Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc); else Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc); end if; if Wmsg then if Inside_Init_Proc then Error_Msg_NEL ("\?& will be raised for objects of this type", N, Standard_Constraint_Error, Eloc); else Error_Msg_NEL ("\?& will be raised at run time", N, Standard_Constraint_Error, Eloc); end if; else Error_Msg ("\static expression fails Constraint_Check", Eloc); Set_Error_Posted (N); end if; end if; end if; return N; end Compile_Time_Constraint_Error; ----------------------- -- Conditional_Delay -- ----------------------- procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is begin if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then Set_Has_Delayed_Freeze (New_Ent); end if; end Conditional_Delay; ------------------------- -- Copy_Component_List -- ------------------------- function Copy_Component_List (R_Typ : Entity_Id; Loc : Source_Ptr) return List_Id is Comp : Node_Id; Comps : constant List_Id := New_List; begin Comp := First_Component (Underlying_Type (R_Typ)); while Present (Comp) loop if Comes_From_Source (Comp) then declare Comp_Decl : constant Node_Id := Declaration_Node (Comp); begin Append_To (Comps, Make_Component_Declaration (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Chars (Comp)), Component_Definition => New_Copy_Tree (Component_Definition (Comp_Decl), New_Sloc => Loc))); end; end if; Next_Component (Comp); end loop; return Comps; end Copy_Component_List; ------------------------- -- Copy_Parameter_List -- ------------------------- function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is Loc : constant Source_Ptr := Sloc (Subp_Id); Plist : List_Id; Formal : Entity_Id; begin if No (First_Formal (Subp_Id)) then return No_List; else Plist := New_List; Formal := First_Formal (Subp_Id); while Present (Formal) loop Append (Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Sloc (Formal), Chars => Chars (Formal)), In_Present => In_Present (Parent (Formal)), Out_Present => Out_Present (Parent (Formal)), Parameter_Type => New_Reference_To (Etype (Formal), Loc), Expression => New_Copy_Tree (Expression (Parent (Formal)))), Plist); Next_Formal (Formal); end loop; end if; return Plist; end Copy_Parameter_List; -------------------- -- Current_Entity -- -------------------- -- The currently visible definition for a given identifier is the -- one most chained at the start of the visibility chain, i.e. the -- one that is referenced by the Node_Id value of the name of the -- given identifier. function Current_Entity (N : Node_Id) return Entity_Id is begin return Get_Name_Entity_Id (Chars (N)); end Current_Entity; ----------------------------- -- Current_Entity_In_Scope -- ----------------------------- function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is E : Entity_Id; CS : constant Entity_Id := Current_Scope; Transient_Case : constant Boolean := Scope_Is_Transient; begin E := Get_Name_Entity_Id (Chars (N)); while Present (E) and then Scope (E) /= CS and then (not Transient_Case or else Scope (E) /= Scope (CS)) loop E := Homonym (E); end loop; return E; end Current_Entity_In_Scope; ------------------- -- Current_Scope -- ------------------- function Current_Scope return Entity_Id is begin if Scope_Stack.Last = -1 then return Standard_Standard; else declare C : constant Entity_Id := Scope_Stack.Table (Scope_Stack.Last).Entity; begin if Present (C) then return C; else return Standard_Standard; end if; end; end if; end Current_Scope; ------------------------ -- Current_Subprogram -- ------------------------ function Current_Subprogram return Entity_Id is Scop : constant Entity_Id := Current_Scope; begin if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) then return Scop; else return Enclosing_Subprogram (Scop); end if; end Current_Subprogram; ---------------------------------- -- Deepest_Type_Access_Level -- ---------------------------------- function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is begin if Ekind (Typ) = E_Anonymous_Access_Type and then not Is_Local_Anonymous_Access (Typ) and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration then -- Typ is the type of an Ada 2012 stand-alone object of an anonymous -- access type. return Scope_Depth (Enclosing_Dynamic_Scope (Defining_Identifier (Associated_Node_For_Itype (Typ)))); -- For generic formal type, return Int'Last (infinite). -- See comment preceding Is_Generic_Type call in Type_Access_Level. elsif Is_Generic_Type (Root_Type (Typ)) then return UI_From_Int (Int'Last); else return Type_Access_Level (Typ); end if; end Deepest_Type_Access_Level; --------------------- -- Defining_Entity -- --------------------- function Defining_Entity (N : Node_Id) return Entity_Id is K : constant Node_Kind := Nkind (N); Err : Entity_Id := Empty; begin case K is when N_Subprogram_Declaration | N_Abstract_Subprogram_Declaration | N_Subprogram_Body | N_Package_Declaration | N_Subprogram_Renaming_Declaration | N_Subprogram_Body_Stub | N_Generic_Subprogram_Declaration | N_Generic_Package_Declaration | N_Formal_Subprogram_Declaration | N_Expression_Function => return Defining_Entity (Specification (N)); when N_Component_Declaration | N_Defining_Program_Unit_Name | N_Discriminant_Specification | N_Entry_Body | N_Entry_Declaration | N_Entry_Index_Specification | N_Exception_Declaration | N_Exception_Renaming_Declaration | N_Formal_Object_Declaration | N_Formal_Package_Declaration | N_Formal_Type_Declaration | N_Full_Type_Declaration | N_Implicit_Label_Declaration | N_Incomplete_Type_Declaration | N_Loop_Parameter_Specification | N_Number_Declaration | N_Object_Declaration | N_Object_Renaming_Declaration | N_Package_Body_Stub | N_Parameter_Specification | N_Private_Extension_Declaration | N_Private_Type_Declaration | N_Protected_Body | N_Protected_Body_Stub | N_Protected_Type_Declaration | N_Single_Protected_Declaration | N_Single_Task_Declaration | N_Subtype_Declaration | N_Task_Body | N_Task_Body_Stub | N_Task_Type_Declaration => return Defining_Identifier (N); when N_Subunit => return Defining_Entity (Proper_Body (N)); when N_Function_Instantiation | N_Function_Specification | N_Generic_Function_Renaming_Declaration | N_Generic_Package_Renaming_Declaration | N_Generic_Procedure_Renaming_Declaration | N_Package_Body | N_Package_Instantiation | N_Package_Renaming_Declaration | N_Package_Specification | N_Procedure_Instantiation | N_Procedure_Specification => declare Nam : constant Node_Id := Defining_Unit_Name (N); begin if Nkind (Nam) in N_Entity then return Nam; -- For Error, make up a name and attach to declaration -- so we can continue semantic analysis elsif Nam = Error then Err := Make_Temporary (Sloc (N), 'T'); Set_Defining_Unit_Name (N, Err); return Err; -- If not an entity, get defining identifier else return Defining_Identifier (Nam); end if; end; when N_Block_Statement => return Entity (Identifier (N)); when others => raise Program_Error; end case; end Defining_Entity; -------------------------- -- Denotes_Discriminant -- -------------------------- function Denotes_Discriminant (N : Node_Id; Check_Concurrent : Boolean := False) return Boolean is E : Entity_Id; begin if not Is_Entity_Name (N) or else No (Entity (N)) then return False; else E := Entity (N); end if; -- If we are checking for a protected type, the discriminant may have -- been rewritten as the corresponding discriminal of the original type -- or of the corresponding concurrent record, depending on whether we -- are in the spec or body of the protected type. return Ekind (E) = E_Discriminant or else (Check_Concurrent and then Ekind (E) = E_In_Parameter and then Present (Discriminal_Link (E)) and then (Is_Concurrent_Type (Scope (Discriminal_Link (E))) or else Is_Concurrent_Record_Type (Scope (Discriminal_Link (E))))); end Denotes_Discriminant; ------------------------- -- Denotes_Same_Object -- ------------------------- function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is Obj1 : Node_Id := A1; Obj2 : Node_Id := A2; procedure Check_Renaming (Obj : in out Node_Id); -- If an object is a renaming, examine renamed object. If it is a -- dereference of a variable, or an indexed expression with non-constant -- indexes, no overlap check can be reported. -------------------- -- Check_Renaming -- -------------------- procedure Check_Renaming (Obj : in out Node_Id) is begin if Is_Entity_Name (Obj) and then Present (Renamed_Entity (Entity (Obj))) then Obj := Renamed_Entity (Entity (Obj)); if Nkind (Obj) = N_Explicit_Dereference and then Is_Variable (Prefix (Obj)) then Obj := Empty; elsif Nkind (Obj) = N_Indexed_Component then declare Indx : Node_Id; begin Indx := First (Expressions (Obj)); while Present (Indx) loop if not Is_OK_Static_Expression (Indx) then Obj := Empty; exit; end if; Next_Index (Indx); end loop; end; end if; end if; end Check_Renaming; -- Start of processing for Denotes_Same_Object begin Check_Renaming (Obj1); Check_Renaming (Obj2); if No (Obj1) or else No (Obj2) then return False; end if; -- If we have entity names, then must be same entity if Is_Entity_Name (Obj1) then if Is_Entity_Name (Obj2) then return Entity (Obj1) = Entity (Obj2); else return False; end if; -- No match if not same node kind elsif Nkind (Obj1) /= Nkind (Obj2) then return False; -- For selected components, must have same prefix and selector elsif Nkind (Obj1) = N_Selected_Component then return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) and then Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2)); -- For explicit dereferences, prefixes must be same elsif Nkind (Obj1) = N_Explicit_Dereference then return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)); -- For indexed components, prefixes and all subscripts must be the same elsif Nkind (Obj1) = N_Indexed_Component then if Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then declare Indx1 : Node_Id; Indx2 : Node_Id; begin Indx1 := First (Expressions (Obj1)); Indx2 := First (Expressions (Obj2)); while Present (Indx1) loop -- Indexes must denote the same static value or same object if Is_OK_Static_Expression (Indx1) then if not Is_OK_Static_Expression (Indx2) then return False; elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then return False; end if; elsif not Denotes_Same_Object (Indx1, Indx2) then return False; end if; Next (Indx1); Next (Indx2); end loop; return True; end; else return False; end if; -- For slices, prefixes must match and bounds must match elsif Nkind (Obj1) = N_Slice and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then declare Lo1, Lo2, Hi1, Hi2 : Node_Id; begin Get_Index_Bounds (Etype (Obj1), Lo1, Hi1); Get_Index_Bounds (Etype (Obj2), Lo2, Hi2); -- Check whether bounds are statically identical. There is no -- attempt to detect partial overlap of slices. return Denotes_Same_Object (Lo1, Lo2) and then Denotes_Same_Object (Hi1, Hi2); end; -- Literals will appear as indexes. Isn't this where we should check -- Known_At_Compile_Time at least if we are generating warnings ??? elsif Nkind (Obj1) = N_Integer_Literal then return Intval (Obj1) = Intval (Obj2); else return False; end if; end Denotes_Same_Object; ------------------------- -- Denotes_Same_Prefix -- ------------------------- function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is begin if Is_Entity_Name (A1) then if Nkind_In (A2, N_Selected_Component, N_Indexed_Component) and then not Is_Access_Type (Etype (A1)) then return Denotes_Same_Object (A1, Prefix (A2)) or else Denotes_Same_Prefix (A1, Prefix (A2)); else return False; end if; elsif Is_Entity_Name (A2) then return Denotes_Same_Prefix (A1 => A2, A2 => A1); elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice) and then Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice) then declare Root1, Root2 : Node_Id; Depth1, Depth2 : Int := 0; begin Root1 := Prefix (A1); while not Is_Entity_Name (Root1) loop if not Nkind_In (Root1, N_Selected_Component, N_Indexed_Component) then return False; else Root1 := Prefix (Root1); end if; Depth1 := Depth1 + 1; end loop; Root2 := Prefix (A2); while not Is_Entity_Name (Root2) loop if not Nkind_In (Root2, N_Selected_Component, N_Indexed_Component) then return False; else Root2 := Prefix (Root2); end if; Depth2 := Depth2 + 1; end loop; -- If both have the same depth and they do not denote the same -- object, they are disjoint and not warning is needed. if Depth1 = Depth2 then return False; elsif Depth1 > Depth2 then Root1 := Prefix (A1); for I in 1 .. Depth1 - Depth2 - 1 loop Root1 := Prefix (Root1); end loop; return Denotes_Same_Object (Root1, A2); else Root2 := Prefix (A2); for I in 1 .. Depth2 - Depth1 - 1 loop Root2 := Prefix (Root2); end loop; return Denotes_Same_Object (A1, Root2); end if; end; else return False; end if; end Denotes_Same_Prefix; ---------------------- -- Denotes_Variable -- ---------------------- function Denotes_Variable (N : Node_Id) return Boolean is begin return Is_Variable (N) and then Paren_Count (N) = 0; end Denotes_Variable; ----------------------------- -- Depends_On_Discriminant -- ----------------------------- function Depends_On_Discriminant (N : Node_Id) return Boolean is L : Node_Id; H : Node_Id; begin Get_Index_Bounds (N, L, H); return Denotes_Discriminant (L) or else Denotes_Discriminant (H); end Depends_On_Discriminant; ------------------------- -- Designate_Same_Unit -- ------------------------- function Designate_Same_Unit (Name1 : Node_Id; Name2 : Node_Id) return Boolean is K1 : constant Node_Kind := Nkind (Name1); K2 : constant Node_Kind := Nkind (Name2); function Prefix_Node (N : Node_Id) return Node_Id; -- Returns the parent unit name node of a defining program unit name -- or the prefix if N is a selected component or an expanded name. function Select_Node (N : Node_Id) return Node_Id; -- Returns the defining identifier node of a defining program unit -- name or the selector node if N is a selected component or an -- expanded name. ----------------- -- Prefix_Node -- ----------------- function Prefix_Node (N : Node_Id) return Node_Id is begin if Nkind (N) = N_Defining_Program_Unit_Name then return Name (N); else return Prefix (N); end if; end Prefix_Node; ----------------- -- Select_Node -- ----------------- function Select_Node (N : Node_Id) return Node_Id is begin if Nkind (N) = N_Defining_Program_Unit_Name then return Defining_Identifier (N); else return Selector_Name (N); end if; end Select_Node; -- Start of processing for Designate_Next_Unit begin if (K1 = N_Identifier or else K1 = N_Defining_Identifier) and then (K2 = N_Identifier or else K2 = N_Defining_Identifier) then return Chars (Name1) = Chars (Name2); elsif (K1 = N_Expanded_Name or else K1 = N_Selected_Component or else K1 = N_Defining_Program_Unit_Name) and then (K2 = N_Expanded_Name or else K2 = N_Selected_Component or else K2 = N_Defining_Program_Unit_Name) then return (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2))) and then Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2)); else return False; end if; end Designate_Same_Unit; ------------------------------------------ -- function Dynamic_Accessibility_Level -- ------------------------------------------ function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id is E : Entity_Id; Loc : constant Source_Ptr := Sloc (Expr); function Make_Level_Literal (Level : Uint) return Node_Id; -- Construct an integer literal representing an accessibility level -- with its type set to Natural. ------------------------ -- Make_Level_Literal -- ------------------------ function Make_Level_Literal (Level : Uint) return Node_Id is Result : constant Node_Id := Make_Integer_Literal (Loc, Level); begin Set_Etype (Result, Standard_Natural); return Result; end Make_Level_Literal; -- Start of processing for Dynamic_Accessibility_Level begin if Is_Entity_Name (Expr) then E := Entity (Expr); if Present (Renamed_Object (E)) then return Dynamic_Accessibility_Level (Renamed_Object (E)); end if; if Is_Formal (E) or else Ekind_In (E, E_Variable, E_Constant) then if Present (Extra_Accessibility (E)) then return New_Occurrence_Of (Extra_Accessibility (E), Loc); end if; end if; end if; -- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ??? case Nkind (Expr) is -- For access discriminant, the level of the enclosing object when N_Selected_Component => if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant and then Ekind (Etype (Entity (Selector_Name (Expr)))) = E_Anonymous_Access_Type then return Make_Level_Literal (Object_Access_Level (Expr)); end if; when N_Attribute_Reference => case Get_Attribute_Id (Attribute_Name (Expr)) is -- For X'Access, the level of the prefix X when Attribute_Access => return Make_Level_Literal (Object_Access_Level (Prefix (Expr))); -- Treat the unchecked attributes as library-level when Attribute_Unchecked_Access | Attribute_Unrestricted_Access => return Make_Level_Literal (Scope_Depth (Standard_Standard)); -- No other access-valued attributes when others => raise Program_Error; end case; when N_Allocator => -- Unimplemented: depends on context. As an actual parameter where -- formal type is anonymous, use -- Scope_Depth (Current_Scope) + 1. -- For other cases, see 3.10.2(14/3) and following. ??? null; when N_Type_Conversion => if not Is_Local_Anonymous_Access (Etype (Expr)) then -- Handle type conversions introduced for a rename of an -- Ada 2012 stand-alone object of an anonymous access type. return Dynamic_Accessibility_Level (Expression (Expr)); end if; when others => null; end case; return Make_Level_Literal (Type_Access_Level (Etype (Expr))); end Dynamic_Accessibility_Level; ----------------------------------- -- Effective_Extra_Accessibility -- ----------------------------------- function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is begin if Present (Renamed_Object (Id)) and then Is_Entity_Name (Renamed_Object (Id)) then return Effective_Extra_Accessibility (Entity (Renamed_Object (Id))); end if; return Extra_Accessibility (Id); end Effective_Extra_Accessibility; -------------------------- -- Enclosing_CPP_Parent -- -------------------------- function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is Parent_Typ : Entity_Id := Typ; begin while not Is_CPP_Class (Parent_Typ) and then Etype (Parent_Typ) /= Parent_Typ loop Parent_Typ := Etype (Parent_Typ); if Is_Private_Type (Parent_Typ) then Parent_Typ := Full_View (Base_Type (Parent_Typ)); end if; end loop; pragma Assert (Is_CPP_Class (Parent_Typ)); return Parent_Typ; end Enclosing_CPP_Parent; ---------------------------- -- Enclosing_Generic_Body -- ---------------------------- function Enclosing_Generic_Body (N : Node_Id) return Node_Id is P : Node_Id; Decl : Node_Id; Spec : Node_Id; begin P := Parent (N); while Present (P) loop if Nkind (P) = N_Package_Body or else Nkind (P) = N_Subprogram_Body then Spec := Corresponding_Spec (P); if Present (Spec) then Decl := Unit_Declaration_Node (Spec); if Nkind (Decl) = N_Generic_Package_Declaration or else Nkind (Decl) = N_Generic_Subprogram_Declaration then return P; end if; end if; end if; P := Parent (P); end loop; return Empty; end Enclosing_Generic_Body; ---------------------------- -- Enclosing_Generic_Unit -- ---------------------------- function Enclosing_Generic_Unit (N : Node_Id) return Node_Id is P : Node_Id; Decl : Node_Id; Spec : Node_Id; begin P := Parent (N); while Present (P) loop if Nkind (P) = N_Generic_Package_Declaration or else Nkind (P) = N_Generic_Subprogram_Declaration then return P; elsif Nkind (P) = N_Package_Body or else Nkind (P) = N_Subprogram_Body then Spec := Corresponding_Spec (P); if Present (Spec) then Decl := Unit_Declaration_Node (Spec); if Nkind (Decl) = N_Generic_Package_Declaration or else Nkind (Decl) = N_Generic_Subprogram_Declaration then return Decl; end if; end if; end if; P := Parent (P); end loop; return Empty; end Enclosing_Generic_Unit; ------------------------------- -- Enclosing_Lib_Unit_Entity -- ------------------------------- function Enclosing_Lib_Unit_Entity return Entity_Id is Unit_Entity : Entity_Id; begin -- Look for enclosing library unit entity by following scope links. -- Equivalent to, but faster than indexing through the scope stack. Unit_Entity := Current_Scope; while (Present (Scope (Unit_Entity)) and then Scope (Unit_Entity) /= Standard_Standard) and not Is_Child_Unit (Unit_Entity) loop Unit_Entity := Scope (Unit_Entity); end loop; return Unit_Entity; end Enclosing_Lib_Unit_Entity; ----------------------------- -- Enclosing_Lib_Unit_Node -- ----------------------------- function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is Current_Node : Node_Id; begin Current_Node := N; while Present (Current_Node) and then Nkind (Current_Node) /= N_Compilation_Unit loop Current_Node := Parent (Current_Node); end loop; if Nkind (Current_Node) /= N_Compilation_Unit then return Empty; end if; return Current_Node; end Enclosing_Lib_Unit_Node; ----------------------- -- Enclosing_Package -- ----------------------- function Enclosing_Package (E : Entity_Id) return Entity_Id is Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E); begin if Dynamic_Scope = Standard_Standard then return Standard_Standard; elsif Dynamic_Scope = Empty then return Empty; elsif Ekind_In (Dynamic_Scope, E_Package, E_Package_Body, E_Generic_Package) then return Dynamic_Scope; else return Enclosing_Package (Dynamic_Scope); end if; end Enclosing_Package; -------------------------- -- Enclosing_Subprogram -- -------------------------- function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E); begin if Dynamic_Scope = Standard_Standard then return Empty; elsif Dynamic_Scope = Empty then return Empty; elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then return Corresponding_Spec (Parent (Parent (Dynamic_Scope))); elsif Ekind (Dynamic_Scope) = E_Block or else Ekind (Dynamic_Scope) = E_Return_Statement then return Enclosing_Subprogram (Dynamic_Scope); elsif Ekind (Dynamic_Scope) = E_Task_Type then return Get_Task_Body_Procedure (Dynamic_Scope); elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type and then Present (Full_View (Dynamic_Scope)) and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type then return Get_Task_Body_Procedure (Full_View (Dynamic_Scope)); -- No body is generated if the protected operation is eliminated elsif Convention (Dynamic_Scope) = Convention_Protected and then not Is_Eliminated (Dynamic_Scope) and then Present (Protected_Body_Subprogram (Dynamic_Scope)) then return Protected_Body_Subprogram (Dynamic_Scope); else return Dynamic_Scope; end if; end Enclosing_Subprogram; ------------------------ -- Ensure_Freeze_Node -- ------------------------ procedure Ensure_Freeze_Node (E : Entity_Id) is FN : Node_Id; begin if No (Freeze_Node (E)) then FN := Make_Freeze_Entity (Sloc (E)); Set_Has_Delayed_Freeze (E); Set_Freeze_Node (E, FN); Set_Access_Types_To_Process (FN, No_Elist); Set_TSS_Elist (FN, No_Elist); Set_Entity (FN, E); end if; end Ensure_Freeze_Node; ---------------- -- Enter_Name -- ---------------- procedure Enter_Name (Def_Id : Entity_Id) is C : constant Entity_Id := Current_Entity (Def_Id); E : constant Entity_Id := Current_Entity_In_Scope (Def_Id); S : constant Entity_Id := Current_Scope; begin Generate_Definition (Def_Id); -- Add new name to current scope declarations. Check for duplicate -- declaration, which may or may not be a genuine error. if Present (E) then -- Case of previous entity entered because of a missing declaration -- or else a bad subtype indication. Best is to use the new entity, -- and make the previous one invisible. if Etype (E) = Any_Type then Set_Is_Immediately_Visible (E, False); -- Case of renaming declaration constructed for package instances. -- if there is an explicit declaration with the same identifier, -- the renaming is not immediately visible any longer, but remains -- visible through selected component notation. elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration and then not Comes_From_Source (E) then Set_Is_Immediately_Visible (E, False); -- The new entity may be the package renaming, which has the same -- same name as a generic formal which has been seen already. elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration and then not Comes_From_Source (Def_Id) then Set_Is_Immediately_Visible (E, False); -- For a fat pointer corresponding to a remote access to subprogram, -- we use the same identifier as the RAS type, so that the proper -- name appears in the stub. This type is only retrieved through -- the RAS type and never by visibility, and is not added to the -- visibility list (see below). elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration and then Present (Corresponding_Remote_Type (Def_Id)) then null; -- Case of an implicit operation or derived literal. The new entity -- hides the implicit one, which is removed from all visibility, -- i.e. the entity list of its scope, and homonym chain of its name. elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E)) or else Is_Internal (E) then declare Prev : Entity_Id; Prev_Vis : Entity_Id; Decl : constant Node_Id := Parent (E); begin -- If E is an implicit declaration, it cannot be the first -- entity in the scope. Prev := First_Entity (Current_Scope); while Present (Prev) and then Next_Entity (Prev) /= E loop Next_Entity (Prev); end loop; if No (Prev) then -- If E is not on the entity chain of the current scope, -- it is an implicit declaration in the generic formal -- part of a generic subprogram. When analyzing the body, -- the generic formals are visible but not on the entity -- chain of the subprogram. The new entity will become -- the visible one in the body. pragma Assert (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration); null; else Set_Next_Entity (Prev, Next_Entity (E)); if No (Next_Entity (Prev)) then Set_Last_Entity (Current_Scope, Prev); end if; if E = Current_Entity (E) then Prev_Vis := Empty; else Prev_Vis := Current_Entity (E); while Homonym (Prev_Vis) /= E loop Prev_Vis := Homonym (Prev_Vis); end loop; end if; if Present (Prev_Vis) then -- Skip E in the visibility chain Set_Homonym (Prev_Vis, Homonym (E)); else Set_Name_Entity_Id (Chars (E), Homonym (E)); end if; end if; end; -- This section of code could use a comment ??? elsif Present (Etype (E)) and then Is_Concurrent_Type (Etype (E)) and then E = Def_Id then return; -- If the homograph is a protected component renaming, it should not -- be hiding the current entity. Such renamings are treated as weak -- declarations. elsif Is_Prival (E) then Set_Is_Immediately_Visible (E, False); -- In this case the current entity is a protected component renaming. -- Perform minimal decoration by setting the scope and return since -- the prival should not be hiding other visible entities. elsif Is_Prival (Def_Id) then Set_Scope (Def_Id, Current_Scope); return; -- Analogous to privals, the discriminal generated for an entry index -- parameter acts as a weak declaration. Perform minimal decoration -- to avoid bogus errors. elsif Is_Discriminal (Def_Id) and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter then Set_Scope (Def_Id, Current_Scope); return; -- In the body or private part of an instance, a type extension may -- introduce a component with the same name as that of an actual. The -- legality rule is not enforced, but the semantics of the full type -- with two components of same name are not clear at this point??? elsif In_Instance_Not_Visible then null; -- When compiling a package body, some child units may have become -- visible. They cannot conflict with local entities that hide them. elsif Is_Child_Unit (E) and then In_Open_Scopes (Scope (E)) and then not Is_Immediately_Visible (E) then null; -- Conversely, with front-end inlining we may compile the parent body -- first, and a child unit subsequently. The context is now the -- parent spec, and body entities are not visible. elsif Is_Child_Unit (Def_Id) and then Is_Package_Body_Entity (E) and then not In_Package_Body (Current_Scope) then null; -- Case of genuine duplicate declaration else Error_Msg_Sloc := Sloc (E); -- If the previous declaration is an incomplete type declaration -- this may be an attempt to complete it with a private type. The -- following avoids confusing cascaded errors. if Nkind (Parent (E)) = N_Incomplete_Type_Declaration and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration then Error_Msg_N ("incomplete type cannot be completed with a private " & "declaration", Parent (Def_Id)); Set_Is_Immediately_Visible (E, False); Set_Full_View (E, Def_Id); -- An inherited component of a record conflicts with a new -- discriminant. The discriminant is inserted first in the scope, -- but the error should be posted on it, not on the component. elsif Ekind (E) = E_Discriminant and then Present (Scope (Def_Id)) and then Scope (Def_Id) /= Current_Scope then Error_Msg_Sloc := Sloc (Def_Id); Error_Msg_N ("& conflicts with declaration#", E); return; -- If the name of the unit appears in its own context clause, a -- dummy package with the name has already been created, and the -- error emitted. Try to continue quietly. elsif Error_Posted (E) and then Sloc (E) = No_Location and then Nkind (Parent (E)) = N_Package_Specification and then Current_Scope = Standard_Standard then Set_Scope (Def_Id, Current_Scope); return; else Error_Msg_N ("& conflicts with declaration#", Def_Id); -- Avoid cascaded messages with duplicate components in -- derived types. if Ekind_In (E, E_Component, E_Discriminant) then return; end if; end if; if Nkind (Parent (Parent (Def_Id))) = N_Generic_Subprogram_Declaration and then Def_Id = Defining_Entity (Specification (Parent (Parent (Def_Id)))) then Error_Msg_N ("\generic units cannot be overloaded", Def_Id); end if; -- If entity is in standard, then we are in trouble, because it -- means that we have a library package with a duplicated name. -- That's hard to recover from, so abort! if S = Standard_Standard then raise Unrecoverable_Error; -- Otherwise we continue with the declaration. Having two -- identical declarations should not cause us too much trouble! else null; end if; end if; end if; -- If we fall through, declaration is OK, at least OK enough to continue -- If Def_Id is a discriminant or a record component we are in the midst -- of inheriting components in a derived record definition. Preserve -- their Ekind and Etype. if Ekind_In (Def_Id, E_Discriminant, E_Component) then null; -- If a type is already set, leave it alone (happens when a type -- declaration is reanalyzed following a call to the optimizer). elsif Present (Etype (Def_Id)) then null; -- Otherwise, the kind E_Void insures that premature uses of the entity -- will be detected. Any_Type insures that no cascaded errors will occur else Set_Ekind (Def_Id, E_Void); Set_Etype (Def_Id, Any_Type); end if; -- Inherited discriminants and components in derived record types are -- immediately visible. Itypes are not. if Ekind_In (Def_Id, E_Discriminant, E_Component) or else (No (Corresponding_Remote_Type (Def_Id)) and then not Is_Itype (Def_Id)) then Set_Is_Immediately_Visible (Def_Id); Set_Current_Entity (Def_Id); end if; Set_Homonym (Def_Id, C); Append_Entity (Def_Id, S); Set_Public_Status (Def_Id); -- Declaring a homonym is not allowed in SPARK ... if Present (C) and then Restriction_Check_Required (SPARK) then declare Enclosing_Subp : constant Node_Id := Enclosing_Subprogram (Def_Id); Enclosing_Pack : constant Node_Id := Enclosing_Package (Def_Id); Other_Scope : constant Node_Id := Enclosing_Dynamic_Scope (C); begin -- ... unless the new declaration is in a subprogram, and the -- visible declaration is a variable declaration or a parameter -- specification outside that subprogram. if Present (Enclosing_Subp) and then Nkind_In (Parent (C), N_Object_Declaration, N_Parameter_Specification) and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Subp) then null; -- ... or the new declaration is in a package, and the visible -- declaration occurs outside that package. elsif Present (Enclosing_Pack) and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Pack) then null; -- ... or the new declaration is a component declaration in a -- record type definition. elsif Nkind (Parent (Def_Id)) = N_Component_Declaration then null; -- Don't issue error for non-source entities elsif Comes_From_Source (Def_Id) and then Comes_From_Source (C) then Error_Msg_Sloc := Sloc (C); Check_SPARK_Restriction ("redeclaration of identifier &#", Def_Id); end if; end; end if; -- Warn if new entity hides an old one if Warn_On_Hiding and then Present (C) -- Don't warn for record components since they always have a well -- defined scope which does not confuse other uses. Note that in -- some cases, Ekind has not been set yet. and then Ekind (C) /= E_Component and then Ekind (C) /= E_Discriminant and then Nkind (Parent (C)) /= N_Component_Declaration and then Ekind (Def_Id) /= E_Component and then Ekind (Def_Id) /= E_Discriminant and then Nkind (Parent (Def_Id)) /= N_Component_Declaration -- Don't warn for one character variables. It is too common to use -- such variables as locals and will just cause too many false hits. and then Length_Of_Name (Chars (C)) /= 1 -- Don't warn for non-source entities and then Comes_From_Source (C) and then Comes_From_Source (Def_Id) -- Don't warn unless entity in question is in extended main source and then In_Extended_Main_Source_Unit (Def_Id) -- Finally, the hidden entity must be either immediately visible or -- use visible (i.e. from a used package). and then (Is_Immediately_Visible (C) or else Is_Potentially_Use_Visible (C)) then Error_Msg_Sloc := Sloc (C); Error_Msg_N ("declaration hides &#?", Def_Id); end if; end Enter_Name; -------------------------- -- Explain_Limited_Type -- -------------------------- procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is C : Entity_Id; begin -- For array, component type must be limited if Is_Array_Type (T) then Error_Msg_Node_2 := T; Error_Msg_NE ("\component type& of type& is limited", N, Component_Type (T)); Explain_Limited_Type (Component_Type (T), N); elsif Is_Record_Type (T) then -- No need for extra messages if explicit limited record if Is_Limited_Record (Base_Type (T)) then return; end if; -- Otherwise find a limited component. Check only components that -- come from source, or inherited components that appear in the -- source of the ancestor. C := First_Component (T); while Present (C) loop if Is_Limited_Type (Etype (C)) and then (Comes_From_Source (C) or else (Present (Original_Record_Component (C)) and then Comes_From_Source (Original_Record_Component (C)))) then Error_Msg_Node_2 := T; Error_Msg_NE ("\component& of type& has limited type", N, C); Explain_Limited_Type (Etype (C), N); return; end if; Next_Component (C); end loop; -- The type may be declared explicitly limited, even if no component -- of it is limited, in which case we fall out of the loop. return; end if; end Explain_Limited_Type; ----------------- -- Find_Actual -- ----------------- procedure Find_Actual (N : Node_Id; Formal : out Entity_Id; Call : out Node_Id) is Parnt : constant Node_Id := Parent (N); Actual : Node_Id; begin if (Nkind (Parnt) = N_Indexed_Component or else Nkind (Parnt) = N_Selected_Component) and then N = Prefix (Parnt) then Find_Actual (Parnt, Formal, Call); return; elsif Nkind (Parnt) = N_Parameter_Association and then N = Explicit_Actual_Parameter (Parnt) then Call := Parent (Parnt); elsif Nkind_In (Parnt, N_Procedure_Call_Statement, N_Function_Call) then Call := Parnt; else Formal := Empty; Call := Empty; return; end if; -- If we have a call to a subprogram look for the parameter. Note that -- we exclude overloaded calls, since we don't know enough to be sure -- of giving the right answer in this case. if Is_Entity_Name (Name (Call)) and then Present (Entity (Name (Call))) and then Is_Overloadable (Entity (Name (Call))) and then not Is_Overloaded (Name (Call)) then -- Fall here if we are definitely a parameter Actual := First_Actual (Call); Formal := First_Formal (Entity (Name (Call))); while Present (Formal) and then Present (Actual) loop if Actual = N then return; else Actual := Next_Actual (Actual); Formal := Next_Formal (Formal); end if; end loop; end if; -- Fall through here if we did not find matching actual Formal := Empty; Call := Empty; end Find_Actual; --------------------------- -- Find_Body_Discriminal -- --------------------------- function Find_Body_Discriminal (Spec_Discriminant : Entity_Id) return Entity_Id is Tsk : Entity_Id; Disc : Entity_Id; begin -- If expansion is suppressed, then the scope can be the concurrent type -- itself rather than a corresponding concurrent record type. if Is_Concurrent_Type (Scope (Spec_Discriminant)) then Tsk := Scope (Spec_Discriminant); else pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant))); Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant)); end if; -- Find discriminant of original concurrent type, and use its current -- discriminal, which is the renaming within the task/protected body. Disc := First_Discriminant (Tsk); while Present (Disc) loop if Chars (Disc) = Chars (Spec_Discriminant) then return Discriminal (Disc); end if; Next_Discriminant (Disc); end loop; -- That loop should always succeed in finding a matching entry and -- returning. Fatal error if not. raise Program_Error; end Find_Body_Discriminal; ------------------------------------- -- Find_Corresponding_Discriminant -- ------------------------------------- function Find_Corresponding_Discriminant (Id : Node_Id; Typ : Entity_Id) return Entity_Id is Par_Disc : Entity_Id; Old_Disc : Entity_Id; New_Disc : Entity_Id; begin Par_Disc := Original_Record_Component (Original_Discriminant (Id)); -- The original type may currently be private, and the discriminant -- only appear on its full view. if Is_Private_Type (Scope (Par_Disc)) and then not Has_Discriminants (Scope (Par_Disc)) and then Present (Full_View (Scope (Par_Disc))) then Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc))); else Old_Disc := First_Discriminant (Scope (Par_Disc)); end if; if Is_Class_Wide_Type (Typ) then New_Disc := First_Discriminant (Root_Type (Typ)); else New_Disc := First_Discriminant (Typ); end if; while Present (Old_Disc) and then Present (New_Disc) loop if Old_Disc = Par_Disc then return New_Disc; else Next_Discriminant (Old_Disc); Next_Discriminant (New_Disc); end if; end loop; -- Should always find it raise Program_Error; end Find_Corresponding_Discriminant; -------------------------- -- Find_Overlaid_Entity -- -------------------------- procedure Find_Overlaid_Entity (N : Node_Id; Ent : out Entity_Id; Off : out Boolean) is Expr : Node_Id; begin -- We are looking for one of the two following forms: -- for X'Address use Y'Address -- or -- Const : constant Address := expr; -- ... -- for X'Address use Const; -- In the second case, the expr is either Y'Address, or recursively a -- constant that eventually references Y'Address. Ent := Empty; Off := False; if Nkind (N) = N_Attribute_Definition_Clause and then Chars (N) = Name_Address then Expr := Expression (N); -- This loop checks the form of the expression for Y'Address, -- using recursion to deal with intermediate constants. loop -- Check for Y'Address if Nkind (Expr) = N_Attribute_Reference and then Attribute_Name (Expr) = Name_Address then Expr := Prefix (Expr); exit; -- Check for Const where Const is a constant entity elsif Is_Entity_Name (Expr) and then Ekind (Entity (Expr)) = E_Constant then Expr := Constant_Value (Entity (Expr)); -- Anything else does not need checking else return; end if; end loop; -- This loop checks the form of the prefix for an entity, using -- recursion to deal with intermediate components. loop -- Check for Y where Y is an entity if Is_Entity_Name (Expr) then Ent := Entity (Expr); return; -- Check for components elsif Nkind_In (Expr, N_Selected_Component, N_Indexed_Component) then Expr := Prefix (Expr); Off := True; -- Anything else does not need checking else return; end if; end loop; end if; end Find_Overlaid_Entity; ------------------------- -- Find_Parameter_Type -- ------------------------- function Find_Parameter_Type (Param : Node_Id) return Entity_Id is begin if Nkind (Param) /= N_Parameter_Specification then return Empty; -- For an access parameter, obtain the type from the formal entity -- itself, because access to subprogram nodes do not carry a type. -- Shouldn't we always use the formal entity ??? elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then return Etype (Defining_Identifier (Param)); else return Etype (Parameter_Type (Param)); end if; end Find_Parameter_Type; ----------------------------- -- Find_Static_Alternative -- ----------------------------- function Find_Static_Alternative (N : Node_Id) return Node_Id is Expr : constant Node_Id := Expression (N); Val : constant Uint := Expr_Value (Expr); Alt : Node_Id; Choice : Node_Id; begin Alt := First (Alternatives (N)); Search : loop if Nkind (Alt) /= N_Pragma then Choice := First (Discrete_Choices (Alt)); while Present (Choice) loop -- Others choice, always matches if Nkind (Choice) = N_Others_Choice then exit Search; -- Range, check if value is in the range elsif Nkind (Choice) = N_Range then exit Search when Val >= Expr_Value (Low_Bound (Choice)) and then Val <= Expr_Value (High_Bound (Choice)); -- Choice is a subtype name. Note that we know it must -- be a static subtype, since otherwise it would have -- been diagnosed as illegal. elsif Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)) then exit Search when Is_In_Range (Expr, Etype (Choice), Assume_Valid => False); -- Choice is a subtype indication elsif Nkind (Choice) = N_Subtype_Indication then declare C : constant Node_Id := Constraint (Choice); R : constant Node_Id := Range_Expression (C); begin exit Search when Val >= Expr_Value (Low_Bound (R)) and then Val <= Expr_Value (High_Bound (R)); end; -- Choice is a simple expression else exit Search when Val = Expr_Value (Choice); end if; Next (Choice); end loop; end if; Next (Alt); pragma Assert (Present (Alt)); end loop Search; -- The above loop *must* terminate by finding a match, since -- we know the case statement is valid, and the value of the -- expression is known at compile time. When we fall out of -- the loop, Alt points to the alternative that we know will -- be selected at run time. return Alt; end Find_Static_Alternative; ------------------ -- First_Actual -- ------------------ function First_Actual (Node : Node_Id) return Node_Id is N : Node_Id; begin if No (Parameter_Associations (Node)) then return Empty; end if; N := First (Parameter_Associations (Node)); if Nkind (N) = N_Parameter_Association then return First_Named_Actual (Node); else return N; end if; end First_Actual; ----------------------- -- Gather_Components -- ----------------------- procedure Gather_Components (Typ : Entity_Id; Comp_List : Node_Id; Governed_By : List_Id; Into : Elist_Id; Report_Errors : out Boolean) is Assoc : Node_Id; Variant : Node_Id; Discrete_Choice : Node_Id; Comp_Item : Node_Id; Discrim : Entity_Id; Discrim_Name : Node_Id; Discrim_Value : Node_Id; begin Report_Errors := False; if No (Comp_List) or else Null_Present (Comp_List) then return; elsif Present (Component_Items (Comp_List)) then Comp_Item := First (Component_Items (Comp_List)); else Comp_Item := Empty; end if; while Present (Comp_Item) loop -- Skip the tag of a tagged record, the interface tags, as well -- as all items that are not user components (anonymous types, -- rep clauses, Parent field, controller field). if Nkind (Comp_Item) = N_Component_Declaration then declare Comp : constant Entity_Id := Defining_Identifier (Comp_Item); begin if not Is_Tag (Comp) and then Chars (Comp) /= Name_uParent then Append_Elmt (Comp, Into); end if; end; end if; Next (Comp_Item); end loop; if No (Variant_Part (Comp_List)) then return; else Discrim_Name := Name (Variant_Part (Comp_List)); Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List))); end if; -- Look for the discriminant that governs this variant part. -- The discriminant *must* be in the Governed_By List Assoc := First (Governed_By); Find_Constraint : loop Discrim := First (Choices (Assoc)); exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim) or else (Present (Corresponding_Discriminant (Entity (Discrim))) and then Chars (Corresponding_Discriminant (Entity (Discrim))) = Chars (Discrim_Name)) or else Chars (Original_Record_Component (Entity (Discrim))) = Chars (Discrim_Name); if No (Next (Assoc)) then if not Is_Constrained (Typ) and then Is_Derived_Type (Typ) and then Present (Stored_Constraint (Typ)) then -- If the type is a tagged type with inherited discriminants, -- use the stored constraint on the parent in order to find -- the values of discriminants that are otherwise hidden by an -- explicit constraint. Renamed discriminants are handled in -- the code above. -- If several parent discriminants are renamed by a single -- discriminant of the derived type, the call to obtain the -- Corresponding_Discriminant field only retrieves the last -- of them. We recover the constraint on the others from the -- Stored_Constraint as well. declare D : Entity_Id; C : Elmt_Id; begin D := First_Discriminant (Etype (Typ)); C := First_Elmt (Stored_Constraint (Typ)); while Present (D) and then Present (C) loop if Chars (Discrim_Name) = Chars (D) then if Is_Entity_Name (Node (C)) and then Entity (Node (C)) = Entity (Discrim) then -- D is renamed by Discrim, whose value is given in -- Assoc. null; else Assoc := Make_Component_Association (Sloc (Typ), New_List (New_Occurrence_Of (D, Sloc (Typ))), Duplicate_Subexpr_No_Checks (Node (C))); end if; exit Find_Constraint; end if; Next_Discriminant (D); Next_Elmt (C); end loop; end; end if; end if; if No (Next (Assoc)) then Error_Msg_NE (" missing value for discriminant&", First (Governed_By), Discrim_Name); Report_Errors := True; return; end if; Next (Assoc); end loop Find_Constraint; Discrim_Value := Expression (Assoc); if not Is_OK_Static_Expression (Discrim_Value) then Error_Msg_FE ("value for discriminant & must be static!", Discrim_Value, Discrim); Why_Not_Static (Discrim_Value); Report_Errors := True; return; end if; Search_For_Discriminant_Value : declare Low : Node_Id; High : Node_Id; UI_High : Uint; UI_Low : Uint; UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value); begin Find_Discrete_Value : while Present (Variant) loop Discrete_Choice := First (Discrete_Choices (Variant)); while Present (Discrete_Choice) loop exit Find_Discrete_Value when Nkind (Discrete_Choice) = N_Others_Choice; Get_Index_Bounds (Discrete_Choice, Low, High); UI_Low := Expr_Value (Low); UI_High := Expr_Value (High); exit Find_Discrete_Value when UI_Low <= UI_Discrim_Value and then UI_High >= UI_Discrim_Value; Next (Discrete_Choice); end loop; Next_Non_Pragma (Variant); end loop Find_Discrete_Value; end Search_For_Discriminant_Value; if No (Variant) then Error_Msg_NE ("value of discriminant & is out of range", Discrim_Value, Discrim); Report_Errors := True; return; end if; -- If we have found the corresponding choice, recursively add its -- components to the Into list. Gather_Components (Empty, Component_List (Variant), Governed_By, Into, Report_Errors); end Gather_Components; ------------------------ -- Get_Actual_Subtype -- ------------------------ function Get_Actual_Subtype (N : Node_Id) return Entity_Id is Typ : constant Entity_Id := Etype (N); Utyp : Entity_Id := Underlying_Type (Typ); Decl : Node_Id; Atyp : Entity_Id; begin if No (Utyp) then Utyp := Typ; end if; -- If what we have is an identifier that references a subprogram -- formal, or a variable or constant object, then we get the actual -- subtype from the referenced entity if one has been built. if Nkind (N) = N_Identifier and then (Is_Formal (Entity (N)) or else Ekind (Entity (N)) = E_Constant or else Ekind (Entity (N)) = E_Variable) and then Present (Actual_Subtype (Entity (N))) then return Actual_Subtype (Entity (N)); -- Actual subtype of unchecked union is always itself. We never need -- the "real" actual subtype. If we did, we couldn't get it anyway -- because the discriminant is not available. The restrictions on -- Unchecked_Union are designed to make sure that this is OK. elsif Is_Unchecked_Union (Base_Type (Utyp)) then return Typ; -- Here for the unconstrained case, we must find actual subtype -- No actual subtype is available, so we must build it on the fly. -- Checking the type, not the underlying type, for constrainedness -- seems to be necessary. Maybe all the tests should be on the type??? elsif (not Is_Constrained (Typ)) and then (Is_Array_Type (Utyp) or else (Is_Record_Type (Utyp) and then Has_Discriminants (Utyp))) and then not Has_Unknown_Discriminants (Utyp) and then not (Ekind (Utyp) = E_String_Literal_Subtype) then -- Nothing to do if in spec expression (why not???) if In_Spec_Expression then return Typ; elsif Is_Private_Type (Typ) and then not Has_Discriminants (Typ) then -- If the type has no discriminants, there is no subtype to -- build, even if the underlying type is discriminated. return Typ; -- Else build the actual subtype else Decl := Build_Actual_Subtype (Typ, N); Atyp := Defining_Identifier (Decl); -- If Build_Actual_Subtype generated a new declaration then use it if Atyp /= Typ then -- The actual subtype is an Itype, so analyze the declaration, -- but do not attach it to the tree, to get the type defined. Set_Parent (Decl, N); Set_Is_Itype (Atyp); Analyze (Decl, Suppress => All_Checks); Set_Associated_Node_For_Itype (Atyp, N); Set_Has_Delayed_Freeze (Atyp, False); -- We need to freeze the actual subtype immediately. This is -- needed, because otherwise this Itype will not get frozen -- at all, and it is always safe to freeze on creation because -- any associated types must be frozen at this point. Freeze_Itype (Atyp, N); return Atyp; -- Otherwise we did not build a declaration, so return original else return Typ; end if; end if; -- For all remaining cases, the actual subtype is the same as -- the nominal type. else return Typ; end if; end Get_Actual_Subtype; ------------------------------------- -- Get_Actual_Subtype_If_Available -- ------------------------------------- function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is Typ : constant Entity_Id := Etype (N); begin -- If what we have is an identifier that references a subprogram -- formal, or a variable or constant object, then we get the actual -- subtype from the referenced entity if one has been built. if Nkind (N) = N_Identifier and then (Is_Formal (Entity (N)) or else Ekind (Entity (N)) = E_Constant or else Ekind (Entity (N)) = E_Variable) and then Present (Actual_Subtype (Entity (N))) then return Actual_Subtype (Entity (N)); -- Otherwise the Etype of N is returned unchanged else return Typ; end if; end Get_Actual_Subtype_If_Available; ------------------------ -- Get_Body_From_Stub -- ------------------------ function Get_Body_From_Stub (N : Node_Id) return Node_Id is begin return Proper_Body (Unit (Library_Unit (N))); end Get_Body_From_Stub; ------------------------------- -- Get_Default_External_Name -- ------------------------------- function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is begin Get_Decoded_Name_String (Chars (E)); if Opt.External_Name_Imp_Casing = Uppercase then Set_Casing (All_Upper_Case); else Set_Casing (All_Lower_Case); end if; return Make_String_Literal (Sloc (E), Strval => String_From_Name_Buffer); end Get_Default_External_Name; -------------------------- -- Get_Enclosing_Object -- -------------------------- function Get_Enclosing_Object (N : Node_Id) return Entity_Id is begin if Is_Entity_Name (N) then return Entity (N); else case Nkind (N) is when N_Indexed_Component | N_Slice | N_Selected_Component => -- If not generating code, a dereference may be left implicit. -- In thoses cases, return Empty. if Is_Access_Type (Etype (Prefix (N))) then return Empty; else return Get_Enclosing_Object (Prefix (N)); end if; when N_Type_Conversion => return Get_Enclosing_Object (Expression (N)); when others => return Empty; end case; end if; end Get_Enclosing_Object; --------------------------- -- Get_Enum_Lit_From_Pos -- --------------------------- function Get_Enum_Lit_From_Pos (T : Entity_Id; Pos : Uint; Loc : Source_Ptr) return Node_Id is Lit : Node_Id; begin -- In the case where the literal is of type Character, Wide_Character -- or Wide_Wide_Character or of a type derived from them, there needs -- to be some special handling since there is no explicit chain of -- literals to search. Instead, an N_Character_Literal node is created -- with the appropriate Char_Code and Chars fields. if Is_Standard_Character_Type (T) then Set_Character_Literal_Name (UI_To_CC (Pos)); return Make_Character_Literal (Loc, Chars => Name_Find, Char_Literal_Value => Pos); -- For all other cases, we have a complete table of literals, and -- we simply iterate through the chain of literal until the one -- with the desired position value is found. -- else Lit := First_Literal (Base_Type (T)); for J in 1 .. UI_To_Int (Pos) loop Next_Literal (Lit); end loop; return New_Occurrence_Of (Lit, Loc); end if; end Get_Enum_Lit_From_Pos; --------------------------------------- -- Get_Ensures_From_Test_Case_Pragma -- --------------------------------------- function Get_Ensures_From_Test_Case_Pragma (N : Node_Id) return Node_Id is Args : constant List_Id := Pragma_Argument_Associations (N); Res : Node_Id; begin if List_Length (Args) = 4 then Res := Pick (Args, 4); elsif List_Length (Args) = 3 then Res := Pick (Args, 3); if Chars (Res) /= Name_Ensures then Res := Empty; end if; else Res := Empty; end if; return Res; end Get_Ensures_From_Test_Case_Pragma; ------------------------ -- Get_Generic_Entity -- ------------------------ function Get_Generic_Entity (N : Node_Id) return Entity_Id is Ent : constant Entity_Id := Entity (Name (N)); begin if Present (Renamed_Object (Ent)) then return Renamed_Object (Ent); else return Ent; end if; end Get_Generic_Entity; ---------------------- -- Get_Index_Bounds -- ---------------------- procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is Kind : constant Node_Kind := Nkind (N); R : Node_Id; begin if Kind = N_Range then L := Low_Bound (N); H := High_Bound (N); elsif Kind = N_Subtype_Indication then R := Range_Expression (Constraint (N)); if R = Error then L := Error; H := Error; return; else L := Low_Bound (Range_Expression (Constraint (N))); H := High_Bound (Range_Expression (Constraint (N))); end if; elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then if Error_Posted (Scalar_Range (Entity (N))) then L := Error; H := Error; elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then Get_Index_Bounds (Scalar_Range (Entity (N)), L, H); else L := Low_Bound (Scalar_Range (Entity (N))); H := High_Bound (Scalar_Range (Entity (N))); end if; else -- N is an expression, indicating a range with one value L := N; H := N; end if; end Get_Index_Bounds; ---------------------------------- -- Get_Library_Unit_Name_string -- ---------------------------------- procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node); begin Get_Unit_Name_String (Unit_Name_Id); -- Remove seven last character (" (spec)" or " (body)") Name_Len := Name_Len - 7; pragma Assert (Name_Buffer (Name_Len + 1) = ' '); end Get_Library_Unit_Name_String; ------------------------ -- Get_Name_Entity_Id -- ------------------------ function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is begin return Entity_Id (Get_Name_Table_Info (Id)); end Get_Name_Entity_Id; ------------------------------------ -- Get_Name_From_Test_Case_Pragma -- ------------------------------------ function Get_Name_From_Test_Case_Pragma (N : Node_Id) return String_Id is Arg : constant Node_Id := Get_Pragma_Arg (First (Pragma_Argument_Associations (N))); begin return Strval (Expr_Value_S (Arg)); end Get_Name_From_Test_Case_Pragma; ------------------- -- Get_Pragma_Id -- ------------------- function Get_Pragma_Id (N : Node_Id) return Pragma_Id is begin return Get_Pragma_Id (Pragma_Name (N)); end Get_Pragma_Id; --------------------------- -- Get_Referenced_Object -- --------------------------- function Get_Referenced_Object (N : Node_Id) return Node_Id is R : Node_Id; begin R := N; while Is_Entity_Name (R) and then Present (Renamed_Object (Entity (R))) loop R := Renamed_Object (Entity (R)); end loop; return R; end Get_Referenced_Object; ------------------------ -- Get_Renamed_Entity -- ------------------------ function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is R : Entity_Id; begin R := E; while Present (Renamed_Entity (R)) loop R := Renamed_Entity (R); end loop; return R; end Get_Renamed_Entity; ---------------------------------------- -- Get_Requires_From_Test_Case_Pragma -- ---------------------------------------- function Get_Requires_From_Test_Case_Pragma (N : Node_Id) return Node_Id is Args : constant List_Id := Pragma_Argument_Associations (N); Res : Node_Id; begin if List_Length (Args) >= 3 then Res := Pick (Args, 3); if Chars (Res) /= Name_Requires then Res := Empty; end if; else Res := Empty; end if; return Res; end Get_Requires_From_Test_Case_Pragma; ------------------------- -- Get_Subprogram_Body -- ------------------------- function Get_Subprogram_Body (E : Entity_Id) return Node_Id is Decl : Node_Id; begin Decl := Unit_Declaration_Node (E); if Nkind (Decl) = N_Subprogram_Body then return Decl; -- The below comment is bad, because it is possible for -- Nkind (Decl) to be an N_Subprogram_Body_Stub ??? else -- Nkind (Decl) = N_Subprogram_Declaration if Present (Corresponding_Body (Decl)) then return Unit_Declaration_Node (Corresponding_Body (Decl)); -- Imported subprogram case else return Empty; end if; end if; end Get_Subprogram_Body; --------------------------- -- Get_Subprogram_Entity -- --------------------------- function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is Nam : Node_Id; Proc : Entity_Id; begin if Nkind (Nod) = N_Accept_Statement then Nam := Entry_Direct_Name (Nod); -- For an entry call, the prefix of the call is a selected component. -- Need additional code for internal calls ??? elsif Nkind (Nod) = N_Entry_Call_Statement then if Nkind (Name (Nod)) = N_Selected_Component then Nam := Entity (Selector_Name (Name (Nod))); else Nam := Empty; end if; else Nam := Name (Nod); end if; if Nkind (Nam) = N_Explicit_Dereference then Proc := Etype (Prefix (Nam)); elsif Is_Entity_Name (Nam) then Proc := Entity (Nam); else return Empty; end if; if Is_Object (Proc) then Proc := Etype (Proc); end if; if Ekind (Proc) = E_Access_Subprogram_Type then Proc := Directly_Designated_Type (Proc); end if; if not Is_Subprogram (Proc) and then Ekind (Proc) /= E_Subprogram_Type then return Empty; else return Proc; end if; end Get_Subprogram_Entity; ----------------------------- -- Get_Task_Body_Procedure -- ----------------------------- function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is begin -- Note: A task type may be the completion of a private type with -- discriminants. When performing elaboration checks on a task -- declaration, the current view of the type may be the private one, -- and the procedure that holds the body of the task is held in its -- underlying type. -- This is an odd function, why not have Task_Body_Procedure do -- the following digging??? return Task_Body_Procedure (Underlying_Type (Root_Type (E))); end Get_Task_Body_Procedure; ----------------------- -- Has_Access_Values -- ----------------------- function Has_Access_Values (T : Entity_Id) return Boolean is Typ : constant Entity_Id := Underlying_Type (T); begin -- Case of a private type which is not completed yet. This can only -- happen in the case of a generic format type appearing directly, or -- as a component of the type to which this function is being applied -- at the top level. Return False in this case, since we certainly do -- not know that the type contains access types. if No (Typ) then return False; elsif Is_Access_Type (Typ) then return True; elsif Is_Array_Type (Typ) then return Has_Access_Values (Component_Type (Typ)); elsif Is_Record_Type (Typ) then declare Comp : Entity_Id; begin -- Loop to Check components Comp := First_Component_Or_Discriminant (Typ); while Present (Comp) loop -- Check for access component, tag field does not count, even -- though it is implemented internally using an access type. if Has_Access_Values (Etype (Comp)) and then Chars (Comp) /= Name_uTag then return True; end if; Next_Component_Or_Discriminant (Comp); end loop; end; return False; else return False; end if; end Has_Access_Values; ------------------------------ -- Has_Compatible_Alignment -- ------------------------------ function Has_Compatible_Alignment (Obj : Entity_Id; Expr : Node_Id) return Alignment_Result is function Has_Compatible_Alignment_Internal (Obj : Entity_Id; Expr : Node_Id; Default : Alignment_Result) return Alignment_Result; -- This is the internal recursive function that actually does the work. -- There is one additional parameter, which says what the result should -- be if no alignment information is found, and there is no definite -- indication of compatible alignments. At the outer level, this is set -- to Unknown, but for internal recursive calls in the case where types -- are known to be correct, it is set to Known_Compatible. --------------------------------------- -- Has_Compatible_Alignment_Internal -- --------------------------------------- function Has_Compatible_Alignment_Internal (Obj : Entity_Id; Expr : Node_Id; Default : Alignment_Result) return Alignment_Result is Result : Alignment_Result := Known_Compatible; -- Holds the current status of the result. Note that once a value of -- Known_Incompatible is set, it is sticky and does not get changed -- to Unknown (the value in Result only gets worse as we go along, -- never better). Offs : Uint := No_Uint; -- Set to a factor of the offset from the base object when Expr is a -- selected or indexed component, based on Component_Bit_Offset and -- Component_Size respectively. A negative value is used to represent -- a value which is not known at compile time. procedure Check_Prefix; -- Checks the prefix recursively in the case where the expression -- is an indexed or selected component. procedure Set_Result (R : Alignment_Result); -- If R represents a worse outcome (unknown instead of known -- compatible, or known incompatible), then set Result to R. ------------------ -- Check_Prefix -- ------------------ procedure Check_Prefix is begin -- The subtlety here is that in doing a recursive call to check -- the prefix, we have to decide what to do in the case where we -- don't find any specific indication of an alignment problem. -- At the outer level, we normally set Unknown as the result in -- this case, since we can only set Known_Compatible if we really -- know that the alignment value is OK, but for the recursive -- call, in the case where the types match, and we have not -- specified a peculiar alignment for the object, we are only -- concerned about suspicious rep clauses, the default case does -- not affect us, since the compiler will, in the absence of such -- rep clauses, ensure that the alignment is correct. if Default = Known_Compatible or else (Etype (Obj) = Etype (Expr) and then (Unknown_Alignment (Obj) or else Alignment (Obj) = Alignment (Etype (Obj)))) then Set_Result (Has_Compatible_Alignment_Internal (Obj, Prefix (Expr), Known_Compatible)); -- In all other cases, we need a full check on the prefix else Set_Result (Has_Compatible_Alignment_Internal (Obj, Prefix (Expr), Unknown)); end if; end Check_Prefix; ---------------- -- Set_Result -- ---------------- procedure Set_Result (R : Alignment_Result) is begin if R > Result then Result := R; end if; end Set_Result; -- Start of processing for Has_Compatible_Alignment_Internal begin -- If Expr is a selected component, we must make sure there is no -- potentially troublesome component clause, and that the record is -- not packed. if Nkind (Expr) = N_Selected_Component then -- Packed record always generate unknown alignment if Is_Packed (Etype (Prefix (Expr))) then Set_Result (Unknown); end if; -- Check prefix and component offset Check_Prefix; Offs := Component_Bit_Offset (Entity (Selector_Name (Expr))); -- If Expr is an indexed component, we must make sure there is no -- potentially troublesome Component_Size clause and that the array -- is not bit-packed. elsif Nkind (Expr) = N_Indexed_Component then declare Typ : constant Entity_Id := Etype (Prefix (Expr)); Ind : constant Node_Id := First_Index (Typ); begin -- Bit packed array always generates unknown alignment if Is_Bit_Packed_Array (Typ) then Set_Result (Unknown); end if; -- Check prefix and component offset Check_Prefix; Offs := Component_Size (Typ); -- Small optimization: compute the full offset when possible if Offs /= No_Uint and then Offs > Uint_0 and then Present (Ind) and then Nkind (Ind) = N_Range and then Compile_Time_Known_Value (Low_Bound (Ind)) and then Compile_Time_Known_Value (First (Expressions (Expr))) then Offs := Offs * (Expr_Value (First (Expressions (Expr))) - Expr_Value (Low_Bound ((Ind)))); end if; end; end if; -- If we have a null offset, the result is entirely determined by -- the base object and has already been computed recursively. if Offs = Uint_0 then null; -- Case where we know the alignment of the object elsif Known_Alignment (Obj) then declare ObjA : constant Uint := Alignment (Obj); ExpA : Uint := No_Uint; SizA : Uint := No_Uint; begin -- If alignment of Obj is 1, then we are always OK if ObjA = 1 then Set_Result (Known_Compatible); -- Alignment of Obj is greater than 1, so we need to check else -- If we have an offset, see if it is compatible if Offs /= No_Uint and Offs > Uint_0 then if Offs mod (System_Storage_Unit * ObjA) /= 0 then Set_Result (Known_Incompatible); end if; -- See if Expr is an object with known alignment elsif Is_Entity_Name (Expr) and then Known_Alignment (Entity (Expr)) then ExpA := Alignment (Entity (Expr)); -- Otherwise, we can use the alignment of the type of -- Expr given that we already checked for -- discombobulating rep clauses for the cases of indexed -- and selected components above. elsif Known_Alignment (Etype (Expr)) then ExpA := Alignment (Etype (Expr)); -- Otherwise the alignment is unknown else Set_Result (Default); end if; -- If we got an alignment, see if it is acceptable if ExpA /= No_Uint and then ExpA < ObjA then Set_Result (Known_Incompatible); end if; -- If Expr is not a piece of a larger object, see if size -- is given. If so, check that it is not too small for the -- required alignment. if Offs /= No_Uint then null; -- See if Expr is an object with known size elsif Is_Entity_Name (Expr) and then Known_Static_Esize (Entity (Expr)) then SizA := Esize (Entity (Expr)); -- Otherwise, we check the object size of the Expr type elsif Known_Static_Esize (Etype (Expr)) then SizA := Esize (Etype (Expr)); end if; -- If we got a size, see if it is a multiple of the Obj -- alignment, if not, then the alignment cannot be -- acceptable, since the size is always a multiple of the -- alignment. if SizA /= No_Uint then if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then Set_Result (Known_Incompatible); end if; end if; end if; end; -- If we do not know required alignment, any non-zero offset is a -- potential problem (but certainly may be OK, so result is unknown). elsif Offs /= No_Uint then Set_Result (Unknown); -- If we can't find the result by direct comparison of alignment -- values, then there is still one case that we can determine known -- result, and that is when we can determine that the types are the -- same, and no alignments are specified. Then we known that the -- alignments are compatible, even if we don't know the alignment -- value in the front end. elsif Etype (Obj) = Etype (Expr) then -- Types are the same, but we have to check for possible size -- and alignments on the Expr object that may make the alignment -- different, even though the types are the same. if Is_Entity_Name (Expr) then -- First check alignment of the Expr object. Any alignment less -- than Maximum_Alignment is worrisome since this is the case -- where we do not know the alignment of Obj. if Known_Alignment (Entity (Expr)) and then UI_To_Int (Alignment (Entity (Expr))) < Ttypes.Maximum_Alignment then Set_Result (Unknown); -- Now check size of Expr object. Any size that is not an -- even multiple of Maximum_Alignment is also worrisome -- since it may cause the alignment of the object to be less -- than the alignment of the type. elsif Known_Static_Esize (Entity (Expr)) and then (UI_To_Int (Esize (Entity (Expr))) mod (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit)) /= 0 then Set_Result (Unknown); -- Otherwise same type is decisive else Set_Result (Known_Compatible); end if; end if; -- Another case to deal with is when there is an explicit size or -- alignment clause when the types are not the same. If so, then the -- result is Unknown. We don't need to do this test if the Default is -- Unknown, since that result will be set in any case. elsif Default /= Unknown and then (Has_Size_Clause (Etype (Expr)) or else Has_Alignment_Clause (Etype (Expr))) then Set_Result (Unknown); -- If no indication found, set default else Set_Result (Default); end if; -- Return worst result found return Result; end Has_Compatible_Alignment_Internal; -- Start of processing for Has_Compatible_Alignment begin -- If Obj has no specified alignment, then set alignment from the type -- alignment. Perhaps we should always do this, but for sure we should -- do it when there is an address clause since we can do more if the -- alignment is known. if Unknown_Alignment (Obj) then Set_Alignment (Obj, Alignment (Etype (Obj))); end if; -- Now do the internal call that does all the work return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown); end Has_Compatible_Alignment; ---------------------- -- Has_Declarations -- ---------------------- function Has_Declarations (N : Node_Id) return Boolean is begin return Nkind_In (Nkind (N), N_Accept_Statement, N_Block_Statement, N_Compilation_Unit_Aux, N_Entry_Body, N_Package_Body, N_Protected_Body, N_Subprogram_Body, N_Task_Body, N_Package_Specification); end Has_Declarations; ------------------------------------------- -- Has_Discriminant_Dependent_Constraint -- ------------------------------------------- function Has_Discriminant_Dependent_Constraint (Comp : Entity_Id) return Boolean is Comp_Decl : constant Node_Id := Parent (Comp); Subt_Indic : constant Node_Id := Subtype_Indication (Component_Definition (Comp_Decl)); Constr : Node_Id; Assn : Node_Id; begin if Nkind (Subt_Indic) = N_Subtype_Indication then Constr := Constraint (Subt_Indic); if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then Assn := First (Constraints (Constr)); while Present (Assn) loop case Nkind (Assn) is when N_Subtype_Indication | N_Range | N_Identifier => if Depends_On_Discriminant (Assn) then return True; end if; when N_Discriminant_Association => if Depends_On_Discriminant (Expression (Assn)) then return True; end if; when others => null; end case; Next (Assn); end loop; end if; end if; return False; end Has_Discriminant_Dependent_Constraint; -------------------- -- Has_Infinities -- -------------------- function Has_Infinities (E : Entity_Id) return Boolean is begin return Is_Floating_Point_Type (E) and then Nkind (Scalar_Range (E)) = N_Range and then Includes_Infinities (Scalar_Range (E)); end Has_Infinities; -------------------- -- Has_Interfaces -- -------------------- function Has_Interfaces (T : Entity_Id; Use_Full_View : Boolean := True) return Boolean is Typ : Entity_Id := Base_Type (T); begin -- Handle concurrent types if Is_Concurrent_Type (Typ) then Typ := Corresponding_Record_Type (Typ); end if; if not Present (Typ) or else not Is_Record_Type (Typ) or else not Is_Tagged_Type (Typ) then return False; end if; -- Handle private types if Use_Full_View and then Present (Full_View (Typ)) then Typ := Full_View (Typ); end if; -- Handle concurrent record types if Is_Concurrent_Record_Type (Typ) and then Is_Non_Empty_List (Abstract_Interface_List (Typ)) then return True; end if; loop if Is_Interface (Typ) or else (Is_Record_Type (Typ) and then Present (Interfaces (Typ)) and then not Is_Empty_Elmt_List (Interfaces (Typ))) then return True; end if; exit when Etype (Typ) = Typ -- Handle private types or else (Present (Full_View (Etype (Typ))) and then Full_View (Etype (Typ)) = Typ) -- Protect the frontend against wrong source with cyclic -- derivations or else Etype (Typ) = T; -- Climb to the ancestor type handling private types if Present (Full_View (Etype (Typ))) then Typ := Full_View (Etype (Typ)); else Typ := Etype (Typ); end if; end loop; return False; end Has_Interfaces; ------------------------ -- Has_Null_Exclusion -- ------------------------ function Has_Null_Exclusion (N : Node_Id) return Boolean is begin case Nkind (N) is when N_Access_Definition | N_Access_Function_Definition | N_Access_Procedure_Definition | N_Access_To_Object_Definition | N_Allocator | N_Derived_Type_Definition | N_Function_Specification | N_Subtype_Declaration => return Null_Exclusion_Present (N); when N_Component_Definition | N_Formal_Object_Declaration | N_Object_Renaming_Declaration => if Present (Subtype_Mark (N)) then return Null_Exclusion_Present (N); else pragma Assert (Present (Access_Definition (N))); return Null_Exclusion_Present (Access_Definition (N)); end if; when N_Discriminant_Specification => if Nkind (Discriminant_Type (N)) = N_Access_Definition then return Null_Exclusion_Present (Discriminant_Type (N)); else return Null_Exclusion_Present (N); end if; when N_Object_Declaration => if Nkind (Object_Definition (N)) = N_Access_Definition then return Null_Exclusion_Present (Object_Definition (N)); else return Null_Exclusion_Present (N); end if; when N_Parameter_Specification => if Nkind (Parameter_Type (N)) = N_Access_Definition then return Null_Exclusion_Present (Parameter_Type (N)); else return Null_Exclusion_Present (N); end if; when others => return False; end case; end Has_Null_Exclusion; ------------------------ -- Has_Null_Extension -- ------------------------ function Has_Null_Extension (T : Entity_Id) return Boolean is B : constant Entity_Id := Base_Type (T); Comps : Node_Id; Ext : Node_Id; begin if Nkind (Parent (B)) = N_Full_Type_Declaration and then Present (Record_Extension_Part (Type_Definition (Parent (B)))) then Ext := Record_Extension_Part (Type_Definition (Parent (B))); if Present (Ext) then if Null_Present (Ext) then return True; else Comps := Component_List (Ext); -- The null component list is rewritten during analysis to -- include the parent component. Any other component indicates -- that the extension was not originally null. return Null_Present (Comps) or else No (Next (First (Component_Items (Comps)))); end if; else return False; end if; else return False; end if; end Has_Null_Extension; ------------------------------- -- Has_Overriding_Initialize -- ------------------------------- function Has_Overriding_Initialize (T : Entity_Id) return Boolean is BT : constant Entity_Id := Base_Type (T); P : Elmt_Id; begin if Is_Controlled (BT) then if Is_RTU (Scope (BT), Ada_Finalization) then return False; elsif Present (Primitive_Operations (BT)) then P := First_Elmt (Primitive_Operations (BT)); while Present (P) loop declare Init : constant Entity_Id := Node (P); Formal : constant Entity_Id := First_Formal (Init); begin if Ekind (Init) = E_Procedure and then Chars (Init) = Name_Initialize and then Comes_From_Source (Init) and then Present (Formal) and then Etype (Formal) = BT and then No (Next_Formal (Formal)) and then (Ada_Version < Ada_2012 or else not Null_Present (Parent (Init))) then return True; end if; end; Next_Elmt (P); end loop; end if; -- Here if type itself does not have a non-null Initialize operation: -- check immediate ancestor. if Is_Derived_Type (BT) and then Has_Overriding_Initialize (Etype (BT)) then return True; end if; end if; return False; end Has_Overriding_Initialize; -------------------------------------- -- Has_Preelaborable_Initialization -- -------------------------------------- function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is Has_PE : Boolean; procedure Check_Components (E : Entity_Id); -- Check component/discriminant chain, sets Has_PE False if a component -- or discriminant does not meet the preelaborable initialization rules. ---------------------- -- Check_Components -- ---------------------- procedure Check_Components (E : Entity_Id) is Ent : Entity_Id; Exp : Node_Id; function Is_Preelaborable_Expression (N : Node_Id) return Boolean; -- Returns True if and only if the expression denoted by N does not -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)). --------------------------------- -- Is_Preelaborable_Expression -- --------------------------------- function Is_Preelaborable_Expression (N : Node_Id) return Boolean is Exp : Node_Id; Assn : Node_Id; Choice : Node_Id; Comp_Type : Entity_Id; Is_Array_Aggr : Boolean; begin if Is_Static_Expression (N) then return True; elsif Nkind (N) = N_Null then return True; -- Attributes are allowed in general, even if their prefix is a -- formal type. (It seems that certain attributes known not to be -- static might not be allowed, but there are no rules to prevent -- them.) elsif Nkind (N) = N_Attribute_Reference then return True; -- The name of a discriminant evaluated within its parent type is -- defined to be preelaborable (10.2.1(8)). Note that we test for -- names that denote discriminals as well as discriminants to -- catch references occurring within init procs. elsif Is_Entity_Name (N) and then (Ekind (Entity (N)) = E_Discriminant or else ((Ekind (Entity (N)) = E_Constant or else Ekind (Entity (N)) = E_In_Parameter) and then Present (Discriminal_Link (Entity (N))))) then return True; elsif Nkind (N) = N_Qualified_Expression then return Is_Preelaborable_Expression (Expression (N)); -- For aggregates we have to check that each of the associations -- is preelaborable. elsif Nkind (N) = N_Aggregate or else Nkind (N) = N_Extension_Aggregate then Is_Array_Aggr := Is_Array_Type (Etype (N)); if Is_Array_Aggr then Comp_Type := Component_Type (Etype (N)); end if; -- Check the ancestor part of extension aggregates, which must -- be either the name of a type that has preelaborable init or -- an expression that is preelaborable. if Nkind (N) = N_Extension_Aggregate then declare Anc_Part : constant Node_Id := Ancestor_Part (N); begin if Is_Entity_Name (Anc_Part) and then Is_Type (Entity (Anc_Part)) then if not Has_Preelaborable_Initialization (Entity (Anc_Part)) then return False; end if; elsif not Is_Preelaborable_Expression (Anc_Part) then return False; end if; end; end if; -- Check positional associations Exp := First (Expressions (N)); while Present (Exp) loop if not Is_Preelaborable_Expression (Exp) then return False; end if; Next (Exp); end loop; -- Check named associations Assn := First (Component_Associations (N)); while Present (Assn) loop Choice := First (Choices (Assn)); while Present (Choice) loop if Is_Array_Aggr then if Nkind (Choice) = N_Others_Choice then null; elsif Nkind (Choice) = N_Range then if not Is_Static_Range (Choice) then return False; end if; elsif not Is_Static_Expression (Choice) then return False; end if; else Comp_Type := Etype (Choice); end if; Next (Choice); end loop; -- If the association has a <> at this point, then we have -- to check whether the component's type has preelaborable -- initialization. Note that this only occurs when the -- association's corresponding component does not have a -- default expression, the latter case having already been -- expanded as an expression for the association. if Box_Present (Assn) then if not Has_Preelaborable_Initialization (Comp_Type) then return False; end if; -- In the expression case we check whether the expression -- is preelaborable. elsif not Is_Preelaborable_Expression (Expression (Assn)) then return False; end if; Next (Assn); end loop; -- If we get here then aggregate as a whole is preelaborable return True; -- All other cases are not preelaborable else return False; end if; end Is_Preelaborable_Expression; -- Start of processing for Check_Components begin -- Loop through entities of record or protected type Ent := E; while Present (Ent) loop -- We are interested only in components and discriminants Exp := Empty; case Ekind (Ent) is when E_Component => -- Get default expression if any. If there is no declaration -- node, it means we have an internal entity. The parent and -- tag fields are examples of such entities. For such cases, -- we just test the type of the entity. if Present (Declaration_Node (Ent)) then Exp := Expression (Declaration_Node (Ent)); end if; when E_Discriminant => -- Note: for a renamed discriminant, the Declaration_Node -- may point to the one from the ancestor, and have a -- different expression, so use the proper attribute to -- retrieve the expression from the derived constraint. Exp := Discriminant_Default_Value (Ent); when others => goto Check_Next_Entity; end case; -- A component has PI if it has no default expression and the -- component type has PI. if No (Exp) then if not Has_Preelaborable_Initialization (Etype (Ent)) then Has_PE := False; exit; end if; -- Require the default expression to be preelaborable elsif not Is_Preelaborable_Expression (Exp) then Has_PE := False; exit; end if; <<Check_Next_Entity>> Next_Entity (Ent); end loop; end Check_Components; -- Start of processing for Has_Preelaborable_Initialization begin -- Immediate return if already marked as known preelaborable init. This -- covers types for which this function has already been called once -- and returned True (in which case the result is cached), and also -- types to which a pragma Preelaborable_Initialization applies. if Known_To_Have_Preelab_Init (E) then return True; end if; -- If the type is a subtype representing a generic actual type, then -- test whether its base type has preelaborable initialization since -- the subtype representing the actual does not inherit this attribute -- from the actual or formal. (but maybe it should???) if Is_Generic_Actual_Type (E) then return Has_Preelaborable_Initialization (Base_Type (E)); end if; -- All elementary types have preelaborable initialization if Is_Elementary_Type (E) then Has_PE := True; -- Array types have PI if the component type has PI elsif Is_Array_Type (E) then Has_PE := Has_Preelaborable_Initialization (Component_Type (E)); -- A derived type has preelaborable initialization if its parent type -- has preelaborable initialization and (in the case of a derived record -- extension) if the non-inherited components all have preelaborable -- initialization. However, a user-defined controlled type with an -- overriding Initialize procedure does not have preelaborable -- initialization. elsif Is_Derived_Type (E) then -- If the derived type is a private extension then it doesn't have -- preelaborable initialization. if Ekind (Base_Type (E)) = E_Record_Type_With_Private then return False; end if; -- First check whether ancestor type has preelaborable initialization Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E))); -- If OK, check extension components (if any) if Has_PE and then Is_Record_Type (E) then Check_Components (First_Entity (E)); end if; -- Check specifically for 10.2.1(11.4/2) exception: a controlled type -- with a user defined Initialize procedure does not have PI. if Has_PE and then Is_Controlled (E) and then Has_Overriding_Initialize (E) then Has_PE := False; end if; -- Private types not derived from a type having preelaborable init and -- that are not marked with pragma Preelaborable_Initialization do not -- have preelaborable initialization. elsif Is_Private_Type (E) then return False; -- Record type has PI if it is non private and all components have PI elsif Is_Record_Type (E) then Has_PE := True; Check_Components (First_Entity (E)); -- Protected types must not have entries, and components must meet -- same set of rules as for record components. elsif Is_Protected_Type (E) then if Has_Entries (E) then Has_PE := False; else Has_PE := True; Check_Components (First_Entity (E)); Check_Components (First_Private_Entity (E)); end if; -- Type System.Address always has preelaborable initialization elsif Is_RTE (E, RE_Address) then Has_PE := True; -- In all other cases, type does not have preelaborable initialization else return False; end if; -- If type has preelaborable initialization, cache result if Has_PE then Set_Known_To_Have_Preelab_Init (E); end if; return Has_PE; end Has_Preelaborable_Initialization; --------------------------- -- Has_Private_Component -- --------------------------- function Has_Private_Component (Type_Id : Entity_Id) return Boolean is Btype : Entity_Id := Base_Type (Type_Id); Component : Entity_Id; begin if Error_Posted (Type_Id) or else Error_Posted (Btype) then return False; end if; if Is_Class_Wide_Type (Btype) then Btype := Root_Type (Btype); end if; if Is_Private_Type (Btype) then declare UT : constant Entity_Id := Underlying_Type (Btype); begin if No (UT) then if No (Full_View (Btype)) then return not Is_Generic_Type (Btype) and then not Is_Generic_Type (Root_Type (Btype)); else return not Is_Generic_Type (Root_Type (Full_View (Btype))); end if; else return not Is_Frozen (UT) and then Has_Private_Component (UT); end if; end; elsif Is_Array_Type (Btype) then return Has_Private_Component (Component_Type (Btype)); elsif Is_Record_Type (Btype) then Component := First_Component (Btype); while Present (Component) loop if Has_Private_Component (Etype (Component)) then return True; end if; Next_Component (Component); end loop; return False; elsif Is_Protected_Type (Btype) and then Present (Corresponding_Record_Type (Btype)) then return Has_Private_Component (Corresponding_Record_Type (Btype)); else return False; end if; end Has_Private_Component; ----------------------------- -- Has_Static_Array_Bounds -- ----------------------------- function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is Ndims : constant Nat := Number_Dimensions (Typ); Index : Node_Id; Low : Node_Id; High : Node_Id; begin -- Unconstrained types do not have static bounds if not Is_Constrained (Typ) then return False; end if; -- First treat string literals specially, as the lower bound and length -- of string literals are not stored like those of arrays. -- A string literal always has static bounds if Ekind (Typ) = E_String_Literal_Subtype then return True; end if; -- Treat all dimensions in turn Index := First_Index (Typ); for Indx in 1 .. Ndims loop -- In case of an erroneous index which is not a discrete type, return -- that the type is not static. if not Is_Discrete_Type (Etype (Index)) or else Etype (Index) = Any_Type then return False; end if; Get_Index_Bounds (Index, Low, High); if Error_Posted (Low) or else Error_Posted (High) then return False; end if; if Is_OK_Static_Expression (Low) and then Is_OK_Static_Expression (High) then null; else return False; end if; Next (Index); end loop; -- If we fall through the loop, all indexes matched return True; end Has_Static_Array_Bounds; ---------------- -- Has_Stream -- ---------------- function Has_Stream (T : Entity_Id) return Boolean is E : Entity_Id; begin if No (T) then return False; elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then return True; elsif Is_Array_Type (T) then return Has_Stream (Component_Type (T)); elsif Is_Record_Type (T) then E := First_Component (T); while Present (E) loop if Has_Stream (Etype (E)) then return True; else Next_Component (E); end if; end loop; return False; elsif Is_Private_Type (T) then return Has_Stream (Underlying_Type (T)); else return False; end if; end Has_Stream; ---------------- -- Has_Suffix -- ---------------- function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is begin Get_Name_String (Chars (E)); return Name_Buffer (Name_Len) = Suffix; end Has_Suffix; ---------------- -- Add_Suffix -- ---------------- function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is begin Get_Name_String (Chars (E)); Add_Char_To_Name_Buffer (Suffix); return Name_Find; end Add_Suffix; ------------------- -- Remove_Suffix -- ------------------- function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is begin pragma Assert (Has_Suffix (E, Suffix)); Get_Name_String (Chars (E)); Name_Len := Name_Len - 1; return Name_Find; end Remove_Suffix; -------------------------- -- Has_Tagged_Component -- -------------------------- function Has_Tagged_Component (Typ : Entity_Id) return Boolean is Comp : Entity_Id; begin if Is_Private_Type (Typ) and then Present (Underlying_Type (Typ)) then return Has_Tagged_Component (Underlying_Type (Typ)); elsif Is_Array_Type (Typ) then return Has_Tagged_Component (Component_Type (Typ)); elsif Is_Tagged_Type (Typ) then return True; elsif Is_Record_Type (Typ) then Comp := First_Component (Typ); while Present (Comp) loop if Has_Tagged_Component (Etype (Comp)) then return True; end if; Next_Component (Comp); end loop; return False; else return False; end if; end Has_Tagged_Component; ------------------------- -- Implementation_Kind -- ------------------------- function Implementation_Kind (Subp : Entity_Id) return Name_Id is Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented); Arg : Node_Id; begin pragma Assert (Present (Impl_Prag)); Arg := Last (Pragma_Argument_Associations (Impl_Prag)); return Chars (Get_Pragma_Arg (Arg)); end Implementation_Kind; -------------------------- -- Implements_Interface -- -------------------------- function Implements_Interface (Typ_Ent : Entity_Id; Iface_Ent : Entity_Id; Exclude_Parents : Boolean := False) return Boolean is Ifaces_List : Elist_Id; Elmt : Elmt_Id; Iface : Entity_Id := Base_Type (Iface_Ent); Typ : Entity_Id := Base_Type (Typ_Ent); begin if Is_Class_Wide_Type (Typ) then Typ := Root_Type (Typ); end if; if not Has_Interfaces (Typ) then return False; end if; if Is_Class_Wide_Type (Iface) then Iface := Root_Type (Iface); end if; Collect_Interfaces (Typ, Ifaces_List); Elmt := First_Elmt (Ifaces_List); while Present (Elmt) loop if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True) and then Exclude_Parents then null; elsif Node (Elmt) = Iface then return True; end if; Next_Elmt (Elmt); end loop; return False; end Implements_Interface; ----------------- -- In_Instance -- ----------------- function In_Instance return Boolean is Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit); S : Entity_Id; begin S := Current_Scope; while Present (S) and then S /= Standard_Standard loop if (Ekind (S) = E_Function or else Ekind (S) = E_Package or else Ekind (S) = E_Procedure) and then Is_Generic_Instance (S) then -- A child instance is always compiled in the context of a parent -- instance. Nevertheless, the actuals are not analyzed in an -- instance context. We detect this case by examining the current -- compilation unit, which must be a child instance, and checking -- that it is not currently on the scope stack. if Is_Child_Unit (Curr_Unit) and then Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Instantiation and then not In_Open_Scopes (Curr_Unit) then return False; else return True; end if; end if; S := Scope (S); end loop; return False; end In_Instance; ---------------------- -- In_Instance_Body -- ---------------------- function In_Instance_Body return Boolean is S : Entity_Id; begin S := Current_Scope; while Present (S) and then S /= Standard_Standard loop if (Ekind (S) = E_Function or else Ekind (S) = E_Procedure) and then Is_Generic_Instance (S) then return True; elsif Ekind (S) = E_Package and then In_Package_Body (S) and then Is_Generic_Instance (S) then return True; end if; S := Scope (S); end loop; return False; end In_Instance_Body; ----------------------------- -- In_Instance_Not_Visible -- ----------------------------- function In_Instance_Not_Visible return Boolean is S : Entity_Id; begin S := Current_Scope; while Present (S) and then S /= Standard_Standard loop if (Ekind (S) = E_Function or else Ekind (S) = E_Procedure) and then Is_Generic_Instance (S) then return True; elsif Ekind (S) = E_Package and then (In_Package_Body (S) or else In_Private_Part (S)) and then Is_Generic_Instance (S) then return True; end if; S := Scope (S); end loop; return False; end In_Instance_Not_Visible; ------------------------------ -- In_Instance_Visible_Part -- ------------------------------ function In_Instance_Visible_Part return Boolean is S : Entity_Id; begin S := Current_Scope; while Present (S) and then S /= Standard_Standard loop if Ekind (S) = E_Package and then Is_Generic_Instance (S) and then not In_Package_Body (S) and then not In_Private_Part (S) then return True; end if; S := Scope (S); end loop; return False; end In_Instance_Visible_Part; --------------------- -- In_Package_Body -- --------------------- function In_Package_Body return Boolean is S : Entity_Id; begin S := Current_Scope; while Present (S) and then S /= Standard_Standard loop if Ekind (S) = E_Package and then In_Package_Body (S) then return True; else S := Scope (S); end if; end loop; return False; end In_Package_Body; -------------------------------- -- In_Parameter_Specification -- -------------------------------- function In_Parameter_Specification (N : Node_Id) return Boolean is PN : Node_Id; begin PN := Parent (N); while Present (PN) loop if Nkind (PN) = N_Parameter_Specification then return True; end if; PN := Parent (PN); end loop; return False; end In_Parameter_Specification; -------------------------------------- -- In_Subprogram_Or_Concurrent_Unit -- -------------------------------------- function In_Subprogram_Or_Concurrent_Unit return Boolean is E : Entity_Id; K : Entity_Kind; begin -- Use scope chain to check successively outer scopes E := Current_Scope; loop K := Ekind (E); if K in Subprogram_Kind or else K in Concurrent_Kind or else K in Generic_Subprogram_Kind then return True; elsif E = Standard_Standard then return False; end if; E := Scope (E); end loop; end In_Subprogram_Or_Concurrent_Unit; --------------------- -- In_Visible_Part -- --------------------- function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is begin return Is_Package_Or_Generic_Package (Scope_Id) and then In_Open_Scopes (Scope_Id) and then not In_Package_Body (Scope_Id) and then not In_Private_Part (Scope_Id); end In_Visible_Part; -------------------------------- -- Incomplete_Or_Private_View -- -------------------------------- function Incomplete_Or_Private_View (Typ : Entity_Id) return Entity_Id is function Inspect_Decls (Decls : List_Id; Taft : Boolean := False) return Entity_Id; -- Check whether a declarative region contains the incomplete or private -- view of Typ. ------------------- -- Inspect_Decls -- ------------------- function Inspect_Decls (Decls : List_Id; Taft : Boolean := False) return Entity_Id is Decl : Node_Id; Match : Node_Id; begin Decl := First (Decls); while Present (Decl) loop Match := Empty; if Taft then if Nkind (Decl) = N_Incomplete_Type_Declaration then Match := Defining_Identifier (Decl); end if; else if Nkind_In (Decl, N_Private_Extension_Declaration, N_Private_Type_Declaration) then Match := Defining_Identifier (Decl); end if; end if; if Present (Match) and then Present (Full_View (Match)) and then Full_View (Match) = Typ then return Match; end if; Next (Decl); end loop; return Empty; end Inspect_Decls; -- Local variables Prev : Entity_Id; -- Start of processing for Incomplete_Or_Partial_View begin -- Incomplete type case Prev := Current_Entity_In_Scope (Typ); if Present (Prev) and then Is_Incomplete_Type (Prev) and then Present (Full_View (Prev)) and then Full_View (Prev) = Typ then return Prev; end if; -- Private or Taft amendment type case declare Pkg : constant Entity_Id := Scope (Typ); Pkg_Decl : Node_Id := Pkg; begin if Ekind (Pkg) = E_Package then while Nkind (Pkg_Decl) /= N_Package_Specification loop Pkg_Decl := Parent (Pkg_Decl); end loop; -- It is knows that Typ has a private view, look for it in the -- visible declarations of the enclosing scope. A special case -- of this is when the two views have been exchanged - the full -- appears earlier than the private. if Has_Private_Declaration (Typ) then Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl)); -- Exchanged view case, look in the private declarations if No (Prev) then Prev := Inspect_Decls (Private_Declarations (Pkg_Decl)); end if; return Prev; -- Otherwise if this is the package body, then Typ is a potential -- Taft amendment type. The incomplete view should be located in -- the private declarations of the enclosing scope. elsif In_Package_Body (Pkg) then return Inspect_Decls (Private_Declarations (Pkg_Decl), True); end if; end if; end; -- The type has no incomplete or private view return Empty; end Incomplete_Or_Private_View; --------------------------------- -- Insert_Explicit_Dereference -- --------------------------------- procedure Insert_Explicit_Dereference (N : Node_Id) is New_Prefix : constant Node_Id := Relocate_Node (N); Ent : Entity_Id := Empty; Pref : Node_Id; I : Interp_Index; It : Interp; T : Entity_Id; begin Save_Interps (N, New_Prefix); Rewrite (N, Make_Explicit_Dereference (Sloc (Parent (N)), Prefix => New_Prefix)); Set_Etype (N, Designated_Type (Etype (New_Prefix))); if Is_Overloaded (New_Prefix) then -- The dereference is also overloaded, and its interpretations are -- the designated types of the interpretations of the original node. Set_Etype (N, Any_Type); Get_First_Interp (New_Prefix, I, It); while Present (It.Nam) loop T := It.Typ; if Is_Access_Type (T) then Add_One_Interp (N, Designated_Type (T), Designated_Type (T)); end if; Get_Next_Interp (I, It); end loop; End_Interp_List; else -- Prefix is unambiguous: mark the original prefix (which might -- Come_From_Source) as a reference, since the new (relocated) one -- won't be taken into account. if Is_Entity_Name (New_Prefix) then Ent := Entity (New_Prefix); Pref := New_Prefix; -- For a retrieval of a subcomponent of some composite object, -- retrieve the ultimate entity if there is one. elsif Nkind (New_Prefix) = N_Selected_Component or else Nkind (New_Prefix) = N_Indexed_Component then Pref := Prefix (New_Prefix); while Present (Pref) and then (Nkind (Pref) = N_Selected_Component or else Nkind (Pref) = N_Indexed_Component) loop Pref := Prefix (Pref); end loop; if Present (Pref) and then Is_Entity_Name (Pref) then Ent := Entity (Pref); end if; end if; -- Place the reference on the entity node if Present (Ent) then Generate_Reference (Ent, Pref); end if; end if; end Insert_Explicit_Dereference; ------------------------------------------ -- Inspect_Deferred_Constant_Completion -- ------------------------------------------ procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is Decl : Node_Id; begin Decl := First (Decls); while Present (Decl) loop -- Deferred constant signature if Nkind (Decl) = N_Object_Declaration and then Constant_Present (Decl) and then No (Expression (Decl)) -- No need to check internally generated constants and then Comes_From_Source (Decl) -- The constant is not completed. A full object declaration or a -- pragma Import complete a deferred constant. and then not Has_Completion (Defining_Identifier (Decl)) then Error_Msg_N ("constant declaration requires initialization expression", Defining_Identifier (Decl)); end if; Decl := Next (Decl); end loop; end Inspect_Deferred_Constant_Completion; ----------------------------- -- Is_Actual_Out_Parameter -- ----------------------------- function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is Formal : Entity_Id; Call : Node_Id; begin Find_Actual (N, Formal, Call); return Present (Formal) and then Ekind (Formal) = E_Out_Parameter; end Is_Actual_Out_Parameter; ------------------------- -- Is_Actual_Parameter -- ------------------------- function Is_Actual_Parameter (N : Node_Id) return Boolean is PK : constant Node_Kind := Nkind (Parent (N)); begin case PK is when N_Parameter_Association => return N = Explicit_Actual_Parameter (Parent (N)); when N_Function_Call | N_Procedure_Call_Statement => return Is_List_Member (N) and then List_Containing (N) = Parameter_Associations (Parent (N)); when others => return False; end case; end Is_Actual_Parameter; -------------------------------- -- Is_Actual_Tagged_Parameter -- -------------------------------- function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is Formal : Entity_Id; Call : Node_Id; begin Find_Actual (N, Formal, Call); return Present (Formal) and then Is_Tagged_Type (Etype (Formal)); end Is_Actual_Tagged_Parameter; --------------------- -- Is_Aliased_View -- --------------------- function Is_Aliased_View (Obj : Node_Id) return Boolean is E : Entity_Id; begin if Is_Entity_Name (Obj) then E := Entity (Obj); return (Is_Object (E) and then (Is_Aliased (E) or else (Present (Renamed_Object (E)) and then Is_Aliased_View (Renamed_Object (E))))) or else ((Is_Formal (E) or else Ekind (E) = E_Generic_In_Out_Parameter or else Ekind (E) = E_Generic_In_Parameter) and then Is_Tagged_Type (Etype (E))) or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E)) -- Current instance of type, either directly or as rewritten -- reference to the current object. or else (Is_Entity_Name (Original_Node (Obj)) and then Present (Entity (Original_Node (Obj))) and then Is_Type (Entity (Original_Node (Obj)))) or else (Is_Type (E) and then E = Current_Scope) or else (Is_Incomplete_Or_Private_Type (E) and then Full_View (E) = Current_Scope) -- Ada 2012 AI05-0053: the return object of an extended return -- statement is aliased if its type is immutably limited. or else (Is_Return_Object (E) and then Is_Immutably_Limited_Type (Etype (E))); elsif Nkind (Obj) = N_Selected_Component then return Is_Aliased (Entity (Selector_Name (Obj))); elsif Nkind (Obj) = N_Indexed_Component then return Has_Aliased_Components (Etype (Prefix (Obj))) or else (Is_Access_Type (Etype (Prefix (Obj))) and then Has_Aliased_Components (Designated_Type (Etype (Prefix (Obj))))); elsif Nkind_In (Obj, N_Unchecked_Type_Conversion, N_Type_Conversion) then return Is_Tagged_Type (Etype (Obj)) and then Is_Aliased_View (Expression (Obj)); elsif Nkind (Obj) = N_Explicit_Dereference then return Nkind (Original_Node (Obj)) /= N_Function_Call; else return False; end if; end Is_Aliased_View; ------------------------- -- Is_Ancestor_Package -- ------------------------- function Is_Ancestor_Package (E1 : Entity_Id; E2 : Entity_Id) return Boolean is Par : Entity_Id; begin Par := E2; while Present (Par) and then Par /= Standard_Standard loop if Par = E1 then return True; end if; Par := Scope (Par); end loop; return False; end Is_Ancestor_Package; ---------------------- -- Is_Atomic_Object -- ---------------------- function Is_Atomic_Object (N : Node_Id) return Boolean is function Object_Has_Atomic_Components (N : Node_Id) return Boolean; -- Determines if given object has atomic components function Is_Atomic_Prefix (N : Node_Id) return Boolean; -- If prefix is an implicit dereference, examine designated type ---------------------- -- Is_Atomic_Prefix -- ---------------------- function Is_Atomic_Prefix (N : Node_Id) return Boolean is begin if Is_Access_Type (Etype (N)) then return Has_Atomic_Components (Designated_Type (Etype (N))); else return Object_Has_Atomic_Components (N); end if; end Is_Atomic_Prefix; ---------------------------------- -- Object_Has_Atomic_Components -- ---------------------------------- function Object_Has_Atomic_Components (N : Node_Id) return Boolean is begin if Has_Atomic_Components (Etype (N)) or else Is_Atomic (Etype (N)) then return True; elsif Is_Entity_Name (N) and then (Has_Atomic_Components (Entity (N)) or else Is_Atomic (Entity (N))) then return True; elsif Nkind (N) = N_Indexed_Component or else Nkind (N) = N_Selected_Component then return Is_Atomic_Prefix (Prefix (N)); else return False; end if; end Object_Has_Atomic_Components; -- Start of processing for Is_Atomic_Object begin -- Predicate is not relevant to subprograms if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then return False; elsif Is_Atomic (Etype (N)) or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N))) then return True; elsif Nkind (N) = N_Indexed_Component or else Nkind (N) = N_Selected_Component then return Is_Atomic_Prefix (Prefix (N)); else return False; end if; end Is_Atomic_Object; ----------------------------- -- Is_Concurrent_Interface -- ----------------------------- function Is_Concurrent_Interface (T : Entity_Id) return Boolean is begin return Is_Interface (T) and then (Is_Protected_Interface (T) or else Is_Synchronized_Interface (T) or else Is_Task_Interface (T)); end Is_Concurrent_Interface; -------------------------------------- -- Is_Controlling_Limited_Procedure -- -------------------------------------- function Is_Controlling_Limited_Procedure (Proc_Nam : Entity_Id) return Boolean is Param_Typ : Entity_Id := Empty; begin if Ekind (Proc_Nam) = E_Procedure and then Present (Parameter_Specifications (Parent (Proc_Nam))) then Param_Typ := Etype (Parameter_Type (First ( Parameter_Specifications (Parent (Proc_Nam))))); -- In this case where an Itype was created, the procedure call has been -- rewritten. elsif Present (Associated_Node_For_Itype (Proc_Nam)) and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam))) and then Present (Parameter_Associations (Associated_Node_For_Itype (Proc_Nam))) then Param_Typ := Etype (First (Parameter_Associations (Associated_Node_For_Itype (Proc_Nam)))); end if; if Present (Param_Typ) then return Is_Interface (Param_Typ) and then Is_Limited_Record (Param_Typ); end if; return False; end Is_Controlling_Limited_Procedure; ----------------------------- -- Is_CPP_Constructor_Call -- ----------------------------- function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is begin return Nkind (N) = N_Function_Call and then Is_CPP_Class (Etype (Etype (N))) and then Is_Constructor (Entity (Name (N))) and then Is_Imported (Entity (Name (N))); end Is_CPP_Constructor_Call; ----------------- -- Is_Delegate -- ----------------- function Is_Delegate (T : Entity_Id) return Boolean is Desig_Type : Entity_Id; begin if VM_Target /= CLI_Target then return False; end if; -- Access-to-subprograms are delegates in CIL if Ekind (T) = E_Access_Subprogram_Type then return True; end if; if Ekind (T) not in Access_Kind then -- A delegate is a managed pointer. If no designated type is defined -- it means that it's not a delegate. return False; end if; Desig_Type := Etype (Directly_Designated_Type (T)); if not Is_Tagged_Type (Desig_Type) then return False; end if; -- Test if the type is inherited from [mscorlib]System.Delegate while Etype (Desig_Type) /= Desig_Type loop if Chars (Scope (Desig_Type)) /= No_Name and then Is_Imported (Scope (Desig_Type)) and then Get_Name_String (Chars (Scope (Desig_Type))) = "delegate" then return True; end if; Desig_Type := Etype (Desig_Type); end loop; return False; end Is_Delegate; ---------------------------------------------- -- Is_Dependent_Component_Of_Mutable_Object -- ---------------------------------------------- function Is_Dependent_Component_Of_Mutable_Object (Object : Node_Id) return Boolean is P : Node_Id; Prefix_Type : Entity_Id; P_Aliased : Boolean := False; Comp : Entity_Id; function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean; -- Returns True if and only if Comp is declared within a variant part -------------------------------- -- Is_Declared_Within_Variant -- -------------------------------- function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is Comp_Decl : constant Node_Id := Parent (Comp); Comp_List : constant Node_Id := Parent (Comp_Decl); begin return Nkind (Parent (Comp_List)) = N_Variant; end Is_Declared_Within_Variant; -- Start of processing for Is_Dependent_Component_Of_Mutable_Object begin if Is_Variable (Object) then if Nkind (Object) = N_Selected_Component then P := Prefix (Object); Prefix_Type := Etype (P); if Is_Entity_Name (P) then if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then Prefix_Type := Base_Type (Prefix_Type); end if; if Is_Aliased (Entity (P)) then P_Aliased := True; end if; -- A discriminant check on a selected component may be expanded -- into a dereference when removing side-effects. Recover the -- original node and its type, which may be unconstrained. elsif Nkind (P) = N_Explicit_Dereference and then not (Comes_From_Source (P)) then P := Original_Node (P); Prefix_Type := Etype (P); else -- Check for prefix being an aliased component??? null; end if; -- A heap object is constrained by its initial value -- Ada 2005 (AI-363): Always assume the object could be mutable in -- the dereferenced case, since the access value might denote an -- unconstrained aliased object, whereas in Ada 95 the designated -- object is guaranteed to be constrained. A worst-case assumption -- has to apply in Ada 2005 because we can't tell at compile time -- whether the object is "constrained by its initial value" -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are -- semantic rules -- these rules are acknowledged to need fixing). if Ada_Version < Ada_2005 then if Is_Access_Type (Prefix_Type) or else Nkind (P) = N_Explicit_Dereference then return False; end if; elsif Ada_Version >= Ada_2005 then if Is_Access_Type (Prefix_Type) then -- If the access type is pool-specific, and there is no -- constrained partial view of the designated type, then the -- designated object is known to be constrained. if Ekind (Prefix_Type) = E_Access_Type and then not Effectively_Has_Constrained_Partial_View (Typ => Designated_Type (Prefix_Type), Scop => Current_Scope) then return False; -- Otherwise (general access type, or there is a constrained -- partial view of the designated type), we need to check -- based on the designated type. else Prefix_Type := Designated_Type (Prefix_Type); end if; end if; end if; Comp := Original_Record_Component (Entity (Selector_Name (Object))); -- As per AI-0017, the renaming is illegal in a generic body, even -- if the subtype is indefinite. -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable if not Is_Constrained (Prefix_Type) and then (not Is_Indefinite_Subtype (Prefix_Type) or else (Is_Generic_Type (Prefix_Type) and then Ekind (Current_Scope) = E_Generic_Package and then In_Package_Body (Current_Scope))) and then (Is_Declared_Within_Variant (Comp) or else Has_Discriminant_Dependent_Constraint (Comp)) and then (not P_Aliased or else Ada_Version >= Ada_2005) then return True; else return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object)); end if; elsif Nkind (Object) = N_Indexed_Component or else Nkind (Object) = N_Slice then return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object)); -- A type conversion that Is_Variable is a view conversion: -- go back to the denoted object. elsif Nkind (Object) = N_Type_Conversion then return Is_Dependent_Component_Of_Mutable_Object (Expression (Object)); end if; end if; return False; end Is_Dependent_Component_Of_Mutable_Object; --------------------- -- Is_Dereferenced -- --------------------- function Is_Dereferenced (N : Node_Id) return Boolean is P : constant Node_Id := Parent (N); begin return (Nkind (P) = N_Selected_Component or else Nkind (P) = N_Explicit_Dereference or else Nkind (P) = N_Indexed_Component or else Nkind (P) = N_Slice) and then Prefix (P) = N; end Is_Dereferenced; ---------------------- -- Is_Descendent_Of -- ---------------------- function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is T : Entity_Id; Etyp : Entity_Id; begin pragma Assert (Nkind (T1) in N_Entity); pragma Assert (Nkind (T2) in N_Entity); T := Base_Type (T1); -- Immediate return if the types match if T = T2 then return True; -- Comment needed here ??? elsif Ekind (T) = E_Class_Wide_Type then return Etype (T) = T2; -- All other cases else loop Etyp := Etype (T); -- Done if we found the type we are looking for if Etyp = T2 then return True; -- Done if no more derivations to check elsif T = T1 or else T = Etyp then return False; -- Following test catches error cases resulting from prev errors elsif No (Etyp) then return False; elsif Is_Private_Type (T) and then Etyp = Full_View (T) then return False; elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then return False; end if; T := Base_Type (Etyp); end loop; end if; end Is_Descendent_Of; ---------------------------- -- Is_Expression_Function -- ---------------------------- function Is_Expression_Function (Subp : Entity_Id) return Boolean is Decl : constant Node_Id := Unit_Declaration_Node (Subp); begin return Ekind (Subp) = E_Function and then Nkind (Decl) = N_Subprogram_Declaration and then (Nkind (Original_Node (Decl)) = N_Expression_Function or else (Present (Corresponding_Body (Decl)) and then Nkind (Original_Node (Unit_Declaration_Node (Corresponding_Body (Decl)))) = N_Expression_Function)); end Is_Expression_Function; -------------- -- Is_False -- -------------- function Is_False (U : Uint) return Boolean is begin return (U = 0); end Is_False; --------------------------- -- Is_Fixed_Model_Number -- --------------------------- function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is S : constant Ureal := Small_Value (T); M : Urealp.Save_Mark; R : Boolean; begin M := Urealp.Mark; R := (U = UR_Trunc (U / S) * S); Urealp.Release (M); return R; end Is_Fixed_Model_Number; ------------------------------- -- Is_Fully_Initialized_Type -- ------------------------------- function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is begin -- In Ada2012, a scalar type with an aspect Default_Value -- is fully initialized. if Is_Scalar_Type (Typ) then return Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ); elsif Is_Access_Type (Typ) then return True; elsif Is_Array_Type (Typ) then if Is_Fully_Initialized_Type (Component_Type (Typ)) or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ)) then return True; end if; -- An interesting case, if we have a constrained type one of whose -- bounds is known to be null, then there are no elements to be -- initialized, so all the elements are initialized! if Is_Constrained (Typ) then declare Indx : Node_Id; Indx_Typ : Entity_Id; Lbd, Hbd : Node_Id; begin Indx := First_Index (Typ); while Present (Indx) loop if Etype (Indx) = Any_Type then return False; -- If index is a range, use directly elsif Nkind (Indx) = N_Range then Lbd := Low_Bound (Indx); Hbd := High_Bound (Indx); else Indx_Typ := Etype (Indx); if Is_Private_Type (Indx_Typ) then Indx_Typ := Full_View (Indx_Typ); end if; if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then return False; else Lbd := Type_Low_Bound (Indx_Typ); Hbd := Type_High_Bound (Indx_Typ); end if; end if; if Compile_Time_Known_Value (Lbd) and then Compile_Time_Known_Value (Hbd) then if Expr_Value (Hbd) < Expr_Value (Lbd) then return True; end if; end if; Next_Index (Indx); end loop; end; end if; -- If no null indexes, then type is not fully initialized return False; -- Record types elsif Is_Record_Type (Typ) then if Has_Discriminants (Typ) and then Present (Discriminant_Default_Value (First_Discriminant (Typ))) and then Is_Fully_Initialized_Variant (Typ) then return True; end if; -- Controlled records are considered to be fully initialized if -- there is a user defined Initialize routine. This may not be -- entirely correct, but as the spec notes, we are guessing here -- what is best from the point of view of issuing warnings. if Is_Controlled (Typ) then declare Utyp : constant Entity_Id := Underlying_Type (Typ); begin if Present (Utyp) then declare Init : constant Entity_Id := (Find_Prim_Op (Underlying_Type (Typ), Name_Initialize)); begin if Present (Init) and then Comes_From_Source (Init) and then not Is_Predefined_File_Name (File_Name (Get_Source_File_Index (Sloc (Init)))) then return True; elsif Has_Null_Extension (Typ) and then Is_Fully_Initialized_Type (Etype (Base_Type (Typ))) then return True; end if; end; end if; end; end if; -- Otherwise see if all record components are initialized declare Ent : Entity_Id; begin Ent := First_Entity (Typ); while Present (Ent) loop if Ekind (Ent) = E_Component and then (No (Parent (Ent)) or else No (Expression (Parent (Ent)))) and then not Is_Fully_Initialized_Type (Etype (Ent)) -- Special VM case for tag components, which need to be -- defined in this case, but are never initialized as VMs -- are using other dispatching mechanisms. Ignore this -- uninitialized case. Note that this applies both to the -- uTag entry and the main vtable pointer (CPP_Class case). and then (Tagged_Type_Expansion or else not Is_Tag (Ent)) then return False; end if; Next_Entity (Ent); end loop; end; -- No uninitialized components, so type is fully initialized. -- Note that this catches the case of no components as well. return True; elsif Is_Concurrent_Type (Typ) then return True; elsif Is_Private_Type (Typ) then declare U : constant Entity_Id := Underlying_Type (Typ); begin if No (U) then return False; else return Is_Fully_Initialized_Type (U); end if; end; else return False; end if; end Is_Fully_Initialized_Type; ---------------------------------- -- Is_Fully_Initialized_Variant -- ---------------------------------- function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is Loc : constant Source_Ptr := Sloc (Typ); Constraints : constant List_Id := New_List; Components : constant Elist_Id := New_Elmt_List; Comp_Elmt : Elmt_Id; Comp_Id : Node_Id; Comp_List : Node_Id; Discr : Entity_Id; Discr_Val : Node_Id; Report_Errors : Boolean; pragma Warnings (Off, Report_Errors); begin if Serious_Errors_Detected > 0 then return False; end if; if Is_Record_Type (Typ) and then Nkind (Parent (Typ)) = N_Full_Type_Declaration and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition then Comp_List := Component_List (Type_Definition (Parent (Typ))); Discr := First_Discriminant (Typ); while Present (Discr) loop if Nkind (Parent (Discr)) = N_Discriminant_Specification then Discr_Val := Expression (Parent (Discr)); if Present (Discr_Val) and then Is_OK_Static_Expression (Discr_Val) then Append_To (Constraints, Make_Component_Association (Loc, Choices => New_List (New_Occurrence_Of (Discr, Loc)), Expression => New_Copy (Discr_Val))); else return False; end if; else return False; end if; Next_Discriminant (Discr); end loop; Gather_Components (Typ => Typ, Comp_List => Comp_List, Governed_By => Constraints, Into => Components, Report_Errors => Report_Errors); -- Check that each component present is fully initialized Comp_Elmt := First_Elmt (Components); while Present (Comp_Elmt) loop Comp_Id := Node (Comp_Elmt); if Ekind (Comp_Id) = E_Component and then (No (Parent (Comp_Id)) or else No (Expression (Parent (Comp_Id)))) and then not Is_Fully_Initialized_Type (Etype (Comp_Id)) then return False; end if; Next_Elmt (Comp_Elmt); end loop; return True; elsif Is_Private_Type (Typ) then declare U : constant Entity_Id := Underlying_Type (Typ); begin if No (U) then return False; else return Is_Fully_Initialized_Variant (U); end if; end; else return False; end if; end Is_Fully_Initialized_Variant; ---------------------------- -- Is_Inherited_Operation -- ---------------------------- function Is_Inherited_Operation (E : Entity_Id) return Boolean is pragma Assert (Is_Overloadable (E)); Kind : constant Node_Kind := Nkind (Parent (E)); begin return Kind = N_Full_Type_Declaration or else Kind = N_Private_Extension_Declaration or else Kind = N_Subtype_Declaration or else (Ekind (E) = E_Enumeration_Literal and then Is_Derived_Type (Etype (E))); end Is_Inherited_Operation; ------------------------------------- -- Is_Inherited_Operation_For_Type -- ------------------------------------- function Is_Inherited_Operation_For_Type (E : Entity_Id; Typ : Entity_Id) return Boolean is begin return Is_Inherited_Operation (E) and then Etype (Parent (E)) = Typ; end Is_Inherited_Operation_For_Type; ----------------- -- Is_Iterator -- ----------------- function Is_Iterator (Typ : Entity_Id) return Boolean is Ifaces_List : Elist_Id; Iface_Elmt : Elmt_Id; Iface : Entity_Id; begin if Is_Class_Wide_Type (Typ) and then (Chars (Etype (Typ)) = Name_Forward_Iterator or else Chars (Etype (Typ)) = Name_Reversible_Iterator) and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Etype (Typ)))) then return True; elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then return False; else Collect_Interfaces (Typ, Ifaces_List); Iface_Elmt := First_Elmt (Ifaces_List); while Present (Iface_Elmt) loop Iface := Node (Iface_Elmt); if Chars (Iface) = Name_Forward_Iterator and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Iface))) then return True; end if; Next_Elmt (Iface_Elmt); end loop; return False; end if; end Is_Iterator; ------------ -- Is_LHS -- ------------ -- We seem to have a lot of overlapping functions that do similar things -- (testing for left hand sides or lvalues???). Anyway, since this one is -- purely syntactic, it should be in Sem_Aux I would think??? function Is_LHS (N : Node_Id) return Boolean is P : constant Node_Id := Parent (N); begin if Nkind (P) = N_Assignment_Statement then return Name (P) = N; elsif Nkind_In (P, N_Indexed_Component, N_Selected_Component, N_Slice) then return N = Prefix (P) and then Is_LHS (P); else return False; end if; end Is_LHS; ----------------------------- -- Is_Library_Level_Entity -- ----------------------------- function Is_Library_Level_Entity (E : Entity_Id) return Boolean is begin -- The following is a small optimization, and it also properly handles -- discriminals, which in task bodies might appear in expressions before -- the corresponding procedure has been created, and which therefore do -- not have an assigned scope. if Is_Formal (E) then return False; end if; -- Normal test is simply that the enclosing dynamic scope is Standard return Enclosing_Dynamic_Scope (E) = Standard_Standard; end Is_Library_Level_Entity; -------------------------------- -- Is_Limited_Class_Wide_Type -- -------------------------------- function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is begin return Is_Class_Wide_Type (Typ) and then Is_Limited_Type (Typ); end Is_Limited_Class_Wide_Type; --------------------------------- -- Is_Local_Variable_Reference -- --------------------------------- function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is begin if not Is_Entity_Name (Expr) then return False; else declare Ent : constant Entity_Id := Entity (Expr); Sub : constant Entity_Id := Enclosing_Subprogram (Ent); begin if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then return False; else return Present (Sub) and then Sub = Current_Subprogram; end if; end; end if; end Is_Local_Variable_Reference; ------------------------- -- Is_Object_Reference -- ------------------------- function Is_Object_Reference (N : Node_Id) return Boolean is begin if Is_Entity_Name (N) then return Present (Entity (N)) and then Is_Object (Entity (N)); else case Nkind (N) is when N_Indexed_Component | N_Slice => return Is_Object_Reference (Prefix (N)) or else Is_Access_Type (Etype (Prefix (N))); -- In Ada 95, a function call is a constant object; a procedure -- call is not. when N_Function_Call => return Etype (N) /= Standard_Void_Type; -- A reference to the stream attribute Input is a function call when N_Attribute_Reference => return Attribute_Name (N) = Name_Input; when N_Selected_Component => return Is_Object_Reference (Selector_Name (N)) and then (Is_Object_Reference (Prefix (N)) or else Is_Access_Type (Etype (Prefix (N)))); when N_Explicit_Dereference => return True; -- A view conversion of a tagged object is an object reference when N_Type_Conversion => return Is_Tagged_Type (Etype (Subtype_Mark (N))) and then Is_Tagged_Type (Etype (Expression (N))) and then Is_Object_Reference (Expression (N)); -- An unchecked type conversion is considered to be an object if -- the operand is an object (this construction arises only as a -- result of expansion activities). when N_Unchecked_Type_Conversion => return True; when others => return False; end case; end if; end Is_Object_Reference; ----------------------------------- -- Is_OK_Variable_For_Out_Formal -- ----------------------------------- function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is begin Note_Possible_Modification (AV, Sure => True); -- We must reject parenthesized variable names. The check for -- Comes_From_Source is present because there are currently -- cases where the compiler violates this rule (e.g. passing -- a task object to its controlled Initialize routine). if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then return False; -- A variable is always allowed elsif Is_Variable (AV) then return True; -- Unchecked conversions are allowed only if they come from the -- generated code, which sometimes uses unchecked conversions for out -- parameters in cases where code generation is unaffected. We tell -- source unchecked conversions by seeing if they are rewrites of an -- original Unchecked_Conversion function call, or of an explicit -- conversion of a function call. elsif Nkind (AV) = N_Unchecked_Type_Conversion then if Nkind (Original_Node (AV)) = N_Function_Call then return False; elsif Comes_From_Source (AV) and then Nkind (Original_Node (Expression (AV))) = N_Function_Call then return False; elsif Nkind (Original_Node (AV)) = N_Type_Conversion then return Is_OK_Variable_For_Out_Formal (Expression (AV)); else return True; end if; -- Normal type conversions are allowed if argument is a variable elsif Nkind (AV) = N_Type_Conversion then if Is_Variable (Expression (AV)) and then Paren_Count (Expression (AV)) = 0 then Note_Possible_Modification (Expression (AV), Sure => True); return True; -- We also allow a non-parenthesized expression that raises -- constraint error if it rewrites what used to be a variable elsif Raises_Constraint_Error (Expression (AV)) and then Paren_Count (Expression (AV)) = 0 and then Is_Variable (Original_Node (Expression (AV))) then return True; -- Type conversion of something other than a variable else return False; end if; -- If this node is rewritten, then test the original form, if that is -- OK, then we consider the rewritten node OK (for example, if the -- original node is a conversion, then Is_Variable will not be true -- but we still want to allow the conversion if it converts a variable). elsif Original_Node (AV) /= AV then -- In Ada 2012, the explicit dereference may be a rewritten call to a -- Reference function. if Ada_Version >= Ada_2012 and then Nkind (Original_Node (AV)) = N_Function_Call and then Has_Implicit_Dereference (Etype (Name (Original_Node (AV)))) then return True; else return Is_OK_Variable_For_Out_Formal (Original_Node (AV)); end if; -- All other non-variables are rejected else return False; end if; end Is_OK_Variable_For_Out_Formal; ----------------------------------- -- Is_Partially_Initialized_Type -- ----------------------------------- function Is_Partially_Initialized_Type (Typ : Entity_Id; Include_Implicit : Boolean := True) return Boolean is begin if Is_Scalar_Type (Typ) then return False; elsif Is_Access_Type (Typ) then return Include_Implicit; elsif Is_Array_Type (Typ) then -- If component type is partially initialized, so is array type if Is_Partially_Initialized_Type (Component_Type (Typ), Include_Implicit) then return True; -- Otherwise we are only partially initialized if we are fully -- initialized (this is the empty array case, no point in us -- duplicating that code here). else return Is_Fully_Initialized_Type (Typ); end if; elsif Is_Record_Type (Typ) then -- A discriminated type is always partially initialized if in -- all mode if Has_Discriminants (Typ) and then Include_Implicit then return True; -- A tagged type is always partially initialized elsif Is_Tagged_Type (Typ) then return True; -- Case of non-discriminated record else declare Ent : Entity_Id; Component_Present : Boolean := False; -- Set True if at least one component is present. If no -- components are present, then record type is fully -- initialized (another odd case, like the null array). begin -- Loop through components Ent := First_Entity (Typ); while Present (Ent) loop if Ekind (Ent) = E_Component then Component_Present := True; -- If a component has an initialization expression then -- the enclosing record type is partially initialized if Present (Parent (Ent)) and then Present (Expression (Parent (Ent))) then return True; -- If a component is of a type which is itself partially -- initialized, then the enclosing record type is also. elsif Is_Partially_Initialized_Type (Etype (Ent), Include_Implicit) then return True; end if; end if; Next_Entity (Ent); end loop; -- No initialized components found. If we found any components -- they were all uninitialized so the result is false. if Component_Present then return False; -- But if we found no components, then all the components are -- initialized so we consider the type to be initialized. else return True; end if; end; end if; -- Concurrent types are always fully initialized elsif Is_Concurrent_Type (Typ) then return True; -- For a private type, go to underlying type. If there is no underlying -- type then just assume this partially initialized. Not clear if this -- can happen in a non-error case, but no harm in testing for this. elsif Is_Private_Type (Typ) then declare U : constant Entity_Id := Underlying_Type (Typ); begin if No (U) then return True; else return Is_Partially_Initialized_Type (U, Include_Implicit); end if; end; -- For any other type (are there any?) assume partially initialized else return True; end if; end Is_Partially_Initialized_Type; ------------------------------------ -- Is_Potentially_Persistent_Type -- ------------------------------------ function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is Comp : Entity_Id; Indx : Node_Id; begin -- For private type, test corresponding full type if Is_Private_Type (T) then return Is_Potentially_Persistent_Type (Full_View (T)); -- Scalar types are potentially persistent elsif Is_Scalar_Type (T) then return True; -- Record type is potentially persistent if not tagged and the types of -- all it components are potentially persistent, and no component has -- an initialization expression. elsif Is_Record_Type (T) and then not Is_Tagged_Type (T) and then not Is_Partially_Initialized_Type (T) then Comp := First_Component (T); while Present (Comp) loop if not Is_Potentially_Persistent_Type (Etype (Comp)) then return False; else Next_Entity (Comp); end if; end loop; return True; -- Array type is potentially persistent if its component type is -- potentially persistent and if all its constraints are static. elsif Is_Array_Type (T) then if not Is_Potentially_Persistent_Type (Component_Type (T)) then return False; end if; Indx := First_Index (T); while Present (Indx) loop if not Is_OK_Static_Subtype (Etype (Indx)) then return False; else Next_Index (Indx); end if; end loop; return True; -- All other types are not potentially persistent else return False; end if; end Is_Potentially_Persistent_Type; --------------------------------- -- Is_Protected_Self_Reference -- --------------------------------- function Is_Protected_Self_Reference (N : Node_Id) return Boolean is function In_Access_Definition (N : Node_Id) return Boolean; -- Returns true if N belongs to an access definition -------------------------- -- In_Access_Definition -- -------------------------- function In_Access_Definition (N : Node_Id) return Boolean is P : Node_Id; begin P := Parent (N); while Present (P) loop if Nkind (P) = N_Access_Definition then return True; end if; P := Parent (P); end loop; return False; end In_Access_Definition; -- Start of processing for Is_Protected_Self_Reference begin -- Verify that prefix is analyzed and has the proper form. Note that -- the attributes Elab_Spec, Elab_Body, Elab_Subp_Body and UET_Address, -- which also produce the address of an entity, do not analyze their -- prefix because they denote entities that are not necessarily visible. -- Neither of them can apply to a protected type. return Ada_Version >= Ada_2005 and then Is_Entity_Name (N) and then Present (Entity (N)) and then Is_Protected_Type (Entity (N)) and then In_Open_Scopes (Entity (N)) and then not In_Access_Definition (N); end Is_Protected_Self_Reference; ----------------------------- -- Is_RCI_Pkg_Spec_Or_Body -- ----------------------------- function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean; -- Return True if the unit of Cunit is an RCI package declaration --------------------------- -- Is_RCI_Pkg_Decl_Cunit -- --------------------------- function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is The_Unit : constant Node_Id := Unit (Cunit); begin if Nkind (The_Unit) /= N_Package_Declaration then return False; end if; return Is_Remote_Call_Interface (Defining_Entity (The_Unit)); end Is_RCI_Pkg_Decl_Cunit; -- Start of processing for Is_RCI_Pkg_Spec_Or_Body begin return Is_RCI_Pkg_Decl_Cunit (Cunit) or else (Nkind (Unit (Cunit)) = N_Package_Body and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit))); end Is_RCI_Pkg_Spec_Or_Body; ----------------------------------------- -- Is_Remote_Access_To_Class_Wide_Type -- ----------------------------------------- function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean is begin -- A remote access to class-wide type is a general access to object type -- declared in the visible part of a Remote_Types or Remote_Call_ -- Interface unit. return Ekind (E) = E_General_Access_Type and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E)); end Is_Remote_Access_To_Class_Wide_Type; ----------------------------------------- -- Is_Remote_Access_To_Subprogram_Type -- ----------------------------------------- function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean is begin return (Ekind (E) = E_Access_Subprogram_Type or else (Ekind (E) = E_Record_Type and then Present (Corresponding_Remote_Type (E)))) and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E)); end Is_Remote_Access_To_Subprogram_Type; -------------------- -- Is_Remote_Call -- -------------------- function Is_Remote_Call (N : Node_Id) return Boolean is begin if Nkind (N) /= N_Procedure_Call_Statement and then Nkind (N) /= N_Function_Call then -- An entry call cannot be remote return False; elsif Nkind (Name (N)) in N_Has_Entity and then Is_Remote_Call_Interface (Entity (Name (N))) then -- A subprogram declared in the spec of a RCI package is remote return True; elsif Nkind (Name (N)) = N_Explicit_Dereference and then Is_Remote_Access_To_Subprogram_Type (Etype (Prefix (Name (N)))) then -- The dereference of a RAS is a remote call return True; elsif Present (Controlling_Argument (N)) and then Is_Remote_Access_To_Class_Wide_Type (Etype (Controlling_Argument (N))) then -- Any primitive operation call with a controlling argument of -- a RACW type is a remote call. return True; end if; -- All other calls are local calls return False; end Is_Remote_Call; ---------------------- -- Is_Renamed_Entry -- ---------------------- function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is Orig_Node : Node_Id := Empty; Subp_Decl : Node_Id := Parent (Parent (Proc_Nam)); function Is_Entry (Nam : Node_Id) return Boolean; -- Determine whether Nam is an entry. Traverse selectors if there are -- nested selected components. -------------- -- Is_Entry -- -------------- function Is_Entry (Nam : Node_Id) return Boolean is begin if Nkind (Nam) = N_Selected_Component then return Is_Entry (Selector_Name (Nam)); end if; return Ekind (Entity (Nam)) = E_Entry; end Is_Entry; -- Start of processing for Is_Renamed_Entry begin if Present (Alias (Proc_Nam)) then Subp_Decl := Parent (Parent (Alias (Proc_Nam))); end if; -- Look for a rewritten subprogram renaming declaration if Nkind (Subp_Decl) = N_Subprogram_Declaration and then Present (Original_Node (Subp_Decl)) then Orig_Node := Original_Node (Subp_Decl); end if; -- The rewritten subprogram is actually an entry if Present (Orig_Node) and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration and then Is_Entry (Name (Orig_Node)) then return True; end if; return False; end Is_Renamed_Entry; ---------------------------- -- Is_Reversible_Iterator -- ---------------------------- function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is Ifaces_List : Elist_Id; Iface_Elmt : Elmt_Id; Iface : Entity_Id; begin if Is_Class_Wide_Type (Typ) and then Chars (Etype (Typ)) = Name_Reversible_Iterator and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Etype (Typ)))) then return True; elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then return False; else Collect_Interfaces (Typ, Ifaces_List); Iface_Elmt := First_Elmt (Ifaces_List); while Present (Iface_Elmt) loop Iface := Node (Iface_Elmt); if Chars (Iface) = Name_Reversible_Iterator and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Iface))) then return True; end if; Next_Elmt (Iface_Elmt); end loop; end if; return False; end Is_Reversible_Iterator; ---------------------- -- Is_Selector_Name -- ---------------------- function Is_Selector_Name (N : Node_Id) return Boolean is begin if not Is_List_Member (N) then declare P : constant Node_Id := Parent (N); K : constant Node_Kind := Nkind (P); begin return (K = N_Expanded_Name or else K = N_Generic_Association or else K = N_Parameter_Association or else K = N_Selected_Component) and then Selector_Name (P) = N; end; else declare L : constant List_Id := List_Containing (N); P : constant Node_Id := Parent (L); begin return (Nkind (P) = N_Discriminant_Association and then Selector_Names (P) = L) or else (Nkind (P) = N_Component_Association and then Choices (P) = L); end; end if; end Is_Selector_Name; ---------------------------------- -- Is_SPARK_Initialization_Expr -- ---------------------------------- function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean is Is_Ok : Boolean; Expr : Node_Id; Comp_Assn : Node_Id; Orig_N : constant Node_Id := Original_Node (N); begin Is_Ok := True; if not Comes_From_Source (Orig_N) then goto Done; end if; pragma Assert (Nkind (Orig_N) in N_Subexpr); case Nkind (Orig_N) is when N_Character_Literal | N_Integer_Literal | N_Real_Literal | N_String_Literal => null; when N_Identifier | N_Expanded_Name => if Is_Entity_Name (Orig_N) and then Present (Entity (Orig_N)) -- needed in some cases then case Ekind (Entity (Orig_N)) is when E_Constant | E_Enumeration_Literal | E_Named_Integer | E_Named_Real => null; when others => if Is_Type (Entity (Orig_N)) then null; else Is_Ok := False; end if; end case; end if; when N_Qualified_Expression | N_Type_Conversion => Is_Ok := Is_SPARK_Initialization_Expr (Expression (Orig_N)); when N_Unary_Op => Is_Ok := Is_SPARK_Initialization_Expr (Right_Opnd (Orig_N)); when N_Binary_Op | N_Short_Circuit | N_Membership_Test => Is_Ok := Is_SPARK_Initialization_Expr (Left_Opnd (Orig_N)) and then Is_SPARK_Initialization_Expr (Right_Opnd (Orig_N)); when N_Aggregate | N_Extension_Aggregate => if Nkind (Orig_N) = N_Extension_Aggregate then Is_Ok := Is_SPARK_Initialization_Expr (Ancestor_Part (Orig_N)); end if; Expr := First (Expressions (Orig_N)); while Present (Expr) loop if not Is_SPARK_Initialization_Expr (Expr) then Is_Ok := False; goto Done; end if; Next (Expr); end loop; Comp_Assn := First (Component_Associations (Orig_N)); while Present (Comp_Assn) loop Expr := Expression (Comp_Assn); if Present (Expr) -- needed for box association and then not Is_SPARK_Initialization_Expr (Expr) then Is_Ok := False; goto Done; end if; Next (Comp_Assn); end loop; when N_Attribute_Reference => if Nkind (Prefix (Orig_N)) in N_Subexpr then Is_Ok := Is_SPARK_Initialization_Expr (Prefix (Orig_N)); end if; Expr := First (Expressions (Orig_N)); while Present (Expr) loop if not Is_SPARK_Initialization_Expr (Expr) then Is_Ok := False; goto Done; end if; Next (Expr); end loop; -- Selected components might be expanded named not yet resolved, so -- default on the safe side. (Eg on sparklex.ads) when N_Selected_Component => null; when others => Is_Ok := False; end case; <<Done>> return Is_Ok; end Is_SPARK_Initialization_Expr; ------------------------------- -- Is_SPARK_Object_Reference -- ------------------------------- function Is_SPARK_Object_Reference (N : Node_Id) return Boolean is begin if Is_Entity_Name (N) then return Present (Entity (N)) and then (Ekind_In (Entity (N), E_Constant, E_Variable) or else Ekind (Entity (N)) in Formal_Kind); else case Nkind (N) is when N_Selected_Component => return Is_SPARK_Object_Reference (Prefix (N)); when others => return False; end case; end if; end Is_SPARK_Object_Reference; ------------------ -- Is_Statement -- ------------------ function Is_Statement (N : Node_Id) return Boolean is begin return Nkind (N) in N_Statement_Other_Than_Procedure_Call or else Nkind (N) = N_Procedure_Call_Statement; end Is_Statement; -------------------------------------------------- -- Is_Subprogram_Stub_Without_Prior_Declaration -- -------------------------------------------------- function Is_Subprogram_Stub_Without_Prior_Declaration (N : Node_Id) return Boolean is begin -- A subprogram stub without prior declaration serves as declaration for -- the actual subprogram body. As such, it has an attached defining -- entity of E_[Generic_]Function or E_[Generic_]Procedure. return Nkind (N) = N_Subprogram_Body_Stub and then Ekind (Defining_Entity (N)) /= E_Subprogram_Body; end Is_Subprogram_Stub_Without_Prior_Declaration; --------------------------------- -- Is_Synchronized_Tagged_Type -- --------------------------------- function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is Kind : constant Entity_Kind := Ekind (Base_Type (E)); begin -- A task or protected type derived from an interface is a tagged type. -- Such a tagged type is called a synchronized tagged type, as are -- synchronized interfaces and private extensions whose declaration -- includes the reserved word synchronized. return (Is_Tagged_Type (E) and then (Kind = E_Task_Type or else Kind = E_Protected_Type)) or else (Is_Interface (E) and then Is_Synchronized_Interface (E)) or else (Ekind (E) = E_Record_Type_With_Private and then Nkind (Parent (E)) = N_Private_Extension_Declaration and then (Synchronized_Present (Parent (E)) or else Is_Synchronized_Interface (Etype (E)))); end Is_Synchronized_Tagged_Type; ----------------- -- Is_Transfer -- ----------------- function Is_Transfer (N : Node_Id) return Boolean is Kind : constant Node_Kind := Nkind (N); begin if Kind = N_Simple_Return_Statement or else Kind = N_Extended_Return_Statement or else Kind = N_Goto_Statement or else Kind = N_Raise_Statement or else Kind = N_Requeue_Statement then return True; elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error) and then No (Condition (N)) then return True; elsif Kind = N_Procedure_Call_Statement and then Is_Entity_Name (Name (N)) and then Present (Entity (Name (N))) and then No_Return (Entity (Name (N))) then return True; elsif Nkind (Original_Node (N)) = N_Raise_Statement then return True; else return False; end if; end Is_Transfer; ------------- -- Is_True -- ------------- function Is_True (U : Uint) return Boolean is begin return (U /= 0); end Is_True; ------------------------------- -- Is_Universal_Numeric_Type -- ------------------------------- function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is begin return T = Universal_Integer or else T = Universal_Real; end Is_Universal_Numeric_Type; ------------------- -- Is_Value_Type -- ------------------- function Is_Value_Type (T : Entity_Id) return Boolean is begin return VM_Target = CLI_Target and then Nkind (T) in N_Has_Chars and then Chars (T) /= No_Name and then Get_Name_String (Chars (T)) = "valuetype"; end Is_Value_Type; --------------------- -- Is_VMS_Operator -- --------------------- function Is_VMS_Operator (Op : Entity_Id) return Boolean is begin -- The VMS operators are declared in a child of System that is loaded -- through pragma Extend_System. In some rare cases a program is run -- with this extension but without indicating that the target is VMS. return Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) and then ((Present_System_Aux and then Scope (Op) = System_Aux_Id) or else (True_VMS_Target and then Scope (Scope (Op)) = RTU_Entity (System))); end Is_VMS_Operator; ----------------- -- Is_Variable -- ----------------- function Is_Variable (N : Node_Id; Use_Original_Node : Boolean := True) return Boolean is Orig_Node : Node_Id; function In_Protected_Function (E : Entity_Id) return Boolean; -- Within a protected function, the private components of the enclosing -- protected type are constants. A function nested within a (protected) -- procedure is not itself protected. function Is_Variable_Prefix (P : Node_Id) return Boolean; -- Prefixes can involve implicit dereferences, in which case we must -- test for the case of a reference of a constant access type, which can -- can never be a variable. --------------------------- -- In_Protected_Function -- --------------------------- function In_Protected_Function (E : Entity_Id) return Boolean is Prot : constant Entity_Id := Scope (E); S : Entity_Id; begin if not Is_Protected_Type (Prot) then return False; else S := Current_Scope; while Present (S) and then S /= Prot loop if Ekind (S) = E_Function and then Scope (S) = Prot then return True; end if; S := Scope (S); end loop; return False; end if; end In_Protected_Function; ------------------------ -- Is_Variable_Prefix -- ------------------------ function Is_Variable_Prefix (P : Node_Id) return Boolean is begin if Is_Access_Type (Etype (P)) then return not Is_Access_Constant (Root_Type (Etype (P))); -- For the case of an indexed component whose prefix has a packed -- array type, the prefix has been rewritten into a type conversion. -- Determine variable-ness from the converted expression. elsif Nkind (P) = N_Type_Conversion and then not Comes_From_Source (P) and then Is_Array_Type (Etype (P)) and then Is_Packed (Etype (P)) then return Is_Variable (Expression (P)); else return Is_Variable (P); end if; end Is_Variable_Prefix; -- Start of processing for Is_Variable begin -- Check if we perform the test on the original node since this may be a -- test of syntactic categories which must not be disturbed by whatever -- rewriting might have occurred. For example, an aggregate, which is -- certainly NOT a variable, could be turned into a variable by -- expansion. if Use_Original_Node then Orig_Node := Original_Node (N); else Orig_Node := N; end if; -- Definitely OK if Assignment_OK is set. Since this is something that -- only gets set for expanded nodes, the test is on N, not Orig_Node. if Nkind (N) in N_Subexpr and then Assignment_OK (N) then return True; -- Normally we go to the original node, but there is one exception where -- we use the rewritten node, namely when it is an explicit dereference. -- The generated code may rewrite a prefix which is an access type with -- an explicit dereference. The dereference is a variable, even though -- the original node may not be (since it could be a constant of the -- access type). -- In Ada 2005 we have a further case to consider: the prefix may be a -- function call given in prefix notation. The original node appears to -- be a selected component, but we need to examine the call. elsif Nkind (N) = N_Explicit_Dereference and then Nkind (Orig_Node) /= N_Explicit_Dereference and then Present (Etype (Orig_Node)) and then Is_Access_Type (Etype (Orig_Node)) then -- Note that if the prefix is an explicit dereference that does not -- come from source, we must check for a rewritten function call in -- prefixed notation before other forms of rewriting, to prevent a -- compiler crash. return (Nkind (Orig_Node) = N_Function_Call and then not Is_Access_Constant (Etype (Prefix (N)))) or else Is_Variable_Prefix (Original_Node (Prefix (N))); -- A function call is never a variable elsif Nkind (N) = N_Function_Call then return False; -- All remaining checks use the original node elsif Is_Entity_Name (Orig_Node) and then Present (Entity (Orig_Node)) then declare E : constant Entity_Id := Entity (Orig_Node); K : constant Entity_Kind := Ekind (E); begin return (K = E_Variable and then Nkind (Parent (E)) /= N_Exception_Handler) or else (K = E_Component and then not In_Protected_Function (E)) or else K = E_Out_Parameter or else K = E_In_Out_Parameter or else K = E_Generic_In_Out_Parameter -- Current instance of type or else (Is_Type (E) and then In_Open_Scopes (E)) or else (Is_Incomplete_Or_Private_Type (E) and then In_Open_Scopes (Full_View (E))); end; else case Nkind (Orig_Node) is when N_Indexed_Component | N_Slice => return Is_Variable_Prefix (Prefix (Orig_Node)); when N_Selected_Component => return Is_Variable_Prefix (Prefix (Orig_Node)) and then Is_Variable (Selector_Name (Orig_Node)); -- For an explicit dereference, the type of the prefix cannot -- be an access to constant or an access to subprogram. when N_Explicit_Dereference => declare Typ : constant Entity_Id := Etype (Prefix (Orig_Node)); begin return Is_Access_Type (Typ) and then not Is_Access_Constant (Root_Type (Typ)) and then Ekind (Typ) /= E_Access_Subprogram_Type; end; -- The type conversion is the case where we do not deal with the -- context dependent special case of an actual parameter. Thus -- the type conversion is only considered a variable for the -- purposes of this routine if the target type is tagged. However, -- a type conversion is considered to be a variable if it does not -- come from source (this deals for example with the conversions -- of expressions to their actual subtypes). when N_Type_Conversion => return Is_Variable (Expression (Orig_Node)) and then (not Comes_From_Source (Orig_Node) or else (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node))) and then Is_Tagged_Type (Etype (Expression (Orig_Node))))); -- GNAT allows an unchecked type conversion as a variable. This -- only affects the generation of internal expanded code, since -- calls to instantiations of Unchecked_Conversion are never -- considered variables (since they are function calls). -- This is also true for expression actions. when N_Unchecked_Type_Conversion => return Is_Variable (Expression (Orig_Node)); when others => return False; end case; end if; end Is_Variable; --------------------------- -- Is_Visibly_Controlled -- --------------------------- function Is_Visibly_Controlled (T : Entity_Id) return Boolean is Root : constant Entity_Id := Root_Type (T); begin return Chars (Scope (Root)) = Name_Finalization and then Chars (Scope (Scope (Root))) = Name_Ada and then Scope (Scope (Scope (Root))) = Standard_Standard; end Is_Visibly_Controlled; ------------------------ -- Is_Volatile_Object -- ------------------------ function Is_Volatile_Object (N : Node_Id) return Boolean is function Object_Has_Volatile_Components (N : Node_Id) return Boolean; -- Determines if given object has volatile components function Is_Volatile_Prefix (N : Node_Id) return Boolean; -- If prefix is an implicit dereference, examine designated type ------------------------ -- Is_Volatile_Prefix -- ------------------------ function Is_Volatile_Prefix (N : Node_Id) return Boolean is Typ : constant Entity_Id := Etype (N); begin if Is_Access_Type (Typ) then declare Dtyp : constant Entity_Id := Designated_Type (Typ); begin return Is_Volatile (Dtyp) or else Has_Volatile_Components (Dtyp); end; else return Object_Has_Volatile_Components (N); end if; end Is_Volatile_Prefix; ------------------------------------ -- Object_Has_Volatile_Components -- ------------------------------------ function Object_Has_Volatile_Components (N : Node_Id) return Boolean is Typ : constant Entity_Id := Etype (N); begin if Is_Volatile (Typ) or else Has_Volatile_Components (Typ) then return True; elsif Is_Entity_Name (N) and then (Has_Volatile_Components (Entity (N)) or else Is_Volatile (Entity (N))) then return True; elsif Nkind (N) = N_Indexed_Component or else Nkind (N) = N_Selected_Component then return Is_Volatile_Prefix (Prefix (N)); else return False; end if; end Object_Has_Volatile_Components; -- Start of processing for Is_Volatile_Object begin if Is_Volatile (Etype (N)) or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N))) then return True; elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) and then Is_Volatile_Prefix (Prefix (N)) then return True; elsif Nkind (N) = N_Selected_Component and then Is_Volatile (Entity (Selector_Name (N))) then return True; else return False; end if; end Is_Volatile_Object; --------------------------- -- Itype_Has_Declaration -- --------------------------- function Itype_Has_Declaration (Id : Entity_Id) return Boolean is begin pragma Assert (Is_Itype (Id)); return Present (Parent (Id)) and then Nkind_In (Parent (Id), N_Full_Type_Declaration, N_Subtype_Declaration) and then Defining_Entity (Parent (Id)) = Id; end Itype_Has_Declaration; ------------------------- -- Kill_Current_Values -- ------------------------- procedure Kill_Current_Values (Ent : Entity_Id; Last_Assignment_Only : Boolean := False) is begin -- ??? do we have to worry about clearing cached checks? if Is_Assignable (Ent) then Set_Last_Assignment (Ent, Empty); end if; if Is_Object (Ent) then if not Last_Assignment_Only then Kill_Checks (Ent); Set_Current_Value (Ent, Empty); if not Can_Never_Be_Null (Ent) then Set_Is_Known_Non_Null (Ent, False); end if; Set_Is_Known_Null (Ent, False); -- Reset Is_Known_Valid unless type is always valid, or if we have -- a loop parameter (loop parameters are always valid, since their -- bounds are defined by the bounds given in the loop header). if not Is_Known_Valid (Etype (Ent)) and then Ekind (Ent) /= E_Loop_Parameter then Set_Is_Known_Valid (Ent, False); end if; end if; end if; end Kill_Current_Values; procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is S : Entity_Id; procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id); -- Clear current value for entity E and all entities chained to E ------------------------------------------ -- Kill_Current_Values_For_Entity_Chain -- ------------------------------------------ procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is Ent : Entity_Id; begin Ent := E; while Present (Ent) loop Kill_Current_Values (Ent, Last_Assignment_Only); Next_Entity (Ent); end loop; end Kill_Current_Values_For_Entity_Chain; -- Start of processing for Kill_Current_Values begin -- Kill all saved checks, a special case of killing saved values if not Last_Assignment_Only then Kill_All_Checks; end if; -- Loop through relevant scopes, which includes the current scope and -- any parent scopes if the current scope is a block or a package. S := Current_Scope; Scope_Loop : loop -- Clear current values of all entities in current scope Kill_Current_Values_For_Entity_Chain (First_Entity (S)); -- If scope is a package, also clear current values of all private -- entities in the scope. if Is_Package_Or_Generic_Package (S) or else Is_Concurrent_Type (S) then Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S)); end if; -- If this is a not a subprogram, deal with parents if not Is_Subprogram (S) then S := Scope (S); exit Scope_Loop when S = Standard_Standard; else exit Scope_Loop; end if; end loop Scope_Loop; end Kill_Current_Values; -------------------------- -- Kill_Size_Check_Code -- -------------------------- procedure Kill_Size_Check_Code (E : Entity_Id) is begin if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable) and then Present (Size_Check_Code (E)) then Remove (Size_Check_Code (E)); Set_Size_Check_Code (E, Empty); end if; end Kill_Size_Check_Code; -------------------------- -- Known_To_Be_Assigned -- -------------------------- function Known_To_Be_Assigned (N : Node_Id) return Boolean is P : constant Node_Id := Parent (N); begin case Nkind (P) is -- Test left side of assignment when N_Assignment_Statement => return N = Name (P); -- Function call arguments are never lvalues when N_Function_Call => return False; -- Positional parameter for procedure or accept call when N_Procedure_Call_Statement | N_Accept_Statement => declare Proc : Entity_Id; Form : Entity_Id; Act : Node_Id; begin Proc := Get_Subprogram_Entity (P); if No (Proc) then return False; end if; -- If we are not a list member, something is strange, so -- be conservative and return False. if not Is_List_Member (N) then return False; end if; -- We are going to find the right formal by stepping forward -- through the formals, as we step backwards in the actuals. Form := First_Formal (Proc); Act := N; loop -- If no formal, something is weird, so be conservative -- and return False. if No (Form) then return False; end if; Prev (Act); exit when No (Act); Next_Formal (Form); end loop; return Ekind (Form) /= E_In_Parameter; end; -- Named parameter for procedure or accept call when N_Parameter_Association => declare Proc : Entity_Id; Form : Entity_Id; begin Proc := Get_Subprogram_Entity (Parent (P)); if No (Proc) then return False; end if; -- Loop through formals to find the one that matches Form := First_Formal (Proc); loop -- If no matching formal, that's peculiar, some kind of -- previous error, so return False to be conservative. if No (Form) then return False; end if; -- Else test for match if Chars (Form) = Chars (Selector_Name (P)) then return Ekind (Form) /= E_In_Parameter; end if; Next_Formal (Form); end loop; end; -- Test for appearing in a conversion that itself appears -- in an lvalue context, since this should be an lvalue. when N_Type_Conversion => return Known_To_Be_Assigned (P); -- All other references are definitely not known to be modifications when others => return False; end case; end Known_To_Be_Assigned; --------------------------- -- Last_Source_Statement -- --------------------------- function Last_Source_Statement (HSS : Node_Id) return Node_Id is N : Node_Id; begin N := Last (Statements (HSS)); while Present (N) loop exit when Comes_From_Source (N); Prev (N); end loop; return N; end Last_Source_Statement; ---------------------------------- -- Matching_Static_Array_Bounds -- ---------------------------------- function Matching_Static_Array_Bounds (L_Typ : Node_Id; R_Typ : Node_Id) return Boolean is L_Ndims : constant Nat := Number_Dimensions (L_Typ); R_Ndims : constant Nat := Number_Dimensions (R_Typ); L_Index : Node_Id; R_Index : Node_Id; L_Low : Node_Id; L_High : Node_Id; L_Len : Uint; R_Low : Node_Id; R_High : Node_Id; R_Len : Uint; begin if L_Ndims /= R_Ndims then return False; end if; -- Unconstrained types do not have static bounds if not Is_Constrained (L_Typ) or else not Is_Constrained (R_Typ) then return False; end if; -- First treat specially the first dimension, as the lower bound and -- length of string literals are not stored like those of arrays. if Ekind (L_Typ) = E_String_Literal_Subtype then L_Low := String_Literal_Low_Bound (L_Typ); L_Len := String_Literal_Length (L_Typ); else L_Index := First_Index (L_Typ); Get_Index_Bounds (L_Index, L_Low, L_High); if Is_OK_Static_Expression (L_Low) and then Is_OK_Static_Expression (L_High) then if Expr_Value (L_High) < Expr_Value (L_Low) then L_Len := Uint_0; else L_Len := (Expr_Value (L_High) - Expr_Value (L_Low)) + 1; end if; else return False; end if; end if; if Ekind (R_Typ) = E_String_Literal_Subtype then R_Low := String_Literal_Low_Bound (R_Typ); R_Len := String_Literal_Length (R_Typ); else R_Index := First_Index (R_Typ); Get_Index_Bounds (R_Index, R_Low, R_High); if Is_OK_Static_Expression (R_Low) and then Is_OK_Static_Expression (R_High) then if Expr_Value (R_High) < Expr_Value (R_Low) then R_Len := Uint_0; else R_Len := (Expr_Value (R_High) - Expr_Value (R_Low)) + 1; end if; else return False; end if; end if; if Is_OK_Static_Expression (L_Low) and then Is_OK_Static_Expression (R_Low) and then Expr_Value (L_Low) = Expr_Value (R_Low) and then L_Len = R_Len then null; else return False; end if; -- Then treat all other dimensions for Indx in 2 .. L_Ndims loop Next (L_Index); Next (R_Index); Get_Index_Bounds (L_Index, L_Low, L_High); Get_Index_Bounds (R_Index, R_Low, R_High); if Is_OK_Static_Expression (L_Low) and then Is_OK_Static_Expression (L_High) and then Is_OK_Static_Expression (R_Low) and then Is_OK_Static_Expression (R_High) and then Expr_Value (L_Low) = Expr_Value (R_Low) and then Expr_Value (L_High) = Expr_Value (R_High) then null; else return False; end if; end loop; -- If we fall through the loop, all indexes matched return True; end Matching_Static_Array_Bounds; ------------------- -- May_Be_Lvalue -- ------------------- function May_Be_Lvalue (N : Node_Id) return Boolean is P : constant Node_Id := Parent (N); begin case Nkind (P) is -- Test left side of assignment when N_Assignment_Statement => return N = Name (P); -- Test prefix of component or attribute. Note that the prefix of an -- explicit or implicit dereference cannot be an l-value. when N_Attribute_Reference => return N = Prefix (P) and then Name_Implies_Lvalue_Prefix (Attribute_Name (P)); -- For an expanded name, the name is an lvalue if the expanded name -- is an lvalue, but the prefix is never an lvalue, since it is just -- the scope where the name is found. when N_Expanded_Name => if N = Prefix (P) then return May_Be_Lvalue (P); else return False; end if; -- For a selected component A.B, A is certainly an lvalue if A.B is. -- B is a little interesting, if we have A.B := 3, there is some -- discussion as to whether B is an lvalue or not, we choose to say -- it is. Note however that A is not an lvalue if it is of an access -- type since this is an implicit dereference. when N_Selected_Component => if N = Prefix (P) and then Present (Etype (N)) and then Is_Access_Type (Etype (N)) then return False; else return May_Be_Lvalue (P); end if; -- For an indexed component or slice, the index or slice bounds is -- never an lvalue. The prefix is an lvalue if the indexed component -- or slice is an lvalue, except if it is an access type, where we -- have an implicit dereference. when N_Indexed_Component | N_Slice => if N /= Prefix (P) or else (Present (Etype (N)) and then Is_Access_Type (Etype (N))) then return False; else return May_Be_Lvalue (P); end if; -- Prefix of a reference is an lvalue if the reference is an lvalue when N_Reference => return May_Be_Lvalue (P); -- Prefix of explicit dereference is never an lvalue when N_Explicit_Dereference => return False; -- Positional parameter for subprogram, entry, or accept call. -- In older versions of Ada function call arguments are never -- lvalues. In Ada 2012 functions can have in-out parameters. when N_Function_Call | N_Procedure_Call_Statement | N_Entry_Call_Statement | N_Accept_Statement => if Nkind (P) = N_Function_Call and then Ada_Version < Ada_2012 then return False; end if; -- The following mechanism is clumsy and fragile. A single flag -- set in Resolve_Actuals would be preferable ??? declare Proc : Entity_Id; Form : Entity_Id; Act : Node_Id; begin Proc := Get_Subprogram_Entity (P); if No (Proc) then return True; end if; -- If we are not a list member, something is strange, so be -- conservative and return True. if not Is_List_Member (N) then return True; end if; -- We are going to find the right formal by stepping forward -- through the formals, as we step backwards in the actuals. Form := First_Formal (Proc); Act := N; loop -- If no formal, something is weird, so be conservative and -- return True. if No (Form) then return True; end if; Prev (Act); exit when No (Act); Next_Formal (Form); end loop; return Ekind (Form) /= E_In_Parameter; end; -- Named parameter for procedure or accept call when N_Parameter_Association => declare Proc : Entity_Id; Form : Entity_Id; begin Proc := Get_Subprogram_Entity (Parent (P)); if No (Proc) then return True; end if; -- Loop through formals to find the one that matches Form := First_Formal (Proc); loop -- If no matching formal, that's peculiar, some kind of -- previous error, so return True to be conservative. if No (Form) then return True; end if; -- Else test for match if Chars (Form) = Chars (Selector_Name (P)) then return Ekind (Form) /= E_In_Parameter; end if; Next_Formal (Form); end loop; end; -- Test for appearing in a conversion that itself appears in an -- lvalue context, since this should be an lvalue. when N_Type_Conversion => return May_Be_Lvalue (P); -- Test for appearance in object renaming declaration when N_Object_Renaming_Declaration => return True; -- All other references are definitely not lvalues when others => return False; end case; end May_Be_Lvalue; ----------------------- -- Mark_Coextensions -- ----------------------- procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is Is_Dynamic : Boolean; -- Indicates whether the context causes nested coextensions to be -- dynamic or static function Mark_Allocator (N : Node_Id) return Traverse_Result; -- Recognize an allocator node and label it as a dynamic coextension -------------------- -- Mark_Allocator -- -------------------- function Mark_Allocator (N : Node_Id) return Traverse_Result is begin if Nkind (N) = N_Allocator then if Is_Dynamic then Set_Is_Dynamic_Coextension (N); -- If the allocator expression is potentially dynamic, it may -- be expanded out of order and require dynamic allocation -- anyway, so we treat the coextension itself as dynamic. -- Potential optimization ??? elsif Nkind (Expression (N)) = N_Qualified_Expression and then Nkind (Expression (Expression (N))) = N_Op_Concat then Set_Is_Dynamic_Coextension (N); else Set_Is_Static_Coextension (N); end if; end if; return OK; end Mark_Allocator; procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator); -- Start of processing Mark_Coextensions begin case Nkind (Context_Nod) is -- Comment here ??? when N_Assignment_Statement => Is_Dynamic := Nkind (Expression (Context_Nod)) = N_Allocator; -- An allocator that is a component of a returned aggregate -- must be dynamic. when N_Simple_Return_Statement => declare Expr : constant Node_Id := Expression (Context_Nod); begin Is_Dynamic := Nkind (Expr) = N_Allocator or else (Nkind (Expr) = N_Qualified_Expression and then Nkind (Expression (Expr)) = N_Aggregate); end; -- An alloctor within an object declaration in an extended return -- statement is of necessity dynamic. when N_Object_Declaration => Is_Dynamic := Nkind (Root_Nod) = N_Allocator or else Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement; -- This routine should not be called for constructs which may not -- contain coextensions. when others => raise Program_Error; end case; Mark_Allocators (Root_Nod); end Mark_Coextensions; ---------------------- -- Needs_One_Actual -- ---------------------- function Needs_One_Actual (E : Entity_Id) return Boolean is Formal : Entity_Id; begin -- Ada 2005 or later, and formals present if Ada_Version >= Ada_2005 and then Present (First_Formal (E)) then Formal := Next_Formal (First_Formal (E)); while Present (Formal) loop if No (Default_Value (Formal)) then return False; end if; Next_Formal (Formal); end loop; return True; -- Ada 83/95 or no formals else return False; end if; end Needs_One_Actual; ------------------------ -- New_Copy_List_Tree -- ------------------------ function New_Copy_List_Tree (List : List_Id) return List_Id is NL : List_Id; E : Node_Id; begin if List = No_List then return No_List; else NL := New_List; E := First (List); while Present (E) loop Append (New_Copy_Tree (E), NL); E := Next (E); end loop; return NL; end if; end New_Copy_List_Tree; ------------------- -- New_Copy_Tree -- ------------------- use Atree.Unchecked_Access; use Atree_Private_Part; -- Our approach here requires a two pass traversal of the tree. The -- first pass visits all nodes that eventually will be copied looking -- for defining Itypes. If any defining Itypes are found, then they are -- copied, and an entry is added to the replacement map. In the second -- phase, the tree is copied, using the replacement map to replace any -- Itype references within the copied tree. -- The following hash tables are used if the Map supplied has more -- than hash threshold entries to speed up access to the map. If -- there are fewer entries, then the map is searched sequentially -- (because setting up a hash table for only a few entries takes -- more time than it saves. function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num; -- Hash function used for hash operations ------------------- -- New_Copy_Hash -- ------------------- function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is begin return Nat (E) mod (NCT_Header_Num'Last + 1); end New_Copy_Hash; --------------- -- NCT_Assoc -- --------------- -- The hash table NCT_Assoc associates old entities in the table -- with their corresponding new entities (i.e. the pairs of entries -- presented in the original Map argument are Key-Element pairs). package NCT_Assoc is new Simple_HTable ( Header_Num => NCT_Header_Num, Element => Entity_Id, No_Element => Empty, Key => Entity_Id, Hash => New_Copy_Hash, Equal => Types."="); --------------------- -- NCT_Itype_Assoc -- --------------------- -- The hash table NCT_Itype_Assoc contains entries only for those -- old nodes which have a non-empty Associated_Node_For_Itype set. -- The key is the associated node, and the element is the new node -- itself (NOT the associated node for the new node). package NCT_Itype_Assoc is new Simple_HTable ( Header_Num => NCT_Header_Num, Element => Entity_Id, No_Element => Empty, Key => Entity_Id, Hash => New_Copy_Hash, Equal => Types."="); -- Start of processing for New_Copy_Tree function function New_Copy_Tree (Source : Node_Id; Map : Elist_Id := No_Elist; New_Sloc : Source_Ptr := No_Location; New_Scope : Entity_Id := Empty) return Node_Id is Actual_Map : Elist_Id := Map; -- This is the actual map for the copy. It is initialized with the -- given elements, and then enlarged as required for Itypes that are -- copied during the first phase of the copy operation. The visit -- procedures add elements to this map as Itypes are encountered. -- The reason we cannot use Map directly, is that it may well be -- (and normally is) initialized to No_Elist, and if we have mapped -- entities, we have to reset it to point to a real Elist. function Assoc (N : Node_Or_Entity_Id) return Node_Id; -- Called during second phase to map entities into their corresponding -- copies using Actual_Map. If the argument is not an entity, or is not -- in Actual_Map, then it is returned unchanged. procedure Build_NCT_Hash_Tables; -- Builds hash tables (number of elements >= threshold value) function Copy_Elist_With_Replacement (Old_Elist : Elist_Id) return Elist_Id; -- Called during second phase to copy element list doing replacements procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id); -- Called during the second phase to process a copied Itype. The actual -- copy happened during the first phase (so that we could make the entry -- in the mapping), but we still have to deal with the descendents of -- the copied Itype and copy them where necessary. function Copy_List_With_Replacement (Old_List : List_Id) return List_Id; -- Called during second phase to copy list doing replacements function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id; -- Called during second phase to copy node doing replacements procedure Visit_Elist (E : Elist_Id); -- Called during first phase to visit all elements of an Elist procedure Visit_Field (F : Union_Id; N : Node_Id); -- Visit a single field, recursing to call Visit_Node or Visit_List -- if the field is a syntactic descendent of the current node (i.e. -- its parent is Node N). procedure Visit_Itype (Old_Itype : Entity_Id); -- Called during first phase to visit subsidiary fields of a defining -- Itype, and also create a copy and make an entry in the replacement -- map for the new copy. procedure Visit_List (L : List_Id); -- Called during first phase to visit all elements of a List procedure Visit_Node (N : Node_Or_Entity_Id); -- Called during first phase to visit a node and all its subtrees ----------- -- Assoc -- ----------- function Assoc (N : Node_Or_Entity_Id) return Node_Id is E : Elmt_Id; Ent : Entity_Id; begin if not Has_Extension (N) or else No (Actual_Map) then return N; elsif NCT_Hash_Tables_Used then Ent := NCT_Assoc.Get (Entity_Id (N)); if Present (Ent) then return Ent; else return N; end if; -- No hash table used, do serial search else E := First_Elmt (Actual_Map); while Present (E) loop if Node (E) = N then return Node (Next_Elmt (E)); else E := Next_Elmt (Next_Elmt (E)); end if; end loop; end if; return N; end Assoc; --------------------------- -- Build_NCT_Hash_Tables -- --------------------------- procedure Build_NCT_Hash_Tables is Elmt : Elmt_Id; Ent : Entity_Id; begin if NCT_Hash_Table_Setup then NCT_Assoc.Reset; NCT_Itype_Assoc.Reset; end if; Elmt := First_Elmt (Actual_Map); while Present (Elmt) loop Ent := Node (Elmt); -- Get new entity, and associate old and new Next_Elmt (Elmt); NCT_Assoc.Set (Ent, Node (Elmt)); if Is_Type (Ent) then declare Anode : constant Entity_Id := Associated_Node_For_Itype (Ent); begin if Present (Anode) then -- Enter a link between the associated node of the -- old Itype and the new Itype, for updating later -- when node is copied. NCT_Itype_Assoc.Set (Anode, Node (Elmt)); end if; end; end if; Next_Elmt (Elmt); end loop; NCT_Hash_Tables_Used := True; NCT_Hash_Table_Setup := True; end Build_NCT_Hash_Tables; --------------------------------- -- Copy_Elist_With_Replacement -- --------------------------------- function Copy_Elist_With_Replacement (Old_Elist : Elist_Id) return Elist_Id is M : Elmt_Id; New_Elist : Elist_Id; begin if No (Old_Elist) then return No_Elist; else New_Elist := New_Elmt_List; M := First_Elmt (Old_Elist); while Present (M) loop Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist); Next_Elmt (M); end loop; end if; return New_Elist; end Copy_Elist_With_Replacement; --------------------------------- -- Copy_Itype_With_Replacement -- --------------------------------- -- This routine exactly parallels its phase one analog Visit_Itype, procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is begin -- Translate Next_Entity, Scope and Etype fields, in case they -- reference entities that have been mapped into copies. Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype))); Set_Etype (New_Itype, Assoc (Etype (New_Itype))); if Present (New_Scope) then Set_Scope (New_Itype, New_Scope); else Set_Scope (New_Itype, Assoc (Scope (New_Itype))); end if; -- Copy referenced fields if Is_Discrete_Type (New_Itype) then Set_Scalar_Range (New_Itype, Copy_Node_With_Replacement (Scalar_Range (New_Itype))); elsif Has_Discriminants (Base_Type (New_Itype)) then Set_Discriminant_Constraint (New_Itype, Copy_Elist_With_Replacement (Discriminant_Constraint (New_Itype))); elsif Is_Array_Type (New_Itype) then if Present (First_Index (New_Itype)) then Set_First_Index (New_Itype, First (Copy_List_With_Replacement (List_Containing (First_Index (New_Itype))))); end if; if Is_Packed (New_Itype) then Set_Packed_Array_Type (New_Itype, Copy_Node_With_Replacement (Packed_Array_Type (New_Itype))); end if; end if; end Copy_Itype_With_Replacement; -------------------------------- -- Copy_List_With_Replacement -- -------------------------------- function Copy_List_With_Replacement (Old_List : List_Id) return List_Id is New_List : List_Id; E : Node_Id; begin if Old_List = No_List then return No_List; else New_List := Empty_List; E := First (Old_List); while Present (E) loop Append (Copy_Node_With_Replacement (E), New_List); Next (E); end loop; return New_List; end if; end Copy_List_With_Replacement; -------------------------------- -- Copy_Node_With_Replacement -- -------------------------------- function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id is New_Node : Node_Id; procedure Adjust_Named_Associations (Old_Node : Node_Id; New_Node : Node_Id); -- If a call node has named associations, these are chained through -- the First_Named_Actual, Next_Named_Actual links. These must be -- propagated separately to the new parameter list, because these -- are not syntactic fields. function Copy_Field_With_Replacement (Field : Union_Id) return Union_Id; -- Given Field, which is a field of Old_Node, return a copy of it -- if it is a syntactic field (i.e. its parent is Node), setting -- the parent of the copy to poit to New_Node. Otherwise returns -- the field (possibly mapped if it is an entity). ------------------------------- -- Adjust_Named_Associations -- ------------------------------- procedure Adjust_Named_Associations (Old_Node : Node_Id; New_Node : Node_Id) is Old_E : Node_Id; New_E : Node_Id; Old_Next : Node_Id; New_Next : Node_Id; begin Old_E := First (Parameter_Associations (Old_Node)); New_E := First (Parameter_Associations (New_Node)); while Present (Old_E) loop if Nkind (Old_E) = N_Parameter_Association and then Present (Next_Named_Actual (Old_E)) then if First_Named_Actual (Old_Node) = Explicit_Actual_Parameter (Old_E) then Set_First_Named_Actual (New_Node, Explicit_Actual_Parameter (New_E)); end if; -- Now scan parameter list from the beginning,to locate -- next named actual, which can be out of order. Old_Next := First (Parameter_Associations (Old_Node)); New_Next := First (Parameter_Associations (New_Node)); while Nkind (Old_Next) /= N_Parameter_Association or else Explicit_Actual_Parameter (Old_Next) /= Next_Named_Actual (Old_E) loop Next (Old_Next); Next (New_Next); end loop; Set_Next_Named_Actual (New_E, Explicit_Actual_Parameter (New_Next)); end if; Next (Old_E); Next (New_E); end loop; end Adjust_Named_Associations; --------------------------------- -- Copy_Field_With_Replacement -- --------------------------------- function Copy_Field_With_Replacement (Field : Union_Id) return Union_Id is begin if Field = Union_Id (Empty) then return Field; elsif Field in Node_Range then declare Old_N : constant Node_Id := Node_Id (Field); New_N : Node_Id; begin -- If syntactic field, as indicated by the parent pointer -- being set, then copy the referenced node recursively. if Parent (Old_N) = Old_Node then New_N := Copy_Node_With_Replacement (Old_N); if New_N /= Old_N then Set_Parent (New_N, New_Node); end if; -- For semantic fields, update possible entity reference -- from the replacement map. else New_N := Assoc (Old_N); end if; return Union_Id (New_N); end; elsif Field in List_Range then declare Old_L : constant List_Id := List_Id (Field); New_L : List_Id; begin -- If syntactic field, as indicated by the parent pointer, -- then recursively copy the entire referenced list. if Parent (Old_L) = Old_Node then New_L := Copy_List_With_Replacement (Old_L); Set_Parent (New_L, New_Node); -- For semantic list, just returned unchanged else New_L := Old_L; end if; return Union_Id (New_L); end; -- Anything other than a list or a node is returned unchanged else return Field; end if; end Copy_Field_With_Replacement; -- Start of processing for Copy_Node_With_Replacement begin if Old_Node <= Empty_Or_Error then return Old_Node; elsif Has_Extension (Old_Node) then return Assoc (Old_Node); else New_Node := New_Copy (Old_Node); -- If the node we are copying is the associated node of a -- previously copied Itype, then adjust the associated node -- of the copy of that Itype accordingly. if Present (Actual_Map) then declare E : Elmt_Id; Ent : Entity_Id; begin -- Case of hash table used if NCT_Hash_Tables_Used then Ent := NCT_Itype_Assoc.Get (Old_Node); if Present (Ent) then Set_Associated_Node_For_Itype (Ent, New_Node); end if; -- Case of no hash table used else E := First_Elmt (Actual_Map); while Present (E) loop if Is_Itype (Node (E)) and then Old_Node = Associated_Node_For_Itype (Node (E)) then Set_Associated_Node_For_Itype (Node (Next_Elmt (E)), New_Node); end if; E := Next_Elmt (Next_Elmt (E)); end loop; end if; end; end if; -- Recursively copy descendents Set_Field1 (New_Node, Copy_Field_With_Replacement (Field1 (New_Node))); Set_Field2 (New_Node, Copy_Field_With_Replacement (Field2 (New_Node))); Set_Field3 (New_Node, Copy_Field_With_Replacement (Field3 (New_Node))); Set_Field4 (New_Node, Copy_Field_With_Replacement (Field4 (New_Node))); Set_Field5 (New_Node, Copy_Field_With_Replacement (Field5 (New_Node))); -- Adjust Sloc of new node if necessary if New_Sloc /= No_Location then Set_Sloc (New_Node, New_Sloc); -- If we adjust the Sloc, then we are essentially making -- a completely new node, so the Comes_From_Source flag -- should be reset to the proper default value. Nodes.Table (New_Node).Comes_From_Source := Default_Node.Comes_From_Source; end if; -- If the node is call and has named associations, -- set the corresponding links in the copy. if (Nkind (Old_Node) = N_Function_Call or else Nkind (Old_Node) = N_Entry_Call_Statement or else Nkind (Old_Node) = N_Procedure_Call_Statement) and then Present (First_Named_Actual (Old_Node)) then Adjust_Named_Associations (Old_Node, New_Node); end if; -- Reset First_Real_Statement for Handled_Sequence_Of_Statements. -- The replacement mechanism applies to entities, and is not used -- here. Eventually we may need a more general graph-copying -- routine. For now, do a sequential search to find desired node. if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements and then Present (First_Real_Statement (Old_Node)) then declare Old_F : constant Node_Id := First_Real_Statement (Old_Node); N1, N2 : Node_Id; begin N1 := First (Statements (Old_Node)); N2 := First (Statements (New_Node)); while N1 /= Old_F loop Next (N1); Next (N2); end loop; Set_First_Real_Statement (New_Node, N2); end; end if; end if; -- All done, return copied node return New_Node; end Copy_Node_With_Replacement; ----------------- -- Visit_Elist -- ----------------- procedure Visit_Elist (E : Elist_Id) is Elmt : Elmt_Id; begin if Present (E) then Elmt := First_Elmt (E); while Elmt /= No_Elmt loop Visit_Node (Node (Elmt)); Next_Elmt (Elmt); end loop; end if; end Visit_Elist; ----------------- -- Visit_Field -- ----------------- procedure Visit_Field (F : Union_Id; N : Node_Id) is begin if F = Union_Id (Empty) then return; elsif F in Node_Range then -- Copy node if it is syntactic, i.e. its parent pointer is -- set to point to the field that referenced it (certain -- Itypes will also meet this criterion, which is fine, since -- these are clearly Itypes that do need to be copied, since -- we are copying their parent.) if Parent (Node_Id (F)) = N then Visit_Node (Node_Id (F)); return; -- Another case, if we are pointing to an Itype, then we want -- to copy it if its associated node is somewhere in the tree -- being copied. -- Note: the exclusion of self-referential copies is just an -- optimization, since the search of the already copied list -- would catch it, but it is a common case (Etype pointing -- to itself for an Itype that is a base type). elsif Has_Extension (Node_Id (F)) and then Is_Itype (Entity_Id (F)) and then Node_Id (F) /= N then declare P : Node_Id; begin P := Associated_Node_For_Itype (Node_Id (F)); while Present (P) loop if P = Source then Visit_Node (Node_Id (F)); return; else P := Parent (P); end if; end loop; -- An Itype whose parent is not being copied definitely -- should NOT be copied, since it does not belong in any -- sense to the copied subtree. return; end; end if; elsif F in List_Range and then Parent (List_Id (F)) = N then Visit_List (List_Id (F)); return; end if; end Visit_Field; ----------------- -- Visit_Itype -- ----------------- procedure Visit_Itype (Old_Itype : Entity_Id) is New_Itype : Entity_Id; E : Elmt_Id; Ent : Entity_Id; begin -- Itypes that describe the designated type of access to subprograms -- have the structure of subprogram declarations, with signatures, -- etc. Either we duplicate the signatures completely, or choose to -- share such itypes, which is fine because their elaboration will -- have no side effects. if Ekind (Old_Itype) = E_Subprogram_Type then return; end if; New_Itype := New_Copy (Old_Itype); -- The new Itype has all the attributes of the old one, and -- we just copy the contents of the entity. However, the back-end -- needs different names for debugging purposes, so we create a -- new internal name for it in all cases. Set_Chars (New_Itype, New_Internal_Name ('T')); -- If our associated node is an entity that has already been copied, -- then set the associated node of the copy to point to the right -- copy. If we have copied an Itype that is itself the associated -- node of some previously copied Itype, then we set the right -- pointer in the other direction. if Present (Actual_Map) then -- Case of hash tables used if NCT_Hash_Tables_Used then Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype)); if Present (Ent) then Set_Associated_Node_For_Itype (New_Itype, Ent); end if; Ent := NCT_Itype_Assoc.Get (Old_Itype); if Present (Ent) then Set_Associated_Node_For_Itype (Ent, New_Itype); -- If the hash table has no association for this Itype and -- its associated node, enter one now. else NCT_Itype_Assoc.Set (Associated_Node_For_Itype (Old_Itype), New_Itype); end if; -- Case of hash tables not used else E := First_Elmt (Actual_Map); while Present (E) loop if Associated_Node_For_Itype (Old_Itype) = Node (E) then Set_Associated_Node_For_Itype (New_Itype, Node (Next_Elmt (E))); end if; if Is_Type (Node (E)) and then Old_Itype = Associated_Node_For_Itype (Node (E)) then Set_Associated_Node_For_Itype (Node (Next_Elmt (E)), New_Itype); end if; E := Next_Elmt (Next_Elmt (E)); end loop; end if; end if; if Present (Freeze_Node (New_Itype)) then Set_Is_Frozen (New_Itype, False); Set_Freeze_Node (New_Itype, Empty); end if; -- Add new association to map if No (Actual_Map) then Actual_Map := New_Elmt_List; end if; Append_Elmt (Old_Itype, Actual_Map); Append_Elmt (New_Itype, Actual_Map); if NCT_Hash_Tables_Used then NCT_Assoc.Set (Old_Itype, New_Itype); else NCT_Table_Entries := NCT_Table_Entries + 1; if NCT_Table_Entries > NCT_Hash_Threshold then Build_NCT_Hash_Tables; end if; end if; -- If a record subtype is simply copied, the entity list will be -- shared. Thus cloned_Subtype must be set to indicate the sharing. if Ekind_In (Old_Itype, E_Record_Subtype, E_Class_Wide_Subtype) then Set_Cloned_Subtype (New_Itype, Old_Itype); end if; -- Visit descendents that eventually get copied Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype); if Is_Discrete_Type (Old_Itype) then Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype); elsif Has_Discriminants (Base_Type (Old_Itype)) then -- ??? This should involve call to Visit_Field Visit_Elist (Discriminant_Constraint (Old_Itype)); elsif Is_Array_Type (Old_Itype) then if Present (First_Index (Old_Itype)) then Visit_Field (Union_Id (List_Containing (First_Index (Old_Itype))), Old_Itype); end if; if Is_Packed (Old_Itype) then Visit_Field (Union_Id (Packed_Array_Type (Old_Itype)), Old_Itype); end if; end if; end Visit_Itype; ---------------- -- Visit_List -- ---------------- procedure Visit_List (L : List_Id) is N : Node_Id; begin if L /= No_List then N := First (L); while Present (N) loop Visit_Node (N); Next (N); end loop; end if; end Visit_List; ---------------- -- Visit_Node -- ---------------- procedure Visit_Node (N : Node_Or_Entity_Id) is -- Start of processing for Visit_Node begin -- Handle case of an Itype, which must be copied if Has_Extension (N) and then Is_Itype (N) then -- Nothing to do if already in the list. This can happen with an -- Itype entity that appears more than once in the tree. -- Note that we do not want to visit descendents in this case. -- Test for already in list when hash table is used if NCT_Hash_Tables_Used then if Present (NCT_Assoc.Get (Entity_Id (N))) then return; end if; -- Test for already in list when hash table not used else declare E : Elmt_Id; begin if Present (Actual_Map) then E := First_Elmt (Actual_Map); while Present (E) loop if Node (E) = N then return; else E := Next_Elmt (Next_Elmt (E)); end if; end loop; end if; end; end if; Visit_Itype (N); end if; -- Visit descendents Visit_Field (Field1 (N), N); Visit_Field (Field2 (N), N); Visit_Field (Field3 (N), N); Visit_Field (Field4 (N), N); Visit_Field (Field5 (N), N); end Visit_Node; -- Start of processing for New_Copy_Tree begin Actual_Map := Map; -- See if we should use hash table if No (Actual_Map) then NCT_Hash_Tables_Used := False; else declare Elmt : Elmt_Id; begin NCT_Table_Entries := 0; Elmt := First_Elmt (Actual_Map); while Present (Elmt) loop NCT_Table_Entries := NCT_Table_Entries + 1; Next_Elmt (Elmt); Next_Elmt (Elmt); end loop; if NCT_Table_Entries > NCT_Hash_Threshold then Build_NCT_Hash_Tables; else NCT_Hash_Tables_Used := False; end if; end; end if; -- Hash table set up if required, now start phase one by visiting -- top node (we will recursively visit the descendents). Visit_Node (Source); -- Now the second phase of the copy can start. First we process -- all the mapped entities, copying their descendents. if Present (Actual_Map) then declare Elmt : Elmt_Id; New_Itype : Entity_Id; begin Elmt := First_Elmt (Actual_Map); while Present (Elmt) loop Next_Elmt (Elmt); New_Itype := Node (Elmt); Copy_Itype_With_Replacement (New_Itype); Next_Elmt (Elmt); end loop; end; end if; -- Now we can copy the actual tree return Copy_Node_With_Replacement (Source); end New_Copy_Tree; ------------------------- -- New_External_Entity -- ------------------------- function New_External_Entity (Kind : Entity_Kind; Scope_Id : Entity_Id; Sloc_Value : Source_Ptr; Related_Id : Entity_Id; Suffix : Character; Suffix_Index : Nat := 0; Prefix : Character := ' ') return Entity_Id is N : constant Entity_Id := Make_Defining_Identifier (Sloc_Value, New_External_Name (Chars (Related_Id), Suffix, Suffix_Index, Prefix)); begin Set_Ekind (N, Kind); Set_Is_Internal (N, True); Append_Entity (N, Scope_Id); Set_Public_Status (N); if Kind in Type_Kind then Init_Size_Align (N); end if; return N; end New_External_Entity; ------------------------- -- New_Internal_Entity -- ------------------------- function New_Internal_Entity (Kind : Entity_Kind; Scope_Id : Entity_Id; Sloc_Value : Source_Ptr; Id_Char : Character) return Entity_Id is N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char); begin Set_Ekind (N, Kind); Set_Is_Internal (N, True); Append_Entity (N, Scope_Id); if Kind in Type_Kind then Init_Size_Align (N); end if; return N; end New_Internal_Entity; ----------------- -- Next_Actual -- ----------------- function Next_Actual (Actual_Id : Node_Id) return Node_Id is N : Node_Id; begin -- If we are pointing at a positional parameter, it is a member of a -- node list (the list of parameters), and the next parameter is the -- next node on the list, unless we hit a parameter association, then -- we shift to using the chain whose head is the First_Named_Actual in -- the parent, and then is threaded using the Next_Named_Actual of the -- Parameter_Association. All this fiddling is because the original node -- list is in the textual call order, and what we need is the -- declaration order. if Is_List_Member (Actual_Id) then N := Next (Actual_Id); if Nkind (N) = N_Parameter_Association then return First_Named_Actual (Parent (Actual_Id)); else return N; end if; else return Next_Named_Actual (Parent (Actual_Id)); end if; end Next_Actual; procedure Next_Actual (Actual_Id : in out Node_Id) is begin Actual_Id := Next_Actual (Actual_Id); end Next_Actual; ----------------------- -- Normalize_Actuals -- ----------------------- -- Chain actuals according to formals of subprogram. If there are no named -- associations, the chain is simply the list of Parameter Associations, -- since the order is the same as the declaration order. If there are named -- associations, then the First_Named_Actual field in the N_Function_Call -- or N_Procedure_Call_Statement node points to the Parameter_Association -- node for the parameter that comes first in declaration order. The -- remaining named parameters are then chained in declaration order using -- Next_Named_Actual. -- This routine also verifies that the number of actuals is compatible with -- the number and default values of formals, but performs no type checking -- (type checking is done by the caller). -- If the matching succeeds, Success is set to True and the caller proceeds -- with type-checking. If the match is unsuccessful, then Success is set to -- False, and the caller attempts a different interpretation, if there is -- one. -- If the flag Report is on, the call is not overloaded, and a failure to -- match can be reported here, rather than in the caller. procedure Normalize_Actuals (N : Node_Id; S : Entity_Id; Report : Boolean; Success : out Boolean) is Actuals : constant List_Id := Parameter_Associations (N); Actual : Node_Id := Empty; Formal : Entity_Id; Last : Node_Id := Empty; First_Named : Node_Id := Empty; Found : Boolean; Formals_To_Match : Integer := 0; Actuals_To_Match : Integer := 0; procedure Chain (A : Node_Id); -- Add named actual at the proper place in the list, using the -- Next_Named_Actual link. function Reporting return Boolean; -- Determines if an error is to be reported. To report an error, we -- need Report to be True, and also we do not report errors caused -- by calls to init procs that occur within other init procs. Such -- errors must always be cascaded errors, since if all the types are -- declared correctly, the compiler will certainly build decent calls! ----------- -- Chain -- ----------- procedure Chain (A : Node_Id) is begin if No (Last) then -- Call node points to first actual in list Set_First_Named_Actual (N, Explicit_Actual_Parameter (A)); else Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A)); end if; Last := A; Set_Next_Named_Actual (Last, Empty); end Chain; --------------- -- Reporting -- --------------- function Reporting return Boolean is begin if not Report then return False; elsif not Within_Init_Proc then return True; elsif Is_Init_Proc (Entity (Name (N))) then return False; else return True; end if; end Reporting; -- Start of processing for Normalize_Actuals begin if Is_Access_Type (S) then -- The name in the call is a function call that returns an access -- to subprogram. The designated type has the list of formals. Formal := First_Formal (Designated_Type (S)); else Formal := First_Formal (S); end if; while Present (Formal) loop Formals_To_Match := Formals_To_Match + 1; Next_Formal (Formal); end loop; -- Find if there is a named association, and verify that no positional -- associations appear after named ones. if Present (Actuals) then Actual := First (Actuals); end if; while Present (Actual) and then Nkind (Actual) /= N_Parameter_Association loop Actuals_To_Match := Actuals_To_Match + 1; Next (Actual); end loop; if No (Actual) and Actuals_To_Match = Formals_To_Match then -- Most common case: positional notation, no defaults Success := True; return; elsif Actuals_To_Match > Formals_To_Match then -- Too many actuals: will not work if Reporting then if Is_Entity_Name (Name (N)) then Error_Msg_N ("too many arguments in call to&", Name (N)); else Error_Msg_N ("too many arguments in call", N); end if; end if; Success := False; return; end if; First_Named := Actual; while Present (Actual) loop if Nkind (Actual) /= N_Parameter_Association then Error_Msg_N ("positional parameters not allowed after named ones", Actual); Success := False; return; else Actuals_To_Match := Actuals_To_Match + 1; end if; Next (Actual); end loop; if Present (Actuals) then Actual := First (Actuals); end if; Formal := First_Formal (S); while Present (Formal) loop -- Match the formals in order. If the corresponding actual is -- positional, nothing to do. Else scan the list of named actuals -- to find the one with the right name. if Present (Actual) and then Nkind (Actual) /= N_Parameter_Association then Next (Actual); Actuals_To_Match := Actuals_To_Match - 1; Formals_To_Match := Formals_To_Match - 1; else -- For named parameters, search the list of actuals to find -- one that matches the next formal name. Actual := First_Named; Found := False; while Present (Actual) loop if Chars (Selector_Name (Actual)) = Chars (Formal) then Found := True; Chain (Actual); Actuals_To_Match := Actuals_To_Match - 1; Formals_To_Match := Formals_To_Match - 1; exit; end if; Next (Actual); end loop; if not Found then if Ekind (Formal) /= E_In_Parameter or else No (Default_Value (Formal)) then if Reporting then if (Comes_From_Source (S) or else Sloc (S) = Standard_Location) and then Is_Overloadable (S) then if No (Actuals) and then (Nkind (Parent (N)) = N_Procedure_Call_Statement or else (Nkind (Parent (N)) = N_Function_Call or else Nkind (Parent (N)) = N_Parameter_Association)) and then Ekind (S) /= E_Function then Set_Etype (N, Etype (S)); else Error_Msg_Name_1 := Chars (S); Error_Msg_Sloc := Sloc (S); Error_Msg_NE ("missing argument for parameter & " & "in call to % declared #", N, Formal); end if; elsif Is_Overloadable (S) then Error_Msg_Name_1 := Chars (S); -- Point to type derivation that generated the -- operation. Error_Msg_Sloc := Sloc (Parent (S)); Error_Msg_NE ("missing argument for parameter & " & "in call to % (inherited) #", N, Formal); else Error_Msg_NE ("missing argument for parameter &", N, Formal); end if; end if; Success := False; return; else Formals_To_Match := Formals_To_Match - 1; end if; end if; end if; Next_Formal (Formal); end loop; if Formals_To_Match = 0 and then Actuals_To_Match = 0 then Success := True; return; else if Reporting then -- Find some superfluous named actual that did not get -- attached to the list of associations. Actual := First (Actuals); while Present (Actual) loop if Nkind (Actual) = N_Parameter_Association and then Actual /= Last and then No (Next_Named_Actual (Actual)) then Error_Msg_N ("unmatched actual & in call", Selector_Name (Actual)); exit; end if; Next (Actual); end loop; end if; Success := False; return; end if; end Normalize_Actuals; -------------------------------- -- Note_Possible_Modification -- -------------------------------- procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is Modification_Comes_From_Source : constant Boolean := Comes_From_Source (Parent (N)); Ent : Entity_Id; Exp : Node_Id; begin -- Loop to find referenced entity, if there is one Exp := N; loop <<Continue>> Ent := Empty; if Is_Entity_Name (Exp) then Ent := Entity (Exp); -- If the entity is missing, it is an undeclared identifier, -- and there is nothing to annotate. if No (Ent) then return; end if; elsif Nkind (Exp) = N_Explicit_Dereference then declare P : constant Node_Id := Prefix (Exp); begin -- In formal verification mode, keep track of all reads and -- writes through explicit dereferences. if Alfa_Mode then Alfa.Generate_Dereference (N, 'm'); end if; if Nkind (P) = N_Selected_Component and then Present ( Entry_Formal (Entity (Selector_Name (P)))) then -- Case of a reference to an entry formal Ent := Entry_Formal (Entity (Selector_Name (P))); elsif Nkind (P) = N_Identifier and then Nkind (Parent (Entity (P))) = N_Object_Declaration and then Present (Expression (Parent (Entity (P)))) and then Nkind (Expression (Parent (Entity (P)))) = N_Reference then -- Case of a reference to a value on which side effects have -- been removed. Exp := Prefix (Expression (Parent (Entity (P)))); goto Continue; else return; end if; end; elsif Nkind (Exp) = N_Type_Conversion or else Nkind (Exp) = N_Unchecked_Type_Conversion then Exp := Expression (Exp); goto Continue; elsif Nkind (Exp) = N_Slice or else Nkind (Exp) = N_Indexed_Component or else Nkind (Exp) = N_Selected_Component then Exp := Prefix (Exp); goto Continue; else return; end if; -- Now look for entity being referenced if Present (Ent) then if Is_Object (Ent) then if Comes_From_Source (Exp) or else Modification_Comes_From_Source then -- Give warning if pragma unmodified given and we are -- sure this is a modification. if Has_Pragma_Unmodified (Ent) and then Sure then Error_Msg_NE ("?pragma Unmodified given for &!", N, Ent); end if; Set_Never_Set_In_Source (Ent, False); end if; Set_Is_True_Constant (Ent, False); Set_Current_Value (Ent, Empty); Set_Is_Known_Null (Ent, False); if not Can_Never_Be_Null (Ent) then Set_Is_Known_Non_Null (Ent, False); end if; -- Follow renaming chain if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant) and then Present (Renamed_Object (Ent)) then Exp := Renamed_Object (Ent); goto Continue; -- The expression may be the renaming of a subcomponent of an -- array or container. The assignment to the subcomponent is -- a modification of the container. elsif Comes_From_Source (Original_Node (Exp)) and then Nkind_In (Original_Node (Exp), N_Selected_Component, N_Indexed_Component) then Exp := Prefix (Original_Node (Exp)); goto Continue; end if; -- Generate a reference only if the assignment comes from -- source. This excludes, for example, calls to a dispatching -- assignment operation when the left-hand side is tagged. if Modification_Comes_From_Source or else Alfa_Mode then Generate_Reference (Ent, Exp, 'm'); -- If the target of the assignment is the bound variable -- in an iterator, indicate that the corresponding array -- or container is also modified. if Ada_Version >= Ada_2012 and then Nkind (Parent (Ent)) = N_Iterator_Specification then declare Domain : constant Node_Id := Name (Parent (Ent)); begin -- TBD : in the full version of the construct, the -- domain of iteration can be given by an expression. if Is_Entity_Name (Domain) then Generate_Reference (Entity (Domain), Exp, 'm'); Set_Is_True_Constant (Entity (Domain), False); Set_Never_Set_In_Source (Entity (Domain), False); end if; end; end if; end if; Check_Nested_Access (Ent); end if; Kill_Checks (Ent); -- If we are sure this is a modification from source, and we know -- this modifies a constant, then give an appropriate warning. if Overlays_Constant (Ent) and then Modification_Comes_From_Source and then Sure then declare A : constant Node_Id := Address_Clause (Ent); begin if Present (A) then declare Exp : constant Node_Id := Expression (A); begin if Nkind (Exp) = N_Attribute_Reference and then Attribute_Name (Exp) = Name_Address and then Is_Entity_Name (Prefix (Exp)) then Error_Msg_Sloc := Sloc (A); Error_Msg_NE ("constant& may be modified via address clause#?", N, Entity (Prefix (Exp))); end if; end; end if; end; end if; return; end if; end loop; end Note_Possible_Modification; ------------------------- -- Object_Access_Level -- ------------------------- function Object_Access_Level (Obj : Node_Id) return Uint is E : Entity_Id; -- Returns the static accessibility level of the view denoted by Obj. Note -- that the value returned is the result of a call to Scope_Depth. Only -- scope depths associated with dynamic scopes can actually be returned. -- Since only relative levels matter for accessibility checking, the fact -- that the distance between successive levels of accessibility is not -- always one is immaterial (invariant: if level(E2) is deeper than -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)). function Reference_To (Obj : Node_Id) return Node_Id; -- An explicit dereference is created when removing side-effects from -- expressions for constraint checking purposes. In this case a local -- access type is created for it. The correct access level is that of -- the original source node. We detect this case by noting that the -- prefix of the dereference is created by an object declaration whose -- initial expression is a reference. ------------------ -- Reference_To -- ------------------ function Reference_To (Obj : Node_Id) return Node_Id is Pref : constant Node_Id := Prefix (Obj); begin if Is_Entity_Name (Pref) and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration and then Present (Expression (Parent (Entity (Pref)))) and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference then return (Prefix (Expression (Parent (Entity (Pref))))); else return Empty; end if; end Reference_To; -- Start of processing for Object_Access_Level begin if Nkind (Obj) = N_Defining_Identifier or else Is_Entity_Name (Obj) then if Nkind (Obj) = N_Defining_Identifier then E := Obj; else E := Entity (Obj); end if; if Is_Prival (E) then E := Prival_Link (E); end if; -- If E is a type then it denotes a current instance. For this case -- we add one to the normal accessibility level of the type to ensure -- that current instances are treated as always being deeper than -- than the level of any visible named access type (see 3.10.2(21)). if Is_Type (E) then return Type_Access_Level (E) + 1; elsif Present (Renamed_Object (E)) then return Object_Access_Level (Renamed_Object (E)); -- Similarly, if E is a component of the current instance of a -- protected type, any instance of it is assumed to be at a deeper -- level than the type. For a protected object (whose type is an -- anonymous protected type) its components are at the same level -- as the type itself. elsif not Is_Overloadable (E) and then Ekind (Scope (E)) = E_Protected_Type and then Comes_From_Source (Scope (E)) then return Type_Access_Level (Scope (E)) + 1; else return Scope_Depth (Enclosing_Dynamic_Scope (E)); end if; elsif Nkind (Obj) = N_Selected_Component then if Is_Access_Type (Etype (Prefix (Obj))) then return Type_Access_Level (Etype (Prefix (Obj))); else return Object_Access_Level (Prefix (Obj)); end if; elsif Nkind (Obj) = N_Indexed_Component then if Is_Access_Type (Etype (Prefix (Obj))) then return Type_Access_Level (Etype (Prefix (Obj))); else return Object_Access_Level (Prefix (Obj)); end if; elsif Nkind (Obj) = N_Explicit_Dereference then -- If the prefix is a selected access discriminant then we make a -- recursive call on the prefix, which will in turn check the level -- of the prefix object of the selected discriminant. if Nkind (Prefix (Obj)) = N_Selected_Component and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type and then Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant then return Object_Access_Level (Prefix (Obj)); elsif not (Comes_From_Source (Obj)) then declare Ref : constant Node_Id := Reference_To (Obj); begin if Present (Ref) then return Object_Access_Level (Ref); else return Type_Access_Level (Etype (Prefix (Obj))); end if; end; else return Type_Access_Level (Etype (Prefix (Obj))); end if; elsif Nkind (Obj) = N_Type_Conversion or else Nkind (Obj) = N_Unchecked_Type_Conversion then return Object_Access_Level (Expression (Obj)); elsif Nkind (Obj) = N_Function_Call then -- Function results are objects, so we get either the access level of -- the function or, in the case of an indirect call, the level of the -- access-to-subprogram type. (This code is used for Ada 95, but it -- looks wrong, because it seems that we should be checking the level -- of the call itself, even for Ada 95. However, using the Ada 2005 -- version of the code causes regressions in several tests that are -- compiled with -gnat95. ???) if Ada_Version < Ada_2005 then if Is_Entity_Name (Name (Obj)) then return Subprogram_Access_Level (Entity (Name (Obj))); else return Type_Access_Level (Etype (Prefix (Name (Obj)))); end if; -- For Ada 2005, the level of the result object of a function call is -- defined to be the level of the call's innermost enclosing master. -- We determine that by querying the depth of the innermost enclosing -- dynamic scope. else Return_Master_Scope_Depth_Of_Call : declare function Innermost_Master_Scope_Depth (N : Node_Id) return Uint; -- Returns the scope depth of the given node's innermost -- enclosing dynamic scope (effectively the accessibility -- level of the innermost enclosing master). ---------------------------------- -- Innermost_Master_Scope_Depth -- ---------------------------------- function Innermost_Master_Scope_Depth (N : Node_Id) return Uint is Node_Par : Node_Id := Parent (N); begin -- Locate the nearest enclosing node (by traversing Parents) -- that Defining_Entity can be applied to, and return the -- depth of that entity's nearest enclosing dynamic scope. while Present (Node_Par) loop case Nkind (Node_Par) is when N_Component_Declaration | N_Entry_Declaration | N_Formal_Object_Declaration | N_Formal_Type_Declaration | N_Full_Type_Declaration | N_Incomplete_Type_Declaration | N_Loop_Parameter_Specification | N_Object_Declaration | N_Protected_Type_Declaration | N_Private_Extension_Declaration | N_Private_Type_Declaration | N_Subtype_Declaration | N_Function_Specification | N_Procedure_Specification | N_Task_Type_Declaration | N_Body_Stub | N_Generic_Instantiation | N_Proper_Body | N_Implicit_Label_Declaration | N_Package_Declaration | N_Single_Task_Declaration | N_Subprogram_Declaration | N_Generic_Declaration | N_Renaming_Declaration | N_Block_Statement | N_Formal_Subprogram_Declaration | N_Abstract_Subprogram_Declaration | N_Entry_Body | N_Exception_Declaration | N_Formal_Package_Declaration | N_Number_Declaration | N_Package_Specification | N_Parameter_Specification | N_Single_Protected_Declaration | N_Subunit => return Scope_Depth (Nearest_Dynamic_Scope (Defining_Entity (Node_Par))); when others => null; end case; Node_Par := Parent (Node_Par); end loop; pragma Assert (False); -- Should never reach the following return return Scope_Depth (Current_Scope) + 1; end Innermost_Master_Scope_Depth; -- Start of processing for Return_Master_Scope_Depth_Of_Call begin return Innermost_Master_Scope_Depth (Obj); end Return_Master_Scope_Depth_Of_Call; end if; -- For convenience we handle qualified expressions, even though -- they aren't technically object names. elsif Nkind (Obj) = N_Qualified_Expression then return Object_Access_Level (Expression (Obj)); -- Otherwise return the scope level of Standard. -- (If there are cases that fall through -- to this point they will be treated as -- having global accessibility for now. ???) else return Scope_Depth (Standard_Standard); end if; end Object_Access_Level; -------------------------------------- -- Original_Corresponding_Operation -- -------------------------------------- function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id is Typ : constant Entity_Id := Find_Dispatching_Type (S); begin -- If S is an inherited primitive S2 the original corresponding -- operation of S is the original corresponding operation of S2 if Present (Alias (S)) and then Find_Dispatching_Type (Alias (S)) /= Typ then return Original_Corresponding_Operation (Alias (S)); -- If S overrides an inherited subprogram S2 the original corresponding -- operation of S is the original corresponding operation of S2 elsif Present (Overridden_Operation (S)) then return Original_Corresponding_Operation (Overridden_Operation (S)); -- otherwise it is S itself else return S; end if; end Original_Corresponding_Operation; ----------------------- -- Private_Component -- ----------------------- function Private_Component (Type_Id : Entity_Id) return Entity_Id is Ancestor : constant Entity_Id := Base_Type (Type_Id); function Trace_Components (T : Entity_Id; Check : Boolean) return Entity_Id; -- Recursive function that does the work, and checks against circular -- definition for each subcomponent type. ---------------------- -- Trace_Components -- ---------------------- function Trace_Components (T : Entity_Id; Check : Boolean) return Entity_Id is Btype : constant Entity_Id := Base_Type (T); Component : Entity_Id; P : Entity_Id; Candidate : Entity_Id := Empty; begin if Check and then Btype = Ancestor then Error_Msg_N ("circular type definition", Type_Id); return Any_Type; end if; if Is_Private_Type (Btype) and then not Is_Generic_Type (Btype) then if Present (Full_View (Btype)) and then Is_Record_Type (Full_View (Btype)) and then not Is_Frozen (Btype) then -- To indicate that the ancestor depends on a private type, the -- current Btype is sufficient. However, to check for circular -- definition we must recurse on the full view. Candidate := Trace_Components (Full_View (Btype), True); if Candidate = Any_Type then return Any_Type; else return Btype; end if; else return Btype; end if; elsif Is_Array_Type (Btype) then return Trace_Components (Component_Type (Btype), True); elsif Is_Record_Type (Btype) then Component := First_Entity (Btype); while Present (Component) and then Comes_From_Source (Component) loop -- Skip anonymous types generated by constrained components if not Is_Type (Component) then P := Trace_Components (Etype (Component), True); if Present (P) then if P = Any_Type then return P; else Candidate := P; end if; end if; end if; Next_Entity (Component); end loop; return Candidate; else return Empty; end if; end Trace_Components; -- Start of processing for Private_Component begin return Trace_Components (Type_Id, False); end Private_Component; --------------------------- -- Primitive_Names_Match -- --------------------------- function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is function Non_Internal_Name (E : Entity_Id) return Name_Id; -- Given an internal name, returns the corresponding non-internal name ------------------------ -- Non_Internal_Name -- ------------------------ function Non_Internal_Name (E : Entity_Id) return Name_Id is begin Get_Name_String (Chars (E)); Name_Len := Name_Len - 1; return Name_Find; end Non_Internal_Name; -- Start of processing for Primitive_Names_Match begin pragma Assert (Present (E1) and then Present (E2)); return Chars (E1) = Chars (E2) or else (not Is_Internal_Name (Chars (E1)) and then Is_Internal_Name (Chars (E2)) and then Non_Internal_Name (E2) = Chars (E1)) or else (not Is_Internal_Name (Chars (E2)) and then Is_Internal_Name (Chars (E1)) and then Non_Internal_Name (E1) = Chars (E2)) or else (Is_Predefined_Dispatching_Operation (E1) and then Is_Predefined_Dispatching_Operation (E2) and then Same_TSS (E1, E2)) or else (Is_Init_Proc (E1) and then Is_Init_Proc (E2)); end Primitive_Names_Match; ----------------------- -- Process_End_Label -- ----------------------- procedure Process_End_Label (N : Node_Id; Typ : Character; Ent : Entity_Id) is Loc : Source_Ptr; Nam : Node_Id; Scop : Entity_Id; Label_Ref : Boolean; -- Set True if reference to end label itself is required Endl : Node_Id; -- Gets set to the operator symbol or identifier that references the -- entity Ent. For the child unit case, this is the identifier from the -- designator. For other cases, this is simply Endl. procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id); -- N is an identifier node that appears as a parent unit reference in -- the case where Ent is a child unit. This procedure generates an -- appropriate cross-reference entry. E is the corresponding entity. ------------------------- -- Generate_Parent_Ref -- ------------------------- procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is begin -- If names do not match, something weird, skip reference if Chars (E) = Chars (N) then -- Generate the reference. We do NOT consider this as a reference -- for unreferenced symbol purposes. Generate_Reference (E, N, 'r', Set_Ref => False, Force => True); if Style_Check then Style.Check_Identifier (N, E); end if; end if; end Generate_Parent_Ref; -- Start of processing for Process_End_Label begin -- If no node, ignore. This happens in some error situations, and -- also for some internally generated structures where no end label -- references are required in any case. if No (N) then return; end if; -- Nothing to do if no End_Label, happens for internally generated -- constructs where we don't want an end label reference anyway. Also -- nothing to do if Endl is a string literal, which means there was -- some prior error (bad operator symbol) Endl := End_Label (N); if No (Endl) or else Nkind (Endl) = N_String_Literal then return; end if; -- Reference node is not in extended main source unit if not In_Extended_Main_Source_Unit (N) then -- Generally we do not collect references except for the extended -- main source unit. The one exception is the 'e' entry for a -- package spec, where it is useful for a client to have the -- ending information to define scopes. if Typ /= 'e' then return; else Label_Ref := False; -- For this case, we can ignore any parent references, but we -- need the package name itself for the 'e' entry. if Nkind (Endl) = N_Designator then Endl := Identifier (Endl); end if; end if; -- Reference is in extended main source unit else Label_Ref := True; -- For designator, generate references for the parent entries if Nkind (Endl) = N_Designator then -- Generate references for the prefix if the END line comes from -- source (otherwise we do not need these references) We climb the -- scope stack to find the expected entities. if Comes_From_Source (Endl) then Nam := Name (Endl); Scop := Current_Scope; while Nkind (Nam) = N_Selected_Component loop Scop := Scope (Scop); exit when No (Scop); Generate_Parent_Ref (Selector_Name (Nam), Scop); Nam := Prefix (Nam); end loop; if Present (Scop) then Generate_Parent_Ref (Nam, Scope (Scop)); end if; end if; Endl := Identifier (Endl); end if; end if; -- If the end label is not for the given entity, then either we have -- some previous error, or this is a generic instantiation for which -- we do not need to make a cross-reference in this case anyway. In -- either case we simply ignore the call. if Chars (Ent) /= Chars (Endl) then return; end if; -- If label was really there, then generate a normal reference and then -- adjust the location in the end label to point past the name (which -- should almost always be the semicolon). Loc := Sloc (Endl); if Comes_From_Source (Endl) then -- If a label reference is required, then do the style check and -- generate an l-type cross-reference entry for the label if Label_Ref then if Style_Check then Style.Check_Identifier (Endl, Ent); end if; Generate_Reference (Ent, Endl, 'l', Set_Ref => False); end if; -- Set the location to point past the label (normally this will -- mean the semicolon immediately following the label). This is -- done for the sake of the 'e' or 't' entry generated below. Get_Decoded_Name_String (Chars (Endl)); Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len)); else -- In SPARK mode, no missing label is allowed for packages and -- subprogram bodies. Detect those cases by testing whether -- Process_End_Label was called for a body (Typ = 't') or a package. if Restriction_Check_Required (SPARK) and then (Typ = 't' or else Ekind (Ent) = E_Package) then Error_Msg_Node_1 := Endl; Check_SPARK_Restriction ("`END &` required", Endl, Force => True); end if; end if; -- Now generate the e/t reference Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True); -- Restore Sloc, in case modified above, since we have an identifier -- and the normal Sloc should be left set in the tree. Set_Sloc (Endl, Loc); end Process_End_Label; ------------------------------------ -- References_Generic_Formal_Type -- ------------------------------------ function References_Generic_Formal_Type (N : Node_Id) return Boolean is function Process (N : Node_Id) return Traverse_Result; -- Process one node in search for generic formal type ------------- -- Process -- ------------- function Process (N : Node_Id) return Traverse_Result is begin if Nkind (N) in N_Has_Entity then declare E : constant Entity_Id := Entity (N); begin if Present (E) then if Is_Generic_Type (E) then return Abandon; elsif Present (Etype (E)) and then Is_Generic_Type (Etype (E)) then return Abandon; end if; end if; end; end if; return Atree.OK; end Process; function Traverse is new Traverse_Func (Process); -- Traverse tree to look for generic type begin if Inside_A_Generic then return Traverse (N) = Abandon; else return False; end if; end References_Generic_Formal_Type; -------------------- -- Remove_Homonym -- -------------------- procedure Remove_Homonym (E : Entity_Id) is Prev : Entity_Id := Empty; H : Entity_Id; begin if E = Current_Entity (E) then if Present (Homonym (E)) then Set_Current_Entity (Homonym (E)); else Set_Name_Entity_Id (Chars (E), Empty); end if; else H := Current_Entity (E); while Present (H) and then H /= E loop Prev := H; H := Homonym (H); end loop; Set_Homonym (Prev, Homonym (E)); end if; end Remove_Homonym; --------------------- -- Rep_To_Pos_Flag -- --------------------- function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is begin return New_Occurrence_Of (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc); end Rep_To_Pos_Flag; -------------------- -- Require_Entity -- -------------------- procedure Require_Entity (N : Node_Id) is begin if Is_Entity_Name (N) and then No (Entity (N)) then if Total_Errors_Detected /= 0 then Set_Entity (N, Any_Id); else raise Program_Error; end if; end if; end Require_Entity; ------------------------------ -- Requires_Transient_Scope -- ------------------------------ -- A transient scope is required when variable-sized temporaries are -- allocated in the primary or secondary stack, or when finalization -- actions must be generated before the next instruction. function Requires_Transient_Scope (Id : Entity_Id) return Boolean is Typ : constant Entity_Id := Underlying_Type (Id); -- Start of processing for Requires_Transient_Scope begin -- This is a private type which is not completed yet. This can only -- happen in a default expression (of a formal parameter or of a -- record component). Do not expand transient scope in this case if No (Typ) then return False; -- Do not expand transient scope for non-existent procedure return elsif Typ = Standard_Void_Type then return False; -- Elementary types do not require a transient scope elsif Is_Elementary_Type (Typ) then return False; -- Generally, indefinite subtypes require a transient scope, since the -- back end cannot generate temporaries, since this is not a valid type -- for declaring an object. It might be possible to relax this in the -- future, e.g. by declaring the maximum possible space for the type. elsif Is_Indefinite_Subtype (Typ) then return True; -- Functions returning tagged types may dispatch on result so their -- returned value is allocated on the secondary stack. Controlled -- type temporaries need finalization. elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then return not Is_Value_Type (Typ); -- Record type elsif Is_Record_Type (Typ) then declare Comp : Entity_Id; begin Comp := First_Entity (Typ); while Present (Comp) loop if Ekind (Comp) = E_Component and then Requires_Transient_Scope (Etype (Comp)) then return True; else Next_Entity (Comp); end if; end loop; end; return False; -- String literal types never require transient scope elsif Ekind (Typ) = E_String_Literal_Subtype then return False; -- Array type. Note that we already know that this is a constrained -- array, since unconstrained arrays will fail the indefinite test. elsif Is_Array_Type (Typ) then -- If component type requires a transient scope, the array does too if Requires_Transient_Scope (Component_Type (Typ)) then return True; -- Otherwise, we only need a transient scope if the size depends on -- the value of one or more discriminants. else return Size_Depends_On_Discriminant (Typ); end if; -- All other cases do not require a transient scope else return False; end if; end Requires_Transient_Scope; -------------------------- -- Reset_Analyzed_Flags -- -------------------------- procedure Reset_Analyzed_Flags (N : Node_Id) is function Clear_Analyzed (N : Node_Id) return Traverse_Result; -- Function used to reset Analyzed flags in tree. Note that we do -- not reset Analyzed flags in entities, since there is no need to -- reanalyze entities, and indeed, it is wrong to do so, since it -- can result in generating auxiliary stuff more than once. -------------------- -- Clear_Analyzed -- -------------------- function Clear_Analyzed (N : Node_Id) return Traverse_Result is begin if not Has_Extension (N) then Set_Analyzed (N, False); end if; return OK; end Clear_Analyzed; procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed); -- Start of processing for Reset_Analyzed_Flags begin Reset_Analyzed (N); end Reset_Analyzed_Flags; --------------------------- -- Safe_To_Capture_Value -- --------------------------- function Safe_To_Capture_Value (N : Node_Id; Ent : Entity_Id; Cond : Boolean := False) return Boolean is begin -- The only entities for which we track constant values are variables -- which are not renamings, constants, out parameters, and in out -- parameters, so check if we have this case. -- Note: it may seem odd to track constant values for constants, but in -- fact this routine is used for other purposes than simply capturing -- the value. In particular, the setting of Known[_Non]_Null. if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent))) or else Ekind (Ent) = E_Constant or else Ekind (Ent) = E_Out_Parameter or else Ekind (Ent) = E_In_Out_Parameter then null; -- For conditionals, we also allow loop parameters and all formals, -- including in parameters. elsif Cond and then (Ekind (Ent) = E_Loop_Parameter or else Ekind (Ent) = E_In_Parameter) then null; -- For all other cases, not just unsafe, but impossible to capture -- Current_Value, since the above are the only entities which have -- Current_Value fields. else return False; end if; -- Skip if volatile or aliased, since funny things might be going on in -- these cases which we cannot necessarily track. Also skip any variable -- for which an address clause is given, or whose address is taken. Also -- never capture value of library level variables (an attempt to do so -- can occur in the case of package elaboration code). if Treat_As_Volatile (Ent) or else Is_Aliased (Ent) or else Present (Address_Clause (Ent)) or else Address_Taken (Ent) or else (Is_Library_Level_Entity (Ent) and then Ekind (Ent) = E_Variable) then return False; end if; -- OK, all above conditions are met. We also require that the scope of -- the reference be the same as the scope of the entity, not counting -- packages and blocks and loops. declare E_Scope : constant Entity_Id := Scope (Ent); R_Scope : Entity_Id; begin R_Scope := Current_Scope; while R_Scope /= Standard_Standard loop exit when R_Scope = E_Scope; if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then return False; else R_Scope := Scope (R_Scope); end if; end loop; end; -- We also require that the reference does not appear in a context -- where it is not sure to be executed (i.e. a conditional context -- or an exception handler). We skip this if Cond is True, since the -- capturing of values from conditional tests handles this ok. if Cond then return True; end if; declare Desc : Node_Id; P : Node_Id; begin Desc := N; P := Parent (N); while Present (P) loop if Nkind (P) = N_If_Statement or else Nkind (P) = N_Case_Statement or else (Nkind (P) in N_Short_Circuit and then Desc = Right_Opnd (P)) or else (Nkind (P) = N_Conditional_Expression and then Desc /= First (Expressions (P))) or else Nkind (P) = N_Exception_Handler or else Nkind (P) = N_Selective_Accept or else Nkind (P) = N_Conditional_Entry_Call or else Nkind (P) = N_Timed_Entry_Call or else Nkind (P) = N_Asynchronous_Select then return False; else Desc := P; P := Parent (P); end if; end loop; end; -- OK, looks safe to set value return True; end Safe_To_Capture_Value; --------------- -- Same_Name -- --------------- function Same_Name (N1, N2 : Node_Id) return Boolean is K1 : constant Node_Kind := Nkind (N1); K2 : constant Node_Kind := Nkind (N2); begin if (K1 = N_Identifier or else K1 = N_Defining_Identifier) and then (K2 = N_Identifier or else K2 = N_Defining_Identifier) then return Chars (N1) = Chars (N2); elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name) and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name) then return Same_Name (Selector_Name (N1), Selector_Name (N2)) and then Same_Name (Prefix (N1), Prefix (N2)); else return False; end if; end Same_Name; ----------------- -- Same_Object -- ----------------- function Same_Object (Node1, Node2 : Node_Id) return Boolean is N1 : constant Node_Id := Original_Node (Node1); N2 : constant Node_Id := Original_Node (Node2); -- We do the tests on original nodes, since we are most interested -- in the original source, not any expansion that got in the way. K1 : constant Node_Kind := Nkind (N1); K2 : constant Node_Kind := Nkind (N2); begin -- First case, both are entities with same entity if K1 in N_Has_Entity and then K2 in N_Has_Entity then declare EN1 : constant Entity_Id := Entity (N1); EN2 : constant Entity_Id := Entity (N2); begin if Present (EN1) and then Present (EN2) and then (Ekind_In (EN1, E_Variable, E_Constant) or else Is_Formal (EN1)) and then EN1 = EN2 then return True; end if; end; end if; -- Second case, selected component with same selector, same record if K1 = N_Selected_Component and then K2 = N_Selected_Component and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2)) then return Same_Object (Prefix (N1), Prefix (N2)); -- Third case, indexed component with same subscripts, same array elsif K1 = N_Indexed_Component and then K2 = N_Indexed_Component and then Same_Object (Prefix (N1), Prefix (N2)) then declare E1, E2 : Node_Id; begin E1 := First (Expressions (N1)); E2 := First (Expressions (N2)); while Present (E1) loop if not Same_Value (E1, E2) then return False; else Next (E1); Next (E2); end if; end loop; return True; end; -- Fourth case, slice of same array with same bounds elsif K1 = N_Slice and then K2 = N_Slice and then Nkind (Discrete_Range (N1)) = N_Range and then Nkind (Discrete_Range (N2)) = N_Range and then Same_Value (Low_Bound (Discrete_Range (N1)), Low_Bound (Discrete_Range (N2))) and then Same_Value (High_Bound (Discrete_Range (N1)), High_Bound (Discrete_Range (N2))) then return Same_Name (Prefix (N1), Prefix (N2)); -- All other cases, not clearly the same object else return False; end if; end Same_Object; --------------- -- Same_Type -- --------------- function Same_Type (T1, T2 : Entity_Id) return Boolean is begin if T1 = T2 then return True; elsif not Is_Constrained (T1) and then not Is_Constrained (T2) and then Base_Type (T1) = Base_Type (T2) then return True; -- For now don't bother with case of identical constraints, to be -- fiddled with later on perhaps (this is only used for optimization -- purposes, so it is not critical to do a best possible job) else return False; end if; end Same_Type; ---------------- -- Same_Value -- ---------------- function Same_Value (Node1, Node2 : Node_Id) return Boolean is begin if Compile_Time_Known_Value (Node1) and then Compile_Time_Known_Value (Node2) and then Expr_Value (Node1) = Expr_Value (Node2) then return True; elsif Same_Object (Node1, Node2) then return True; else return False; end if; end Same_Value; ----------------- -- Save_Actual -- ----------------- procedure Save_Actual (N : Node_Id; Writable : Boolean := False) is begin if Ada_Version < Ada_2012 then return; elsif Is_Entity_Name (N) or else Nkind_In (N, N_Indexed_Component, N_Selected_Component, N_Slice) or else (Nkind (N) = N_Attribute_Reference and then Attribute_Name (N) = Name_Access) then -- We are only interested in IN OUT parameters of inner calls if not Writable or else Nkind (Parent (N)) = N_Function_Call or else Nkind (Parent (N)) in N_Op then Actuals_In_Call.Increment_Last; Actuals_In_Call.Table (Actuals_In_Call.Last) := (N, Writable); end if; end if; end Save_Actual; ------------------------ -- Scope_Is_Transient -- ------------------------ function Scope_Is_Transient return Boolean is begin return Scope_Stack.Table (Scope_Stack.Last).Is_Transient; end Scope_Is_Transient; ------------------ -- Scope_Within -- ------------------ function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is Scop : Entity_Id; begin Scop := Scope1; while Scop /= Standard_Standard loop Scop := Scope (Scop); if Scop = Scope2 then return True; end if; end loop; return False; end Scope_Within; -------------------------- -- Scope_Within_Or_Same -- -------------------------- function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is Scop : Entity_Id; begin Scop := Scope1; while Scop /= Standard_Standard loop if Scop = Scope2 then return True; else Scop := Scope (Scop); end if; end loop; return False; end Scope_Within_Or_Same; -------------------- -- Set_Convention -- -------------------- procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is begin Basic_Set_Convention (E, Val); if Is_Type (E) and then Is_Access_Subprogram_Type (Base_Type (E)) and then Has_Foreign_Convention (E) then Set_Can_Use_Internal_Rep (E, False); end if; end Set_Convention; ------------------------ -- Set_Current_Entity -- ------------------------ -- The given entity is to be set as the currently visible definition of its -- associated name (i.e. the Node_Id associated with its name). All we have -- to do is to get the name from the identifier, and then set the -- associated Node_Id to point to the given entity. procedure Set_Current_Entity (E : Entity_Id) is begin Set_Name_Entity_Id (Chars (E), E); end Set_Current_Entity; --------------------------- -- Set_Debug_Info_Needed -- --------------------------- procedure Set_Debug_Info_Needed (T : Entity_Id) is procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id); pragma Inline (Set_Debug_Info_Needed_If_Not_Set); -- Used to set debug info in a related node if not set already -------------------------------------- -- Set_Debug_Info_Needed_If_Not_Set -- -------------------------------------- procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is begin if Present (E) and then not Needs_Debug_Info (E) then Set_Debug_Info_Needed (E); -- For a private type, indicate that the full view also needs -- debug information. if Is_Type (E) and then Is_Private_Type (E) and then Present (Full_View (E)) then Set_Debug_Info_Needed (Full_View (E)); end if; end if; end Set_Debug_Info_Needed_If_Not_Set; -- Start of processing for Set_Debug_Info_Needed begin -- Nothing to do if argument is Empty or has Debug_Info_Off set, which -- indicates that Debug_Info_Needed is never required for the entity. if No (T) or else Debug_Info_Off (T) then return; end if; -- Set flag in entity itself. Note that we will go through the following -- circuitry even if the flag is already set on T. That's intentional, -- it makes sure that the flag will be set in subsidiary entities. Set_Needs_Debug_Info (T); -- Set flag on subsidiary entities if not set already if Is_Object (T) then Set_Debug_Info_Needed_If_Not_Set (Etype (T)); elsif Is_Type (T) then Set_Debug_Info_Needed_If_Not_Set (Etype (T)); if Is_Record_Type (T) then declare Ent : Entity_Id := First_Entity (T); begin while Present (Ent) loop Set_Debug_Info_Needed_If_Not_Set (Ent); Next_Entity (Ent); end loop; end; -- For a class wide subtype, we also need debug information -- for the equivalent type. if Ekind (T) = E_Class_Wide_Subtype then Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T)); end if; elsif Is_Array_Type (T) then Set_Debug_Info_Needed_If_Not_Set (Component_Type (T)); declare Indx : Node_Id := First_Index (T); begin while Present (Indx) loop Set_Debug_Info_Needed_If_Not_Set (Etype (Indx)); Indx := Next_Index (Indx); end loop; end; -- For a packed array type, we also need debug information for -- the type used to represent the packed array. Conversely, we -- also need it for the former if we need it for the latter. if Is_Packed (T) then Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Type (T)); end if; if Is_Packed_Array_Type (T) then Set_Debug_Info_Needed_If_Not_Set (Original_Array_Type (T)); end if; elsif Is_Access_Type (T) then Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T)); elsif Is_Private_Type (T) then Set_Debug_Info_Needed_If_Not_Set (Full_View (T)); elsif Is_Protected_Type (T) then Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T)); end if; end if; end Set_Debug_Info_Needed; --------------------------------- -- Set_Entity_With_Style_Check -- --------------------------------- procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id) is Val_Actual : Entity_Id; Nod : Node_Id; begin -- Unconditionally set the entity Set_Entity (N, Val); -- Check for No_Implementation_Identifiers if Restriction_Check_Required (No_Implementation_Identifiers) then -- We have an implementation defined entity if it is marked as -- implementation defined, or is defined in a package marked as -- implementation defined. However, library packages themselves -- are excluded (we don't want to flag Interfaces itself, just -- the entities within it). if (Is_Implementation_Defined (Val) and then not (Ekind_In (Val, E_Package, E_Generic_Package) and then Is_Library_Level_Entity (Val))) or else Is_Implementation_Defined (Scope (Val)) then Check_Restriction (No_Implementation_Identifiers, N); end if; end if; -- Do the style check if Style_Check and then not Suppress_Style_Checks (Val) and then not In_Instance then if Nkind (N) = N_Identifier then Nod := N; elsif Nkind (N) = N_Expanded_Name then Nod := Selector_Name (N); else return; end if; -- A special situation arises for derived operations, where we want -- to do the check against the parent (since the Sloc of the derived -- operation points to the derived type declaration itself). Val_Actual := Val; while not Comes_From_Source (Val_Actual) and then Nkind (Val_Actual) in N_Entity and then (Ekind (Val_Actual) = E_Enumeration_Literal or else Is_Subprogram (Val_Actual) or else Is_Generic_Subprogram (Val_Actual)) and then Present (Alias (Val_Actual)) loop Val_Actual := Alias (Val_Actual); end loop; -- Renaming declarations for generic actuals do not come from source, -- and have a different name from that of the entity they rename, so -- there is no style check to perform here. if Chars (Nod) = Chars (Val_Actual) then Style.Check_Identifier (Nod, Val_Actual); end if; end if; Set_Entity (N, Val); end Set_Entity_With_Style_Check; ------------------------ -- Set_Name_Entity_Id -- ------------------------ procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is begin Set_Name_Table_Info (Id, Int (Val)); end Set_Name_Entity_Id; --------------------- -- Set_Next_Actual -- --------------------- procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is begin if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id); end if; end Set_Next_Actual; ---------------------------------- -- Set_Optimize_Alignment_Flags -- ---------------------------------- procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is begin if Optimize_Alignment = 'S' then Set_Optimize_Alignment_Space (E); elsif Optimize_Alignment = 'T' then Set_Optimize_Alignment_Time (E); end if; end Set_Optimize_Alignment_Flags; ----------------------- -- Set_Public_Status -- ----------------------- procedure Set_Public_Status (Id : Entity_Id) is S : constant Entity_Id := Current_Scope; function Within_HSS_Or_If (E : Entity_Id) return Boolean; -- Determines if E is defined within handled statement sequence or -- an if statement, returns True if so, False otherwise. ---------------------- -- Within_HSS_Or_If -- ---------------------- function Within_HSS_Or_If (E : Entity_Id) return Boolean is N : Node_Id; begin N := Declaration_Node (E); loop N := Parent (N); if No (N) then return False; elsif Nkind_In (N, N_Handled_Sequence_Of_Statements, N_If_Statement) then return True; end if; end loop; end Within_HSS_Or_If; -- Start of processing for Set_Public_Status begin -- Everything in the scope of Standard is public if S = Standard_Standard then Set_Is_Public (Id); -- Entity is definitely not public if enclosing scope is not public elsif not Is_Public (S) then return; -- An object or function declaration that occurs in a handled sequence -- of statements or within an if statement is the declaration for a -- temporary object or local subprogram generated by the expander. It -- never needs to be made public and furthermore, making it public can -- cause back end problems. elsif Nkind_In (Parent (Id), N_Object_Declaration, N_Function_Specification) and then Within_HSS_Or_If (Id) then return; -- Entities in public packages or records are public elsif Ekind (S) = E_Package or Is_Record_Type (S) then Set_Is_Public (Id); -- The bounds of an entry family declaration can generate object -- declarations that are visible to the back-end, e.g. in the -- the declaration of a composite type that contains tasks. elsif Is_Concurrent_Type (S) and then not Has_Completion (S) and then Nkind (Parent (Id)) = N_Object_Declaration then Set_Is_Public (Id); end if; end Set_Public_Status; ----------------------------- -- Set_Referenced_Modified -- ----------------------------- procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is Pref : Node_Id; begin -- Deal with indexed or selected component where prefix is modified if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then Pref := Prefix (N); -- If prefix is access type, then it is the designated object that is -- being modified, which means we have no entity to set the flag on. if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then return; -- Otherwise chase the prefix else Set_Referenced_Modified (Pref, Out_Param); end if; -- Otherwise see if we have an entity name (only other case to process) elsif Is_Entity_Name (N) and then Present (Entity (N)) then Set_Referenced_As_LHS (Entity (N), not Out_Param); Set_Referenced_As_Out_Parameter (Entity (N), Out_Param); end if; end Set_Referenced_Modified; ---------------------------- -- Set_Scope_Is_Transient -- ---------------------------- procedure Set_Scope_Is_Transient (V : Boolean := True) is begin Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V; end Set_Scope_Is_Transient; ------------------- -- Set_Size_Info -- ------------------- procedure Set_Size_Info (T1, T2 : Entity_Id) is begin -- We copy Esize, but not RM_Size, since in general RM_Size is -- subtype specific and does not get inherited by all subtypes. Set_Esize (T1, Esize (T2)); Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2)); if Is_Discrete_Or_Fixed_Point_Type (T1) and then Is_Discrete_Or_Fixed_Point_Type (T2) then Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2)); end if; Set_Alignment (T1, Alignment (T2)); end Set_Size_Info; -------------------- -- Static_Boolean -- -------------------- function Static_Boolean (N : Node_Id) return Uint is begin Analyze_And_Resolve (N, Standard_Boolean); if N = Error or else Error_Posted (N) or else Etype (N) = Any_Type then return No_Uint; end if; if Is_Static_Expression (N) then if not Raises_Constraint_Error (N) then return Expr_Value (N); else return No_Uint; end if; elsif Etype (N) = Any_Type then return No_Uint; else Flag_Non_Static_Expr ("static boolean expression required here", N); return No_Uint; end if; end Static_Boolean; -------------------- -- Static_Integer -- -------------------- function Static_Integer (N : Node_Id) return Uint is begin Analyze_And_Resolve (N, Any_Integer); if N = Error or else Error_Posted (N) or else Etype (N) = Any_Type then return No_Uint; end if; if Is_Static_Expression (N) then if not Raises_Constraint_Error (N) then return Expr_Value (N); else return No_Uint; end if; elsif Etype (N) = Any_Type then return No_Uint; else Flag_Non_Static_Expr ("static integer expression required here", N); return No_Uint; end if; end Static_Integer; -------------------------- -- Statically_Different -- -------------------------- function Statically_Different (E1, E2 : Node_Id) return Boolean is R1 : constant Node_Id := Get_Referenced_Object (E1); R2 : constant Node_Id := Get_Referenced_Object (E2); begin return Is_Entity_Name (R1) and then Is_Entity_Name (R2) and then Entity (R1) /= Entity (R2) and then not Is_Formal (Entity (R1)) and then not Is_Formal (Entity (R2)); end Statically_Different; ----------------------------- -- Subprogram_Access_Level -- ----------------------------- function Subprogram_Access_Level (Subp : Entity_Id) return Uint is begin if Present (Alias (Subp)) then return Subprogram_Access_Level (Alias (Subp)); else return Scope_Depth (Enclosing_Dynamic_Scope (Subp)); end if; end Subprogram_Access_Level; ----------------- -- Trace_Scope -- ----------------- procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is begin if Debug_Flag_W then for J in 0 .. Scope_Stack.Last loop Write_Str (" "); end loop; Write_Str (Msg); Write_Name (Chars (E)); Write_Str (" from "); Write_Location (Sloc (N)); Write_Eol; end if; end Trace_Scope; ----------------------- -- Transfer_Entities -- ----------------------- procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is Ent : Entity_Id := First_Entity (From); begin if No (Ent) then return; end if; if (Last_Entity (To)) = Empty then Set_First_Entity (To, Ent); else Set_Next_Entity (Last_Entity (To), Ent); end if; Set_Last_Entity (To, Last_Entity (From)); while Present (Ent) loop Set_Scope (Ent, To); if not Is_Public (Ent) then Set_Public_Status (Ent); if Is_Public (Ent) and then Ekind (Ent) = E_Record_Subtype then -- The components of the propagated Itype must be public -- as well. declare Comp : Entity_Id; begin Comp := First_Entity (Ent); while Present (Comp) loop Set_Is_Public (Comp); Next_Entity (Comp); end loop; end; end if; end if; Next_Entity (Ent); end loop; Set_First_Entity (From, Empty); Set_Last_Entity (From, Empty); end Transfer_Entities; ----------------------- -- Type_Access_Level -- ----------------------- function Type_Access_Level (Typ : Entity_Id) return Uint is Btyp : Entity_Id; begin Btyp := Base_Type (Typ); -- Ada 2005 (AI-230): For most cases of anonymous access types, we -- simply use the level where the type is declared. This is true for -- stand-alone object declarations, and for anonymous access types -- associated with components the level is the same as that of the -- enclosing composite type. However, special treatment is needed for -- the cases of access parameters, return objects of an anonymous access -- type, and, in Ada 95, access discriminants of limited types. if Ekind (Btyp) in Access_Kind then if Ekind (Btyp) = E_Anonymous_Access_Type then -- If the type is a nonlocal anonymous access type (such as for -- an access parameter) we treat it as being declared at the -- library level to ensure that names such as X.all'access don't -- fail static accessibility checks. if not Is_Local_Anonymous_Access (Typ) then return Scope_Depth (Standard_Standard); -- If this is a return object, the accessibility level is that of -- the result subtype of the enclosing function. The test here is -- little complicated, because we have to account for extended -- return statements that have been rewritten as blocks, in which -- case we have to find and the Is_Return_Object attribute of the -- itype's associated object. It would be nice to find a way to -- simplify this test, but it doesn't seem worthwhile to add a new -- flag just for purposes of this test. ??? elsif Ekind (Scope (Btyp)) = E_Return_Statement or else (Is_Itype (Btyp) and then Nkind (Associated_Node_For_Itype (Btyp)) = N_Object_Declaration and then Is_Return_Object (Defining_Identifier (Associated_Node_For_Itype (Btyp)))) then declare Scop : Entity_Id; begin Scop := Scope (Scope (Btyp)); while Present (Scop) loop exit when Ekind (Scop) = E_Function; Scop := Scope (Scop); end loop; -- Treat the return object's type as having the level of the -- function's result subtype (as per RM05-6.5(5.3/2)). return Type_Access_Level (Etype (Scop)); end; end if; end if; Btyp := Root_Type (Btyp); -- The accessibility level of anonymous access types associated with -- discriminants is that of the current instance of the type, and -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)). -- AI-402: access discriminants have accessibility based on the -- object rather than the type in Ada 2005, so the above paragraph -- doesn't apply. -- ??? Needs completion with rules from AI-416 if Ada_Version <= Ada_95 and then Ekind (Typ) = E_Anonymous_Access_Type and then Present (Associated_Node_For_Itype (Typ)) and then Nkind (Associated_Node_For_Itype (Typ)) = N_Discriminant_Specification then return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1; end if; end if; -- Return library level for a generic formal type. This is done because -- RM(10.3.2) says that "The statically deeper relationship does not -- apply to ... a descendant of a generic formal type". Rather than -- checking at each point where a static accessibility check is -- performed to see if we are dealing with a formal type, this rule is -- implemented by having Type_Access_Level and Deepest_Type_Access_Level -- return extreme values for a formal type; Deepest_Type_Access_Level -- returns Int'Last. By calling the appropriate function from among the -- two, we ensure that the static accessibility check will pass if we -- happen to run into a formal type. More specifically, we should call -- Deepest_Type_Access_Level instead of Type_Access_Level whenever the -- call occurs as part of a static accessibility check and the error -- case is the case where the type's level is too shallow (as opposed -- to too deep). if Is_Generic_Type (Root_Type (Btyp)) then return Scope_Depth (Standard_Standard); end if; return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)); end Type_Access_Level; ------------------------------------ -- Type_Without_Stream_Operation -- ------------------------------------ function Type_Without_Stream_Operation (T : Entity_Id; Op : TSS_Name_Type := TSS_Null) return Entity_Id is BT : constant Entity_Id := Base_Type (T); Op_Missing : Boolean; begin if not Restriction_Active (No_Default_Stream_Attributes) then return Empty; end if; if Is_Elementary_Type (T) then if Op = TSS_Null then Op_Missing := No (TSS (BT, TSS_Stream_Read)) or else No (TSS (BT, TSS_Stream_Write)); else Op_Missing := No (TSS (BT, Op)); end if; if Op_Missing then return T; else return Empty; end if; elsif Is_Array_Type (T) then return Type_Without_Stream_Operation (Component_Type (T), Op); elsif Is_Record_Type (T) then declare Comp : Entity_Id; C_Typ : Entity_Id; begin Comp := First_Component (T); while Present (Comp) loop C_Typ := Type_Without_Stream_Operation (Etype (Comp), Op); if Present (C_Typ) then return C_Typ; end if; Next_Component (Comp); end loop; return Empty; end; elsif Is_Private_Type (T) and then Present (Full_View (T)) then return Type_Without_Stream_Operation (Full_View (T), Op); else return Empty; end if; end Type_Without_Stream_Operation; ---------------------------- -- Unique_Defining_Entity -- ---------------------------- function Unique_Defining_Entity (N : Node_Id) return Entity_Id is begin return Unique_Entity (Defining_Entity (N)); end Unique_Defining_Entity; ------------------- -- Unique_Entity -- ------------------- function Unique_Entity (E : Entity_Id) return Entity_Id is U : Entity_Id := E; P : Node_Id; begin case Ekind (E) is when E_Constant => if Present (Full_View (E)) then U := Full_View (E); end if; when Type_Kind => if Present (Full_View (E)) then U := Full_View (E); end if; when E_Package_Body => P := Parent (E); if Nkind (P) = N_Defining_Program_Unit_Name then P := Parent (P); end if; U := Corresponding_Spec (P); when E_Subprogram_Body => P := Parent (E); if Nkind (P) = N_Defining_Program_Unit_Name then P := Parent (P); end if; P := Parent (P); if Nkind (P) = N_Subprogram_Body_Stub then if Present (Library_Unit (P)) then -- Get to the function or procedure (generic) entity through -- the body entity. U := Unique_Entity (Defining_Entity (Get_Body_From_Stub (P))); end if; else U := Corresponding_Spec (P); end if; when Formal_Kind => if Present (Spec_Entity (E)) then U := Spec_Entity (E); end if; when others => null; end case; return U; end Unique_Entity; ----------------- -- Unique_Name -- ----------------- function Unique_Name (E : Entity_Id) return String is -- Names of E_Subprogram_Body or E_Package_Body entities are not -- reliable, as they may not include the overloading suffix. Instead, -- when looking for the name of E or one of its enclosing scope, we get -- the name of the corresponding Unique_Entity. function Get_Scoped_Name (E : Entity_Id) return String; -- Return the name of E prefixed by all the names of the scopes to which -- E belongs, except for Standard. --------------------- -- Get_Scoped_Name -- --------------------- function Get_Scoped_Name (E : Entity_Id) return String is Name : constant String := Get_Name_String (Chars (E)); begin if Has_Fully_Qualified_Name (E) or else Scope (E) = Standard_Standard then return Name; else return Get_Scoped_Name (Unique_Entity (Scope (E))) & "__" & Name; end if; end Get_Scoped_Name; -- Start of processing for Unique_Name begin if E = Standard_Standard then return Get_Name_String (Name_Standard); elsif Scope (E) = Standard_Standard and then not (Ekind (E) = E_Package or else Is_Subprogram (E)) then return Get_Name_String (Name_Standard) & "__" & Get_Name_String (Chars (E)); elsif Ekind (E) = E_Enumeration_Literal then return Unique_Name (Etype (E)) & "__" & Get_Name_String (Chars (E)); else return Get_Scoped_Name (Unique_Entity (E)); end if; end Unique_Name; --------------------- -- Unit_Is_Visible -- --------------------- function Unit_Is_Visible (U : Entity_Id) return Boolean is Curr : constant Node_Id := Cunit (Current_Sem_Unit); Curr_Entity : constant Entity_Id := Cunit_Entity (Current_Sem_Unit); function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean; -- For a child unit, check whether unit appears in a with_clause -- of a parent. function Unit_In_Context (Comp_Unit : Node_Id) return Boolean; -- Scan the context clause of one compilation unit looking for a -- with_clause for the unit in question. ---------------------------- -- Unit_In_Parent_Context -- ---------------------------- function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean is begin if Unit_In_Context (Par_Unit) then return True; elsif Is_Child_Unit (Defining_Entity (Unit (Par_Unit))) then return Unit_In_Parent_Context (Parent_Spec (Unit (Par_Unit))); else return False; end if; end Unit_In_Parent_Context; --------------------- -- Unit_In_Context -- --------------------- function Unit_In_Context (Comp_Unit : Node_Id) return Boolean is Clause : Node_Id; begin Clause := First (Context_Items (Comp_Unit)); while Present (Clause) loop if Nkind (Clause) = N_With_Clause then if Library_Unit (Clause) = U then return True; -- The with_clause may denote a renaming of the unit we are -- looking for, eg. Text_IO which renames Ada.Text_IO. elsif Renamed_Entity (Entity (Name (Clause))) = Defining_Entity (Unit (U)) then return True; end if; end if; Next (Clause); end loop; return False; end Unit_In_Context; -- Start of processing for Unit_Is_Visible begin -- The currrent unit is directly visible if Curr = U then return True; elsif Unit_In_Context (Curr) then return True; -- If the current unit is a body, check the context of the spec elsif Nkind (Unit (Curr)) = N_Package_Body or else (Nkind (Unit (Curr)) = N_Subprogram_Body and then not Acts_As_Spec (Unit (Curr))) then if Unit_In_Context (Library_Unit (Curr)) then return True; end if; end if; -- If the spec is a child unit, examine the parents if Is_Child_Unit (Curr_Entity) then if Nkind (Unit (Curr)) in N_Unit_Body then return Unit_In_Parent_Context (Parent_Spec (Unit (Library_Unit (Curr)))); else return Unit_In_Parent_Context (Parent_Spec (Unit (Curr))); end if; else return False; end if; end Unit_Is_Visible; ------------------------------ -- Universal_Interpretation -- ------------------------------ function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is Index : Interp_Index; It : Interp; begin -- The argument may be a formal parameter of an operator or subprogram -- with multiple interpretations, or else an expression for an actual. if Nkind (Opnd) = N_Defining_Identifier or else not Is_Overloaded (Opnd) then if Etype (Opnd) = Universal_Integer or else Etype (Opnd) = Universal_Real then return Etype (Opnd); else return Empty; end if; else Get_First_Interp (Opnd, Index, It); while Present (It.Typ) loop if It.Typ = Universal_Integer or else It.Typ = Universal_Real then return It.Typ; end if; Get_Next_Interp (Index, It); end loop; return Empty; end if; end Universal_Interpretation; --------------- -- Unqualify -- --------------- function Unqualify (Expr : Node_Id) return Node_Id is begin -- Recurse to handle unlikely case of multiple levels of qualification if Nkind (Expr) = N_Qualified_Expression then return Unqualify (Expression (Expr)); -- Normal case, not a qualified expression else return Expr; end if; end Unqualify; ----------------------- -- Visible_Ancestors -- ----------------------- function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is List_1 : Elist_Id; List_2 : Elist_Id; Elmt : Elmt_Id; begin pragma Assert (Is_Record_Type (Typ) and then Is_Tagged_Type (Typ)); -- Collect all the parents and progenitors of Typ. If the full-view of -- private parents and progenitors is available then it is used to -- generate the list of visible ancestors; otherwise their partial -- view is added to the resulting list. Collect_Parents (T => Typ, List => List_1, Use_Full_View => True); Collect_Interfaces (T => Typ, Ifaces_List => List_2, Exclude_Parents => True, Use_Full_View => True); -- Join the two lists. Avoid duplications because an interface may -- simultaneously be parent and progenitor of a type. Elmt := First_Elmt (List_2); while Present (Elmt) loop Append_Unique_Elmt (Node (Elmt), List_1); Next_Elmt (Elmt); end loop; return List_1; end Visible_Ancestors; ---------------------- -- Within_Init_Proc -- ---------------------- function Within_Init_Proc return Boolean is S : Entity_Id; begin S := Current_Scope; while not Is_Overloadable (S) loop if S = Standard_Standard then return False; else S := Scope (S); end if; end loop; return Is_Init_Proc (S); end Within_Init_Proc; ---------------- -- Wrong_Type -- ---------------- procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is Found_Type : constant Entity_Id := First_Subtype (Etype (Expr)); Expec_Type : constant Entity_Id := First_Subtype (Expected_Type); Matching_Field : Entity_Id; -- Entity to give a more precise suggestion on how to write a one- -- element positional aggregate. function Has_One_Matching_Field return Boolean; -- Determines if Expec_Type is a record type with a single component or -- discriminant whose type matches the found type or is one dimensional -- array whose component type matches the found type. ---------------------------- -- Has_One_Matching_Field -- ---------------------------- function Has_One_Matching_Field return Boolean is E : Entity_Id; begin Matching_Field := Empty; if Is_Array_Type (Expec_Type) and then Number_Dimensions (Expec_Type) = 1 and then Covers (Etype (Component_Type (Expec_Type)), Found_Type) then -- Use type name if available. This excludes multidimensional -- arrays and anonymous arrays. if Comes_From_Source (Expec_Type) then Matching_Field := Expec_Type; -- For an assignment, use name of target elsif Nkind (Parent (Expr)) = N_Assignment_Statement and then Is_Entity_Name (Name (Parent (Expr))) then Matching_Field := Entity (Name (Parent (Expr))); end if; return True; elsif not Is_Record_Type (Expec_Type) then return False; else E := First_Entity (Expec_Type); loop if No (E) then return False; elsif (Ekind (E) /= E_Discriminant and then Ekind (E) /= E_Component) or else (Chars (E) = Name_uTag or else Chars (E) = Name_uParent) then Next_Entity (E); else exit; end if; end loop; if not Covers (Etype (E), Found_Type) then return False; elsif Present (Next_Entity (E)) then return False; else Matching_Field := E; return True; end if; end if; end Has_One_Matching_Field; -- Start of processing for Wrong_Type begin -- Don't output message if either type is Any_Type, or if a message -- has already been posted for this node. We need to do the latter -- check explicitly (it is ordinarily done in Errout), because we -- are using ! to force the output of the error messages. if Expec_Type = Any_Type or else Found_Type = Any_Type or else Error_Posted (Expr) then return; -- If one of the types is a Taft-Amendment type and the other it its -- completion, it must be an illegal use of a TAT in the spec, for -- which an error was already emitted. Avoid cascaded errors. elsif Is_Incomplete_Type (Expec_Type) and then Has_Completion_In_Body (Expec_Type) and then Full_View (Expec_Type) = Etype (Expr) then return; elsif Is_Incomplete_Type (Etype (Expr)) and then Has_Completion_In_Body (Etype (Expr)) and then Full_View (Etype (Expr)) = Expec_Type then return; -- In an instance, there is an ongoing problem with completion of -- type derived from private types. Their structure is what Gigi -- expects, but the Etype is the parent type rather than the -- derived private type itself. Do not flag error in this case. The -- private completion is an entity without a parent, like an Itype. -- Similarly, full and partial views may be incorrect in the instance. -- There is no simple way to insure that it is consistent ??? elsif In_Instance then if Etype (Etype (Expr)) = Etype (Expected_Type) and then (Has_Private_Declaration (Expected_Type) or else Has_Private_Declaration (Etype (Expr))) and then No (Parent (Expected_Type)) then return; end if; end if; -- An interesting special check. If the expression is parenthesized -- and its type corresponds to the type of the sole component of the -- expected record type, or to the component type of the expected one -- dimensional array type, then assume we have a bad aggregate attempt. if Nkind (Expr) in N_Subexpr and then Paren_Count (Expr) /= 0 and then Has_One_Matching_Field then Error_Msg_N ("positional aggregate cannot have one component", Expr); if Present (Matching_Field) then if Is_Array_Type (Expec_Type) then Error_Msg_NE ("\write instead `&''First ='> ...`", Expr, Matching_Field); else Error_Msg_NE ("\write instead `& ='> ...`", Expr, Matching_Field); end if; end if; -- Another special check, if we are looking for a pool-specific access -- type and we found an E_Access_Attribute_Type, then we have the case -- of an Access attribute being used in a context which needs a pool- -- specific type, which is never allowed. The one extra check we make -- is that the expected designated type covers the Found_Type. elsif Is_Access_Type (Expec_Type) and then Ekind (Found_Type) = E_Access_Attribute_Type and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type and then Covers (Designated_Type (Expec_Type), Designated_Type (Found_Type)) then Error_Msg_N -- CODEFIX ("result must be general access type!", Expr); Error_Msg_NE -- CODEFIX ("add ALL to }!", Expr, Expec_Type); -- Another special check, if the expected type is an integer type, -- but the expression is of type System.Address, and the parent is -- an addition or subtraction operation whose left operand is the -- expression in question and whose right operand is of an integral -- type, then this is an attempt at address arithmetic, so give -- appropriate message. elsif Is_Integer_Type (Expec_Type) and then Is_RTE (Found_Type, RE_Address) and then (Nkind (Parent (Expr)) = N_Op_Add or else Nkind (Parent (Expr)) = N_Op_Subtract) and then Expr = Left_Opnd (Parent (Expr)) and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr)))) then Error_Msg_N ("address arithmetic not predefined in package System", Parent (Expr)); Error_Msg_N ("\possible missing with/use of System.Storage_Elements", Parent (Expr)); return; -- If the expected type is an anonymous access type, as for access -- parameters and discriminants, the error is on the designated types. elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then if Comes_From_Source (Expec_Type) then Error_Msg_NE ("expected}!", Expr, Expec_Type); else Error_Msg_NE ("expected an access type with designated}", Expr, Designated_Type (Expec_Type)); end if; if Is_Access_Type (Found_Type) and then not Comes_From_Source (Found_Type) then Error_Msg_NE ("\\found an access type with designated}!", Expr, Designated_Type (Found_Type)); else if From_With_Type (Found_Type) then Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type); Error_Msg_Qual_Level := 99; Error_Msg_NE -- CODEFIX ("\\missing `WITH &;", Expr, Scope (Found_Type)); Error_Msg_Qual_Level := 0; else Error_Msg_NE ("found}!", Expr, Found_Type); end if; end if; -- Normal case of one type found, some other type expected else -- If the names of the two types are the same, see if some number -- of levels of qualification will help. Don't try more than three -- levels, and if we get to standard, it's no use (and probably -- represents an error in the compiler) Also do not bother with -- internal scope names. declare Expec_Scope : Entity_Id; Found_Scope : Entity_Id; begin Expec_Scope := Expec_Type; Found_Scope := Found_Type; for Levels in Int range 0 .. 3 loop if Chars (Expec_Scope) /= Chars (Found_Scope) then Error_Msg_Qual_Level := Levels; exit; end if; Expec_Scope := Scope (Expec_Scope); Found_Scope := Scope (Found_Scope); exit when Expec_Scope = Standard_Standard or else Found_Scope = Standard_Standard or else not Comes_From_Source (Expec_Scope) or else not Comes_From_Source (Found_Scope); end loop; end; if Is_Record_Type (Expec_Type) and then Present (Corresponding_Remote_Type (Expec_Type)) then Error_Msg_NE ("expected}!", Expr, Corresponding_Remote_Type (Expec_Type)); else Error_Msg_NE ("expected}!", Expr, Expec_Type); end if; if Is_Entity_Name (Expr) and then Is_Package_Or_Generic_Package (Entity (Expr)) then Error_Msg_N ("\\found package name!", Expr); elsif Is_Entity_Name (Expr) and then (Ekind (Entity (Expr)) = E_Procedure or else Ekind (Entity (Expr)) = E_Generic_Procedure) then if Ekind (Expec_Type) = E_Access_Subprogram_Type then Error_Msg_N ("found procedure name, possibly missing Access attribute!", Expr); else Error_Msg_N ("\\found procedure name instead of function!", Expr); end if; elsif Nkind (Expr) = N_Function_Call and then Ekind (Expec_Type) = E_Access_Subprogram_Type and then Etype (Designated_Type (Expec_Type)) = Etype (Expr) and then No (Parameter_Associations (Expr)) then Error_Msg_N ("found function name, possibly missing Access attribute!", Expr); -- Catch common error: a prefix or infix operator which is not -- directly visible because the type isn't. elsif Nkind (Expr) in N_Op and then Is_Overloaded (Expr) and then not Is_Immediately_Visible (Expec_Type) and then not Is_Potentially_Use_Visible (Expec_Type) and then not In_Use (Expec_Type) and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type) then Error_Msg_N ("operator of the type is not directly visible!", Expr); elsif Ekind (Found_Type) = E_Void and then Present (Parent (Found_Type)) and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration then Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type); else Error_Msg_NE ("\\found}!", Expr, Found_Type); end if; -- A special check for cases like M1 and M2 = 0 where M1 and M2 are -- of the same modular type, and (M1 and M2) = 0 was intended. if Expec_Type = Standard_Boolean and then Is_Modular_Integer_Type (Found_Type) and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor) and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare then declare Op : constant Node_Id := Right_Opnd (Parent (Expr)); L : constant Node_Id := Left_Opnd (Op); R : constant Node_Id := Right_Opnd (Op); begin -- The case for the message is when the left operand of the -- comparison is the same modular type, or when it is an -- integer literal (or other universal integer expression), -- which would have been typed as the modular type if the -- parens had been there. if (Etype (L) = Found_Type or else Etype (L) = Universal_Integer) and then Is_Integer_Type (Etype (R)) then Error_Msg_N ("\\possible missing parens for modular operation", Expr); end if; end; end if; -- Reset error message qualification indication Error_Msg_Qual_Level := 0; end if; end Wrong_Type; end Sem_Util;
Go to most recent revision | Compare with Previous | Blame | View Log