URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [arm/] [neon-testgen.ml] - Rev 754
Go to most recent revision | Compare with Previous | Blame | View Log
(* Auto-generate ARM Neon intrinsics tests.
Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by CodeSourcery.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>.
This is an O'Caml program. The O'Caml compiler is available from:
http://caml.inria.fr/
Or from your favourite OS's friendly packaging system. Tested with version
3.09.2, though other versions will probably work too.
Compile with:
ocamlc -c neon.ml
ocamlc -o neon-testgen neon.cmo neon-testgen.ml
Run with:
cd /path/to/gcc/testsuite/gcc.target/arm/neon
/path/to/neon-testgen
*)
open Neon
type c_type_flags = Pointer | Const
(* Open a test source file. *)
let open_test_file dir name =
try
open_out (dir ^ "/" ^ name ^ ".c")
with Sys_error str ->
failwith ("Could not create test source file " ^ name ^ ": " ^ str)
(* Emit prologue code to a test source file. *)
let emit_prologue chan test_name =
Printf.fprintf chan "/* Test the `%s' ARM Neon intrinsic. */\n" test_name;
Printf.fprintf chan "/* This file was autogenerated by neon-testgen. */\n\n";
Printf.fprintf chan "/* { dg-do assemble } */\n";
Printf.fprintf chan "/* { dg-require-effective-target arm_neon_ok } */\n";
Printf.fprintf chan "/* { dg-options \"-save-temps -O0\" } */\n";
Printf.fprintf chan "/* { dg-add-options arm_neon } */\n";
Printf.fprintf chan "\n#include \"arm_neon.h\"\n\n";
Printf.fprintf chan "void test_%s (void)\n{\n" test_name
(* Emit declarations of local variables that are going to be passed
to an intrinsic, together with one to take a returned value if needed. *)
let emit_automatics chan c_types features =
let emit () =
ignore (
List.fold_left (fun arg_number -> fun (flags, ty) ->
let pointer_bit =
if List.mem Pointer flags then "*" else ""
in
(* Const arguments to builtins are directly
written in as constants. *)
if not (List.mem Const flags) then
Printf.fprintf chan " %s %sarg%d_%s;\n"
ty pointer_bit arg_number ty;
arg_number + 1)
0 (List.tl c_types))
in
match c_types with
(_, return_ty) :: tys ->
if return_ty <> "void" then begin
(* The intrinsic returns a value. We need to do explict register
allocation for vget_low tests or they fail because of copy
elimination. *)
((if List.mem Fixed_return_reg features then
Printf.fprintf chan " register %s out_%s asm (\"d18\");\n"
return_ty return_ty
else
Printf.fprintf chan " %s out_%s;\n" return_ty return_ty);
emit ())
end else
(* The intrinsic does not return a value. *)
emit ()
| _ -> assert false
(* Emit code to call an intrinsic. *)
let emit_call chan const_valuator c_types name elt_ty =
(if snd (List.hd c_types) <> "void" then
Printf.fprintf chan " out_%s = " (snd (List.hd c_types))
else
Printf.fprintf chan " ");
Printf.fprintf chan "%s_%s (" (intrinsic_name name) (string_of_elt elt_ty);
let print_arg chan arg_number (flags, ty) =
(* If the argument is of const type, then directly write in the
constant now. *)
if List.mem Const flags then
match const_valuator with
None ->
if List.mem Pointer flags then
Printf.fprintf chan "0"
else
Printf.fprintf chan "1"
| Some f -> Printf.fprintf chan "%s" (string_of_int (f arg_number))
else
Printf.fprintf chan "arg%d_%s" arg_number ty
in
let rec print_args arg_number tys =
match tys with
[] -> ()
| [ty] -> print_arg chan arg_number ty
| ty::tys ->
print_arg chan arg_number ty;
Printf.fprintf chan ", ";
print_args (arg_number + 1) tys
in
print_args 0 (List.tl c_types);
Printf.fprintf chan ");\n"
(* Emit epilogue code to a test source file. *)
let emit_epilogue chan features regexps =
let no_op = List.exists (fun feature -> feature = No_op) features in
Printf.fprintf chan "}\n\n";
(if not no_op then
List.iter (fun regexp ->
Printf.fprintf chan
"/* { dg-final { scan-assembler \"%s\" } } */\n" regexp)
regexps
else
()
);
Printf.fprintf chan "/* { dg-final { cleanup-saved-temps } } */\n"
(* Check a list of C types to determine which ones are pointers and which
ones are const. *)
let check_types tys =
let tys' =
List.map (fun ty ->
let len = String.length ty in
if len > 2 && String.get ty (len - 2) = ' '
&& String.get ty (len - 1) = '*'
then ([Pointer], String.sub ty 0 (len - 2))
else ([], ty)) tys
in
List.map (fun (flags, ty) ->
if String.length ty > 6 && String.sub ty 0 6 = "const "
then (Const :: flags, String.sub ty 6 ((String.length ty) - 6))
else (flags, ty)) tys'
(* Given an intrinsic shape, produce a regexp that will match
the right-hand sides of instructions generated by an intrinsic of
that shape. *)
let rec analyze_shape shape =
let rec n_things n thing =
match n with
0 -> []
| n -> thing :: (n_things (n - 1) thing)
in
let rec analyze_shape_elt elt =
match elt with
Dreg -> "\\[dD\\]\\[0-9\\]+"
| Qreg -> "\\[qQ\\]\\[0-9\\]+"
| Corereg -> "\\[rR\\]\\[0-9\\]+"
| Immed -> "#\\[0-9\\]+"
| VecArray (1, elt) ->
let elt_regexp = analyze_shape_elt elt in
"((\\\\\\{" ^ elt_regexp ^ "\\\\\\})|(" ^ elt_regexp ^ "))"
| VecArray (n, elt) ->
let elt_regexp = analyze_shape_elt elt in
let alt1 = elt_regexp ^ "-" ^ elt_regexp in
let alt2 = commas (fun x -> x) (n_things n elt_regexp) "" in
"\\\\\\{((" ^ alt1 ^ ")|(" ^ alt2 ^ "))\\\\\\}"
| (PtrTo elt | CstPtrTo elt) ->
"\\\\\\[" ^ (analyze_shape_elt elt) ^ "\\(:\\[0-9\\]+\\)?\\\\\\]"
| Element_of_dreg -> (analyze_shape_elt Dreg) ^ "\\\\\\[\\[0-9\\]+\\\\\\]"
| Element_of_qreg -> (analyze_shape_elt Qreg) ^ "\\\\\\[\\[0-9\\]+\\\\\\]"
| All_elements_of_dreg -> (analyze_shape_elt Dreg) ^ "\\\\\\[\\\\\\]"
| Alternatives (elts) -> "(" ^ (String.concat "|" (List.map analyze_shape_elt elts)) ^ ")"
in
match shape with
All (n, elt) -> commas analyze_shape_elt (n_things n elt) ""
| Long -> (analyze_shape_elt Qreg) ^ ", " ^ (analyze_shape_elt Dreg) ^
", " ^ (analyze_shape_elt Dreg)
| Long_noreg elt -> (analyze_shape_elt elt) ^ ", " ^ (analyze_shape_elt elt)
| Wide -> (analyze_shape_elt Qreg) ^ ", " ^ (analyze_shape_elt Qreg) ^
", " ^ (analyze_shape_elt Dreg)
| Wide_noreg elt -> analyze_shape (Long_noreg elt)
| Narrow -> (analyze_shape_elt Dreg) ^ ", " ^ (analyze_shape_elt Qreg) ^
", " ^ (analyze_shape_elt Qreg)
| Use_operands elts -> commas analyze_shape_elt (Array.to_list elts) ""
| By_scalar Dreg ->
analyze_shape (Use_operands [| Dreg; Dreg; Element_of_dreg |])
| By_scalar Qreg ->
analyze_shape (Use_operands [| Qreg; Qreg; Element_of_dreg |])
| By_scalar _ -> assert false
| Wide_lane ->
analyze_shape (Use_operands [| Qreg; Dreg; Element_of_dreg |])
| Wide_scalar ->
analyze_shape (Use_operands [| Qreg; Dreg; Element_of_dreg |])
| Pair_result elt ->
let elt_regexp = analyze_shape_elt elt in
elt_regexp ^ ", " ^ elt_regexp
| Unary_scalar _ -> "FIXME Unary_scalar"
| Binary_imm elt -> analyze_shape (Use_operands [| elt; elt; Immed |])
| Narrow_imm -> analyze_shape (Use_operands [| Dreg; Qreg; Immed |])
| Long_imm -> analyze_shape (Use_operands [| Qreg; Dreg; Immed |])
(* Generate tests for one intrinsic. *)
let test_intrinsic dir opcode features shape name munge elt_ty =
(* Open the test source file. *)
let test_name = name ^ (string_of_elt elt_ty) in
let chan = open_test_file dir test_name in
(* Work out what argument and return types the intrinsic has. *)
let c_arity, new_elt_ty = munge shape elt_ty in
let c_types = check_types (strings_of_arity c_arity) in
(* Extract any constant valuator (a function specifying what constant
values are to be written into the intrinsic call) from the features
list. *)
let const_valuator =
try
match (List.find (fun feature -> match feature with
Const_valuator _ -> true
| _ -> false) features) with
Const_valuator f -> Some f
| _ -> assert false
with Not_found -> None
in
(* Work out what instruction name(s) to expect. *)
let insns = get_insn_names features name in
let no_suffix = (new_elt_ty = NoElts) in
let insns =
if no_suffix then insns
else List.map (fun insn ->
let suffix = string_of_elt_dots new_elt_ty in
insn ^ "\\." ^ suffix) insns
in
(* Construct a regexp to match against the expected instruction name(s). *)
let insn_regexp =
match insns with
[] -> assert false
| [insn] -> insn
| _ ->
let rec calc_regexp insns cur_regexp =
match insns with
[] -> cur_regexp
| [insn] -> cur_regexp ^ "(" ^ insn ^ "))"
| insn::insns -> calc_regexp insns (cur_regexp ^ "(" ^ insn ^ ")|")
in calc_regexp insns "("
in
(* Construct regexps to match against the instructions that this
intrinsic expands to. Watch out for any writeback character and
comments after the instruction. *)
let regexps = List.map (fun regexp -> insn_regexp ^ "\\[ \t\\]+" ^ regexp ^
"!?\\(\\[ \t\\]+@\\[a-zA-Z0-9 \\]+\\)?\\n")
(analyze_all_shapes features shape analyze_shape)
in
(* Emit file and function prologues. *)
emit_prologue chan test_name;
(* Emit local variable declarations. *)
emit_automatics chan c_types features;
Printf.fprintf chan "\n";
(* Emit the call to the intrinsic. *)
emit_call chan const_valuator c_types name elt_ty;
(* Emit the function epilogue and the DejaGNU scan-assembler directives. *)
emit_epilogue chan features regexps;
(* Close the test file. *)
close_out chan
(* Generate tests for one element of the "ops" table. *)
let test_intrinsic_group dir (opcode, features, shape, name, munge, types) =
List.iter (test_intrinsic dir opcode features shape name munge) types
(* Program entry point. *)
let _ =
let directory = if Array.length Sys.argv <> 1 then Sys.argv.(1) else "." in
List.iter (test_intrinsic_group directory) (reinterp @ ops)
Go to most recent revision | Compare with Previous | Blame | View Log