URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [mn10300/] [mn10300.md] - Rev 801
Go to most recent revision | Compare with Previous | Blame | View Log
;; GCC machine description for Matsushita MN10300
;; Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
;; 2005, 2006, 2007, 2008, 2009, 2010, 2011
;; Free Software Foundation, Inc.
;; Contributed by Jeff Law (law@cygnus.com).
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;; The original PO technology requires these to be ordered by speed,
;; so that assigner will pick the fastest.
;; See file "rtl.def" for documentation on define_insn, match_*, et. al.
(define_constants [
(PIC_REG 6)
(SP_REG 9)
(MDR_REG 50)
(CC_REG 51)
(UNSPEC_PIC 1)
(UNSPEC_GOT 2)
(UNSPEC_GOTOFF 3)
(UNSPEC_PLT 4)
(UNSPEC_GOTSYM_OFF 5)
(UNSPEC_EXT 6)
(UNSPEC_BSCH 7)
;; This is used to encode LIW patterns.
(UNSPEC_LIW 8)
;; This is for the low overhead loop instructions.
(UNSPEC_SETLB 9)
])
(include "predicates.md")
(include "constraints.md")
;; Processor type. This attribute must exactly match the processor_type
;; enumeration in mn10300.h.
(define_attr "cpu" "mn10300,am33,am33_2,am34"
(const (symbol_ref "(enum attr_cpu) mn10300_tune_cpu")))
;; Used to control the "enabled" attribute on a per-instruction basis.
(define_attr "isa" "base,am33,am33_2,am34"
(const_string "base"))
(define_attr "enabled" ""
(cond [(eq_attr "isa" "base")
(const_int 1)
(and (eq_attr "isa" "am33")
(match_test "TARGET_AM33"))
(const_int 1)
(and (eq_attr "isa" "am33_2")
(match_test "TARGET_AM33_2"))
(const_int 1)
(and (eq_attr "isa" "am34")
(match_test "TARGET_AM34"))
(const_int 1)
]
(const_int 0))
)
(define_mode_iterator INT [QI HI SI])
;; Bundling of smaller insns into a long instruction word (LIW)
(define_automaton "liw_bundling")
(automata_option "ndfa")
(define_cpu_unit "liw_op1_u,liw_op2_u" "liw_bundling")
(define_attr "liw" "op1,op2,both,either"
(const_string "both"))
;; Note: this list must match the one defined for liw_op_names[].
(define_attr "liw_op" "add,cmp,sub,mov,and,or,xor,asr,lsr,asl,none,max"
(const_string "none"))
(define_insn_reservation "liw_op1" 1
(and (ior (eq_attr "cpu" "am33")
(eq_attr "cpu" "am33_2")
(eq_attr "cpu" "am34"))
(eq_attr "liw" "op1"))
"liw_op1_u");
(define_insn_reservation "liw_op2" 1
(and (ior (eq_attr "cpu" "am33")
(eq_attr "cpu" "am33_2")
(eq_attr "cpu" "am34"))
(eq_attr "liw" "op2"))
"liw_op2_u");
(define_insn_reservation "liw_both" 1
(and (ior (eq_attr "cpu" "am33")
(eq_attr "cpu" "am33_2")
(eq_attr "cpu" "am34"))
(eq_attr "liw" "both"))
"liw_op1_u + liw_op2_u");
(define_insn_reservation "liw_either" 1
(and (ior (eq_attr "cpu" "am33")
(eq_attr "cpu" "am33_2")
(eq_attr "cpu" "am34"))
(eq_attr "liw" "either"))
"liw_op1_u | liw_op2_u");
;; ----------------------------------------------------------------------
;; Pipeline description.
;; ----------------------------------------------------------------------
;; The AM33 only has a single pipeline. It has five stages (fetch,
;; decode, execute, memory access, writeback) each of which normally
;; takes a single CPU clock cycle.
;; The timings attribute consists of two numbers, the first is the
;; throughput, which is the number of cycles the instruction takes
;; to execute and generate a result. The second is the latency
;; which is the effective number of cycles the instruction takes to
;; execute if its result is used by the following instruction. The
;; latency is always greater than or equal to the throughput.
;; These values were taken from the Appendix of the "MN103E Series
;; Instruction Manual" and the timings for the AM34.
;; Note - it would be nice to use strings rather than integers for
;; the possible values of this attribute, so that we can have the
;; gcc build mechanism check for values that are not supported by
;; the reservations below. But this will not work because the code
;; in mn10300_adjust_sched_cost() needs integers not strings.
(define_attr "timings" "" (const_int 11))
(define_automaton "pipelining")
(define_cpu_unit "throughput" "pipelining")
(define_insn_reservation "throughput__1_latency__1" 1
(eq_attr "timings" "11") "throughput")
(define_insn_reservation "throughput__1_latency__2" 2
(eq_attr "timings" "12") "throughput,nothing")
(define_insn_reservation "throughput__1_latency__3" 3
(eq_attr "timings" "13") "throughput,nothing*2")
(define_insn_reservation "throughput__1_latency__4" 4
(eq_attr "timings" "14") "throughput,nothing*3")
(define_insn_reservation "throughput__2_latency__2" 2
(eq_attr "timings" "22") "throughput*2")
(define_insn_reservation "throughput__2_latency__3" 3
(eq_attr "timings" "23") "throughput*2,nothing")
(define_insn_reservation "throughput__2_latency__4" 4
(eq_attr "timings" "24") "throughput*2,nothing*2")
(define_insn_reservation "throughput__2_latency__5" 5
(eq_attr "timings" "25") "throughput*2,nothing*3")
(define_insn_reservation "throughput__3_latency__3" 3
(eq_attr "timings" "33") "throughput*3")
(define_insn_reservation "throughput__3_latency__7" 7
(eq_attr "timings" "37") "throughput*3,nothing*4")
(define_insn_reservation "throughput__4_latency__4" 4
(eq_attr "timings" "44") "throughput*4")
(define_insn_reservation "throughput__4_latency__7" 7
(eq_attr "timings" "47") "throughput*4,nothing*3")
(define_insn_reservation "throughput__4_latency__8" 8
(eq_attr "timings" "48") "throughput*4,nothing*4")
(define_insn_reservation "throughput__5_latency__5" 5
(eq_attr "timings" "55") "throughput*5")
(define_insn_reservation "throughput__6_latency__6" 6
(eq_attr "timings" "66") "throughput*6")
(define_insn_reservation "throughput__7_latency__7" 7
(eq_attr "timings" "77") "throughput*7")
(define_insn_reservation "throughput__7_latency__8" 8
(eq_attr "timings" "78") "throughput*7,nothing")
(define_insn_reservation "throughput__8_latency__8" 8
(eq_attr "timings" "88") "throughput*8")
(define_insn_reservation "throughput__9_latency__9" 9
(eq_attr "timings" "99") "throughput*9")
(define_insn_reservation "throughput__8_latency_14" 14
(eq_attr "timings" "814") "throughput*8,nothing*6")
(define_insn_reservation "throughput__9_latency_10" 10
(eq_attr "timings" "910") "throughput*9,nothing")
(define_insn_reservation "throughput_10_latency_10" 10
(eq_attr "timings" "1010") "throughput*10")
(define_insn_reservation "throughput_12_latency_16" 16
(eq_attr "timings" "1216") "throughput*12,nothing*4")
(define_insn_reservation "throughput_13_latency_13" 13
(eq_attr "timings" "1313") "throughput*13")
(define_insn_reservation "throughput_14_latency_14" 14
(eq_attr "timings" "1414") "throughput*14")
(define_insn_reservation "throughput_13_latency_17" 17
(eq_attr "timings" "1317") "throughput*13,nothing*4")
(define_insn_reservation "throughput_23_latency_27" 27
(eq_attr "timings" "2327") "throughput*23,nothing*4")
(define_insn_reservation "throughput_25_latency_31" 31
(eq_attr "timings" "2531") "throughput*25,nothing*6")
(define_insn_reservation "throughput_38_latency_39" 39
(eq_attr "timings" "3839") "throughput*38,nothing")
(define_insn_reservation "throughput_39_latency_40" 40
(eq_attr "timings" "3940") "throughput*39,nothing")
(define_insn_reservation "throughput_40_latency_40" 40
(eq_attr "timings" "4040") "throughput*40")
(define_insn_reservation "throughput_41_latency_42" 42
(eq_attr "timings" "4142") "throughput*41,nothing")
(define_insn_reservation "throughput_42_latency_43" 44
(eq_attr "timings" "4243") "throughput*42,nothing")
(define_insn_reservation "throughput_43_latency_44" 44
(eq_attr "timings" "4344") "throughput*43,nothing")
(define_insn_reservation "throughput_45_latency_46" 46
(eq_attr "timings" "4546") "throughput*45,nothing")
(define_insn_reservation "throughput_47_latency_53" 53
(eq_attr "timings" "4753") "throughput*47,nothing*6")
;; Note - the conflict between memory load/store instructions
;; and floating point instructions described in section 1-7-4
;; of Chapter 3 of the MN103E Series Instruction Manual is
;; handled by the mn10300_adjust_sched_cost function.
;; ----------------------------------------------------------------------
;; MOVE INSTRUCTIONS
;; ----------------------------------------------------------------------
;; movqi
(define_expand "movqi"
[(set (match_operand:QI 0 "nonimmediate_operand")
(match_operand:QI 1 "general_operand"))]
""
{
/* One of the ops has to be in a register. */
if (!register_operand (operand0, QImode)
&& !register_operand (operand1, QImode))
operands[1] = force_reg (QImode, operand1);
})
(define_insn "*movqi_internal"
[(set (match_operand:QI 0 "nonimmediate_operand" "=*r,D*r,D*r,D,m,*z,d")
(match_operand:QI 1 "general_operand" " 0,D*r, i,m,D,d,*z"))]
"(register_operand (operands[0], QImode)
|| register_operand (operands[1], QImode))"
{
switch (which_alternative)
{
case 0:
return "";
case 1:
case 2:
case 5:
case 6:
return "mov %1,%0";
case 3:
case 4:
return "movbu %1,%0";
default:
gcc_unreachable ();
}
}
[(set_attr_alternative "timings"
[(const_int 11)
(const_int 11)
(const_int 11)
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 24))
(if_then_else (eq_attr "cpu" "am34")
(const_int 11) (const_int 22))
(const_int 11)
(const_int 11)
])]
)
;; movhi
(define_expand "movhi"
[(set (match_operand:HI 0 "nonimmediate_operand")
(match_operand:HI 1 "general_operand"))]
""
{
/* One of the ops has to be in a register. */
if (!register_operand (operand1, HImode)
&& !register_operand (operand0, HImode))
operands[1] = force_reg (HImode, operand1);
})
(define_insn "*movhi_internal"
[(set (match_operand:HI 0 "nonimmediate_operand" "=*r,D*r,D*r,D,m,*z,d")
(match_operand:HI 1 "general_operand" " 0, i,D*r,m,D,d,*z"))]
"(register_operand (operands[0], HImode)
|| register_operand (operands[1], HImode))"
{
switch (which_alternative)
{
case 0:
return "";
case 1:
/* Note that "MOV imm8,An" is already zero-extending, and is 2 bytes.
We have "MOV imm16,Dn" at 3 bytes. The only win for the 4 byte
movu is for an 8-bit unsigned move into Rn. */
if (TARGET_AM33
&& CONST_INT_P (operands[1])
&& IN_RANGE (INTVAL (operands[1]), 0x80, 0xff)
&& REGNO_EXTENDED_P (REGNO (operands[0]), 1))
return "movu %1,%0";
/* FALLTHRU */
case 5:
case 6:
case 2:
return "mov %1,%0";
case 3:
case 4:
return "movhu %1,%0";
default:
gcc_unreachable ();
}
}
[(set_attr_alternative "timings"
[(const_int 11)
(const_int 11)
(if_then_else (eq_attr "cpu" "am34")
(const_int 11) (const_int 22))
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 24))
(if_then_else (eq_attr "cpu" "am34")
(const_int 11) (const_int 22))
(if_then_else (eq_attr "cpu" "am34")
(const_int 11) (const_int 22))
(if_then_else (eq_attr "cpu" "am34")
(const_int 11) (const_int 22))
])]
)
;; movsi and helpers
;; We use this to handle addition of two values when one operand is the
;; stack pointer and the other is a memory reference of some kind. Reload
;; does not handle them correctly without this expander.
(define_expand "reload_plus_sp_const"
[(set (match_operand:SI 0 "register_operand" "=r")
(match_operand:SI 1 "impossible_plus_operand" ""))
(clobber (match_operand:SI 2 "register_operand" "=&A"))]
""
{
rtx dest, scratch, other;
dest = operands[0];
scratch = operands[2];
other = XEXP (operands[1], 1);
if (other == stack_pointer_rtx)
other = XEXP (operands[1], 0);
if (true_regnum (other) == true_regnum (dest))
{
gcc_assert (true_regnum (scratch) != true_regnum (dest));
emit_move_insn (scratch, stack_pointer_rtx);
emit_insn (gen_addsi3 (dest, dest, scratch));
}
else if (TARGET_AM33 || REGNO_REG_CLASS (true_regnum (dest)) == ADDRESS_REGS)
{
emit_move_insn (dest, stack_pointer_rtx);
if (other == stack_pointer_rtx)
emit_insn (gen_addsi3 (dest, dest, dest));
else if (other != const0_rtx)
emit_insn (gen_addsi3 (dest, dest, other));
}
else
{
emit_move_insn (scratch, stack_pointer_rtx);
if (other == stack_pointer_rtx)
{
emit_move_insn (dest, scratch);
emit_insn (gen_addsi3 (dest, dest, dest));
}
else if (other != const0_rtx)
{
emit_move_insn (dest, other);
emit_insn (gen_addsi3 (dest, dest, scratch));
}
else
emit_move_insn (dest, scratch);
}
DONE;
})
(define_expand "movsi"
[(set (match_operand:SI 0 "nonimmediate_operand")
(match_operand:SI 1 "general_operand"))]
""
{
/* One of the ops has to be in a register. */
if (!register_operand (operand1, SImode)
&& !register_operand (operand0, SImode))
operands[1] = force_reg (SImode, operand1);
if (flag_pic)
{
rtx temp;
if (SYMBOLIC_CONST_P (operands[1]))
{
if (MEM_P (operands[0]))
operands[1] = force_reg (Pmode, operands[1]);
else
{
temp = (!can_create_pseudo_p ()
? operands[0]
: gen_reg_rtx (Pmode));
operands[1] = mn10300_legitimize_pic_address (operands[1], temp);
}
}
else if (GET_CODE (operands[1]) == CONST
&& GET_CODE (XEXP (operands[1], 0)) == PLUS
&& SYMBOLIC_CONST_P (XEXP (XEXP (operands[1], 0), 0)))
{
temp = !can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
temp = mn10300_legitimize_pic_address (XEXP (XEXP (operands[1], 0), 0),
temp);
operands[1] = expand_binop (SImode, add_optab, temp,
XEXP (XEXP (operands[1], 0), 1),
(!can_create_pseudo_p ()
? temp
: gen_reg_rtx (Pmode)),
0, OPTAB_LIB_WIDEN);
}
}
})
(define_insn "*movsi_internal"
[(set (match_operand:SI 0 "nonimmediate_operand"
"=r,r,r,r,m,r, A,*y,*y,*z,*d")
(match_operand:SI 1 "general_operand"
" 0,O,i,r,r,m,*y, A, i,*d,*z"))]
"register_operand (operands[0], SImode)
|| register_operand (operands[1], SImode)"
{
switch (which_alternative)
{
case 0:
return "";
case 1: /* imm-reg. */
case 2:
/* See movhi for a discussion of sizes for 8-bit movu. Note that the
24-bit movu is 6 bytes, which is the same size as the full 32-bit
mov form for An and Dn. So again movu is only a win for Rn. */
if (TARGET_AM33
&& CONST_INT_P (operands[1])
&& REGNO_EXTENDED_P (REGNO (operands[0]), 1))
{
HOST_WIDE_INT val = INTVAL (operands[1]);
if (IN_RANGE (val, 0x80, 0xff)
|| IN_RANGE (val, 0x800000, 0xffffff))
return "movu %1,%0";
}
/* FALLTHRU */
case 3: /* reg-reg */
case 4: /* reg-mem */
case 5: /* mem-reg */
case 6: /* sp-reg */
case 7: /* reg-sp */
case 8: /* imm-sp */
case 9: /* reg-mdr */
case 10: /* mdr-reg */
return "mov %1,%0";
default:
gcc_unreachable ();
}
}
[(set_attr "isa" "*,*,*,*,*,*,*,*,am33,*,*")
(set_attr "liw" "*,either,*,either,*,*,*,*,*,*,*")
(set_attr "liw_op" "mov")
(set_attr_alternative "timings"
[(const_int 11)
(const_int 22)
(const_int 22)
(const_int 11)
(if_then_else (eq_attr "cpu" "am34")
(const_int 11) (const_int 22))
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 24))
(if_then_else (eq_attr "cpu" "am34")
(const_int 11) (const_int 22))
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 24))
(const_int 11)
(const_int 11)
(const_int 11)
])]
)
(define_expand "movsf"
[(set (match_operand:SF 0 "nonimmediate_operand")
(match_operand:SF 1 "general_operand"))]
"TARGET_AM33_2"
{
/* One of the ops has to be in a register. */
if (!register_operand (operand1, SFmode)
&& !register_operand (operand0, SFmode))
operands[1] = force_reg (SFmode, operand1);
})
(define_insn "*movsf_internal"
[(set (match_operand:SF 0 "nonimmediate_operand" "=rf,r,f,r,f,r,f,r,m,f,Q,z,d")
(match_operand:SF 1 "general_operand" " 0,F,F,r,f,f,r,m,r,Q,f,d,z"))]
"TARGET_AM33_2
&& (register_operand (operands[0], SFmode)
|| register_operand (operands[1], SFmode))"
{
switch (which_alternative)
{
case 0:
return "";
case 1:
case 3:
case 7:
case 8:
case 11:
case 12:
return "mov %1,%0";
case 2:
case 4:
case 5:
case 6:
case 9:
case 10:
return "fmov %1,%0";
default:
gcc_unreachable ();
}
}
[(set_attr_alternative "timings"
[(const_int 11)
(const_int 22)
(if_then_else (eq_attr "cpu" "am34")
(const_int 47) (const_int 25))
(const_int 11)
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 14))
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 12))
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 14))
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 24))
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 24))
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 24))
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 24))
(const_int 22)
(const_int 22)
])]
)
;; If the flags register is not live, generate CLR instead of MOV 0.
;; For MN103, this is only legal for DATA_REGS; for AM33 this is legal
;; but not a win for ADDRESS_REGS.
(define_peephole2
[(set (match_operand:INT 0 "register_operand" "") (const_int 0))]
"peep2_regno_dead_p (0, CC_REG)
&& (REGNO_DATA_P (REGNO (operands[0]), 1)
|| REGNO_EXTENDED_P (REGNO (operands[0]), 1))"
[(parallel [(set (match_dup 0) (const_int 0))
(clobber (reg:CC CC_REG))])]
)
(define_insn "*mov<mode>_clr"
[(set (match_operand:INT 0 "register_operand" "=D")
(const_int 0))
(clobber (reg:CC CC_REG))]
""
"clr %0"
)
;; ----------------------------------------------------------------------
;; ADD INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,!*y,!r")
(plus:SI (match_operand:SI 1 "register_operand" "%0,0,0, 0, r")
(match_operand:SI 2 "nonmemory_operand" "r,O,i, i, r")))
(clobber (reg:CC CC_REG))]
""
{ return mn10300_output_add (operands, false); }
[(set_attr "timings" "11,11,11,11,22")
(set_attr "liw" "either,either,*,*,*")
(set_attr "liw_op" "add")]
)
;; Note that ADD IMM,SP does not set the flags, so omit that here.
(define_insn "*addsi3_flags"
[(set (match_operand:SI 0 "register_operand" "=r,!r")
(plus:SI (match_operand:SI 1 "register_operand" "%0, r")
(match_operand:SI 2 "nonmemory_operand" "ri, r")))
(set (reg CC_REG)
(compare (plus:SI (match_dup 1) (match_dup 2))
(const_int 0)))]
"reload_completed && mn10300_match_ccmode (insn, CCZNCmode)"
{ return mn10300_output_add (operands, true); }
[(set_attr "timings" "11,22")]
)
;; A helper to expand the above, with the CC_MODE filled in.
(define_expand "addsi3_flags"
[(parallel [(set (match_operand:SI 0 "register_operand")
(plus:SI (match_operand:SI 1 "register_operand")
(match_operand:SI 2 "nonmemory_operand")))
(set (reg:CCZNC CC_REG)
(compare:CCZNC (plus:SI (match_dup 1) (match_dup 2))
(const_int 0)))])]
""
)
(define_insn "addc_internal"
[(set (match_operand:SI 0 "register_operand" "=D,r,r")
(plus:SI
(plus:SI
(ltu:SI (reg:CC CC_REG) (const_int 0))
(match_operand:SI 1 "register_operand" "%0,0,r"))
(match_operand:SI 2 "reg_or_am33_const_operand" " D,i,r")))
(clobber (reg:CC CC_REG))]
"reload_completed"
"@
addc %2,%0
addc %2,%0
addc %2,%1,%0"
[(set_attr "isa" "*,am33,am33")]
)
(define_expand "adddi3"
[(set (match_operand:DI 0 "register_operand" "")
(plus:DI (match_operand:DI 1 "register_operand" "")
(match_operand:DI 2 "nonmemory_operand" "")))]
""
{
rtx op0l, op0h, op1l, op1h, op2l, op2h;
op0l = gen_lowpart (SImode, operands[0]);
op1l = gen_lowpart (SImode, operands[1]);
op2l = gen_lowpart (SImode, operands[2]);
op0h = gen_highpart (SImode, operands[0]);
op1h = gen_highpart (SImode, operands[1]);
op2h = gen_highpart_mode (SImode, DImode, operands[2]);
if (!reg_or_am33_const_operand (op2h, SImode))
op2h = force_reg (SImode, op2h);
emit_insn (gen_adddi3_internal (op0l, op0h, op1l, op2l, op1h, op2h));
DONE;
})
;; Note that reload only supports one commutative operand. Thus we cannot
;; auto-swap both the high and low outputs with their matching constraints.
;; For MN103, we're strapped for registers but thankfully the alternatives
;; are few. For AM33, it becomes much easier to not represent the early
;; clobber and 6 permutations of immediate and three-operand adds, but
;; instead allocate a scratch register and do the expansion by hand.
(define_insn_and_split "adddi3_internal"
[(set (match_operand:SI 0 "register_operand" "=r, r, r")
(plus:SI (match_operand:SI 2 "register_operand" "%0, 0, r")
(match_operand:SI 3 "nonmemory_operand" "ri,ri,ri")))
(set (match_operand:SI 1 "register_operand" "=D, D, r")
(plus:SI
(plus:SI
(ltu:SI (plus:SI (match_dup 2) (match_dup 3)) (match_dup 2))
(match_operand:SI 4 "register_operand" " 1, D, r"))
(match_operand:SI 5 "reg_or_am33_const_operand" " D, 1,ri")))
(clobber (match_scratch:SI 6 "=X, X,&r"))
(clobber (reg:CC CC_REG))]
""
"#"
"reload_completed"
[(const_int 0)]
{
rtx op0l = operands[0];
rtx op0h = operands[1];
rtx op1l = operands[2];
rtx op2l = operands[3];
rtx op1h = operands[4];
rtx op2h = operands[5];
rtx scratch = operands[6];
rtx x;
if (reg_overlap_mentioned_p (op0l, op1h))
{
emit_move_insn (scratch, op0l);
op1h = scratch;
if (reg_overlap_mentioned_p (op0l, op2h))
op2h = scratch;
}
else if (reg_overlap_mentioned_p (op0l, op2h))
{
emit_move_insn (scratch, op0l);
op2h = scratch;
}
if (rtx_equal_p (op0l, op1l))
;
else if (rtx_equal_p (op0l, op2l))
x = op1l, op1l = op2l, op2l = x;
else
{
gcc_assert (TARGET_AM33);
if (!REG_P (op2l))
{
emit_move_insn (op0l, op2l);
op2l = op1l;
op1l = op0l;
}
}
emit_insn (gen_addsi3_flags (op0l, op1l, op2l));
if (rtx_equal_p (op0h, op1h))
;
else if (rtx_equal_p (op0h, op2h))
x = op1h, op1h = op2h, op2h = x;
else
{
gcc_assert (TARGET_AM33);
if (!REG_P (op2h))
{
emit_move_insn (op0h, op2h);
op2h = op1h;
op1h = op0h;
}
}
emit_insn (gen_addc_internal (op0h, op1h, op2h));
DONE;
}
[(set_attr "isa" "*,*,am33")]
)
;; The following pattern is generated by combine when it proves that one
;; of the inputs to the low-part of the double-word add is zero, and thus
;; no carry is generated into the high-part.
(define_insn_and_split "*adddi3_degenerate"
[(set (match_operand:SI 0 "register_operand" "=&r,&r")
(match_operand:SI 2 "nonmemory_operand" " 0, 0"))
(set (match_operand:SI 1 "register_operand" "=r , r")
(plus:SI (match_operand:SI 3 "register_operand" "%1 , r")
(match_operand:SI 4 "nonmemory_operand" "ri, r")))
(clobber (reg:CC CC_REG))]
""
"#"
""
[(const_int 0)]
{
rtx scratch = NULL_RTX;
if (!rtx_equal_p (operands[0], operands[2]))
{
gcc_assert (!reg_overlap_mentioned_p (operands[0], operands[1]));
if (reg_overlap_mentioned_p (operands[0], operands[3])
|| reg_overlap_mentioned_p (operands[0], operands[4]))
{
scratch = gen_reg_rtx (SImode);
emit_move_insn (scratch, operands[2]);
}
else
emit_move_insn (operands[0], operands[2]);
}
emit_insn (gen_addsi3 (operands[1], operands[3], operands[4]));
if (scratch)
emit_move_insn (operands[0], scratch);
DONE;
})
;; ----------------------------------------------------------------------
;; SUBTRACT INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
(minus:SI (match_operand:SI 1 "register_operand" "0,0,0,r")
(match_operand:SI 2 "nonmemory_operand" "r,O,i,r")))
(clobber (reg:CC CC_REG))]
""
"@
sub %2,%0
sub %2,%0
sub %2,%0
sub %2,%1,%0"
[(set_attr "isa" "*,*,*,am33")
(set_attr "liw" "either,either,*,*")
(set_attr "liw_op" "sub")
(set_attr "timings" "11,11,11,22")]
)
(define_insn "*subsi3_flags"
[(set (match_operand:SI 0 "register_operand" "=r, r")
(minus:SI (match_operand:SI 1 "register_operand" "0, r")
(match_operand:SI 2 "nonmemory_operand" "ri,r")))
(set (reg CC_REG)
(compare (minus:SI (match_dup 1) (match_dup 2))
(const_int 0)))]
"reload_completed && mn10300_match_ccmode (insn, CCZNCmode)"
"@
sub %2,%0
sub %2,%1,%0"
[(set_attr "isa" "*,am33")
(set_attr "timings" "11,22")]
)
;; A helper to expand the above, with the CC_MODE filled in.
(define_expand "subsi3_flags"
[(parallel [(set (match_operand:SI 0 "register_operand")
(minus:SI (match_operand:SI 1 "register_operand")
(match_operand:SI 2 "nonmemory_operand")))
(set (reg:CCZNC CC_REG)
(compare:CCZNC (minus:SI (match_dup 1) (match_dup 2))
(const_int 0)))])]
""
)
(define_insn "subc_internal"
[(set (match_operand:SI 0 "register_operand" "=D,r,r")
(minus:SI
(minus:SI (match_operand:SI 1 "register_operand" " 0,0,r")
(match_operand:SI 2 "reg_or_am33_const_operand" " D,i,r"))
(geu:SI (reg:CC CC_REG) (const_int 0))))
(clobber (reg:CC CC_REG))]
"reload_completed"
"@
subc %2,%0
subc %2,%0
subc %2,%1,%0"
[(set_attr "isa" "*,am33,am33")]
)
(define_expand "subdi3"
[(set (match_operand:DI 0 "register_operand" "")
(minus:DI (match_operand:DI 1 "register_operand" "")
(match_operand:DI 2 "nonmemory_operand" "")))]
""
{
rtx op0l, op0h, op1l, op1h, op2l, op2h;
op0l = gen_lowpart (SImode, operands[0]);
op1l = gen_lowpart (SImode, operands[1]);
op2l = gen_lowpart (SImode, operands[2]);
op0h = gen_highpart (SImode, operands[0]);
op1h = gen_highpart (SImode, operands[1]);
op2h = gen_highpart_mode (SImode, DImode, operands[2]);
if (!reg_or_am33_const_operand (op2h, SImode))
op2h = force_reg (SImode, op2h);
emit_insn (gen_subdi3_internal (op0l, op0h, op1l, op1h, op2l, op2h));
DONE;
})
;; As with adddi3, the use of the scratch register helps reduce the
;; number of permutations for AM33.
;; ??? The early clobber on op0 avoids a reload bug wherein both output
;; registers are set the same. Consider negate, where both op2 and op3
;; are 0, are csed to the same input register, and reload fails to undo
;; the cse when satisfying the matching constraints.
(define_insn_and_split "subdi3_internal"
[(set (match_operand:SI 0 "register_operand" "=&r, r")
(minus:SI
(match_operand:SI 2 "register_operand" " 0, r")
(match_operand:SI 4 "nonmemory_operand" " ri,ri")))
(set (match_operand:SI 1 "register_operand" "=D , r")
(minus:SI
(minus:SI
(match_operand:SI 3 "register_operand" " 1, r")
(match_operand:SI 5 "reg_or_am33_const_operand" " D,ri"))
(ltu:SI (match_dup 2) (match_dup 4))))
(clobber (match_scratch:SI 6 "=X ,&r"))
(clobber (reg:CC CC_REG))]
""
"#"
"reload_completed"
[(const_int 0)]
{
rtx op0l = operands[0];
rtx op0h = operands[1];
rtx op1l = operands[2];
rtx op1h = operands[3];
rtx op2l = operands[4];
rtx op2h = operands[5];
rtx scratch = operands[6];
if (reg_overlap_mentioned_p (op0l, op1h))
{
emit_move_insn (scratch, op0l);
op1h = scratch;
if (reg_overlap_mentioned_p (op0l, op2h))
op2h = scratch;
}
else if (reg_overlap_mentioned_p (op0l, op2h))
{
emit_move_insn (scratch, op0l);
op2h = scratch;
}
if (!rtx_equal_p (op0l, op1l))
{
gcc_assert (TARGET_AM33);
if (!REG_P (op2l))
{
emit_move_insn (op0l, op1l);
op1l = op0l;
}
}
emit_insn (gen_subsi3_flags (op0l, op1l, op2l));
if (!rtx_equal_p (op0h, op1h))
{
gcc_assert (TARGET_AM33);
if (!REG_P (op2h))
{
emit_move_insn (op0h, op1h);
op1h = op0h;
}
}
emit_insn (gen_subc_internal (op0h, op1h, op2h));
DONE;
}
[(set_attr "isa" "*,am33")]
)
;; The following pattern is generated by combine when it proves that one
;; of the inputs to the low-part of the double-word sub is zero, and thus
;; no carry is generated into the high-part.
(define_insn_and_split "*subdi3_degenerate"
[(set (match_operand:SI 0 "register_operand" "=&r,&r")
(match_operand:SI 2 "nonmemory_operand" " 0, 0"))
(set (match_operand:SI 1 "register_operand" "=r , r")
(minus:SI (match_operand:SI 3 "register_operand" " 1, r")
(match_operand:SI 4 "nonmemory_operand" " ri, r")))
(clobber (reg:CC CC_REG))]
""
"#"
""
[(const_int 0)]
{
rtx scratch = NULL_RTX;
if (!rtx_equal_p (operands[0], operands[2]))
{
gcc_assert (!reg_overlap_mentioned_p (operands[0], operands[1]));
if (reg_overlap_mentioned_p (operands[0], operands[3])
|| reg_overlap_mentioned_p (operands[0], operands[4]))
{
scratch = gen_reg_rtx (SImode);
emit_move_insn (scratch, operands[2]);
}
else
emit_move_insn (operands[0], operands[2]);
}
emit_insn (gen_subsi3 (operands[1], operands[3], operands[4]));
if (scratch)
emit_move_insn (operands[0], scratch);
DONE;
})
(define_insn_and_split "negsi2"
[(set (match_operand:SI 0 "register_operand" "=D,&r")
(neg:SI (match_operand:SI 1 "register_operand" " 0, r")))
(clobber (reg:CC CC_REG))]
""
"#"
"&& reload_completed"
[(const_int 0)]
{
/* Recall that twos-compliment is ones-compliment plus one. When
allocated in DATA_REGS this is 2+1 bytes; otherwise (for am33)
this is 3+3 bytes.
For AM33, it would have been possible to load zero and use the
three-address subtract to have a total size of 3+4*N bytes for
multiple negations, plus increased throughput. Not attempted here. */
if (true_regnum (operands[0]) == true_regnum (operands[1]))
{
emit_insn (gen_one_cmplsi2 (operands[0], operands[0]));
emit_insn (gen_addsi3 (operands[0], operands[0], const1_rtx));
}
else
{
emit_move_insn (operands[0], const0_rtx);
emit_insn (gen_subsi3 (operands[0], operands[0], operands[1]));
}
DONE;
})
;; ----------------------------------------------------------------------
;; MULTIPLY INSTRUCTIONS
;; ----------------------------------------------------------------------
;; ??? Note that AM33 has a third multiply variant that puts the high part
;; into the MDRQ register, however this variant also constrains the inputs
;; to be in DATA_REGS and thus isn't as helpful as it might be considering
;; the existance of the 4-operand multiply. Nor is there a set of divide
;; insns that use MDRQ. Given that there is an IMM->MDRQ insn, this would
;; have been very handy for starting udivmodsi4...
(define_expand "mulsidi3"
[(set (match_operand:DI 0 "register_operand" "")
(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" ""))
(sign_extend:DI (match_operand:SI 2 "register_operand" ""))))]
""
{
emit_insn (gen_mulsidi3_internal (gen_lowpart (SImode, operands[0]),
gen_highpart (SImode, operands[0]),
operands[1], operands[2]));
DONE;
})
(define_insn "mulsidi3_internal"
[(set (match_operand:SI 0 "register_operand" "=D,r")
(mult:SI (match_operand:SI 2 "register_operand" "%0,r")
(match_operand:SI 3 "register_operand" " D,r")))
(set (match_operand:SI 1 "register_operand" "=z,r")
(truncate:SI
(ashiftrt:DI
(mult:DI (sign_extend:DI (match_dup 2))
(sign_extend:DI (match_dup 3)))
(const_int 32))))
(clobber (reg:CC CC_REG))]
""
{
if (which_alternative == 1)
return "mul %2,%3,%1,%0";
else if (TARGET_MULT_BUG)
return "nop\;nop\;mul %3,%0";
else
return "mul %3,%0";
}
[(set_attr "isa" "*,am33")
(set (attr "timings")
(if_then_else (eq_attr "cpu" "am34") (const_int 24) (const_int 23)))]
)
(define_expand "umulsidi3"
[(set (match_operand:DI 0 "register_operand" "")
(mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" ""))
(zero_extend:DI (match_operand:SI 2 "register_operand" ""))))
(clobber (reg:CC CC_REG))]
""
{
emit_insn (gen_umulsidi3_internal (gen_lowpart (SImode, operands[0]),
gen_highpart (SImode, operands[0]),
operands[1], operands[2]));
DONE;
})
(define_insn "umulsidi3_internal"
[(set (match_operand:SI 0 "register_operand" "=D,r")
(mult:SI (match_operand:SI 2 "register_operand" "%0,r")
(match_operand:SI 3 "register_operand" " D,r")))
(set (match_operand:SI 1 "register_operand" "=z,r")
(truncate:SI
(lshiftrt:DI
(mult:DI (zero_extend:DI (match_dup 2))
(zero_extend:DI (match_dup 3)))
(const_int 32))))
(clobber (reg:CC CC_REG))]
""
{
if (which_alternative == 1)
return "mulu %2,%3,%1,%0";
else if (TARGET_MULT_BUG)
return "nop\;nop\;mulu %3,%0";
else
return "mulu %3,%0";
}
[(set_attr "isa" "*,am33")
(set (attr "timings")
(if_then_else (eq_attr "cpu" "am34") (const_int 24) (const_int 23)))]
)
(define_expand "mulsi3"
[(parallel [(set (match_operand:SI 0 "register_operand")
(mult:SI (match_operand:SI 1 "register_operand")
(match_operand:SI 2 "reg_or_am33_const_operand")))
(clobber (match_scratch:SI 3))
(clobber (reg:CC CC_REG))])]
""
)
(define_insn "*mulsi3"
[(set (match_operand:SI 0 "register_operand" "=D, r,r")
(mult:SI (match_operand:SI 2 "register_operand" "%0, 0,r")
(match_operand:SI 3 "reg_or_am33_const_operand" " D,ri,r")))
(clobber (match_scratch:SI 1 "=z, z,r"))
(clobber (reg:CC CC_REG))]
""
{
if (which_alternative == 2)
return "mul %2,%3,%1,%0";
else if (TARGET_MULT_BUG)
return "nop\;nop\;mul %3,%0";
else
return "mul %3,%0";
}
[(set_attr "isa" "*,am33,am33")
(set (attr "timings")
(if_then_else (eq_attr "cpu" "am34") (const_int 24) (const_int 23)))]
)
(define_expand "udivmodsi4"
[(parallel [(set (match_operand:SI 0 "register_operand")
(udiv:SI (match_operand:SI 1 "register_operand")
(match_operand:SI 2 "register_operand")))
(set (match_operand:SI 3 "register_operand")
(umod:SI (match_dup 1) (match_dup 2)))
(use (const_int 0))
(clobber (reg:CC CC_REG))])]
""
)
;; Note the trick to get reload to put the zero into the MDR register,
;; rather than exposing the load early and letting CSE or someone try
;; to share the zeros between division insns. Which tends to result
;; in sequences like 0->r0->d0->mdr.
(define_insn "*udivmodsi4"
[(set (match_operand:SI 0 "register_operand" "=D")
(udiv:SI (match_operand:SI 2 "register_operand" " 0")
(match_operand:SI 3 "register_operand" " D")))
(set (match_operand:SI 1 "register_operand" "=z")
(umod:SI (match_dup 2) (match_dup 3)))
(use (match_operand:SI 4 "nonmemory_operand" " 1"))
(clobber (reg:CC CC_REG))]
""
"divu %3,%0"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 3839) (const_int 4243)))]
)
(define_expand "divmodsi4"
[(parallel [(set (match_operand:SI 0 "register_operand" "")
(div:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")))
(set (match_operand:SI 3 "register_operand" "")
(mod:SI (match_dup 1) (match_dup 2)))
(use (match_dup 4))
(clobber (reg:CC CC_REG))])]
""
{
operands[4] = gen_reg_rtx (SImode);
emit_insn (gen_ext_internal (operands[4], operands[1]));
})
;; ??? Ideally we'd represent this via shift, but it seems like adding a
;; special-case pattern for (ashiftrt x 31) is just as likely to result
;; in poor register allocation choices.
(define_insn "ext_internal"
[(set (match_operand:SI 0 "register_operand" "=z")
(unspec:SI [(match_operand:SI 1 "register_operand" "D")] UNSPEC_EXT))]
""
"ext %1"
)
(define_insn "*divmodsi4"
[(set (match_operand:SI 0 "register_operand" "=D")
(div:SI (match_operand:SI 2 "register_operand" " 0")
(match_operand:SI 3 "register_operand" " D")))
(set (match_operand:SI 1 "register_operand" "=z")
(mod:SI (match_dup 2) (match_dup 3)))
(use (match_operand:SI 4 "register_operand" " 1"))
(clobber (reg:CC CC_REG))]
""
"div %3,%0";
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 3839) (const_int 4243)))]
)
;; ----------------------------------------------------------------------
;; AND INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "andsi3"
[(set (match_operand:SI 0 "register_operand" "=D,D,r")
(and:SI (match_operand:SI 1 "register_operand" "%0,0,r")
(match_operand:SI 2 "nonmemory_operand" " i,D,r")))
(clobber (reg:CC CC_REG))]
""
"@
and %2,%0
and %2,%0
and %2,%1,%0"
[(set_attr "isa" "*,*,am33")
(set_attr "liw" "*,op1,*")
(set_attr "liw_op" "and")
(set_attr "timings" "22,11,11")]
)
(define_insn "*andsi3_flags"
[(set (match_operand:SI 0 "register_operand" "=D,D,r")
(and:SI (match_operand:SI 1 "register_operand" "%0,0,r")
(match_operand:SI 2 "nonmemory_operand" " i,D,r")))
(set (reg CC_REG)
(compare (and:SI (match_dup 1) (match_dup 2))
(const_int 0)))]
"reload_completed && mn10300_match_ccmode (insn, CCZNmode)"
"@
and %2,%0
and %2,%0
and %2,%1,%0"
[(set_attr "isa" "*,*,am33")
(set_attr "timings" "22,11,11")]
)
;; Make sure we generate extensions instead of ANDs.
(define_split
[(parallel [(set (match_operand:SI 0 "register_operand" "")
(and:SI (match_operand:SI 1 "register_operand" "")
(const_int 255)))
(clobber (reg:CC CC_REG))])]
""
[(set (match_dup 0) (zero_extend:SI (match_dup 1)))]
{ operands[1] = gen_lowpart (QImode, operands[1]); }
)
(define_split
[(parallel [(set (match_operand:SI 0 "register_operand" "")
(and:SI (match_operand:SI 1 "register_operand" "")
(const_int 65535)))
(clobber (reg:CC CC_REG))])]
""
[(set (match_dup 0) (zero_extend:SI (match_dup 1)))]
{ operands[1] = gen_lowpart (HImode, operands[1]); }
)
;; Split AND by an appropriate constant into two shifts. Recall that
;; operations with a full 32-bit immediate require an extra cycle, so
;; this is a size optimization with no speed penalty. This only applies
;; do DATA_REGS; the shift insns that AM33 adds are too large for a win.
(define_split
[(parallel [(set (match_operand:SI 0 "register_operand" "")
(and:SI (match_dup 0)
(match_operand:SI 1 "const_int_operand" "")))
(clobber (reg:CC CC_REG))])]
"reload_completed
&& REGNO_DATA_P (true_regnum (operands[0]), 1)
&& mn10300_split_and_operand_count (operands[1]) != 0"
[(const_int 0)]
{
int count = mn10300_split_and_operand_count (operands[1]);
if (count > 0)
{
emit_insn (gen_lshrsi3 (operands[0], operands[0], GEN_INT (count)));
emit_insn (gen_ashlsi3 (operands[0], operands[0], GEN_INT (count)));
}
else
{
emit_insn (gen_ashlsi3 (operands[0], operands[0], GEN_INT (-count)));
emit_insn (gen_lshrsi3 (operands[0], operands[0], GEN_INT (-count)));
}
DONE;
})
;; ----------------------------------------------------------------------
;; OR INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "iorsi3"
[(set (match_operand:SI 0 "register_operand" "=D,D,r")
(ior:SI (match_operand:SI 1 "register_operand" "%0,0,r")
(match_operand:SI 2 "nonmemory_operand" " i,D,r")))
(clobber (reg:CC CC_REG))]
""
"@
or %2,%0
or %2,%0
or %2,%1,%0"
[(set_attr "isa" "*,*,am33")
(set_attr "liw" "*,op1,*")
(set_attr "liw_op" "or")
(set_attr "timings" "22,11,11")]
)
(define_insn "*iorsi3_flags"
[(set (match_operand:SI 0 "register_operand" "=D,D,r")
(ior:SI (match_operand:SI 1 "register_operand" "%0,0,r")
(match_operand:SI 2 "nonmemory_operand" " i,D,r")))
(set (reg CC_REG)
(compare (ior:SI (match_dup 1) (match_dup 2))
(const_int 0)))]
"reload_completed && mn10300_match_ccmode (insn, CCZNmode)"
"@
or %2,%0
or %2,%0
or %2,%1,%0"
[(set_attr "isa" "*,*,am33")
(set_attr "timings" "22,11,11")]
)
;; ----------------------------------------------------------------------
;; XOR INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=D,D,r")
(xor:SI (match_operand:SI 1 "register_operand" "%0,0,r")
(match_operand:SI 2 "nonmemory_operand" " i,D,r")))
(clobber (reg:CC CC_REG))]
""
"@
xor %2,%0
xor %2,%0
xor %2,%1,%0"
[(set_attr "isa" "*,*,am33")
(set_attr "liw" "*,op1,*")
(set_attr "liw_op" "xor")
(set_attr "timings" "22,11,11")]
)
(define_insn "*xorsi3_flags"
[(set (match_operand:SI 0 "register_operand" "=D,D,r")
(xor:SI (match_operand:SI 1 "register_operand" "%0,0,r")
(match_operand:SI 2 "nonmemory_operand" " i,D,r")))
(set (reg CC_REG)
(compare (xor:SI (match_dup 1) (match_dup 2))
(const_int 0)))]
"reload_completed && mn10300_match_ccmode (insn, CCZNmode)"
"@
xor %2,%0
xor %2,%0
xor %2,%1,%0"
[(set_attr "isa" "*,*,am33")
(set_attr "timings" "22,11,11")]
)
;; ----------------------------------------------------------------------
;; NOT INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "register_operand" "=D")
(not:SI (match_operand:SI 1 "register_operand" " 0")))
(clobber (reg:CC CC_REG))]
""
"not %0"
)
(define_insn "*one_cmplsi2_flags"
[(set (match_operand:SI 0 "register_operand" "=D")
(not:SI (match_operand:SI 1 "register_operand" " 0")))
(set (reg CC_REG)
(compare (not:SI (match_dup 1))
(const_int 0)))]
"reload_completed && mn10300_match_ccmode (insn, CCZNmode)"
"not %0"
)
;; ----------------------------------------------------------------------
;; COMPARE AND BRANCH INSTRUCTIONS
;; ----------------------------------------------------------------------
;; We expand the comparison into a single insn so that it will not be split
;; up by reload.
(define_expand "cbranchsi4"
[(set (pc)
(if_then_else
(match_operator 0 "ordered_comparison_operator"
[(match_operand:SI 1 "register_operand")
(match_operand:SI 2 "nonmemory_operand")])
(label_ref (match_operand 3 ""))
(pc)))]
""
""
)
(define_insn_and_split "*cbranchsi4_cmp"
[(set (pc)
(if_then_else (match_operator 3 "ordered_comparison_operator"
[(match_operand:SI 0 "register_operand" "r")
(match_operand:SI 1 "nonmemory_operand" "ri")])
(match_operand 2 "label_ref_operand" "")
(pc)))]
""
"#"
"reload_completed"
[(const_int 0)]
{
mn10300_split_cbranch (CCmode, operands[3], operands[2]);
DONE;
})
(define_insn "cmpsi"
[(set (reg CC_REG)
(compare (match_operand:SI 0 "register_operand" "r,r,r")
(match_operand:SI 1 "nonmemory_operand" "r,O,i")))]
"reload_completed"
{
/* The operands of CMP must be distinct registers. In the case where
we've failed to optimize the comparison of a register to itself, we
must use another method to set the Z flag. We can achieve this
effect with a BTST 0,D0. This will not alter the contents of D0;
the use of d0 is arbitrary; any data register would work. */
if (rtx_equal_p (operands[0], operands[1]))
return "btst 0,d0";
else
return "cmp %1,%0";
}
[(set_attr_alternative "timings"
[(if_then_else (eq_attr "cpu" "am34") (const_int 11) (const_int 22))
(if_then_else (eq_attr "cpu" "am34") (const_int 11) (const_int 22))
(if_then_else (eq_attr "cpu" "am34") (const_int 11) (const_int 22))])
(set_attr "liw" "either,either,*")
(set_attr "liw_op" "cmp")]
)
(define_insn "*integer_conditional_branch"
[(set (pc)
(if_then_else (match_operator 0 "comparison_operator"
[(match_operand 2 "int_mode_flags" "")
(const_int 0)])
(label_ref (match_operand 1 "" ""))
(pc)))]
"reload_completed"
"b%b0 %1"
)
(define_insn_and_split "*cbranchsi4_btst"
[(set (pc)
(if_then_else
(match_operator 3 "CCZN_comparison_operator"
[(and:SI (match_operand:SI 0 "register_operand" "D")
(match_operand:SI 1 "immediate_operand" "i"))
(const_int 0)])
(match_operand 2 "label_ref_operand" "")
(pc)))]
""
"#"
"reload_completed"
[(const_int 0)]
{
mn10300_split_cbranch (CCZNmode, operands[3], operands[2]);
DONE;
})
(define_insn "*btstsi"
[(set (reg:CCZN CC_REG)
(compare:CCZN
(and:SI (match_operand:SI 0 "register_operand" "D")
(match_operand:SI 1 "immediate_operand" "i"))
(const_int 0)))]
"reload_completed"
"btst %1,%0"
)
(define_expand "cbranchsf4"
[(set (pc)
(if_then_else
(match_operator 0 "ordered_comparison_operator"
[(match_operand:SF 1 "register_operand")
(match_operand:SF 2 "nonmemory_operand")])
(label_ref (match_operand 3 ""))
(pc)))]
"TARGET_AM33_2"
""
)
(define_insn_and_split "*cbranchsf4_cmp"
[(set (pc)
(if_then_else (match_operator 3 "ordered_comparison_operator"
[(match_operand:SF 0 "register_operand" "f")
(match_operand:SF 1 "nonmemory_operand" "fF")])
(match_operand 2 "label_ref_operand" "")
(pc)))
]
"TARGET_AM33_2"
"#"
"&& reload_completed"
[(const_int 0)]
{
mn10300_split_cbranch (CC_FLOATmode, operands[3], operands[2]);
DONE;
})
(define_insn "*am33_cmpsf"
[(set (reg:CC_FLOAT CC_REG)
(compare:CC_FLOAT (match_operand:SF 0 "register_operand" "f")
(match_operand:SF 1 "nonmemory_operand" "fF")))]
"TARGET_AM33_2 && reload_completed"
"fcmp %1, %0"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 25)))]
)
(define_insn "*float_conditional_branch"
[(set (pc)
(if_then_else (match_operator 0 "comparison_operator"
[(reg:CC_FLOAT CC_REG) (const_int 0)])
(label_ref (match_operand 1 "" ""))
(pc)))]
"TARGET_AM33_2 && reload_completed"
"fb%b0 %1"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 44) (const_int 33)))]
)
;; Unconditional and other jump instructions.
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"jmp %l0"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 11) (const_int 44)))]
)
(define_insn "indirect_jump"
[(set (pc) (match_operand:SI 0 "register_operand" "a"))]
""
"jmp (%0)"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 11) (const_int 33)))]
)
(define_expand "builtin_setjmp_receiver"
[(match_operand 0 "" "")]
"flag_pic"
{
emit_insn (gen_load_pic ());
DONE;
})
(define_expand "casesi"
[(match_operand:SI 0 "register_operand")
(match_operand:SI 1 "immediate_operand")
(match_operand:SI 2 "immediate_operand")
(match_operand 3 "" "") (match_operand 4 "")]
""
{
rtx table = gen_reg_rtx (SImode);
rtx index = gen_reg_rtx (SImode);
rtx addr = gen_reg_rtx (Pmode);
rtx test;
emit_move_insn (table, gen_rtx_LABEL_REF (VOIDmode, operands[3]));
emit_insn (gen_addsi3 (index, operands[0], GEN_INT (- INTVAL (operands[1]))));
test = gen_rtx_fmt_ee (GTU, VOIDmode, index, operands[2]);
emit_jump_insn (gen_cbranchsi4 (test, index, operands[2], operands[4]));
emit_insn (gen_ashlsi3 (index, index, const2_rtx));
emit_move_insn (addr, gen_rtx_MEM (SImode,
gen_rtx_PLUS (SImode, table, index)));
if (flag_pic)
emit_insn (gen_addsi3 (addr, addr, table));
emit_jump_insn (gen_tablejump (addr, operands[3]));
DONE;
})
(define_insn "tablejump"
[(set (pc) (match_operand:SI 0 "register_operand" "a"))
(use (label_ref (match_operand 1 "" "")))]
""
"jmp (%0)"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 11) (const_int 33)))]
)
;; Call subroutine with no return value.
(define_expand "call"
[(call (match_operand:QI 0 "general_operand")
(match_operand:SI 1 "general_operand"))]
""
{
rtx fn = XEXP (operands[0], 0);
if (flag_pic && GET_CODE (fn) == SYMBOL_REF)
{
if (MN10300_GLOBAL_P (fn))
{
/* The PLT code won't run on AM30, but then, there's no
shared library support for AM30 either, so we just assume
the linker is going to adjust all @PLT relocs to the
actual symbols. */
emit_use (pic_offset_table_rtx);
fn = gen_rtx_UNSPEC (SImode, gen_rtvec (1, fn), UNSPEC_PLT);
}
else
fn = gen_rtx_UNSPEC (SImode, gen_rtvec (1, fn), UNSPEC_PIC);
}
if (! call_address_operand (fn, VOIDmode))
fn = force_reg (SImode, fn);
XEXP (operands[0], 0) = fn;
})
(define_insn "*call_internal"
[(call (mem:QI (match_operand:SI 0 "call_address_operand" "a,S"))
(match_operand:SI 1 "" ""))]
""
"@
calls %C0
call %C0,[],0"
[(set_attr_alternative "timings"
[(if_then_else (eq_attr "cpu" "am34")
(const_int 33) (const_int 44))
(if_then_else (eq_attr "cpu" "am34")
(const_int 55) (const_int 33))
])
]
)
;; Call subroutine, returning value in operand 0
;; (which must be a hard register).
(define_expand "call_value"
[(set (match_operand 0 "")
(call (match_operand:QI 1 "general_operand")
(match_operand:SI 2 "general_operand")))]
""
{
rtx fn = XEXP (operands[1], 0);
if (flag_pic && GET_CODE (fn) == SYMBOL_REF)
{
if (MN10300_GLOBAL_P (fn))
{
/* The PLT code won't run on AM30, but then, there's no
shared library support for AM30 either, so we just assume
the linker is going to adjust all @PLT relocs to the
actual symbols. */
emit_use (pic_offset_table_rtx);
fn = gen_rtx_UNSPEC (SImode, gen_rtvec (1, fn), UNSPEC_PLT);
}
else
fn = gen_rtx_UNSPEC (SImode, gen_rtvec (1, fn), UNSPEC_PIC);
}
if (! call_address_operand (fn, VOIDmode))
fn = force_reg (SImode, fn);
XEXP (operands[1], 0) = fn;
})
(define_insn "call_value_internal"
[(set (match_operand 0 "" "")
(call (mem:QI (match_operand:SI 1 "call_address_operand" "a,S"))
(match_operand:SI 2 "" "")))]
""
"@
calls %C1
call %C1,[],0"
[(set_attr_alternative "timings"
[(if_then_else (eq_attr "cpu" "am34")
(const_int 33) (const_int 44))
(if_then_else (eq_attr "cpu" "am34")
(const_int 55) (const_int 33))
])
]
)
(define_expand "untyped_call"
[(parallel [(call (match_operand 0 "")
(const_int 0))
(match_operand 1 "")
(match_operand 2 "")])]
""
{
int i;
emit_call_insn (gen_call (operands[0], const0_rtx));
for (i = 0; i < XVECLEN (operands[2], 0); i++)
{
rtx set = XVECEXP (operands[2], 0, i);
emit_move_insn (SET_DEST (set), SET_SRC (set));
}
DONE;
})
(define_insn "nop"
[(const_int 0)]
""
"nop"
)
;; ----------------------------------------------------------------------
;; EXTEND INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=D,D,r")
(zero_extend:SI
(match_operand:QI 1 "nonimmediate_operand" " 0,m,r")))]
""
"@
extbu %0
movbu %1,%0
extbu %1,%0"
[(set_attr "isa" "*,*,am33")
(set_attr_alternative "timings"
[(const_int 11)
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 24))
(const_int 11)
])]
)
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=D,D,r")
(zero_extend:SI
(match_operand:HI 1 "nonimmediate_operand" " 0,m,r")))]
""
"@
exthu %0
movhu %1,%0
exthu %1,%0"
[(set_attr "isa" "*,*,am33")
(set_attr_alternative "timings"
[(const_int 11)
(if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 24))
(const_int 11)])]
)
(define_insn "extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=D,r")
(sign_extend:SI
(match_operand:QI 1 "register_operand" "0,r")))]
""
"@
extb %0
extb %1,%0"
[(set_attr "isa" "*,am33")]
)
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=D,r")
(sign_extend:SI
(match_operand:HI 1 "register_operand" "0,r")))]
""
"@
exth %0
exth %1,%0"
[(set_attr "isa" "*,am33")]
)
;; ----------------------------------------------------------------------
;; SHIFTS
;; ----------------------------------------------------------------------
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "=r,D,d,d,D,D,D,r")
(ashift:SI
(match_operand:SI 1 "register_operand" " 0,0,0,0,0,0,0,r")
(match_operand:QI 2 "nonmemory_operand" " J,K,M,L,D,O,i,r")))
(clobber (reg:CC CC_REG))]
""
"@
add %0,%0
asl2 %0
asl2 %0\;add %0,%0
asl2 %0\;asl2 %0
asl %S2,%0
asl %S2,%0
asl %S2,%0
asl %2,%1,%0"
[(set_attr "isa" "*,*,*,*,*,*,*,am33")
(set_attr "liw" "op2,op2,op2,op2,op2,op2,*,*")
(set_attr "liw_op" "asl")
(set_attr "timings" "11,11,22,22,11,11,11,11")]
)
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "register_operand" "=D,D,D,r")
(lshiftrt:SI
(match_operand:SI 1 "register_operand" "0,0,0,r")
(match_operand:QI 2 "nonmemory_operand" "D,O,i,r")))
(clobber (reg:CC CC_REG))]
""
"@
lsr %S2,%0
lsr %S2,%0
lsr %S2,%0
lsr %2,%1,%0"
[(set_attr "isa" "*,*,*,am33")
(set_attr "liw" "op2,op2,*,*")
(set_attr "liw_op" "lsr")]
)
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "register_operand" "=D,D,D,r")
(ashiftrt:SI
(match_operand:SI 1 "register_operand" "0,0,0,r")
(match_operand:QI 2 "nonmemory_operand" "D,O,i,r")))
(clobber (reg:CC CC_REG))]
""
"@
asr %S2,%0
asr %S2,%0
asr %S2,%0
asr %2,%1,%0"
[(set_attr "isa" "*,*,*,am33")
(set_attr "liw" "op2,op2,*,*")
(set_attr "liw_op" "asr")]
)
;; ----------------------------------------------------------------------
;; MISCELANEOUS
;; ----------------------------------------------------------------------
;; Note the use of the (const_int 0) when generating the insn that matches
;; the bsch pattern. This ensures that the destination register is
;; initialised with 0 which will make the BSCH instruction set searching
;; at bit 31.
;;
;; The XOR in the instruction sequence below is there because the BSCH
;; instruction returns the bit number of the highest set bit and we want
;; the number of zero bits above that bit. The AM33 does not have a
;; reverse subtraction instruction, but we can use a simple xor instead
;; since we know that the top 27 bits are clear.
(define_expand "clzsi2"
[(parallel [(set (match_operand:SI 0 "register_operand")
(unspec:SI [(match_operand:SI 1 "register_operand")
(const_int 0)] UNSPEC_BSCH))
(clobber (reg:CC CC_REG))])
(parallel [(set (match_dup 0)
(xor:SI (match_dup 0)
(const_int 31)))
(clobber (reg:CC CC_REG))])]
"TARGET_AM33"
)
(define_insn "*bsch"
[(set (match_operand:SI 0 "register_operand" "=r")
(unspec:SI [(match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "nonmemory_operand" "0")]
UNSPEC_BSCH))
(clobber (reg:CC CC_REG))]
"TARGET_AM33"
"bsch %1, %0"
)
;; ----------------------------------------------------------------------
;; FP INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "abssf2"
[(set (match_operand:SF 0 "register_operand" "=f,f")
(abs:SF (match_operand:SF 1 "register_operand" "0,?f")))]
"TARGET_AM33_2"
"@
fabs %0
fabs %1, %0"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 14)))]
)
(define_insn "negsf2"
[(set (match_operand:SF 0 "register_operand" "=f,f")
(neg:SF (match_operand:SF 1 "register_operand" "0,?f")))]
"TARGET_AM33_2"
"@
fneg %0
fneg %1, %0"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 14)))]
)
(define_expand "sqrtsf2"
[(set (match_operand:SF 0 "register_operand" "")
(sqrt:SF (match_operand:SF 1 "register_operand" "")))]
"TARGET_AM33_2 && flag_unsafe_math_optimizations"
{
rtx scratch = gen_reg_rtx (SFmode);
emit_insn (gen_rsqrtsf2 (scratch, operands[1], CONST1_RTX (SFmode)));
emit_insn (gen_divsf3 (operands[0], force_reg (SFmode, CONST1_RTX (SFmode)),
scratch));
DONE;
})
(define_insn "rsqrtsf2"
[(set (match_operand:SF 0 "register_operand" "=f,f")
(div:SF (match_operand:SF 2 "const_1f_operand" "F,F")
(sqrt:SF (match_operand:SF 1 "register_operand" "0,?f"))))
(clobber (reg:CC_FLOAT CC_REG))]
"TARGET_AM33_2"
"@
frsqrt %0
frsqrt %1, %0"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 4753) (const_int 2327)))]
)
(define_insn "addsf3"
[(set (match_operand:SF 0 "register_operand" "=f,f")
(plus:SF (match_operand:SF 1 "register_operand" "%0,f")
(match_operand:SF 2 "nonmemory_operand" "f,?fF")))
(clobber (reg:CC_FLOAT CC_REG))]
"TARGET_AM33_2"
"@
fadd %2, %0
fadd %2, %1, %0"
[(set_attr_alternative "timings"
[(if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 14))
(if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 25))
])]
)
(define_insn "subsf3"
[(set (match_operand:SF 0 "register_operand" "=f,f")
(minus:SF (match_operand:SF 1 "register_operand" "0,f")
(match_operand:SF 2 "nonmemory_operand" "f,?fF")))
(clobber (reg:CC_FLOAT CC_REG))]
"TARGET_AM33_2"
"@
fsub %2, %0
fsub %2, %1, %0"
[(set_attr_alternative "timings"
[(if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 14))
(if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 25))
])]
)
(define_insn "mulsf3"
[(set (match_operand:SF 0 "register_operand" "=f,f")
(mult:SF (match_operand:SF 1 "register_operand" "%0,f")
(match_operand:SF 2 "nonmemory_operand" "f,?fF")))
(clobber (reg:CC_FLOAT CC_REG))
]
"TARGET_AM33_2"
"@
fmul %2, %0
fmul %2, %1, %0"
[(set_attr_alternative "timings"
[(if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 14))
(if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 25))
])]
)
(define_insn "divsf3"
[(set (match_operand:SF 0 "register_operand" "=f,f")
(div:SF (match_operand:SF 1 "register_operand" "0,f")
(match_operand:SF 2 "nonmemory_operand" "f,?fF")))
(clobber (reg:CC_FLOAT CC_REG))]
"TARGET_AM33_2"
"@
fdiv %2, %0
fdiv %2, %1, %0"
[(set_attr_alternative "timings"
[(if_then_else (eq_attr "cpu" "am34")
(const_int 2531) (const_int 1216))
(if_then_else (eq_attr "cpu" "am34")
(const_int 2531) (const_int 1317))
])]
)
(define_insn "fmasf4"
[(set (match_operand:SF 0 "register_operand" "=c")
(fma:SF (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")
(match_operand:SF 3 "register_operand" "f")))
(clobber (reg:CC_FLOAT CC_REG))
]
"TARGET_AM33_2"
"fmadd %1, %2, %3, %0"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 24)))]
)
(define_insn "fmssf4"
[(set (match_operand:SF 0 "register_operand" "=c")
(fma:SF (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")
(neg:SF (match_operand:SF 3 "register_operand" "f"))))
(clobber (reg:CC_FLOAT CC_REG))
]
"TARGET_AM33_2"
"fmsub %1, %2, %3, %0"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 24)))]
)
(define_insn "fnmasf4"
[(set (match_operand:SF 0 "register_operand" "=c")
(fma:SF (neg:SF (match_operand:SF 1 "register_operand" "f"))
(match_operand:SF 2 "register_operand" "f")
(match_operand:SF 3 "register_operand" "f")))
(clobber (reg:CC_FLOAT CC_REG))
]
"TARGET_AM33_2"
"fnmadd %1, %2, %3, %0"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 24)))]
)
(define_insn "fnmssf4"
[(set (match_operand:SF 0 "register_operand" "=c")
(fma:SF (neg:SF (match_operand:SF 1 "register_operand" "f"))
(match_operand:SF 2 "register_operand" "f")
(neg:SF (match_operand:SF 3 "register_operand" "f"))))
(clobber (reg:CC_FLOAT CC_REG))
]
"TARGET_AM33_2"
"fnmsub %1, %2, %3, %0"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 17) (const_int 24)))]
)
;; ----------------------------------------------------------------------
;; PROLOGUE/EPILOGUE
;; ----------------------------------------------------------------------
(define_expand "prologue"
[(const_int 0)]
""
{ mn10300_expand_prologue (); DONE; }
)
(define_expand "epilogue"
[(return)]
""
{ mn10300_expand_epilogue (); DONE; }
)
(define_insn "return"
[(return)]
"mn10300_can_use_rets_insn ()"
{
/* The RETF insn is 4 cycles faster than RETS, though 1 byte larger. */
if (optimize_insn_for_speed_p () && mn10300_can_use_retf_insn ())
return "retf [],0";
else
return "rets";
})
(define_insn "return_ret"
[(return)
(use (match_operand:SI 0 "const_int_operand" ""))]
""
{
/* The RETF insn is up to 3 cycles faster than RET. */
fputs ((mn10300_can_use_retf_insn () ? "\tretf " : "\tret "), asm_out_file);
mn10300_print_reg_list (asm_out_file, mn10300_get_live_callee_saved_regs ());
fprintf (asm_out_file, ",%d\n", (int) INTVAL (operands[0]));
return "";
})
;; This instruction matches one generated by mn10300_gen_multiple_store()
(define_insn "store_movm"
[(match_parallel 0 "mn10300_store_multiple_operation"
[(set (reg:SI SP_REG) (plus:SI (reg:SI SP_REG) (match_operand 1 "" "")))])]
""
{
fputs ("\tmovm ", asm_out_file);
mn10300_print_reg_list (asm_out_file,
mn10300_store_multiple_operation (operands[0],
VOIDmode));
fprintf (asm_out_file, ",(sp)\n");
return "";
}
;; Assume that no more than 8 registers will be pushed.
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 99) (const_int 88)))]
)
(define_expand "load_pic"
[(const_int 0)]
"flag_pic"
{
if (TARGET_AM33)
emit_insn (gen_am33_load_pic (pic_offset_table_rtx));
else if (mn10300_frame_size () == 0)
emit_insn (gen_mn10300_load_pic0 (pic_offset_table_rtx));
else
emit_insn (gen_mn10300_load_pic1 (pic_offset_table_rtx));
DONE;
})
(define_insn "am33_load_pic"
[(set (match_operand:SI 0 "register_operand" "=a")
(unspec:SI [(const_int 0)] UNSPEC_GOT))
(clobber (reg:CC CC_REG))]
"TARGET_AM33"
{
operands[1] = gen_rtx_SYMBOL_REF (VOIDmode, GOT_SYMBOL_NAME);
return ".LPIC%=:\;mov pc,%0\;add %1-(.LPIC%=-.),%0";
}
[(set_attr "timings" "33")]
)
;; Load pic register with push/pop of stack.
(define_insn "mn10300_load_pic0"
[(set (match_operand:SI 0 "register_operand" "=a")
(unspec:SI [(const_int 0)] UNSPEC_GOT))
(clobber (reg:SI MDR_REG))
(clobber (reg:CC CC_REG))]
""
{
operands[1] = gen_rtx_SYMBOL_REF (VOIDmode, GOT_SYMBOL_NAME);
return ("add -4,sp\;"
"calls .LPIC%=\n"
".LPIC%=:\;"
"movm (sp),[%0]\;"
"add %1-(.LPIC%=-.),%0");
}
[(set_attr "timings" "88")]
)
;; Load pic register re-using existing stack space.
(define_insn "mn10300_load_pic1"
[(set (match_operand:SI 0 "register_operand" "=a")
(unspec:SI [(const_int 0)] UNSPEC_GOT))
(clobber (mem:SI (reg:SI SP_REG)))
(clobber (reg:SI MDR_REG))
(clobber (reg:CC CC_REG))]
""
{
operands[1] = gen_rtx_SYMBOL_REF (VOIDmode, GOT_SYMBOL_NAME);
return ("calls .LPIC%=\n"
".LPIC%=:\;"
"mov (sp),%0\;"
"add %1-(.LPIC%=-.),%0");
}
[(set_attr "timings" "66")]
)
;; The mode on operand 3 has been deliberately omitted because it
;; can be either SI (for arithmetic operations) or QI (for shifts).
(define_insn "liw"
[(set (match_operand:SI 0 "register_operand" "=r")
(unspec:SI [(match_dup 0)
(match_operand 2 "liw_operand" "rO")
(match_operand:SI 4 "const_int_operand" "")]
UNSPEC_LIW))
(set (match_operand:SI 1 "register_operand" "=r")
(unspec:SI [(match_dup 1)
(match_operand 3 "liw_operand" "rO")
(match_operand:SI 5 "const_int_operand" "")]
UNSPEC_LIW))]
"TARGET_ALLOW_LIW"
"%W4_%W5 %2, %0, %3, %1"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 12)))]
)
;; The mode on operand 1 has been deliberately omitted because it
;; can be either SI (for arithmetic operations) or QI (for shifts).
(define_insn "cmp_liw"
[(set (reg:CC CC_REG)
(compare:CC (match_operand:SI 2 "register_operand" "r")
(match_operand 3 "liw_operand" "rO")))
(set (match_operand:SI 0 "register_operand" "=r")
(unspec:SI [(match_dup 0)
(match_operand 1 "liw_operand" "rO")
(match_operand:SI 4 "const_int_operand" "")]
UNSPEC_LIW))]
"TARGET_ALLOW_LIW"
"cmp_%W4 %3, %2, %1, %0"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 12)))]
)
(define_insn "liw_cmp"
[(set (match_operand:SI 0 "register_operand" "=r")
(unspec:SI [(match_dup 0)
(match_operand 1 "liw_operand" "rO")
(match_operand:SI 4 "const_int_operand" "")]
UNSPEC_LIW))
(set (reg:CC CC_REG)
(compare:CC (match_operand:SI 2 "register_operand" "r")
(match_operand 3 "liw_operand" "rO")))]
"TARGET_ALLOW_LIW"
"%W4_cmp %1, %0, %3, %2"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34")
(const_int 13) (const_int 12)))]
)
;; Note - in theory the doloop patterns could be used here to express
;; the SETLB and Lcc instructions. In practice this does not work because
;; the acceptable forms of the doloop patterns do not include UNSPECs
;; and without them gcc's basic block reordering code can duplicate the
;; doloop_end pattern, leading to bogus multiple decrements of the loop
;; counter.
(define_insn "setlb"
[(unspec [(const_int 0)] UNSPEC_SETLB)]
"TARGET_AM33 && TARGET_ALLOW_SETLB"
"setlb"
)
(define_insn "Lcc"
[(set (pc)
(if_then_else (match_operator 0 "comparison_operator"
[(reg:CC CC_REG) (const_int 0)])
(label_ref (match_operand 1 "" ""))
(pc)))
(unspec [(const_int 1)] UNSPEC_SETLB)]
"TARGET_AM33 && TARGET_ALLOW_SETLB"
"L%b0 # loop back to: %1"
)
(define_insn "FLcc"
[(set (pc)
(if_then_else (match_operator 0 "comparison_operator"
[(reg:CC_FLOAT CC_REG) (const_int 0)])
(label_ref (match_operand 1 "" ""))
(pc)))
(unspec [(const_int 2)] UNSPEC_SETLB)]
"TARGET_AM33_2 && TARGET_ALLOW_SETLB"
"FL%b0 # loop back to: %1"
[(set (attr "timings") (if_then_else (eq_attr "cpu" "am34") (const_int 44) (const_int 11)))]
)
Go to most recent revision | Compare with Previous | Blame | View Log