URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [picochip/] [picochip.md] - Rev 801
Go to most recent revision | Compare with Previous | Blame | View Log
;; GCC machine description for picochip
;; Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
;; Contributed by Picochip Ltd (http://www.picochip.com)
;; Maintained by Daniel Towner (dant@picochip.com) and Hariharan
;; Sandanagobalane (hariharan@picochip.com)
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not, see
;; <http://www.gnu.org/licenses/>.
;; -------------------------------------------------------------------------
;; In addition to the normal output operand formats, the following
;; letter formats are also available:
;;
;; The following can be used for constants, or the constant part of a
;; memory offset.
;; Q - Output constant unaltered (byte mode).
;; M - Alias for Q, which only works with memory operands.
;; H - Divide constant by 2 (i.e., HImode is 2 bytes)
;; S - Divide constant by 4 (i.e., SImode is 4 bytes)
;;
;; The following can be used for two part addresses (i.e., base +
;; offset or base[offset]).
;; o - Output offset only.
;; b - Output base only.
;;
;; The following are used on SI registers and constants
;; R - Output register pair (i.e., R[n:m])
;; L - Output lower word/register
;; U - Output upper word/register
;;
;; The following are used on DI mode registers.
;; X - Output 3rd register
;; Y - Output 4th register
;;
;; Miscellaneous
;; | - Output VLIW separator
;; r - Output register value of memory operand.
;; I - Output an opcode (e.g., ADD for plus, LSL for lshift)
;; i - Output an opcode in symbolic notation (e.g., + for plus)
;; Define the length of an instruction. Used to allow different types
;; of branches to be used for different branch offsets. Default to 6
;; bytes, which is the longest possible single instruction.
(define_attr "length" "" (const_int 6))
;; Define some constants which are used in conjuction with branch
;; scheduling. Branches must be 10-bit signed, which equates to
;; [-512,511]. However, to compensate for the lack of branch alignment
;; these offsets are reduced by a factor of 2.
(define_constants
[
(MIN_BRANCH_OFFSET -256)
(MAX_BRANCH_OFFSET 255)
(SHORT_BRANCH_LENGTH 6) ; The size of a schedulable short branch.
(LONG_BRANCH_LENGTH 16) ; The size of an expanded JMP?? macro.
]
)
;; Define identifiers for various special instructions. These
;; instructions may then be used in RTL expansions, or builtins.
(define_constants
[
; Special instruction builtins.
(UNSPEC_SBC 0) ; Sign-bit count
(UNSPEC_ADDS 1) ; Saturating addition
(UNSPEC_SUBS 2) ; Saturating subtraction
(UNSPEC_BREV 3) ; Bit reversal
; Special internal instructions (only used by compiler)
(UNSPEC_COPYSW 5) ; Get status word
(UNSPEC_ADDC 6) ; Add with carry.
; Scalar port communication builtins
(UNSPEC_PUT 7) ; Communication (put): port[op0] := op1
(UNSPEC_GET 8) ; Communication (get): op0 := get_port[op1]
(UNSPEC_TESTPORT 9) ; Communication (test): op0 := testport[op1]
; Array port communication builtins. These all take extra
; arguments giving information about the array access being used.
(UNSPEC_PUT_ARRAY 10) ; Array put
(UNSPEC_GET_ARRAY 11) ; Array get
(UNSPEC_TESTPORT_ARRAY 12) ; Array test port
;; Array port expansions
(UNSPEC_CALL_GET_ARRAY 13) ;
(UNSPEC_CALL_PUT_ARRAY 14) ;
(UNSPEC_CALL_TESTPORT_ARRAY 15) ;
; Array port low-level fn calls
(UNSPEC_CALL_GET_FN 16)
(UNSPEC_CALL_TESTPORT_FN 17)
; Halt instruction.
(UNSPEC_HALT 18)
; Internal TSTPORT instruction, used to generate a single TSTPORT
; instruction for use in the testport branch split.
(UNSPEC_INTERNAL_TESTPORT 19)
]
)
;; Register ID's
(define_constants
[
(LINK_REGNUM 12) ; Function link register.
(CC_REGNUM 17) ; Condition flags.
(ACC_REGNUM 16) ; Condition flags.
]
)
;;============================================================================
;; Predicates and constraints
;;============================================================================
(include "predicates.md")
(include "constraints.md")
;;============================================================================
;; First operand shifting patterns. These allow certain instructions
;; (e.g., add, and, or, xor, sub) to apply a shift-by-constant to
;; their first operand.
;;
;; Note that only the first operand is matched by the shift, to ensure
;; that non-commutative instructions (like subtract) work
;; properly. When a commutative instruction, with a shift in the
;; second operand is found, the compiler will reorder the operands to
;; match.
;;============================================================================
(define_insn "*firstOpGenericAshift"
[(set (match_operand:HI 0 "register_operand" "=r")
(match_operator:HI 1 "picochip_first_op_shift_operator"
[(ashift:HI
(match_operand:HI 2 "register_operand" "r")
(match_operand:HI 3 "picochip_J_operand" "J"))
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
(clobber (reg:CC CC_REGNUM))]
""
"%I1.0 [LSL %2,%3],%4,%0\t// %0 := (%2 << %3) %i1 %4"
[(set_attr "type" "picoAlu")
;; A long constant must be used if the operator instruction doesn't
;; accept immediates, or if the constant is too big to fit the
;; immediate. Note that the following condition is written in the
;; way which uses the least number of predicates.
(set (attr "longConstant")
(cond [(ior (match_operand 4 "register_operand")
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
(match_operand 1 "picochip_J_operand")))
(const_string "false")]
(const_string "true")))])
;; During combine, ashift gets converted into a multiply, necessitating the following pattern.
;; Note that we do a log_2(imm) to get the actual LSL operand.
(define_insn "*firstOpGenericAshift"
[(set (match_operand:HI 0 "register_operand" "=r")
(match_operator:HI 1 "picochip_first_op_shift_operator"
[(mult:HI
(match_operand:HI 2 "register_operand" "r")
(match_operand:HI 3 "power_of_2_imm_operand" "n"))
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
(clobber (reg:CC CC_REGNUM))]
""
"%I1.0 [LSL %2,%P3],%4,%0\t// %0 := (%2 << %3) %i1 %4"
[(set_attr "type" "picoAlu")
;; A long constant must be used if the operator instruction doesn't
;; accept immediates, or if the constant is too big to fit the
;; immediate. Note that the following condition is written in the
;; way which uses the least number of predicates.
(set (attr "longConstant")
(cond [(ior (match_operand 4 "register_operand")
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
(match_operand 1 "picochip_J_operand")))
(const_string "false")]
(const_string "true")))])
(define_insn "*firstOpGenericAshiftrt"
[(set (match_operand:HI 0 "register_operand" "=r")
(match_operator:HI 1 "picochip_first_op_shift_operator"
[(ashiftrt:HI
(match_operand:HI 2 "register_operand" "r")
(match_operand:HI 3 "picochip_J_operand" "J"))
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
(clobber (reg:CC CC_REGNUM))]
""
"%I1.0 [ASR %2,%3],%4,%0\t// %0 := (%2 >>{arith} %3) %i1 %4"
[(set_attr "type" "picoAlu")
;; A long constant must be used if the operator instruction doesn't
;; accept immediates, or if the constant is too big to fit the
;; immediate. Note that the following condition is written in the
;; way which uses the least number of predicates.
(set (attr "longConstant")
(cond [(ior (match_operand 4 "register_operand")
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
(match_operand 1 "picochip_J_operand")))
(const_string "false")]
(const_string "true")))])
(define_insn "*firstOpGenericLshiftrt"
[(set (match_operand:HI 0 "register_operand" "=r")
(match_operator:HI 1 "picochip_first_op_shift_operator"
[(lshiftrt:HI
(match_operand:HI 2 "register_operand" "r")
(match_operand:HI 3 "picochip_J_operand" "J"))
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
(clobber (reg:CC CC_REGNUM))]
""
"%I1.0 [LSR %2,%3],%4,%0\t// %0 := (%2 >> %3) %i1 %4"
[(set_attr "type" "picoAlu")
;; A long constant must be used if the operator instruction doesn't
;; accept immediates, or if the constant is too big to fit the
;; immediate. Note that the following condition is written in the
;; way which uses the least number of predicates.
(set (attr "longConstant")
(cond [(ior (match_operand 4 "register_operand")
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
(match_operand 1 "picochip_J_operand")))
(const_string "false")]
(const_string "true")))])
;;===========================================================================
;; Jump instructions.
;;===========================================================================
(define_insn "indirect_jump"
[(set (pc) (match_operand:HI 0 "register_operand" "r"))]
""
"JR (%0)\t// Indirect_jump to %0 %>"
[(set_attr "type" "realBranch")
(set_attr "length" "3")])
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"* return picochip_output_jump(insn);"
[(set (attr "length")
(if_then_else
(and (ge (minus (match_dup 0) (pc)) (const_int MIN_BRANCH_OFFSET))
(le (minus (match_dup 0) (pc)) (const_int MAX_BRANCH_OFFSET)))
(const_int SHORT_BRANCH_LENGTH)
(const_int LONG_BRANCH_LENGTH)))
(set (attr "type")
(if_then_else
(eq_attr "length" "6")
(const_string "realBranch")
(const_string "unknown")))])
(define_insn "*fn_return"
[(return)
(use (reg:HI LINK_REGNUM))]
""
"JR (R12)\t// Return to caller %>"
[(set_attr "length" "2")
(set_attr "type" "realBranch")
(set_attr "longConstant" "false")])
;; Peephole either 2 LDWs or STWs into LDL/STL.
(define_peephole2
[(set (match_operand:HI 0 "register_operand" "")
(match_operand:HI 1 "memory_operand" ""))
(set (match_operand:HI 2 "register_operand" "")
(match_operand:HI 3 "memory_operand" ""))]
"ok_to_peephole_ldw(operands[0],operands[1],operands[2],operands[3])"
[(set (match_dup 4) (match_dup 5))]
"{
operands[4] = gen_min_reg(operands[0],operands[2]);
operands[5] = gen_SImode_mem(operands[1],operands[3]);
}")
(define_peephole2
[(set (match_operand:HI 0 "memory_operand" "")
(match_operand:HI 1 "register_operand" ""))
(set (match_operand:HI 2 "memory_operand" "")
(match_operand:HI 3 "register_operand" ""))]
"ok_to_peephole_stw(operands[0],operands[1],operands[2],operands[3])"
[(set (match_dup 4) (match_dup 5))]
"{
operands[4] = gen_SImode_mem(operands[0],operands[2]);
operands[5] = gen_min_reg(operands[1],operands[3]);
}")
;; We have instructions like add,subtract,ior,and that set condition
;; codes if they are executed on slot 0. If we have
;; add a = b + c
;; if (a!=0)
;; {}
;; We would have RTL sequence like
;; add.# rb,rc,ra # will be replaced by slot no, after scheduling
;; sub.0 ra,0,r15
;; bnz
;; Instead, we can just do
;; add.0 rb,rc,ra
;; bnz
(define_peephole2
[(parallel [(set (match_operand:HI 0 "register_operand" "")
(plus:HI (match_operand:HI 1 "register_operand" "")
(match_operand:HI 2 "general_operand" "")))
(clobber (reg:CC CC_REGNUM))])
(parallel [(set (pc)
(if_then_else
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(match_dup 0) (const_int 0)])
(label_ref (match_operand 6 "" ""))
(pc)))
(clobber (reg:CC CC_REGNUM))])]
""
[(parallel [(set (match_dup 0)
(plus:HI (match_dup 1) (match_dup 2)))
(set (reg:CC CC_REGNUM)
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
(parallel [(set (pc)
(if_then_else
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_dup 6))
(pc)))
(use (match_dup 7))])]
"{
operands[7] = GEN_INT(0);
}")
(define_peephole2
[(parallel [(set (match_operand:HI 0 "register_operand" "")
(plus:HI (match_operand:HI 1 "register_operand" "")
(match_operand:HI 2 "general_operand" "")))
(clobber (reg:CC CC_REGNUM))])
(set (reg:CC CC_REGNUM)
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(match_dup 0) (const_int 0)]))
(parallel [(set (pc)
(if_then_else
(match_operator 4 "comparison_operator"
[(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_operand 5 "" ""))
(pc)))
(use (match_operand:HI 6 "const_int_operand" ""))])]
""
[(parallel [(set (match_dup 0)
(plus:HI (match_dup 1) (match_dup 2)))
(set (reg:CC CC_REGNUM)
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
(parallel [(set (pc)
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_dup 5))
(pc)))
(use (match_dup 6))])]
"{
operands[7] = GEN_INT(0);
}")
;; If peephole happens before the cbranch split
(define_peephole2
[(parallel [(set (match_operand:HI 0 "register_operand" "")
(minus:HI (match_operand:HI 1 "general_operand" "")
(match_operand:HI 2 "register_operand" "")))
(clobber (reg:CC CC_REGNUM))])
(parallel [(set (pc)
(if_then_else
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(match_dup 0) (const_int 0)])
(label_ref (match_operand 6 "" ""))
(pc)))
(clobber (reg:CC CC_REGNUM))])]
""
[(parallel [(set (match_dup 0)
(minus:HI (match_dup 1) (match_dup 2)))
(set (reg:CC CC_REGNUM)
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
(parallel [(set (pc)
(if_then_else
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_dup 6))
(pc)))
(use (match_dup 7))])]
"{
operands[7] = GEN_INT(0);
}")
;; If peephole happens after the cbranch split
(define_peephole2
[(parallel [(set (match_operand:HI 0 "register_operand" "")
(minus:HI (match_operand:HI 1 "general_operand" "")
(match_operand:HI 2 "register_operand" "")))
(clobber (reg:CC CC_REGNUM))])
(set (reg:CC CC_REGNUM)
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(match_dup 0) (const_int 0)]))
(parallel [(set (pc)
(if_then_else
(match_operator 4 "comparison_operator"
[(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_operand 5 "" ""))
(pc)))
(use (match_operand:HI 6 "const_int_operand" ""))])]
""
[(parallel [(set (match_dup 0)
(minus:HI (match_dup 1) (match_dup 2)))
(set (reg:CC CC_REGNUM)
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
(parallel [(set (pc)
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_dup 5))
(pc)))
(use (match_dup 6))])]
"{
operands[7] = GEN_INT(0);
}")
;; If peephole happens before the cbranch split
(define_peephole2
[(parallel[(set (match_operand:HI 0 "register_operand" "")
(and:HI (match_operand:HI 1 "register_operand" "")
(match_operand:HI 2 "general_operand" "")))
(clobber (reg:CC CC_REGNUM))])
(parallel [(set (pc)
(if_then_else
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(match_dup 0) (const_int 0)])
(label_ref (match_operand 6 "" ""))
(pc)))
(clobber (reg:CC CC_REGNUM))])]
""
[(parallel [(set (match_dup 0)
(and:HI (match_dup 1) (match_dup 2)))
(set (reg:CC CC_REGNUM)
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
(parallel [(set (pc)
(if_then_else
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_dup 6))
(pc)))
(use (match_dup 7))])]
"{
operands[7] = GEN_INT(0);
}")
(define_peephole2
[(parallel[(set (match_operand:HI 0 "register_operand" "")
(and:HI (match_operand:HI 1 "register_operand" "")
(match_operand:HI 2 "general_operand" "")))
(clobber (reg:CC CC_REGNUM))])
(set (reg:CC CC_REGNUM)
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(match_dup 0) (const_int 0)]))
(parallel [(set (pc)
(if_then_else
(match_operator 4 "comparison_operator"
[(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_operand 5 "" ""))
(pc)))
(use (match_operand:HI 6 "const_int_operand" ""))])]
""
[(parallel [(set (match_dup 0)
(and:HI (match_dup 1) (match_dup 2)))
(set (reg:CC CC_REGNUM)
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
(parallel [(set (pc)
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_dup 5))
(pc)))
(use (match_dup 6))])]
"{
operands[7] = GEN_INT(0);
}")
;; If peephole happens before the cbranch split
(define_peephole2
[(parallel[(set (match_operand:HI 0 "register_operand" "")
(ior:HI (match_operand:HI 1 "register_operand" "")
(match_operand:HI 2 "general_operand" "")))
(clobber (reg:CC CC_REGNUM))])
(parallel [(set (pc)
(if_then_else
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(match_dup 0) (const_int 0)])
(label_ref (match_operand 6 "" ""))
(pc)))
(clobber (reg:CC CC_REGNUM))])]
""
[(parallel [(set (match_dup 0)
(ior:HI (match_dup 1) (match_dup 2)))
(set (reg:CC CC_REGNUM)
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
(parallel [(set (pc)
(if_then_else
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_dup 6))
(pc)))
(use (match_dup 7))])]
"{
operands[7] = GEN_INT(0);
}")
(define_peephole2
[(parallel[(set (match_operand:HI 0 "register_operand" "")
(ior:HI (match_operand:HI 1 "register_operand" "")
(match_operand:HI 2 "general_operand" "")))
(clobber (reg:CC CC_REGNUM))])
(set (reg:CC CC_REGNUM)
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(match_dup 0) (const_int 0)]))
(parallel [(set (pc)
(if_then_else
(match_operator 4 "comparison_operator"
[(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_operand 5 "" ""))
(pc)))
(use (match_operand:HI 6 "const_int_operand" ""))])]
""
[(parallel [(set (match_dup 0)
(ior:HI (match_dup 1) (match_dup 2)))
(set (reg:CC CC_REGNUM)
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
(parallel [(set (pc)
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_dup 5))
(pc)))
(use (match_dup 6))])]
"{
operands[7] = GEN_INT(0);
}")
;; Conditional branch (HI). This is split into separate compare and
;; branch instructions if scheduling is enabled. The branch
;; instruction is supplied with the type of comparison on which the
;; branch should occur.
(define_insn_and_split "cbranchhi4"
[(set (pc)
(if_then_else
(match_operator 0 "ordered_comparison_operator"
[(match_operand:HI 1 "register_operand" "r")
(match_operand:HI 2 "picochip_comparison_operand" "ri")])
(label_ref (match_operand 3 "" ""))
(pc)))
(clobber (reg:CC CC_REGNUM))]
""
"* return picochip_output_cbranch(operands);"
"reload_completed
&& (picochip_schedule_type != DFA_TYPE_NONE || flag_delayed_branch)"
[(const_int 0)]
"{
rtx const_int_opnd;
const_int_opnd = GEN_INT(GET_CODE(operands[0]));
if (picochip_supported_comparison_operator (operands[0], HImode))
emit_insn (gen_supported_compare (operands[0], operands[1], operands[2]));
else
emit_insn (gen_compare (operands[0], operands[1], operands[2]));
emit_jump_insn (gen_branch (operands[3], const_int_opnd, operands[0]));
}")
;; The only difference between this and the next pattern is that the next pattern
;; might introduce subtracts whose first operand is a constant. This would have to
;; be a longConstant. But, we know that such a situation wouldnt arise for supported
;; comparison operator and hence this pattern assumes that the second constraint combo
;; would still generate a normal instruction.
(define_insn "supported_compare"
[(set (reg:CC CC_REGNUM)
(match_operator:CC 0 "picochip_supported_comparison_operator"
[(match_operand:HI 1 "register_operand" "r,r,r")
(match_operand:HI 2 "picochip_comparison_operand" "r,J,i")]))]
""
"* return picochip_output_compare(operands);"
[; Must be picoAlu because it sets the condition flags.
(set_attr "type" "picoAlu,picoAlu,picoAlu")
(set_attr "longConstant" "false,false,true")
(set_attr "length" "2,2,4")
])
;; This pattern was added to match the previous pattern. When doing if-convert
;; the pattern generated using movhicc does not have a eq:CC but only a eq for
;; operator. If this pattern were not to be there, Gcc decides not to use
;; movhicc at all. Whereas, in Gcc 4.4, it seems to be cleverer.
(define_insn "*supported_compare1"
[(set (reg:CC CC_REGNUM)
(match_operator 0 "picochip_supported_comparison_operator"
[(match_operand:HI 1 "register_operand" "r,r,r")
(match_operand:HI 2 "picochip_comparison_operand" "r,J,i")]))]
""
"* return picochip_output_compare(operands);"
[; Must be picoAlu because it sets the condition flags.
(set_attr "type" "picoAlu,picoAlu,picoAlu")
(set_attr "longConstant" "false,false,true")
(set_attr "length" "2,2,4")
])
(define_insn "compare"
[(set (reg:CC CC_REGNUM)
(match_operator:CC 0 "comparison_operator"
[(match_operand:HI 1 "register_operand" "r,r,r")
(match_operand:HI 2 "picochip_comparison_operand" "r,M,i")]))]
""
"* return picochip_output_compare(operands);"
[; Must be picoAlu because it sets the condition flags.
(set_attr "type" "picoAlu,picoAlu,picoAlu")
(set_attr "longConstant" "false,true,true")
(set_attr "length" "2,4,4")
])
; Match a branch instruction, created from a tstport/cbranch split.
; We use a "use" clause so GCC doesnt try to use this pattern generally.
(define_insn "branch"
[(set (pc)
(if_then_else
(match_operator 2 "comparison_operator"
[(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_operand 0 "" ""))
(pc)))
(use (match_operand:HI 1 "const_int_operand" ""))]
""
"* return picochip_output_branch(operands, insn);"
[(set (attr "length")
(if_then_else
(and (ge (minus (match_dup 0) (pc)) (const_int MIN_BRANCH_OFFSET))
(le (minus (match_dup 0) (pc)) (const_int MAX_BRANCH_OFFSET)))
(const_int SHORT_BRANCH_LENGTH)
(const_int LONG_BRANCH_LENGTH)))
(set (attr "type")
(if_then_else
(eq_attr "length" "6")
(const_string "realBranch")
(const_string "unknown")))])
;; If a movqi is used which accesses memory on a machine which doesn't
;; have byte addressing, synthesise the instruction using word load/store
;; operations. The movqi's that are required during reload phase are
;; handled using reload_inqi/reload_outqi.
(define_expand "movqi"
[(set (match_operand:QI 0 "nonimmediate_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
{
if (!reload_completed &&
!TARGET_HAS_BYTE_ACCESS &&
(MEM == GET_CODE(operands[0]) || MEM == GET_CODE(operands[1])))
{
rtx address;
rtx wordAddress;
rtx const1;
rtx shiftVal;
rtx loadedValue;
rtx addressMask;
rtx topByteValue;
rtx signExtendedValue;
warn_of_byte_access();
/* Load the constant 1 into a register. */
const1 = gen_reg_rtx(HImode);
emit_insn(gen_rtx_SET(HImode, const1, GEN_INT(1)));
/* Load the address mask with the bitwise complement of 1. */
addressMask = gen_reg_rtx(HImode);
emit_insn(gen_rtx_SET(HImode, addressMask, GEN_INT(-2)));
/* Handle loads first, in case we are dealing with a mem := mem
* instruction. */
if (MEM == GET_CODE(operands[1]))
{
/* Loads work as follows. The entire word containing the desired byte
* is loaded. The bottom bit of the address indicates which
* byte is required. The desired byte is moved into the most
* significant byte, and then an arithmetic shift right
* invoked to achieve sign extension. The desired byte is
* moved to the MSB by XOR'ing the bottom address bit by 1,
* multiplying the result by 8, and then shifting left by
* that amount. Note that shifts only operate on the bottom
* 4-bits of the source offset, so although the XOR may
* produce a value which has its upper bits set, only bit 4
* (i.e., the inverted, shifted bottom address bit) actually
* gets used.
*/
/* Ensure the address is in a register. */
address = gen_reg_rtx(HImode);
emit_insn(gen_rtx_SET(HImode, address, XEXP(operands[1], 0)));
/* Compute the word address by masking out the bottom bit. */
wordAddress = gen_reg_rtx(HImode);
emit_insn(gen_andhi3(wordAddress, address, addressMask));
/* Compute the shift value. This is the bottom address bit,
* inverted, and multiplied by 8. */
shiftVal = gen_reg_rtx(HImode);
emit_insn(gen_xorhi3(shiftVal, address, const1));
emit_insn(gen_ashlhi3(shiftVal, shiftVal, GEN_INT(3)));
/* Emit the memory load. */
loadedValue = gen_reg_rtx(HImode);
emit_insn(gen_rtx_SET(HImode, loadedValue, gen_rtx_MEM(HImode, wordAddress)));
/* Shift the desired byte to the most significant byte. */
topByteValue = gen_reg_rtx (HImode);
emit_insn (gen_ashlhi3 (topByteValue, loadedValue, shiftVal));
/* Sign extend the top-byte back into the bottom byte. */
signExtendedValue = gen_reg_rtx(HImode);
emit_insn(gen_ashrhi3(signExtendedValue, topByteValue, GEN_INT(8)));
/* Final extraction of QI mode register. */
operands[1] = gen_rtx_SUBREG(QImode, signExtendedValue, 0);
}
if (MEM == GET_CODE(operands[0]) && GET_CODE(operands[1]) != MEM)
{
rtx zeroingByteMask;
rtx temp;
rtx tempHiMode;
rtx lsbByteMask;
/* Get the address. */
address = gen_reg_rtx(HImode);
emit_insn(gen_rtx_SET(HImode, address, XEXP(operands[0], 0)));
/* Compute the word aligned address. */
wordAddress = gen_reg_rtx(HImode);
emit_insn(gen_andhi3(wordAddress, address, addressMask));
/* Compute the shift value. */
shiftVal = gen_reg_rtx(HImode);
emit_insn(gen_andhi3(shiftVal, address, const1));
emit_insn(gen_ashlhi3(shiftVal, shiftVal, GEN_INT(3)));
/* Emit the memory load. */
loadedValue = gen_reg_rtx(HImode);
emit_insn(gen_rtx_SET(HImode, loadedValue, gen_rtx_MEM(HImode, wordAddress)));
/* Zero out the destination bits by AND'ing with 0xFF00
* shifted appropriately. */
zeroingByteMask = gen_reg_rtx(HImode);
emit_insn(gen_rtx_SET(HImode, zeroingByteMask, GEN_INT(-256)));
emit_insn(gen_lshrhi3(zeroingByteMask, zeroingByteMask, shiftVal));
emit_insn(gen_andhi3(loadedValue, loadedValue, zeroingByteMask));
/* Grab the incoming QI register, and ensure that the top bits
* are zeroed out. This is because the register may be
* storing a signed value, in which case the top-bits will be
* sign bits. These must be removed to ensure that the
* read-modify-write (which uses an OR) doesn't pick up those
* bits, instead of the original memory value which is being
* modified.
*/
tempHiMode = simplify_gen_subreg(HImode, operands[1], QImode, 0);
temp = gen_reg_rtx(HImode);
emit_insn(gen_rtx_SET(HImode, temp, tempHiMode));
lsbByteMask = gen_reg_rtx (HImode);
emit_insn (gen_rtx_SET (HImode, lsbByteMask, GEN_INT (0xFF)));
emit_insn (gen_andhi3 (temp, temp, lsbByteMask));
/* Shift the incoming byte value by the appropriate amount,
* and OR into the load value. */
emit_insn(gen_ashlhi3(temp, temp, shiftVal));
emit_insn(gen_iorhi3(loadedValue, loadedValue, temp));
/* Rewrite the original assignment, to assign the new value
* to the word address. */
operands[0] = gen_rtx_MEM(HImode, wordAddress);
operands[1] = loadedValue;
}
}
})
(define_insn "*movqi_sign_extend"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(sign_extend:HI (match_operand:QI 1 "memory_operand" "a,m")))]
"TARGET_HAS_BYTE_ACCESS"
"@
LDB (%a1),%0\t\t// %0 = Mem(%a1)
LDB %a1,%0\t\t// %0 = Mem(%M1{byte})"
[(set_attr "type" "mem,mem")
(set_attr "longConstant" "true,false")
(set_attr "length" "4,4")])
;; movqi instructions for machines with and without byte access.
(define_insn "*movqi_byte"
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,r,r,r,a,m")
(match_operand:QI 1 "general_operand" "r,a,m,I,i,r,r"))]
"TARGET_HAS_BYTE_ACCESS"
"@
COPY.%# %1, %0\t// %0 := %1
LDB (%a1),%0\t\t// %0 = Mem(%a1)
LDB %a1,%0\t\t// %0 = Mem(%M1{byte})
COPY.%# %1,%0\t\t// %0 := #%1 (QI) (short constant)
COPY.%# %1,%0\t\t// %0 := #%1 (QI) (long constant)
STB %1,(%a0)\t\t// Mem(%a0) := %1
STB %1,%a0\t\t// Mem(%M0{byte}) := %1"
[(set_attr "type" "basicAlu,mem,mem,basicAlu,basicAlu,mem,mem")
(set_attr "longConstant" "false,true,false,false,true,true,false")
(set_attr "length" "2,4,4,2,4,4,4")])
;; Machines which don't have byte access can copy registers, and load
;; constants, but can't access memory. The define_expand for movqi
;; should already have rewritten memory accesses using word
;; operations. The exception is qi reloads, which are handled using
;; the reload_? patterns.
(define_insn "*movqi_nobyte"
[(set (match_operand:QI 0 "register_operand" "=r,r")
(match_operand:QI 1 "picochip_register_or_immediate_operand" "r,i"))]
"!TARGET_HAS_BYTE_ACCESS"
"@
COPY.%# %1,%0\t// %0 := %1
COPY.%# %1,%0\t\t// %0 := #%1 (QI)")
(define_insn "movhi"
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,a,m,r,r")
(match_operand:HI 1 "general_operand" "r,a,m,r,r,I,i"))]
""
"@
COPY.%# %1,%0\t\t// %0 := %1
LDW (%a1),%0\t\t// %0 := Mem(%a1)
LDW %a1,%0\t\t// %0 = Mem(%M1{byte})
STW %1,(%a0)\t\t// Mem(%a0) := %1
STW %1,%a0\t\t// Mem(%M0{byte}) := %1
COPY.%# %1,%0\t// %0 := %1 (short constant)
COPY.%# %1,%0\t// %0 := %1 (long constant)"
[(set_attr "type" "basicAlu,mem,mem,mem,mem,basicAlu,basicAlu")
(set_attr "longConstant" "false,true,false,true,false,false,true")
(set_attr "length" "2,4,4,4,4,2,4")])
(define_insn "movsi"
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,a,m")
(match_operand:SI 1 "general_operand" "r,a,m,i,r,r"))]
""
"@
// %R0 := %R1 (SI)\n\tCOPY.%# %L1,%L0 %| COPY.1 %U1,%U0
LDL (%a1),%R0\t\t// %R0 = Mem(%a1)
LDL %a1,%R0\t\t// %R0 = Mem(%M1{byte})
// %R0 := #%1 (SI)\n\tCOPY.%# %L1,%L0 %| COPY.%# %U1,%U0
STL %R1,(%a0)\t\t// Mem(%a0) := %R1
STL %R1,%a0\t\t// Mem(%M0{byte}) := %R1"
[(set_attr "type" "unknown,mem,mem,unknown,mem,mem")
(set_attr "longConstant" "false,true,false,true,false,false")
(set_attr "length" "4,4,4,6,4,4")])
; Split an SI mode register copy into separate HI mode copies, which
; can be VLIW'd with other instructions. Only split the instruction
; when VLIW scheduling is enabled. Splitting the instruction saves
; some code space.
;
; This is predicated in reload_completed. This ensures that the
; instructions aren't broken up too early which can result in the
; SImode code being converted into inefficient HI mode code.
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "register_operand" ""))]
"reload_completed && picochip_schedule_type == DFA_TYPE_SPEED"
[(set (match_dup 2) (match_dup 3))
(set (match_dup 4) (match_dup 5))]
"{
operands[2] = gen_lowpart (HImode, operands[0]);
operands[3] = gen_lowpart (HImode, operands[1]);
operands[4] = gen_highpart (HImode, operands[0]);
operands[5] = gen_highpart (HImode, operands[1]);
}")
; SI Mode split for load constant.
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "const_int_operand" ""))]
"reload_completed"
[(set (match_dup 2) (match_dup 3))
(set (match_dup 4) (match_dup 5))]
"{
operands[2] = gen_lowpart (HImode, operands[0]);
operands[3] = picochip_get_low_const(operands[1]);
operands[4] = gen_highpart (HImode, operands[0]);
operands[5] = picochip_get_high_const(operands[1]);
}")
(define_insn "movsf"
[(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,m")
(match_operand:SF 1 "general_operand" "r,m,i,r"))]
""
"@
// %R0 := %R1 (SF)\n\tCOPY.%# %L1,%L0 %| COPY.1 %U1,%U0
LDL %a1,%R0\t\t// %R0 :={SF} Mem(%M1{byte})
// %R0 := #%1 (SF)\n\tCOPY.%# %L1,%L0\n\tCOPY.%# %U1,%U0
STL %R1,%a0\t\t// Mem(%M0{byte}) :={SF} %R1")
;; memcpy pattern
;; 0 = destination (mem:BLK ...)
;; 1 = source (mem:BLK ...)
;; 2 = count
;; 3 = alignment
(define_expand "movmemhi"
[(match_operand 0 "memory_operand" "")
(match_operand 1 "memory_operand" "")
(match_operand:HI 2 "immediate_operand" "")
(match_operand 3 "" "")]
"picochip_schedule_type != DFA_TYPE_NONE"
"if (picochip_expand_movmemhi(operands)) DONE; FAIL;"
)
;;===========================================================================
;; NOP
;;===========================================================================
;; No-operation (NOP)
(define_insn "nop"
[(const_int 0)]
""
"NOP\t// nop"
[(set_attr "length" "1")])
;;===========================================================================
;; Function Calls. Define expands are used to ensure that the correct
;; type of pattern is emitted, and then the define_insn's match the
;; pattern using the correct types.
;;
;; Note: The comments output as part of these instructions are detected by
;; the linker. Don't change the comments!
;;===========================================================================
(define_expand "call"
[(parallel [(call (match_operand:QI 0 "memory_operand" "")
(match_operand 1 "const_int_operand" ""))
(clobber (reg:HI LINK_REGNUM))])]
""
"")
(define_insn "call_for_divmod"
[(call (match_operand:QI 0 "memory_operand" "")
(match_operand 1 "const_int_operand" ""))]
""
"JL (%M0)\t// fn_call %M0%>"
[(set_attr "length" "4")
(set_attr "type" "realBranch")
(set_attr "longConstant" "true")])
(define_insn "*call_using_symbol"
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
(match_operand 1 "const_int_operand" ""))
(clobber (reg:HI LINK_REGNUM))]
""
"JL (%M0)\t// fn_call %M0%>"
[(set_attr "length" "4")
(set_attr "type" "realBranch")
(set_attr "longConstant" "true")])
(define_insn "*call_using_register"
[(call (mem:QI (match_operand:HI 0 "register_operand" "r"))
(match_operand 1 "const_int_operand" ""))
(clobber (reg:HI LINK_REGNUM))]
""
"JL (%r0)\t// fn_call_unknown %r0%>"
[(set_attr "length" "2")
(set_attr "type" "realBranch")
(set_attr "longConstant" "false")])
(define_expand "call_value"
[(parallel [(set (match_operand:HI 0 "" "")
(call:HI (match_operand:QI 1 "memory_operand" "g")
(match_operand 2 "const_int_operand" "")))
(clobber (reg:HI LINK_REGNUM))])]
""
"")
(define_insn "*call_value_using_symbol"
[(set (match_operand:HI 0 "" "")
(call:HI (mem:QI (match_operand:HI 1 "immediate_operand" "i"))
(match_operand 2 "const_int_operand" "")))
(clobber (reg:HI LINK_REGNUM))]
""
"JL (%M1)\t// fn_call %M1 (value return)%>"
[(set_attr "length" "4")
(set_attr "type" "realBranch")
(set_attr "longConstant" "true")])
(define_insn "*call_value_using_register"
[(set (match_operand:HI 0 "" "")
(call:HI (mem:QI (match_operand:HI 1 "register_operand" "r"))
(match_operand 2 "const_int_operand" "")))
(clobber (reg:HI LINK_REGNUM))]
""
"JL (%r1)// fn_call_unknown %r1 (value return)%>"
[(set_attr "length" "2")
(set_attr "type" "realBranch")
(set_attr "longConstant" "false")])
;;===========================================================================
;; Addition
;;===========================================================================
;; Note that the addition of a negative value is transformed into the
;; subtraction of a positive value, so that the add/sub immediate slot
;; can make better use of the 4-bit range.
(define_insn "addhi3"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
(plus:HI (match_operand:HI 1 "register_operand" "r,r,r,r")
(match_operand:HI 2 "general_operand" "r,M,n,i")))
(clobber (reg:CC CC_REGNUM))]
""
{ if (CONST_INT == GET_CODE(operands[2]) &&
INTVAL(operands[2]) > -16 &&
INTVAL(operands[2]) < 0)
return "SUB.%# %1,-(%2),%0\t// %0 := %1 + %2 (HI)";
else
return "ADD.%# %1,%2,%0\t// %0 := %1 + %2 (HI)";
}
[(set_attr "type" "basicAlu,basicAlu,basicAlu,basicAlu")
(set_attr "longConstant" "false,false,true,true")
(set_attr "length" "2,2,4,4")]
)
;; If we peepholed the compare instruction out, we need to make sure the add
;; goes in slot 0. This pattern is just to accomplish that.
(define_insn "addhi3_with_use_clause"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
(plus:HI (match_operand:HI 1 "register_operand" "r,r,r,r")
(match_operand:HI 2 "general_operand" "r,M,n,i")))
(set (reg:CC CC_REGNUM)
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(const_int 0)
(const_int 0)]))]
""
{ if (CONST_INT == GET_CODE(operands[2]) &&
INTVAL(operands[2]) > -16 &&
INTVAL(operands[2]) < 0)
return "SUB.0 %1,-(%2),%0\t// %0 := %1 + %2 (HI)";
else
return "ADD.0 %1,%2,%0\t// %0 := %1 + %2 (HI)";
}
[(set_attr "type" "picoAlu,picoAlu,picoAlu,picoAlu")
(set_attr "longConstant" "false,false,true,true")
(set_attr "length" "2,2,4,4")]
)
;; Match an addition in which the first operand has been shifted
;; (e.g., the comms array functions can emit such instructions).
(define_insn "*addWith1stOpShift"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(plus:HI (ashift:HI (match_operand:HI 1 "register_operand" "r,r")
(match_operand:HI 2 "const_int_operand" ""))
(match_operand:HI 3 "immediate_operand" "I,i")))
(clobber (reg:CC CC_REGNUM))]
""
"ADD.0 [LSL %1,%2],%3,%0\t// %0 := (%1 << %2) + %3"
[(set_attr "type" "picoAlu,picoAlu")
(set_attr "longConstant" "false,true")])
(define_insn_and_split "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(plus:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "general_operand" "r,i")))
(clobber (reg:CC CC_REGNUM))]
""
"// %0 := %1 + %2 (SI)\n\tADD.0 %L1,%L2,%L0\n\tADDC.0 %U1,%U2,%U0"
"reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
[(match_dup 4)
(match_dup 5)]
"
{
rtx op0_high = gen_highpart (HImode, operands[0]);
rtx op1_high = gen_highpart (HImode, operands[1]);
rtx op0_low = gen_lowpart (HImode, operands[0]);
rtx op1_low = gen_lowpart (HImode, operands[1]);
rtx op2_high, op2_low;
if (CONST_INT == GET_CODE(operands[2]))
{
op2_high = picochip_get_high_const(operands[2]);
op2_low = picochip_get_low_const(operands[2]);
} else {
op2_high = gen_highpart (HImode, operands[2]);
op2_low = gen_lowpart (HImode, operands[2]);
}
operands[4] = gen_add_multi_lower (op0_low, op1_low, op2_low);
operands[5] = gen_add_multi_upper (op0_high, op1_high, op2_high);
}")
;; Perform the lowest part of a multi-part addition (SI/DI). This sets
;; the flags, so is an picoAlu instruction (we could use a
;; conventional addhi, but the addhi is better off being a treated as
;; a basicAlu instruction, rather than a picoAlu instruction).
(define_insn "add_multi_lower"
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
(plus:HI (match_operand:HI 1 "register_operand" "r,r,r")
(match_operand:HI 2 "general_operand" "r,M,i")))
(set (reg:CC CC_REGNUM)
(compare:CC (plus:HI (match_dup 1)
(match_dup 2))
(const_int 0)))]
""
{ if (CONST_INT == GET_CODE(operands[2]) &&
INTVAL(operands[2]) > -16 &&
INTVAL(operands[2]) < 0)
return "SUB.%# %1,-(%2),%0\t// %0+carry := %1 + %2 (low multi-part)";
else
return "ADD.%# %1,%2,%0\t// %0+carry := %1 + %2 (low multi-part)";
}
[(set_attr "type" "picoAlu,picoAlu,picoAlu")
(set_attr "longConstant" "false,false,true")
(set_attr "length" "2,2,4")])
;; Perform the central part of a multi-part addition (DI). This uses
;; the CC register, and also sets the CC register, so needs to be
;; placed in the first ALU slot. Note that the ADDC must
;; use the long constant to represent immediates.
(define_insn "add_multi_mid"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(plus:HI (match_operand:HI 1 "register_operand" "r,r")
(plus:HI (match_operand:HI 2 "general_operand" "r,i")
(reg:CC CC_REGNUM))))
(set (reg:CC CC_REGNUM)
(compare:CC (plus:HI (match_dup 1)
(match_dup 2))
(const_int 0)))]
""
"ADDC.%# %1,%2,%0\t// %0+carry := carry + %1 + %2 (mid multi-part)"
[(set_attr "type" "picoAlu,picoAlu")
(set_attr "longConstant" "false,true")
(set_attr "length" "2,4")])
;; Perform the highest part of a multi-part addition (SI/DI). This
;; uses the CC register, but doesn't require any registers to be set,
;; so may be scheduled in either of the ALU's. Note that the ADDC must
;; use the long constant to represent immediates.
(define_insn "add_multi_upper"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(plus:HI (match_operand:HI 1 "register_operand" "r,r")
(plus:HI (match_operand:HI 2 "general_operand" "r,i")
(reg:CC CC_REGNUM))))
(clobber (reg:CC CC_REGNUM))]
""
"ADDC.%# %1,%2,%0\t// %0 := carry + %1 + %2 (high multi-part)"
[(set_attr "type" "basicAlu,basicAlu")
(set_attr "longConstant" "false,true")
(set_attr "length" "2,4")])
;; The lea instruction is a special type of add operation, which looks
;; like a movhi (reg := address). It expands into reg := fp +
;; offset. Ideally there should be two variants, which take different
;; sized offsets (i.e., using the long constant, or not, as
;; appropriate). However, the address operand may have arbitrary
;; values added to it later (i.e., the AP will be eliminated, possibly
;; converting a small offset into a long offset), so a long offset is
;; always assumed.
;; Note that the lea can use an addition, and hence may modify the CC
;; register. This upsets scheduling, so instead the lea is placed in
;; ALU 1 where it cannot modify CC.
(define_insn "*lea_add"
[(set (match_operand:HI 0 "nonimmediate_operand" "=r")
(plus:HI (match_operand:HI 1 "register_operand" "r")
(match_operand:HI 2 "immediate_operand" "i")))]
""
"ADD.1 %1,%2,%0\t// lea (add)")
;; Note that, though this instruction looks similar to movhi pattern,
;; "p" constraint cannot be specified for operands other than
;; address_operand, hence the extra pattern below.
(define_insn "*lea_move"
[(set (match_operand:HI 0 "nonimmediate_operand" "=r")
(match_operand:HI 1 "address_operand" "p"))]
""
{
if (REG == GET_CODE(operands[1]))
return "COPY.1 %1,%0\t// %0 := %1 (lea)";
else
return "ADD.1 %b1,%o1,%0\t\t// %0 := %b1 + %o1 (lea)";
}
[(set_attr "type" "nonCcAlu")
(set_attr "longConstant" "true")
(set_attr "length" "4")])
;;===========================================================================
;; Subtraction. Note that these patterns never take immediate second
;; operands, since those cases are handled by canonicalising the
;; instruction into the addition of a negative costant.
;; But, if the first operand needs to be a negative constant, it
;; is supported here.
;;===========================================================================
(define_insn "subhi3"
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
(minus:HI (match_operand:HI 1 "general_operand" "r,I,i")
(match_operand:HI 2 "register_operand" "r,r,r")))
(clobber (reg:CC CC_REGNUM))]
""
"SUB.%# %1,%2,%0 // %0 := %1 - %2 (HI)"
[(set_attr "type" "basicAlu,basicAlu,basicAlu")
(set_attr "longConstant" "false,true,true")
(set_attr "length" "2,4,4")])
;; If we peepholed the compare instruction out, we need to make sure the
;; sub goes in slot 0. This pattern is just to accomplish that.
(define_insn "subhi3_with_use_clause"
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
(minus:HI (match_operand:HI 1 "general_operand" "r,I,i")
(match_operand:HI 2 "register_operand" "r,r,r")))
(set (reg:CC CC_REGNUM)
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(const_int 0)
(const_int 0)]))]
""
"SUB.0 %1,%2,%0 // %0 := %1 - %2 (HI)"
[(set_attr "type" "picoAlu,picoAlu,picoAlu")
(set_attr "longConstant" "false,true,true")
(set_attr "length" "2,4,4")])
(define_insn_and_split "subsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(minus:SI (match_operand:SI 1 "general_operand" "r,i")
(match_operand:SI 2 "register_operand" "r,r")))
(clobber (reg:CC CC_REGNUM))]
""
"// %0 := %1 - %2 (SI)\n\tSUB.%# %L1,%L2,%L0\n\tSUBB.%# %U1,%U2,%U0"
"reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
[(match_dup 4)
(match_dup 5)]
"
{
rtx op0_high = gen_highpart (HImode, operands[0]);
rtx op0_low = gen_lowpart (HImode, operands[0]);
rtx op2_high = gen_highpart (HImode, operands[2]);
rtx op2_low = gen_lowpart (HImode, operands[2]);
rtx op1_high,op1_low;
if (CONST_INT == GET_CODE(operands[1]))
{
op1_high = picochip_get_high_const(operands[1]);
op1_low = picochip_get_low_const(operands[1]);
} else {
op1_high = gen_highpart (HImode, operands[1]);
op1_low = gen_lowpart (HImode, operands[1]);
}
operands[4] = gen_sub_multi_lower (op0_low, op1_low, op2_low);
operands[5] = gen_sub_multi_upper (op0_high, op1_high, op2_high);
}")
;; Match the patterns emitted by the multi-part subtraction splitting.
;; This sets the CC register, so it needs to go into slot 0.
(define_insn "sub_multi_lower"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(minus:HI (match_operand:HI 1 "general_operand" "r,i")
(match_operand:HI 2 "register_operand" "r,r")))
(set (reg:CC CC_REGNUM)
(compare:CC (minus:HI (match_dup 1) (match_dup 2))
(const_int 0)))]
""
"SUB.%# %1,%2,%0\t// %0+carry := %1 - %2 (lower SI)"
[(set_attr "type" "picoAlu,picoAlu")
(set_attr "longConstant" "false,true")
(set_attr "length" "2,4")])
;; Perform the central part of a multi-part addition (DI). This uses
;; the CC register, and also sets the CC register, so needs to be
;; placed in the first ALU.
(define_insn "sub_multi_mid"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(minus:HI (match_operand:HI 1 "general_operand" "r,i")
(minus:HI (match_operand:HI 2 "register_operand" "r,r")
(reg:CC CC_REGNUM))))
(set (reg:CC CC_REGNUM)
(compare:CC (minus:HI (match_dup 1)
(match_dup 2))
(const_int 0)))]
""
"SUBB.%# %1,%2,%0\t// %0+carry := carry - %1 - %2 (mid multi-part)"
[(set_attr "type" "picoAlu,picoAlu")
(set_attr "longConstant" "false,true")
(set_attr "length" "2,4")])
(define_insn "sub_multi_upper"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(minus:HI (match_operand:HI 1 "general_operand" "r,i")
(minus:HI (match_operand:HI 2 "register_operand" "r,r")
(reg:CC CC_REGNUM))))
(clobber (reg:CC CC_REGNUM))]
""
"SUBB.%# %1,%2,%0\t// %0 := carry - %1 - %2 (upper SI)"
[(set_attr "type" "basicAlu,basicAlu")
(set_attr "longConstant" "false,true")
(set_attr "length" "2,4")])
;;===========================================================================
;; Multiplication (signed)
;;===========================================================================
(define_insn "multiply_machi"
[(set (reg:HI ACC_REGNUM)
(mult:HI (match_operand:HI 0 "register_operand" "r,r")
(match_operand:HI 1
"picochip_register_or_immediate_operand" "r,i")))]
"TARGET_HAS_MAC_UNIT"
"MUL %0,%1,acc0\t// acc0 := %0 * %1 (signed)"
[(set_attr "length" "3,5")
(set_attr "type" "mac,mac")
(set_attr "longConstant" "false,true")])
(define_expand "mulhi3"
[(set (match_operand:HI 0 "register_operand" "")
(mult:HI (match_operand:HI 1 "register_operand" "")
(match_operand:HI 2 "picochip_register_or_immediate_operand" "")))]
"TARGET_HAS_MULTIPLY"
"")
;; Different types of mulhi, depending on the AE type. If the AE has MUL unit,
;; use the following pattern.
(define_insn "*mulhi3_mul"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(mult:HI (match_operand:HI 1 "register_operand" "r,r")
(match_operand:HI 2
"picochip_register_or_immediate_operand" "r,i")))]
"TARGET_HAS_MUL_UNIT"
"MULL %1,%2,%0 // %0 := %1 * %2 (HI)"
[(set_attr "length" "3,5")
(set_attr "type" "mul,mul")
(set_attr "longConstant" "false,true")])
;; If the AE has MAC unit, instead, use the following pattern.
(define_insn_and_split "*mulhi3_mac"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(mult:HI (match_operand:HI 1 "register_operand" "r,r")
(match_operand:HI 2
"picochip_register_or_immediate_operand" "r,i")))]
"TARGET_HAS_MAC_UNIT"
"// %0 := %1 * %2\n\tMUL %1,%2,acc0\n\tREADACC acc0,frac,%0"
"TARGET_HAS_MAC_UNIT && reload_completed"
[(match_dup 3)
(match_dup 4)]
"
{
rtx const_rtx = GEN_INT(0);
operands[3] = (gen_multiply_machi(operands[1], operands[2]));
operands[4] = (gen_movhi_mac(operands[0],const_rtx));
} "
)
(define_insn "umultiply_machisi"
[(set (reg:SI ACC_REGNUM)
(mult:SI (zero_extend:SI (match_operand:HI 0 "register_operand" "r"))
(zero_extend:SI (match_operand:HI 1 "register_operand" "r"))))]
"TARGET_HAS_MAC_UNIT"
"MULUU %0,%1,acc0\t// acc0 := %0 * %1 (unsigned)"
[(set_attr "length" "3")
(set_attr "type" "mac")
(set_attr "longConstant" "false")])
(define_insn "multiply_machisi"
[(set (reg:SI ACC_REGNUM)
(mult:SI (sign_extend:SI (match_operand:HI 0 "register_operand" "r,r"))
(sign_extend:SI (match_operand:HI 1
"picochip_register_or_immediate_operand" "r,i"))))]
"TARGET_HAS_MAC_UNIT"
"MUL %0,%1,acc0\t// acc0 := %0 * %1 (signed)"
[(set_attr "length" "3,5")
(set_attr "type" "mac,mac")
(set_attr "longConstant" "false,true")])
;; We want to prevent GCC from thinking ACC is a normal register and using
;; this pattern. We want it to be used only when you use MAC unit
;; multiplication. Added a "use" clause for that sake.
(define_insn "movsi_mac"
[(set (match_operand:SI 0 "register_operand" "=r")
(reg:SI ACC_REGNUM))
(use (match_operand:SI 1 "const_int_operand" ""))]
"TARGET_HAS_MAC_UNIT"
"READACC32 acc0,%R0 \t// %0 := acc0 "
[(set_attr "length" "3")
(set_attr "type" "mac")
(set_attr "longConstant" "false")])
;; We want to prevent GCC from thinking ACC is a normal register and using
;; this pattern. We want it to be used only when you use MAC unit
;; multiplication. Added a "use" clause for that sake.
(define_insn "movhi_mac"
[(set (match_operand:HI 0 "register_operand" "=r")
(reg:HI ACC_REGNUM) )
(use (match_operand:HI 1 "const_int_operand" ""))]
"TARGET_HAS_MAC_UNIT"
"READACC acc0,frac,%0 \t// %0 := acc0 "
[(set_attr "length" "3")
(set_attr "type" "mac")
(set_attr "longConstant" "false")])
;; 16-bit to 32-bit widening signed multiplication.
(define_expand "mulhisi3"
[(set (match_operand:SI 0 "register_operand" "=&r")
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
"TARGET_HAS_MULTIPLY"
""
)
(define_insn_and_split "*mulhisi3_mul"
[(set (match_operand:SI 0 "register_operand" "=&r")
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
"TARGET_HAS_MUL_UNIT"
"// %0 := %1 * %2 (HI->SI)\;MULL %1,%2,%L0\;MULH %1,%2,%U0";
"TARGET_HAS_MUL_UNIT && reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
[(match_dup 3)
(match_dup 4)]
"
{
rtx op0_high = gen_highpart (HImode, operands[0]);
rtx op0_low = gen_lowpart (HImode, operands[0]);
operands[3] = gen_mulhisi3_mul_lower(op0_low,operands[1],operands[2]);
operands[4] = gen_mulhisi3_mul_higher(op0_high,operands[1],operands[2]);
}
"
)
(define_insn "mulhisi3_mul_lower"
[(set (match_operand:HI 0 "register_operand" "=&r")
(subreg:HI
(mult:SI
(sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) 0))]
"TARGET_HAS_MUL_UNIT"
"MULL %1,%2,%0"
[(set_attr "length" "3")
(set_attr "type" "mul")
(set_attr "longConstant" "false")])
(define_insn "mulhisi3_mul_higher"
[(set (match_operand:HI 0 "register_operand" "=&r")
(subreg:HI
(mult:SI
(sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) 2))]
"TARGET_HAS_MUL_UNIT"
"MULH %1,%2,%0"
[(set_attr "length" "3")
(set_attr "type" "mul")
(set_attr "longConstant" "false")])
(define_insn_and_split "*mulhisi3_mac"
[(set (match_operand:SI 0 "register_operand" "=&r")
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
"TARGET_HAS_MAC_UNIT"
"// %0 := %1 * %2 (HI->SI) STAN2\;MUL %1,%2,acc0\;READACC32 acc0,%R0";
"TARGET_HAS_MAC_UNIT && reload_completed"
[(match_dup 3)
(match_dup 4)]
"
{
rtx const_rtx = gen_int_mode(0,SImode);
operands[3] = (gen_multiply_machisi(operands[1], operands[2]));
operands[4] = (gen_movsi_mac(operands[0],const_rtx));
} "
)
;;===========================================================================
;; Widening multiplication (unsigned)
;;===========================================================================
(define_expand "umulhisi3"
[(set (match_operand:SI 0 "register_operand" "=&r")
(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
"TARGET_HAS_MULTIPLY"
""
)
(define_insn_and_split "*umulhisi3_mul"
[(set (match_operand:SI 0 "register_operand" "=&r")
(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
"TARGET_HAS_MUL_UNIT"
"// %0 := %1 * %2 (uHI->uSI Type 1)\;MULUL %1,%2,%L0\n\tMULUH %1,%2,%U0";
"TARGET_HAS_MUL_UNIT && reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
[(match_dup 3)
(match_dup 4)]
"
{
rtx op0_high = gen_highpart (HImode, operands[0]);
rtx op0_low = gen_lowpart (HImode, operands[0]);
operands[3] = gen_umulhisi3_mul_lower(op0_low,operands[1],operands[2]);
operands[4] = gen_umulhisi3_mul_higher(op0_high,operands[1],operands[2]);
}
"
)
(define_insn "umulhisi3_mul_lower"
[(set (match_operand:HI 0 "register_operand" "=&r")
(subreg:HI
(mult:SI
(zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))) 0))]
"TARGET_HAS_MUL_UNIT"
"MULUL %1,%2,%0"
[(set_attr "length" "3")
(set_attr "type" "mul")
(set_attr "longConstant" "false")])
(define_insn "umulhisi3_mul_higher"
[(set (match_operand:HI 0 "register_operand" "=&r")
(subreg:HI
(mult:SI
(zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))) 2))]
"TARGET_HAS_MUL_UNIT"
"MULUH %1,%2,%0"
[(set_attr "length" "3")
(set_attr "type" "mul")
(set_attr "longConstant" "false")])
(define_insn_and_split "*umulhisi3_mac"
[(set (match_operand:SI 0 "register_operand" "=&r")
(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
"TARGET_HAS_MAC_UNIT"
"// %0 := %1 * %2 (uHI->uSI Type 3)\;MULUU %1,%2,acc0\;READACC32 acc0,%R0";
"TARGET_HAS_MAC_UNIT && reload_completed"
[(match_dup 3)
(match_dup 4)]
"
{
rtx const_rtx = gen_int_mode(0,SImode);
operands[3] = (gen_umultiply_machisi(operands[1], operands[2]));
operands[4] = (gen_movsi_mac(operands[0],const_rtx));
} "
)
;;===========================================================================
;; Division (signed)
;;===========================================================================
;; Perform a divmod operation as a function call. This results in some
;; registers being clobbered (r0-6, r12 - ignore r13,14 as these are
;; known not to be affected).
(define_expand "divmodhi4"
[
; Copy the inputs to r0 and r1.
(set (reg:HI 0) (match_operand:HI 1 "register_operand" ""))
(set (reg:HI 1) (match_operand:HI 2 "register_operand" ""))
; Make the function call - note that r12 (link) is clobbered. Note also
; that an explicit call is generated. This ensures that gcc notices that
; any function containing a div/mod is not a leaf function.
(parallel [(match_dup 4)
(set (reg:HI 0) (div:HI (reg:HI 0) (reg:HI 1)))
(set (reg:HI 1) (mod:HI (reg:HI 0) (reg:HI 1)))
(clobber (reg:HI 2))
(clobber (reg:HI 3))
(clobber (reg:HI 4))
(clobber (reg:HI 5))
(clobber (reg:HI 12))
(clobber (reg:CC CC_REGNUM))
])
; Set the quotient (returned in register 0)
(set (match_operand:HI 0 "register_operand" "") (reg:HI 0))
; Set the remainder (returned in register 1)
(set (match_operand:HI 3 "register_operand" "") (reg:HI 1))]
""
{
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_divmodhi4");
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
})
; Match a call to divmodhi4. As this is a call, the link register
; (r12), and registers r0-5 must be clobbered. Ignore clobbering of
; r13/4 as these aren't used by the divide function).
(define_insn "*divmodhi4_call"
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
(match_operand 1 "const_int_operand" ""))
(set (reg:HI 0) (div:HI (reg:HI 0) (reg:HI 1)))
(set (reg:HI 1) (mod:HI (reg:HI 0) (reg:HI 1)))
(clobber (reg:HI 2))
(clobber (reg:HI 3))
(clobber (reg:HI 4))
(clobber (reg:HI 5))
(clobber (reg:HI 12))
(clobber (reg:CC CC_REGNUM))
]
""
"JL (%0)\t// call %0%>"
[(set_attr "length" "4")
(set_attr "longConstant" "true")
(set_attr "type" "call")])
;; Perform a udivmod operation as a function call. This results in some
;; registers being clobbered (r0-6, r12 - ignore r13,14 as these are
;; known not to be affected).
(define_expand "udivmodhi4"
[
; Copy the inputs to r0 and r1.
(set (reg:HI 0) (match_operand:HI 1 "register_operand" ""))
(set (reg:HI 1) (match_operand:HI 2 "register_operand" ""))
; Make the function call - note that r12 (link) is clobbered. Note also
; that an explicit call is generated. This ensures that gcc notices that
; any function containing a div/mod is not a leaf function.
(parallel [(match_dup 4)
(set (reg:HI 0) (udiv:HI (reg:HI 0) (reg:HI 1)))
(set (reg:HI 1) (umod:HI (reg:HI 0) (reg:HI 1)))
(clobber (reg:HI 2))
(clobber (reg:HI 3))
(clobber (reg:HI 4))
(clobber (reg:HI 5))
(clobber (reg:HI 12))
(clobber (reg:CC CC_REGNUM))
])
; Set the quotient (returned in register 0)
(set (match_operand:HI 0 "register_operand" "") (reg:HI 0))
; Set the remainder (returned in register 1)
(set (match_operand:HI 3 "register_operand" "") (reg:HI 1))]
""
{
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_udivmodhi4");
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
})
; Match a call to udivmodhi4. As this is a call, the link register
; (r12), and registers r0-5 must be clobbered. Ignore clobbering of
; r13/4 as these aren't used by the divide function).
(define_insn "*udivmodhi4_call"
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
(match_operand 1 "const_int_operand" ""))
(set (reg:HI 0) (udiv:HI (reg:HI 0) (reg:HI 1)))
(set (reg:HI 1) (umod:HI (reg:HI 0) (reg:HI 1)))
(clobber (reg:HI 2))
(clobber (reg:HI 3))
(clobber (reg:HI 4))
(clobber (reg:HI 5))
(clobber (reg:HI 12))
(clobber (reg:CC CC_REGNUM))]
""
"JL (%0)\t// call %0%>"
[(set_attr "length" "4")
(set_attr "longConstant" "true")
(set_attr "type" "call")])
(define_expand "udivmodsi4"
[
; Make the function call
(set (reg:SI 0) (match_operand:SI 1 "register_operand" ""))
(set (reg:SI 2) (match_operand:SI 2 "register_operand" ""))
(parallel [
(match_dup 4)
(set (reg:SI 4) (udiv:SI (reg:SI 0) (reg:SI 2)))
(set (reg:SI 6) (umod:SI (reg:SI 0) (reg:SI 2)))
(clobber (reg:SI 0))
(clobber (reg:SI 2))
(clobber (reg:HI 12))
(clobber (reg:CC CC_REGNUM))])
(set (match_operand:SI 0 "register_operand" "") (reg:SI 4))
(set (match_operand:SI 3 "register_operand" "") (reg:SI 6))]
""
{
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_udivmodsi4");
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
})
(define_insn "*udivmodsi4_call"
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
(match_operand 1 "const_int_operand" ""))
(set (reg:SI 4) (udiv:SI (reg:SI 0) (reg:SI 2)))
(set (reg:SI 6) (umod:SI (reg:SI 0) (reg:SI 2)))
(clobber (reg:SI 0))
(clobber (reg:SI 2))
(clobber (reg:HI 12))
(clobber (reg:CC CC_REGNUM))]
""
"JL (%0)\t// call %0%>"
[(set_attr "length" "4")
(set_attr "longConstant" "true")
(set_attr "type" "call")])
(define_expand "divmodsi4"
[
; Make the function call
(set (reg:SI 0) (match_operand:SI 1 "register_operand" ""))
(set (reg:SI 2) (match_operand:SI 2 "register_operand" ""))
(parallel [
(match_dup 4)
(set (reg:SI 4) (div:SI (reg:SI 0) (reg:SI 2)))
(set (reg:SI 6) (mod:SI (reg:SI 0) (reg:SI 2)))
(clobber (reg:SI 0))
(clobber (reg:SI 2))
(clobber (reg:HI 12))
(clobber (reg:CC CC_REGNUM))])
(set (match_operand:SI 0 "register_operand" "") (reg:SI 4))
(set (match_operand:SI 3 "register_operand" "") (reg:SI 6))]
""
{
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_divmodsi4");
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
})
(define_insn "*divmodsi4_call"
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
(match_operand 1 "const_int_operand" ""))
(set (reg:SI 4) (div:SI (reg:SI 0) (reg:SI 2)))
(set (reg:SI 6) (mod:SI (reg:SI 0) (reg:SI 2)))
(clobber (reg:SI 0))
(clobber (reg:SI 2))
(clobber (reg:HI 12))
(clobber (reg:CC CC_REGNUM))]
""
"JL (%0)\t// call %0%>"
[(set_attr "length" "4")
(set_attr "longConstant" "true")
(set_attr "type" "call")])
;;===========================================================================
;; Bitwise AND. The QI/SI mode instructions are automatically
;; synthesised from the HI mode instruction.
;;===========================================================================
(define_insn "andhi3"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(and:HI (match_operand:HI 1 "register_operand" "r,r")
(match_operand:HI 2 "general_operand" "r,n")))
(clobber (reg:CC CC_REGNUM))]
""
"AND.%# %1,%2,%0 // %0 := %1 AND %2 (HI)"
[(set_attr "type" "basicAlu,basicAlu")
(set_attr "longConstant" "false,true")
(set_attr "length" "3,5")])
;; If we peepholed the compare instruction out, we need to make sure the
;; "and" goes in slot 0. This pattern is just to accomplish that.
(define_insn "andhi3_with_use_clause"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(and:HI (match_operand:HI 1 "register_operand" "r,r")
(match_operand:HI 2 "general_operand" "r,n")))
(set (reg:CC CC_REGNUM)
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(const_int 0)
(const_int 0)]))]
""
"AND.0 %1,%2,%0 // %0 := %1 AND %2 (HI)"
[(set_attr "type" "picoAlu,picoAlu")
(set_attr "longConstant" "false,true")
(set_attr "length" "3,5")])
;;===========================================================================
;; Bitwise inclusive-OR. The QI mode instruction is automatically
;; synthesised from the HI mode instruction.
;;===========================================================================
(define_insn "iorhi3"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(ior:HI (match_operand:HI 1 "register_operand" "r,r")
(match_operand:HI 2 "register_operand" "r,n")))
(clobber (reg:CC CC_REGNUM))]
""
"OR.%# %1,%2,%0 // %0 := %1 IOR %2 (HI)"
[(set_attr "type" "basicAlu,basicAlu")
(set_attr "longConstant" "false,true")
(set_attr "length" "3,5")])
(define_insn "iorhi3_with_use_clause"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(ior:HI (match_operand:HI 1 "register_operand" "r,r")
(match_operand:HI 2 "general_operand" "r,n")))
(set (reg:CC CC_REGNUM)
(match_operator:CC 3 "picochip_peephole_comparison_operator"
[(const_int 0)
(const_int 0)]))]
""
"OR.0 %1,%2,%0 // %0 := %1 IOR %2 (HI)"
[(set_attr "type" "picoAlu,picoAlu")
(set_attr "longConstant" "false,true")
(set_attr "length" "3,5")])
;;===========================================================================
;; Bitwise exclusive-OR. The QI/SI mode instructions are automatically
;; synthesised from the HI mode instruction.
;;===========================================================================
(define_insn "xorhi3"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(xor:HI (match_operand:HI 1 "register_operand" "r,r")
(match_operand:HI 2 "picochip_register_or_immediate_operand" "r,n")))
(clobber (reg:CC CC_REGNUM))]
""
"XOR.%# %1,%2,%0 // %0 := %1 XOR %2 (HI)"
[(set_attr "type" "basicAlu,basicAlu")
(set_attr "longConstant" "false,true")
(set_attr "length" "3,5")])
;;===========================================================================
;; Arithmetic shift left.
;;===========================================================================
(define_insn "ashlhi3"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(ashift:HI (match_operand:HI 1 "register_operand" "r,r")
(match_operand:HI 2 "general_operand" "r,J")))]
""
"LSL.%# %1,%2,%0 // %0 := %1 << %2"
[(set_attr "type" "picoAlu,basicAlu")
(set_attr "length" "3,3")])
;;===========================================================================
;; Arithmetic shift right.
;;===========================================================================
(define_insn "builtin_asri"
[(set (match_operand:HI 0 "register_operand" "=r")
(ashiftrt:HI (match_operand:HI 1 "register_operand" "r")
(match_operand:HI 2 "immediate_operand" "")))
(clobber (reg:CC CC_REGNUM))]
""
"ASR.%# %1,%2,%0\t// %0 = %1 >>{arith} %2"
[(set_attr "type" "basicAlu")
(set_attr "length" "3")])
;; The picoChip ISA doesn't have a variable arithmetic shift right, so
;; synthesise it. Shifts by constants are directly supported.
(define_expand "ashrhi3"
[(match_operand:HI 0 "register_operand" "")
(match_operand:HI 1 "register_operand" "")
(match_operand:HI 2 "picochip_register_or_immediate_operand" "")]
""
{
if (GET_CODE(operands[2]) == CONST_INT)
/* Shift by constant is easy. */
emit_insn (gen_builtin_asri (operands[0], operands[1], operands[2]));
else
{
/* Synthesise a variable shift. */
rtx tmp1;
rtx tmp2;
rtx tmp3;
rtx minus_one;
rtx tmp4;
/* Fill a temporary with the sign bits. */
tmp1 = gen_reg_rtx (HImode);
emit_insn (gen_builtin_asri (tmp1, operands[1], GEN_INT(15)));
/* Shift the unsigned value. */
tmp2 = gen_reg_rtx (HImode);
emit_insn (gen_lshrhi3 (tmp2, operands[1], operands[2]));
/* The word of sign bits must be shifted back to the left, to zero
* out the unwanted lower bits. The amount to shift left by is (15 -
* count). Since the shifts are computed modulo 16 (i.e., only the
* lower 4 bits of the count are used), the shift amount (15 - count)
* is equivalent to !count. */
tmp3 = gen_reg_rtx (HImode);
minus_one = GEN_INT (-1);
emit_insn (gen_xorhi3 (tmp3, operands[2], minus_one));
tmp4 = gen_reg_rtx (HImode);
emit_insn (gen_ashlhi3 (tmp4, tmp1, tmp3));
/* Combine the sign bits with the shifted value. */
emit_insn (gen_iorhi3 (operands[0], tmp2, tmp4));
}
DONE;
})
;;===========================================================================
;; Logical shift right.
;;===========================================================================
(define_insn "lshrhi3"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(lshiftrt:HI (match_operand:HI 1 "register_operand" "r,r")
(match_operand:HI 2 "general_operand" "r,J")))]
""
"LSR.%# %1,%2,%0 // %0 := %1 >> %2"
[(set_attr "type" "picoAlu,basicAlu")
(set_attr "length" "3,3")])
;;===========================================================================
;; Negate.
;;===========================================================================
;; Negations are performed by subtracting from the constant 0, which
;; is loaded into a register. By using a register containing 0, the
;; chances of being able to CSE with another 0 value are increased.
(define_expand "neghi2"
[(set (match_dup 2) (match_dup 3))
(parallel [(set (match_operand:HI 0 "register_operand" "=r")
(minus:HI (match_dup 2)
(match_operand:HI 1 "register_operand" "r")))
(clobber (reg:CC CC_REGNUM))])]
""
"operands[2] = gen_reg_rtx(HImode);
operands[3] = GEN_INT(0x00000000);")
(define_expand "negsi2"
[(set (match_dup 2) (match_dup 3))
(parallel [(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (match_dup 2)
(match_operand:SI 1 "register_operand" "r")))
(clobber (reg:CC CC_REGNUM))])]
""
"operands[2] = gen_reg_rtx(SImode);
operands[3] = GEN_INT(0x00000000);")
;;===========================================================================
;; Absolute value. Taken from the Hacker's Delight, page 17. The second of the
;; four options given there produces the smallest, fastest code.
;;===========================================================================
(define_insn_and_split "abshi2"
[(set (match_operand:HI 0 "register_operand" "")
(abs:HI (match_operand:HI 1 "register_operand" "")))]
""
"#"
""
[(parallel [(set (match_dup 2)
(plus:HI (ashiftrt:HI (match_dup 1) (const_int 15))
(match_dup 1)))
(clobber (reg:CC CC_REGNUM))])
(parallel [(set (match_dup 0)
(xor:HI (ashiftrt:HI (match_dup 1) (const_int 15))
(match_dup 2)))
(clobber (reg:CC CC_REGNUM))])]
{
operands[2] = gen_reg_rtx (HImode);
})
;;===========================================================================
;; Bitwise complement. Use auto-synthesised variant for SI mode. Though this
;; internally uses xor, the compiler doesnt automatically synthesize it using
;; xor, if this pattern was removed.
;;===========================================================================
(define_insn "one_cmplhi2"
[(set (match_operand:HI 0 "register_operand" "=r")
(not:HI (match_operand:HI 1 "register_operand" "0")))
(clobber (reg:CC CC_REGNUM))]
""
"XOR.%# %1,-1,%0 // %0 := ~%1"
[(set_attr "type" "basicAlu")
(set_attr "longConstant" "true")
(set_attr "length" "5")])
;;===========================================================================
;; Count leading zeros. The special sign-bit-count instruction can be used
;; to help us here.
;; op1:=clz(op1)
;; The code works by checking to see if the top bit is set. If it is,
;; then there are no leading zeros. If the top bit is cleared, then
;; the SBC instruction is used to determine how many more leading
;; zeros are present, and adding one more for the initial zero.
;;===========================================================================
(define_insn "clzhi2"
[(set (match_operand:HI 0 "register_operand" "=&r")
(clz:HI (match_operand:HI 1 "register_operand" "r")))]
""
"// Count leading zeros\;SBC %1,%0\;ASR.0 %1,15,r15 %| ADD.1 %0,1,%0\;COPYNE 0,%0"
[(set_attr "length" "11")])
;;===========================================================================
;; Count trailing zeros. This can be achieved efficiently by reversing
;; using the bitrev instruction, and then counting the leading zeros as
;; described above.
;;===========================================================================
(define_insn "ctzhi2"
[(set (match_operand:HI 0 "register_operand" "=&r")
(ctz:HI (match_operand:HI 1 "register_operand" "r")))]
""
"// Count trailing zeros\;BREV %1,%0\;SBC %0,%0\;AND.0 %1,0x0001,r15 %| ADD.1 %0,1,%0\;COPYNE 0,%0"
[(set_attr "length" "15")])
;;===========================================================================
;; Find the first set bit, starting from the least significant bit position.
;; This is very similar to the ctz function, except that the bit index is one
;; greater than the number of trailing zeros (i.e., SBC + 2), and the
;; result of ffs on the zero value is defined.
;;===========================================================================
(define_insn "ffshi2"
[(set (match_operand:HI 0 "register_operand" "=&r")
(ffs:HI (match_operand:HI 1 "register_operand" "r")))]
""
"// First first bit\;BREV %1,%0\;SBC %0,%0\;AND.0 %1,0x0001,r15 %| ADD.1 %0,2,%0\;COPYNE 1,%0\;SUB.0 %1,0x0000,r15\;COPYEQ 0,%0"
[(set_attr "length" "20")])
;;===========================================================================
;; Tablejump Instruction. Jump to an absolute address.
;;===========================================================================
(define_insn "tablejump"
[(set (pc) (unspec:HI [(match_operand:HI 0 "register_operand" "r")] 1))
(use (label_ref (match_operand 1 "" "")))
(clobber (match_dup 0))]
""
"JR (%0)\t // Table jump to %0 %>"
[(set_attr "length" "2")
(set_attr "type" "realBranch")])
;; Given the memory address of a QImode value, and a scratch register,
;; store the memory operand into the given output operand. The scratch
;; operand will not conflict with either of the operands. The other
;; two operands may conflict with each other.
(define_insn "synthesised_loadqi_unaligned"
[(set (match_operand:QI 0 "register_operand" "=r")
(match_operand:QI 1 "memory_operand" "m"))
(clobber (match_operand:HI 2 "register_operand" "=&r"))
(clobber (reg:CC CC_REGNUM))]
""
"// Synthesised loadqi %0 = Mem(%1) (Scratch %2)\n\tAND.0 %1,-2,%2\n\tLDW (%2)0,%0 %| AND.0 %1,1,%2\n\tLSL.0 %2,3,%2\n\tSUB.0 8,%2,%2\n\tLSL.0 %0,%2,%0\n\tASR.0 %0,8,%0"
; Approximate length only. Probably a little shorter than this.
[(set_attr "length" "40")])
;; Given a memory operand whose alignment is known (the HImode aligned
;; base is operand 0, and the number of bits by which to shift is in
;; operand 5),
(define_expand "synthesised_storeqi_aligned"
[; s1 = mem_op
(set (match_operand:HI 2 "register_operand" "")
(match_operand:HI 0 "memory_operand" ""))
; s1 = s1 and mask
(parallel [(set (match_dup 2) (and:HI (match_dup 2) (match_dup 5)))
(clobber (reg:CC CC_REGNUM))])
; s2 = source << bitShift
(set (match_dup 3)
(ashift:HI (subreg:HI (match_operand:QI 1 "register_operand" "") 0)
(match_operand:HI 4 "const_int_operand" "")))
; s1 = s1 or s2
(parallel [(set (match_dup 2) (ior:HI (match_dup 2) (match_dup 3)))
(clobber (reg:CC CC_REGNUM))])
; mem_op = s1
(set (match_dup 0) (match_dup 2))]
"!TARGET_HAS_BYTE_ACCESS"
{
/* Create the byte mask 0xFF00. */
operands[5] = gen_int_mode(((~0xFF) >> INTVAL (operands[4])), HImode);
})
;; Reload instructions. See picochip_secondary_reload for an
;; explanation of why an SI mode register is used as a scratch. The
;; memory operand must be stored in a register (i.e., it can't be an
;; offset to another register - this would require another scratch
;; register into which the address of the offset could be computed).
(define_expand "reload_inqi"
[(parallel [(match_operand:QI 0 "register_operand" "=&r")
(match_operand:QI 1 "memory_operand" "m")
(match_operand:SI 2 "register_operand" "=&r")])]
"!TARGET_HAS_BYTE_ACCESS"
{
rtx scratch, seq;
/* Get the scratch register. Given an SI mode value, we have a
choice of two HI mode scratch registers, so we can be sure that at
least one of the scratch registers will be different to the output
register, operand[0]. */
if (REGNO (operands[0]) == REGNO (operands[2]))
scratch = gen_rtx_REG (HImode, REGNO (operands[2]) + 1);
else
scratch = gen_rtx_REG (HImode, REGNO (operands[2]));
/* Ensure that the scratch doesn't overlap either of the other
two operands - however, the other two may overlap each
other. */
gcc_assert (REGNO(scratch) != REGNO(operands[0]));
gcc_assert (REGNO(scratch) != REGNO(operands[1]));
gcc_assert (GET_CODE (operands[1]) == MEM);
if (picochip_word_aligned_memory_reference(XEXP(operands[1], 0)))
{
/* Aligned reloads are easy, since they can use word-loads. */
seq = gen_synthesised_loadqi_aligned(operands[0], operands[1], scratch);
}
else
{
/* Emit the instruction using a define_insn. */
seq = gen_synthesised_loadqi_unaligned(operands[0], operands[1], scratch);
}
emit_insn (seq);
DONE;
})
(define_expand "reload_outqi"
[(parallel [(match_operand 0 "memory_operand" "=m")
(match_operand:QI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "=&r")])]
"!TARGET_HAS_BYTE_ACCESS"
{
rtx scratch1 = gen_rtx_REG(HImode, REGNO(operands[2]));
rtx scratch2 = gen_rtx_REG(HImode, REGNO(operands[2]) + 1);
rtx seq;
gcc_assert (GET_CODE (operands[0]) == MEM);
if (picochip_word_aligned_memory_reference(XEXP(operands[0], 0)))
{
rtx alignedAddr, bitShift;
/* Convert the address of the known alignment into two operands
* representing the aligned base address, and the number of shift bits
* required to access the required value. */
picochip_get_hi_aligned_mem(operands[0], &alignedAddr, &bitShift);
/* Emit an aligned store of the source, with the given bit offset. */
seq = gen_synthesised_storeqi_aligned(alignedAddr, operands[1], scratch1, scratch2, bitShift);
}
else
{
/* This isnt exercised at all. Moreover, with new devices, byte access
is available in all variants. */
gcc_unreachable();
}
emit_insn (seq);
DONE;
})
;; Perform a byte load of an alignable memory operand.
; op0 = register to load. op1 = memory operand from which to load
; op2 = op1, aligned to HI, op3 = const bit shift required to extract byte,
; op4 = INTVAL(8 - op3)
(define_expand "synthesised_loadqi_aligned"
[; Load memory operand into register
(set (match_operand:HI 2 "register_operand" "=r")
(match_dup 3))
; Shift required byte into top byte of word.
(set (match_dup 2)
(ashift:HI (match_dup 2)
(match_dup 4)))
; Arithmetic shift of byte to sign extend, and move to lowest register.
(parallel[(set (subreg:HI (match_dup 0) 0)
(ashiftrt:HI (match_dup 2)
(const_int 8)))
(clobber (reg:CC CC_REGNUM))])
(use (match_operand:QI 1 "picochip_alignable_memory_operand" "g"))]
"!TARGET_HAS_BYTE_ACCESS"
{
rtx alignedAddr, bitShift;
/* Convert the address of the known alignment into two operands
* representing the aligned base address, and the number of shift bits
* required to access the required value. */
picochip_get_hi_aligned_mem(operands[1], &alignedAddr, &bitShift);
operands[3] = alignedAddr;
operands[4] = GEN_INT(8 - INTVAL(bitShift));
})
;;============================================================================
;; Special instructions.
;;============================================================================
; Count sign-bits.
(define_insn "sbc"
[(set (match_operand:HI 0 "register_operand" "=r")
(unspec:HI [(match_operand:HI 1 "register_operand" "r")]
UNSPEC_SBC))]
""
"SBC %1,%0\t\t// %0 := SBC(%1)"
[(set_attr "type" "picoAlu")
(set_attr "length" "2")])
; Bit reversal.
(define_insn "brev"
[(set (match_operand:HI 0 "register_operand" "=r")
(unspec:HI [(match_operand:HI 1 "register_operand" "r")]
UNSPEC_BREV))]
""
"BREV %1,%0\t\t// %0 := BREV(%1)"
[(set_attr "length" "2")
(set_attr "type" "picoAlu")])
; Byte swap.
(define_insn "bswaphi2"
[(set (match_operand:HI 0 "register_operand" "=r")
(bswap:HI (match_operand:HI 1 "register_operand" "r")))]
""
"BYTESWAP %1,%0\t\t// %0 := ByteSwap(%1)"
[(set_attr "length" "2")
(set_attr "type" "picoAlu")])
; Read status word.
(define_insn "copysw"
[(set (match_operand:HI 0 "register_operand" "=r")
(unspec_volatile:HI [(reg:CC CC_REGNUM)] UNSPEC_COPYSW))]
""
"COPYSW.%# %0\t// %0 := Flags"
[(set_attr "type" "basicAlu")
(set_attr "length" "2")])
; Saturating addition.
(define_insn "sataddhi3"
[(set (match_operand:HI 0 "register_operand" "=r")
(unspec:HI [(match_operand:HI 1 "register_operand" "r")
(match_operand:HI 2 "register_operand" "r")]
UNSPEC_ADDS))
(clobber (reg:CC CC_REGNUM))]
""
"ADDS %1,%2,%0\t// %0 := sat(%1 + %2)"
[(set_attr "type" "picoAlu")
(set_attr "length" "3")])
; Saturating subtraction.
(define_insn "satsubhi3"
[(set (match_operand:HI 0 "register_operand" "=r")
(unspec:HI [(match_operand:HI 1 "register_operand" "r")
(match_operand:HI 2 "register_operand" "r")]
UNSPEC_SUBS))
(clobber (reg:CC CC_REGNUM))]
""
"SUBS %1,%2,%0\t// %0 := sat(%1 - %2)"
[(set_attr "type" "picoAlu")
(set_attr "length" "3")])
(define_insn "halt"
[(unspec_volatile [(match_operand:HI 0 "const_int_operand" "i")]
UNSPEC_HALT)]
""
"HALT\t// (id %0)"
[(set_attr "length" "1")
(set_attr "type" "unknown")])
(define_insn "internal_testport"
[(set (reg:CC CC_REGNUM)
(unspec_volatile:CC [(match_operand:HI 0 "const_int_operand" "i")]
UNSPEC_INTERNAL_TESTPORT))]
""
"TSTPORT %0"
[(set_attr "length" "2")
(set_attr "longConstant" "false")
(set_attr "type" "picoAlu")])
;;============================================================================
;; Communications builtins.
;;
;; Each builtin comes in two forms: a single port version, which maps
;; to a single instruction, and an array port version. The array port
;; version is treated as a special type of instruction, which is then
;; split into a number of smaller instructions, if the index of the
;; port can't be converted into a constant. When the RTL split is
;; performed, a function call is emitted, in which the index of the
;; port to use is used to compute the address of the function to call
;; (i.e., each array port is a function in its own right, and the
;; functions are stored as an array which is then indexed to determine
;; the correct function). The communication function port array is
;; created by the linker if and only if it is required (in a
;; collect2-like manner).
;;============================================================================
; Simple scalar get.
(define_insn "commsGet"
[(set (match_operand:SI 0 "register_operand" "=r")
(unspec_volatile:SI
[(match_operand:HI 1 "immediate_operand" "n")]
UNSPEC_GET))]
""
"GET %1,%R0\t// %R0 := PORT(%1)"
[(set_attr "type" "comms")
(set_attr "length" "2")])
; Entry point for array get (the actual port index is computed as the
; sum of the index, and the base).
;
; op0 - Destination
; op1 - Requested port index
; op2 - size of port array (constant)
; op3 - base index of port array (constant)
(define_expand "commsArrayGet"
[(parallel
[(set (reg:SI 0)
(unspec_volatile:SI [(match_operand:HI 1 "general_operand" "")
(match_operand:HI 2 "immediate_operand" "")
(match_operand:HI 3 "immediate_operand" "")]
UNSPEC_CALL_GET_ARRAY))
(clobber (reg:HI LINK_REGNUM))])
(set (match_operand:SI 0 "register_operand" "") (reg:SI 0))]
""
"")
;; The actual array get instruction. When the array index is a constant,
;; an exact instruction may be generated. When the index is variable,
;; a call to a special function is generated. This code could be
;; split into individual RTL instructions, but it is so rarely
;; used, that we won't bother.
(define_insn "*commsArrayGetInstruction"
[(set (reg:SI 0)
(unspec_volatile:SI [(match_operand:HI 0 "general_operand" "r,i")
(match_operand:HI 1 "immediate_operand" "")
(match_operand:HI 2 "immediate_operand" "")]
UNSPEC_CALL_GET_ARRAY))
(clobber (reg:HI LINK_REGNUM))]
""
{
return picochip_output_get_array (which_alternative, operands);
})
; Scalar Put instruction.
(define_insn "commsPut"
[(unspec_volatile [(match_operand:HI 0 "const_int_operand" "")
(match_operand:SI 1 "register_operand" "r")]
UNSPEC_PUT)]
""
"PUT %R1,%0\t// PORT(%0) := %R1"
[(set_attr "type" "comms")
(set_attr "length" "2")])
; Entry point for array put. The operands accepted are:
; op0 - Value to put
; op1 - Requested port index
; op2 - size of port array
; op3 - base index of port array
; The arguments are marshalled into the fixed registers, so that
; the actual put instruction can expand into a call if necessary
; (e.g., if the index is variable at run-time).
(define_expand "commsArrayPut"
[(set (reg:SI 0) (match_operand:SI 0 "general_operand" ""))
(parallel
[(unspec_volatile [(match_operand:HI 1 "general_operand" "")
(match_operand:HI 2 "immediate_operand" "")
(match_operand:HI 3 "immediate_operand" "")]
UNSPEC_CALL_PUT_ARRAY)
(use (reg:SI 0))
(clobber (reg:HI LINK_REGNUM))])]
""
"")
;; The actual array put instruction. When the array index is a constant,
;; an exact instruction may be generated. When the index is variable,
;; a call to a special function is generated. This code could be
;; split into individual RTL instructions, but it is so rarely
;; used, that we won't bother.
(define_insn "*commsArrayPutInstruction"
[(unspec_volatile [(match_operand:HI 0 "general_operand" "r,i")
(match_operand:HI 1 "immediate_operand" "")
(match_operand:HI 2 "immediate_operand" "")]
UNSPEC_CALL_PUT_ARRAY)
(use (reg:SI 0))
(clobber (reg:HI LINK_REGNUM))]
""
{
return picochip_output_put_array (which_alternative, operands);
})
;; Scalar test port instruction.
(define_insn "commsTestPort"
[(set (match_operand:HI 0 "register_operand" "=r")
(unspec_volatile:HI [(match_operand:HI 1 "const_int_operand" "")]
UNSPEC_TESTPORT))
(clobber (reg:CC CC_REGNUM))]
""
"// %0 := TestPort(%1)\;COPY.1 0,%0 %| TSTPORT %1\;COPYEQ 1,%0"
[(set_attr "length" "9")])
; Entry point for array tstport (the actual port index is computed as the
; sum of the index, and the base).
;
; op0 - Test value.
; op1 - Requested port index
; op2 - size of port array (constant)
; op3 - base index of port array (constant)
(define_expand "commsArrayTestPort"
[(parallel
[(set (match_operand:HI 0 "register_operand" "")
(unspec_volatile:HI [(match_operand:HI 1 "general_operand" "")
(match_operand:HI 2 "immediate_operand" "")
(match_operand:HI 3 "immediate_operand" "")]
UNSPEC_CALL_TESTPORT_ARRAY))
(clobber (reg:HI LINK_REGNUM))])]
""
"")
;; The actual array testport instruction. When the array index is a constant,
;; an exact instruction may be generated. When the index is variable,
;; a call to a special function is generated. This code could be
;; split into individual RTL instructions, but it is so rarely
;; used, that we won't bother.
(define_insn "*commsArrayTestportInstruction"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(unspec_volatile:HI [(match_operand:HI 1 "general_operand" "r,i")
(match_operand:HI 2 "immediate_operand" "")
(match_operand:HI 3 "immediate_operand" "")]
UNSPEC_CALL_TESTPORT_ARRAY))
(clobber (reg:HI LINK_REGNUM))]
""
{
return picochip_output_testport_array (which_alternative, operands);
})
;; Merge a TSTPORT instruction with the branch to which it
;; relates. Often the TSTPORT function (generated by a built-in), is
;; used to control conditional execution. The normal sequence of
;; instructions would be:
;; TSTPORT p
;; COPYSW temp
;; AND temp, 0x0008, temp
;; SUB temp,0,discard
;; BEQ label
;; This can be made more efficient by detecting the special case where
;; the result of a TSTPORT is used to branch, to allow the following
;; RTL sequence to be generated instead:
;; TSTPORT p
;; BEQ label
;; A big saving in cycles and bytes!
(define_insn_and_split "tstport_branch"
[(set (pc)
(if_then_else
(match_operator 0 "comparison_operator"
[(unspec_volatile:HI
[(match_operand:HI 1 "const_int_operand" "")]
UNSPEC_TESTPORT)
(const_int 0)])
(label_ref (match_operand 2 "" ""))
(pc)))
(clobber (reg:CC CC_REGNUM))]
""
"#"
""
[(set (reg:CC CC_REGNUM)
(unspec_volatile:CC [(match_dup 1)] UNSPEC_INTERNAL_TESTPORT))
(parallel [(set (pc)
(if_then_else
(match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
(label_ref (match_dup 2))
(pc)))
(use (match_dup 3))])]
"{
/* Note that the sense of the branch is reversed, since we are
* comparing flag != 0. */
gcc_assert (GET_CODE(operands[0]) == NE || GET_CODE(operands[0]) == EQ);
operands[4] = gen_rtx_fmt_ee(reverse_condition(GET_CODE(operands[0])),
GET_MODE(operands[0]), XEXP(operands[0], 0), XEXP(operands[0], 1));
operands[3] = GEN_INT (0);
}")
;;============================================================================
;; Epilogue/Epilogue expansion.
;;============================================================================
(define_expand "prologue"
[(clobber (const_int 0))]
""
{
picochip_expand_prologue ();
DONE;
})
(define_expand "epilogue"
[(use (const_int 0))]
""
{
picochip_expand_epilogue (FALSE);
DONE;
})
;;============================================================================
;; Trap instruction. This is used to indicate an error. For the
;; picoChip processors this is handled by calling a HALT instruction,
;; which stops the processor.
;;============================================================================
(define_insn "trap"
[(trap_if (const_int 1) (const_int 6))]
""
"HALT\t// (Trap)"
[(set_attr "length" "2")])
;;============================================================================
;; Conditional copy instructions. Only equal/not-equal comparisons are
;; supported. All other types of comparison remain as branch
;; sequences.
;;============================================================================
;; Define expand seems to consider the resulting two instructions to be
;; independent. With a split, guarded by reload, it works correctly.
(define_expand "movhicc"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(if_then_else:HI (match_operand:HI 1 "" "")
(match_operand:HI 2 "register_operand" "0,0")
(match_operand:HI 3 "picochip_register_or_immediate_operand" "r,i")))]
""
{if (!picochip_check_conditional_copy (operands))
FAIL;
})
(define_insn_and_split "*checked_movhicc"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(if_then_else:HI (match_operator 1 "picochip_peephole_comparison_operator"
[(match_operand:HI 4 "register_operand" "r,r")
(match_operand:HI 5 "picochip_comparison_operand" "r,i")])
(match_operand:HI 2 "register_operand" "0,0")
(match_operand:HI 3 "picochip_register_or_immediate_operand" "r,i")))]
""
"#"
"reload_completed"
[(set (reg:CC CC_REGNUM) (match_dup 1))
(parallel [(set (match_operand:HI 0 "register_operand" "=r,r")
(if_then_else:HI (match_op_dup:HI 1 [(reg:CC CC_REGNUM) (const_int 0)])
(match_operand:HI 2 "picochip_register_or_immediate_operand" "0,0")
(match_operand:HI 3 "picochip_register_or_immediate_operand" "r,i")))
(use (match_dup 6))])]
"{
operands[6] = GEN_INT(GET_CODE(operands[0]));
}")
;; We dont do any checks here. But this pattern is used only when movhicc
;; was checked. Put a "use" clause to make sure.
(define_insn "*conditional_copy"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(if_then_else:HI
(match_operator:HI 4 "picochip_peephole_comparison_operator"
[(reg:CC CC_REGNUM) (const_int 0)])
(match_operand:HI 1 "register_operand" "0,0")
(match_operand:HI 2 "picochip_register_or_immediate_operand" "r,i")))
(use (match_operand:HI 3 "const_int_operand" ""))]
""
{
gcc_assert (GET_CODE(operands[4]) == EQ || GET_CODE(operands[4]) == NE);
/* Note that the comparison is reversed as the pattern matches
the *else* part of the if_then_else */
switch (GET_CODE(operands[4]))
{
case EQ: return "COPYNE %2,%0\t// if (NE) %0 := %2";
case NE: return "COPYEQ %2,%0\t// if (EQ) %0 := %2";
default:
gcc_unreachable();
}
}
[(set_attr "length" "2")
(set_attr "type" "picoAlu,picoAlu")
(set_attr "longConstant" "false,true")])
;;============================================================================
;; Scheduling, including delay slot scheduling.
;;============================================================================
(automata_option "v")
(automata_option "ndfa")
;; Define each VLIW slot as a CPU resource. Note the three flavours of
;; branch. `realBranch' is an actual branch instruction. `macroBranch'
;; is a directive to the assembler, which may expand into multiple
;; instructions. `call' is an actual branch instruction, but one which
;; sets the link register, and hence can't be scheduled alongside
;; other instructions which set the link register. When the DFA
;; scheduler is fixed to prevent it scheduling a JL with an R12
;; setting register, the call type branches can be replaced by
;; realBranch types instead.
(define_attr "type"
"picoAlu,basicAlu,nonCcAlu,mem,call,realBranch,macroBranch,mul,mac,app,comms,unknown"
(const_string "unknown"))
(define_attr "schedType" "none,space,speed"
(const (symbol_ref "(enum attr_schedType) picochip_schedule_type")))
;; Define whether an instruction uses a long constant.
(define_attr "longConstant"
"true,false" (const_string "false"))
;; Define three EU slots.
(define_query_cpu_unit "slot0,slot1,slot2")
;; Pull in the pipeline descriptions for speed or space scheduling.
(include "dfa_speed.md")
(include "dfa_space.md")
; Unknown instructions are assumed to take a single cycle, and use all
; slots. This enables them to actually output a sequence of
; instructions without any limitation. For the purposes of
; scheduling, unknown instructions are a pain, and should be removed
; completely. This means that RTL patterns should always be used to
; reduce complex sequences of instructions to individual instructions.
(define_insn_reservation "unknownInsn" 1
(eq_attr "type" "unknown")
"(slot0+slot1+slot2)")
; Allow any non-branch instructions to be placed in the branch
; slot. Branch slots are always executed.
(define_delay (eq_attr "type" "realBranch,call")
[(eq_attr "type" "!realBranch,macroBranch,call,unknown") (nil) (nil)])
Go to most recent revision | Compare with Previous | Blame | View Log