URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [rs6000/] [rs6000.h] - Rev 711
Go to most recent revision | Compare with Previous | Blame | View Log
/* Definitions of target machine for GNU compiler, for IBM RS/6000. Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>. */ /* Note that some other tm.h files include this one and then override many of the definitions. */ #ifndef RS6000_OPTS_H #include "config/rs6000/rs6000-opts.h" #endif /* Definitions for the object file format. These are set at compile-time. */ #define OBJECT_XCOFF 1 #define OBJECT_ELF 2 #define OBJECT_PEF 3 #define OBJECT_MACHO 4 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF) #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF) #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF) #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO) #ifndef TARGET_AIX #define TARGET_AIX 0 #endif #ifndef TARGET_AIX_OS #define TARGET_AIX_OS 0 #endif /* Control whether function entry points use a "dot" symbol when ABI_AIX. */ #define DOT_SYMBOLS 1 /* Default string to use for cpu if not specified. */ #ifndef TARGET_CPU_DEFAULT #define TARGET_CPU_DEFAULT ((char *)0) #endif /* If configured for PPC405, support PPC405CR Erratum77. */ #ifdef CONFIG_PPC405CR #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405) #else #define PPC405_ERRATUM77 0 #endif #ifndef TARGET_PAIRED_FLOAT #define TARGET_PAIRED_FLOAT 0 #endif #ifdef HAVE_AS_POPCNTB #define ASM_CPU_POWER5_SPEC "-mpower5" #else #define ASM_CPU_POWER5_SPEC "-mpower4" #endif #ifdef HAVE_AS_DFP #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec" #else #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec" #endif #ifdef HAVE_AS_POPCNTD #define ASM_CPU_POWER7_SPEC "-mpower7" #else #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec" #endif #ifdef HAVE_AS_DCI #define ASM_CPU_476_SPEC "-m476" #else #define ASM_CPU_476_SPEC "-mpower4" #endif /* Common ASM definitions used by ASM_SPEC among the various targets for handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to provide the default assembler options if the user uses -mcpu=native, so if you make changes here, make them also there. */ #define ASM_CPU_SPEC \ "%{!mcpu*: \ %{mpower: %{!mpower2: -mpwr}} \ %{mpower2: -mpwrx} \ %{mpowerpc64*: -mppc64} \ %{!mpowerpc64*: %{mpowerpc*: -mppc}} \ %{mno-power: %{!mpowerpc*: -mcom}} \ %{!mno-power: %{!mpower*: %(asm_default)}}} \ %{mcpu=native: %(asm_cpu_native)} \ %{mcpu=common: -mcom} \ %{mcpu=cell: -mcell} \ %{mcpu=power: -mpwr} \ %{mcpu=power2: -mpwrx} \ %{mcpu=power3: -mppc64} \ %{mcpu=power4: -mpower4} \ %{mcpu=power5: %(asm_cpu_power5)} \ %{mcpu=power5+: %(asm_cpu_power5)} \ %{mcpu=power6: %(asm_cpu_power6) -maltivec} \ %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \ %{mcpu=power7: %(asm_cpu_power7)} \ %{mcpu=a2: -ma2} \ %{mcpu=powerpc: -mppc} \ %{mcpu=rios: -mpwr} \ %{mcpu=rios1: -mpwr} \ %{mcpu=rios2: -mpwrx} \ %{mcpu=rsc: -mpwr} \ %{mcpu=rsc1: -mpwr} \ %{mcpu=rs64a: -mppc64} \ %{mcpu=401: -mppc} \ %{mcpu=403: -m403} \ %{mcpu=405: -m405} \ %{mcpu=405fp: -m405} \ %{mcpu=440: -m440} \ %{mcpu=440fp: -m440} \ %{mcpu=464: -m440} \ %{mcpu=464fp: -m440} \ %{mcpu=476: %(asm_cpu_476)} \ %{mcpu=476fp: %(asm_cpu_476)} \ %{mcpu=505: -mppc} \ %{mcpu=601: -m601} \ %{mcpu=602: -mppc} \ %{mcpu=603: -mppc} \ %{mcpu=603e: -mppc} \ %{mcpu=ec603e: -mppc} \ %{mcpu=604: -mppc} \ %{mcpu=604e: -mppc} \ %{mcpu=620: -mppc64} \ %{mcpu=630: -mppc64} \ %{mcpu=740: -mppc} \ %{mcpu=750: -mppc} \ %{mcpu=G3: -mppc} \ %{mcpu=7400: -mppc -maltivec} \ %{mcpu=7450: -mppc -maltivec} \ %{mcpu=G4: -mppc -maltivec} \ %{mcpu=801: -mppc} \ %{mcpu=821: -mppc} \ %{mcpu=823: -mppc} \ %{mcpu=860: -mppc} \ %{mcpu=970: -mpower4 -maltivec} \ %{mcpu=G5: -mpower4 -maltivec} \ %{mcpu=8540: -me500} \ %{mcpu=8548: -me500} \ %{mcpu=e300c2: -me300} \ %{mcpu=e300c3: -me300} \ %{mcpu=e500mc: -me500mc} \ %{mcpu=e500mc64: -me500mc64} \ %{maltivec: -maltivec} \ %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \ -many" #define CPP_DEFAULT_SPEC "" #define ASM_DEFAULT_SPEC "" /* This macro defines names of additional specifications to put in the specs that can be used in various specifications like CC1_SPEC. Its definition is an initializer with a subgrouping for each command option. Each subgrouping contains a string constant, that defines the specification name, and a string constant that used by the GCC driver program. Do not define this macro if it does not need to do anything. */ #define SUBTARGET_EXTRA_SPECS #define EXTRA_SPECS \ { "cpp_default", CPP_DEFAULT_SPEC }, \ { "asm_cpu", ASM_CPU_SPEC }, \ { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \ { "asm_default", ASM_DEFAULT_SPEC }, \ { "cc1_cpu", CC1_CPU_SPEC }, \ { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \ { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \ { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \ { "asm_cpu_476", ASM_CPU_476_SPEC }, \ SUBTARGET_EXTRA_SPECS /* -mcpu=native handling only makes sense with compiler running on an PowerPC chip. If changing this condition, also change the condition in driver-rs6000.c. */ #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX) /* In driver-rs6000.c. */ extern const char *host_detect_local_cpu (int argc, const char **argv); #define EXTRA_SPEC_FUNCTIONS \ { "local_cpu_detect", host_detect_local_cpu }, #define HAVE_LOCAL_CPU_DETECT #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)" #else #define ASM_CPU_NATIVE_SPEC "%(asm_default)" #endif #ifndef CC1_CPU_SPEC #ifdef HAVE_LOCAL_CPU_DETECT #define CC1_CPU_SPEC \ "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \ %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}" #else #define CC1_CPU_SPEC "" #endif #endif /* Architecture type. */ /* Define TARGET_MFCRF if the target assembler does not support the optional field operand for mfcr. */ #ifndef HAVE_AS_MFCRF #undef TARGET_MFCRF #define TARGET_MFCRF 0 #endif /* Define TARGET_POPCNTB if the target assembler does not support the popcount byte instruction. */ #ifndef HAVE_AS_POPCNTB #undef TARGET_POPCNTB #define TARGET_POPCNTB 0 #endif /* Define TARGET_FPRND if the target assembler does not support the fp rounding instructions. */ #ifndef HAVE_AS_FPRND #undef TARGET_FPRND #define TARGET_FPRND 0 #endif /* Define TARGET_CMPB if the target assembler does not support the cmpb instruction. */ #ifndef HAVE_AS_CMPB #undef TARGET_CMPB #define TARGET_CMPB 0 #endif /* Define TARGET_MFPGPR if the target assembler does not support the mffpr and mftgpr instructions. */ #ifndef HAVE_AS_MFPGPR #undef TARGET_MFPGPR #define TARGET_MFPGPR 0 #endif /* Define TARGET_DFP if the target assembler does not support decimal floating point instructions. */ #ifndef HAVE_AS_DFP #undef TARGET_DFP #define TARGET_DFP 0 #endif /* Define TARGET_POPCNTD if the target assembler does not support the popcount word and double word instructions. */ #ifndef HAVE_AS_POPCNTD #undef TARGET_POPCNTD #define TARGET_POPCNTD 0 #endif /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If not, generate the lwsync code as an integer constant. */ #ifdef HAVE_AS_LWSYNC #define TARGET_LWSYNC_INSTRUCTION 1 #else #define TARGET_LWSYNC_INSTRUCTION 0 #endif /* Define TARGET_TLS_MARKERS if the target assembler does not support arg markers for __tls_get_addr calls. */ #ifndef HAVE_AS_TLS_MARKERS #undef TARGET_TLS_MARKERS #define TARGET_TLS_MARKERS 0 #else #define TARGET_TLS_MARKERS tls_markers #endif #ifndef TARGET_SECURE_PLT #define TARGET_SECURE_PLT 0 #endif #ifndef TARGET_CMODEL #define TARGET_CMODEL CMODEL_SMALL #endif #define TARGET_32BIT (! TARGET_64BIT) #ifndef HAVE_AS_TLS #define HAVE_AS_TLS 0 #endif #ifndef TARGET_LINK_STACK #define TARGET_LINK_STACK 0 #endif #ifndef SET_TARGET_LINK_STACK #define SET_TARGET_LINK_STACK(X) do { } while (0) #endif /* Return 1 for a symbol ref for a thread-local storage symbol. */ #define RS6000_SYMBOL_REF_TLS_P(RTX) \ (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0) #ifdef IN_LIBGCC2 /* For libgcc2 we make sure this is a compile time constant */ #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__) #undef TARGET_POWERPC64 #define TARGET_POWERPC64 1 #else #undef TARGET_POWERPC64 #define TARGET_POWERPC64 0 #endif #else /* The option machinery will define this. */ #endif #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING) /* FPU operations supported. Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must also test TARGET_HARD_FLOAT. */ #define TARGET_SINGLE_FLOAT 1 #define TARGET_DOUBLE_FLOAT 1 #define TARGET_SINGLE_FPU 0 #define TARGET_SIMPLE_FPU 0 #define TARGET_XILINX_FPU 0 /* Recast the processor type to the cpu attribute. */ #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu) /* Define generic processor types based upon current deployment. */ #define PROCESSOR_COMMON PROCESSOR_PPC601 #define PROCESSOR_POWER PROCESSOR_RIOS1 #define PROCESSOR_POWERPC PROCESSOR_PPC604 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A /* Define the default processor. This is overridden by other tm.h files. */ #define PROCESSOR_DEFAULT PROCESSOR_RIOS1 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A /* Specify the dialect of assembler to use. New mnemonics is dialect one and the old mnemonics are dialect zero. */ #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0) /* Debug support */ #define MASK_DEBUG_STACK 0x01 /* debug stack applications */ #define MASK_DEBUG_ARG 0x02 /* debug argument handling */ #define MASK_DEBUG_REG 0x04 /* debug register handling */ #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */ #define MASK_DEBUG_COST 0x10 /* debug rtx codes */ #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */ #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */ #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \ | MASK_DEBUG_ARG \ | MASK_DEBUG_REG \ | MASK_DEBUG_ADDR \ | MASK_DEBUG_COST \ | MASK_DEBUG_TARGET \ | MASK_DEBUG_BUILTIN) #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK) #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG) #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG) #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR) #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST) #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET) #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN) extern enum rs6000_vector rs6000_vector_unit[]; #define VECTOR_UNIT_NONE_P(MODE) \ (rs6000_vector_unit[(MODE)] == VECTOR_NONE) #define VECTOR_UNIT_VSX_P(MODE) \ (rs6000_vector_unit[(MODE)] == VECTOR_VSX) #define VECTOR_UNIT_ALTIVEC_P(MODE) \ (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC) #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \ (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC \ || rs6000_vector_unit[(MODE)] == VECTOR_VSX) /* Describe whether to use VSX loads or Altivec loads. For now, just use the same unit as the vector unit we are using, but we may want to migrate to using VSX style loads even for types handled by altivec. */ extern enum rs6000_vector rs6000_vector_mem[]; #define VECTOR_MEM_NONE_P(MODE) \ (rs6000_vector_mem[(MODE)] == VECTOR_NONE) #define VECTOR_MEM_VSX_P(MODE) \ (rs6000_vector_mem[(MODE)] == VECTOR_VSX) #define VECTOR_MEM_ALTIVEC_P(MODE) \ (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC) #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \ (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC \ || rs6000_vector_mem[(MODE)] == VECTOR_VSX) /* Return the alignment of a given vector type, which is set based on the vector unit use. VSX for instance can load 32 or 64 bit aligned words without problems, while Altivec requires 128-bit aligned vectors. */ extern int rs6000_vector_align[]; #define VECTOR_ALIGN(MODE) \ ((rs6000_vector_align[(MODE)] != 0) \ ? rs6000_vector_align[(MODE)] \ : (int)GET_MODE_BITSIZE ((MODE))) /* Alignment options for fields in structures for sub-targets following AIX-like ABI. ALIGN_POWER word-aligns FP doubles (default AIX ABI). ALIGN_NATURAL doubleword-aligns FP doubles (align to object size). Override the macro definitions when compiling libobjc to avoid undefined reference to rs6000_alignment_flags due to library's use of GCC alignment macros which use the macros below. */ #ifndef IN_TARGET_LIBS #define MASK_ALIGN_POWER 0x00000000 #define MASK_ALIGN_NATURAL 0x00000001 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL) #else #define TARGET_ALIGN_NATURAL 0 #endif #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128) #define TARGET_IEEEQUAD rs6000_ieeequad #define TARGET_ALTIVEC_ABI rs6000_altivec_abi #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL) #define TARGET_SPE_ABI 0 #define TARGET_SPE 0 #define TARGET_E500 0 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64) #define TARGET_FPRS 1 #define TARGET_E500_SINGLE 0 #define TARGET_E500_DOUBLE 0 #define CHECK_E500_OPTIONS do { } while (0) /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only. Enable 32-bit fcfid's on any of the switches for newer ISA machines or XILINX. */ #define TARGET_FCFID (TARGET_POWERPC64 \ || TARGET_POPCNTB /* ISA 2.02 */ \ || TARGET_CMPB /* ISA 2.05 */ \ || TARGET_POPCNTD /* ISA 2.06 */ \ || TARGET_XILINX_FPU) #define TARGET_FCTIDZ TARGET_FCFID #define TARGET_STFIWX TARGET_PPC_GFXOPT #define TARGET_LFIWAX TARGET_CMPB #define TARGET_LFIWZX TARGET_POPCNTD #define TARGET_FCFIDS TARGET_POPCNTD #define TARGET_FCFIDU TARGET_POPCNTD #define TARGET_FCFIDUS TARGET_POPCNTD #define TARGET_FCTIDUZ TARGET_POPCNTD #define TARGET_FCTIWUZ TARGET_POPCNTD /* For power systems, we want to enable Altivec and VSX builtins even if the user did not use -maltivec or -mvsx to allow the builtins to be used inside of #pragma GCC target or the target attribute to change the code level for a given system. The SPE and Paired builtins are only enabled if you configure the compiler for those builtins, and those machines don't support altivec or VSX. */ #define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \ && ((TARGET_POWERPC64 \ || TARGET_PPC_GPOPT /* 970 */ \ || TARGET_POPCNTB /* ISA 2.02 */ \ || TARGET_CMPB /* ISA 2.05 */ \ || TARGET_POPCNTD /* ISA 2.06 */ \ || TARGET_ALTIVEC \ || TARGET_VSX))) /* E500 processors only support plain "sync", not lwsync. */ #define TARGET_NO_LWSYNC TARGET_E500 /* Which machine supports the various reciprocal estimate instructions. */ #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \ && TARGET_FPRS && TARGET_SINGLE_FLOAT) #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \ && TARGET_DOUBLE_FLOAT \ && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode))) #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \ && TARGET_FPRS && TARGET_SINGLE_FLOAT) #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \ && TARGET_DOUBLE_FLOAT \ && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode))) /* Whether the various reciprocal divide/square root estimate instructions exist, and whether we should automatically generate code for the instruction by default. */ #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */ #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */ #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */ #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */ extern unsigned char rs6000_recip_bits[]; #define RS6000_RECIP_HAVE_RE_P(MODE) \ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE) #define RS6000_RECIP_AUTO_RE_P(MODE) \ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE) #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE) #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE) #define RS6000_RECIP_HIGH_PRECISION_P(MODE) \ ((MODE) == SFmode || (MODE) == V4SFmode || TARGET_RECIP_PRECISION) /* The default CPU for TARGET_OPTION_OVERRIDE. */ #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT /* Target pragma. */ #define REGISTER_TARGET_PRAGMAS() do { \ c_register_pragma (0, "longcall", rs6000_pragma_longcall); \ targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \ targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \ rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \ } while (0) /* Target #defines. */ #define TARGET_CPU_CPP_BUILTINS() \ rs6000_cpu_cpp_builtins (pfile) /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order we're compiling for. Some configurations may need to override it. */ #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \ do \ { \ if (BYTES_BIG_ENDIAN) \ { \ builtin_define ("__BIG_ENDIAN__"); \ builtin_define ("_BIG_ENDIAN"); \ builtin_assert ("machine=bigendian"); \ } \ else \ { \ builtin_define ("__LITTLE_ENDIAN__"); \ builtin_define ("_LITTLE_ENDIAN"); \ builtin_assert ("machine=littleendian"); \ } \ } \ while (0) /* Target machine storage layout. */ /* Define this macro if it is advisable to hold scalars in registers in a wider mode than that declared by the program. In such cases, the value is constrained to be within the bounds of the declared type, but kept valid in the wider mode. The signedness of the extension may differ from that of the type. */ #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ if (GET_MODE_CLASS (MODE) == MODE_INT \ && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ (MODE) = TARGET_32BIT ? SImode : DImode; /* Define this if most significant bit is lowest numbered in instructions that operate on numbered bit-fields. */ /* That is true on RS/6000. */ #define BITS_BIG_ENDIAN 1 /* Define this if most significant byte of a word is the lowest numbered. */ /* That is true on RS/6000. */ #define BYTES_BIG_ENDIAN 1 /* Define this if most significant word of a multiword number is lowest numbered. For RS/6000 we can decide arbitrarily since there are no machine instructions for them. Might as well be consistent with bits and bytes. */ #define WORDS_BIG_ENDIAN 1 #define MAX_BITS_PER_WORD 64 /* Width of a word, in units (bytes). */ #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8) #ifdef IN_LIBGCC2 #define MIN_UNITS_PER_WORD UNITS_PER_WORD #else #define MIN_UNITS_PER_WORD 4 #endif #define UNITS_PER_FP_WORD 8 #define UNITS_PER_ALTIVEC_WORD 16 #define UNITS_PER_VSX_WORD 16 #define UNITS_PER_SPE_WORD 8 #define UNITS_PER_PAIRED_WORD 8 /* Type used for ptrdiff_t, as a string used in a declaration. */ #define PTRDIFF_TYPE "int" /* Type used for size_t, as a string used in a declaration. */ #define SIZE_TYPE "long unsigned int" /* Type used for wchar_t, as a string used in a declaration. */ #define WCHAR_TYPE "short unsigned int" /* Width of wchar_t in bits. */ #define WCHAR_TYPE_SIZE 16 /* A C expression for the size in bits of the type `short' on the target machine. If you don't define this, the default is half a word. (If this would be less than one storage unit, it is rounded up to one unit.) */ #define SHORT_TYPE_SIZE 16 /* A C expression for the size in bits of the type `int' on the target machine. If you don't define this, the default is one word. */ #define INT_TYPE_SIZE 32 /* A C expression for the size in bits of the type `long' on the target machine. If you don't define this, the default is one word. */ #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64) /* A C expression for the size in bits of the type `long long' on the target machine. If you don't define this, the default is two words. */ #define LONG_LONG_TYPE_SIZE 64 /* A C expression for the size in bits of the type `float' on the target machine. If you don't define this, the default is one word. */ #define FLOAT_TYPE_SIZE 32 /* A C expression for the size in bits of the type `double' on the target machine. If you don't define this, the default is two words. */ #define DOUBLE_TYPE_SIZE 64 /* A C expression for the size in bits of the type `long double' on the target machine. If you don't define this, the default is two words. */ #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size /* Define this to set long double type size to use in libgcc2.c, which can not depend on target_flags. */ #ifdef __LONG_DOUBLE_128__ #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128 #else #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64 #endif /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */ #define WIDEST_HARDWARE_FP_SIZE 64 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */ extern unsigned rs6000_pointer_size; #define POINTER_SIZE rs6000_pointer_size /* Allocation boundary (in *bits*) for storing arguments in argument list. */ #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64) /* Boundary (in *bits*) on which stack pointer should be aligned. */ #define STACK_BOUNDARY \ ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \ ? 64 : 128) /* Allocation boundary (in *bits*) for the code of a function. */ #define FUNCTION_BOUNDARY 32 /* No data type wants to be aligned rounder than this. */ #define BIGGEST_ALIGNMENT 128 /* A C expression to compute the alignment for a variables in the local store. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. */ #define LOCAL_ALIGNMENT(TYPE, ALIGN) \ DATA_ALIGNMENT (TYPE, ALIGN) /* Alignment of field after `int : 0' in a structure. */ #define EMPTY_FIELD_BOUNDARY 32 /* Every structure's size must be a multiple of this. */ #define STRUCTURE_SIZE_BOUNDARY 8 /* Return 1 if a structure or array containing FIELD should be accessed using `BLKMODE'. For the SPE, simd types are V2SI, and gcc can be tempted to put the entire thing in a DI and use subregs to access the internals. store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the back-end. Because a single GPR can hold a V2SI, but not a DI, the best thing to do is set structs to BLKmode and avoid Severe Tire Damage. On e500 v2, DF and DI modes suffer from the same anomaly. DF can fit into 1, whereas DI still needs two. */ #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \ ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \ || (TARGET_E500_DOUBLE && (MODE) == DFmode)) /* A bit-field declared as `int' forces `int' alignment for the struct. */ #define PCC_BITFIELD_TYPE_MATTERS 1 /* Make strings word-aligned so strcpy from constants will be faster. Make vector constants quadword aligned. */ #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ (TREE_CODE (EXP) == STRING_CST \ && (STRICT_ALIGNMENT || !optimize_size) \ && (ALIGN) < BITS_PER_WORD \ ? BITS_PER_WORD \ : (ALIGN)) /* Make arrays of chars word-aligned for the same reasons. Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to 64 bits. */ #define DATA_ALIGNMENT(TYPE, ALIGN) \ (TREE_CODE (TYPE) == VECTOR_TYPE \ ? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) \ || (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \ ? 64 : 128) \ : ((TARGET_E500_DOUBLE \ && TREE_CODE (TYPE) == REAL_TYPE \ && TYPE_MODE (TYPE) == DFmode) \ ? 64 \ : (TREE_CODE (TYPE) == ARRAY_TYPE \ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ && (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN))) /* Nonzero if move instructions will actually fail to work when given unaligned data. */ #define STRICT_ALIGNMENT 0 /* Define this macro to be the value 1 if unaligned accesses have a cost many times greater than aligned accesses, for example if they are emulated in a trap handler. */ /* Altivec vector memory instructions simply ignore the low bits; SPE vector memory instructions trap on unaligned accesses; VSX memory instructions are aligned to 4 or 8 bytes. */ #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \ (STRICT_ALIGNMENT \ || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \ || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode \ || (MODE) == DImode) \ && (ALIGN) < 32) \ || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE)))) /* Standard register usage. */ /* Number of actual hardware registers. The hardware registers are assigned numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER. All registers that the compiler knows about must be given numbers, even those that are not normally considered general registers. RS/6000 has 32 fixed-point registers, 32 floating-point registers, an MQ register, a count register, a link register, and 8 condition register fields, which we view here as separate registers. AltiVec adds 32 vector registers and a VRsave register. In addition, the difference between the frame and argument pointers is a function of the number of registers saved, so we need to have a register for AP that will later be eliminated in favor of SP or FP. This is a normal register, but it is fixed. We also create a pseudo register for float/int conversions, that will really represent the memory location used. It is represented here as a register, in order to work around problems in allocating stack storage in inline functions. Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame pointer, which is eventually eliminated in favor of SP or FP. */ #define FIRST_PSEUDO_REGISTER 114 /* This must be included for pre gcc 3.0 glibc compatibility. */ #define PRE_GCC3_DWARF_FRAME_REGISTERS 77 /* Add 32 dwarf columns for synthetic SPE registers. */ #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32) /* The SPE has an additional 32 synthetic registers, with DWARF debug info numbering for these registers starting at 1200. While eh_frame register numbering need not be the same as the debug info numbering, we choose to number these regs for eh_frame at 1200 too. This allows future versions of the rs6000 backend to add hard registers and continue to use the gcc hard register numbering for eh_frame. If the extra SPE registers in eh_frame were numbered starting from the current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to avoid invalidating older SPE eh_frame info. We must map them here to avoid huge unwinder tables mostly consisting of unused space. */ #define DWARF_REG_TO_UNWIND_COLUMN(r) \ ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r)) /* Use standard DWARF numbering for DWARF debugging information. */ #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO) /* Use gcc hard register numbering for eh_frame. */ #define DWARF_FRAME_REGNUM(REGNO) (REGNO) /* Map register numbers held in the call frame info that gcc has collected using DWARF_FRAME_REGNUM to those that should be output in .debug_frame and .eh_frame. We continue to use gcc hard reg numbers for .eh_frame, but use the numbers mandated by the various ABIs for .debug_frame. rs6000_emit_prologue has translated any combination of CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */ #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \ ((FOR_EH) ? (REGNO) \ : (REGNO) == CR2_REGNO ? 64 \ : DBX_REGISTER_NUMBER (REGNO)) /* 1 for registers that have pervasive standard uses and are not available for the register allocator. On RS/6000, r1 is used for the stack. On Darwin, r2 is available as a local register; for all other OS's r2 is the TOC pointer. cr5 is not supposed to be used. On System V implementations, r13 is fixed and not available for use. */ #define FIXED_REGISTERS \ {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \ /* AltiVec registers. */ \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1 \ , 1, 1, 1 \ } /* 1 for registers not available across function calls. These must include the FIXED_REGISTERS and also any registers that can be used without being saved. The latter must include the registers where values are returned and the register where structure-value addresses are passed. Aside from that, you can include as many other registers as you like. */ #define CALL_USED_REGISTERS \ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \ /* AltiVec registers. */ \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1 \ , 1, 1, 1 \ } /* Like `CALL_USED_REGISTERS' except this macro doesn't require that the entire set of `FIXED_REGISTERS' be included. (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS'). This macro is optional. If not specified, it defaults to the value of `CALL_USED_REGISTERS'. */ #define CALL_REALLY_USED_REGISTERS \ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \ /* AltiVec registers. */ \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0 \ , 0, 0, 0 \ } #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1) #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20) #define FIRST_SAVED_FP_REGNO (14+32) #define FIRST_SAVED_GP_REGNO 13 /* List the order in which to allocate registers. Each register must be listed once, even those in FIXED_REGISTERS. We allocate in the following order: fp0 (not saved or used for anything) fp13 - fp2 (not saved; incoming fp arg registers) fp1 (not saved; return value) fp31 - fp14 (saved; order given to save least number) cr7, cr6 (not saved or special) cr1 (not saved, but used for FP operations) cr0 (not saved, but used for arithmetic operations) cr4, cr3, cr2 (saved) r9 (not saved; best for TImode) r10, r8-r4 (not saved; highest first for less conflict with params) r3 (not saved; return value register) r11 (not saved; later alloc to help shrink-wrap) r0 (not saved; cannot be base reg) r31 - r13 (saved; order given to save least number) r12 (not saved; if used for DImode or DFmode would use r13) mq (not saved; best to use it if we can) ctr (not saved; when we have the choice ctr is better) lr (saved) cr5, r1, r2, ap, ca (fixed) v0 - v1 (not saved or used for anything) v13 - v3 (not saved; incoming vector arg registers) v2 (not saved; incoming vector arg reg; return value) v19 - v14 (not saved or used for anything) v31 - v20 (saved; order given to save least number) vrsave, vscr (fixed) spe_acc, spefscr (fixed) sfp (fixed) */ #if FIXED_R2 == 1 #define MAYBE_R2_AVAILABLE #define MAYBE_R2_FIXED 2, #else #define MAYBE_R2_AVAILABLE 2, #define MAYBE_R2_FIXED #endif #if FIXED_R13 == 1 #define EARLY_R12 12, #define LATE_R12 #else #define EARLY_R12 #define LATE_R12 12, #endif #define REG_ALLOC_ORDER \ {32, \ 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \ 33, \ 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ 50, 49, 48, 47, 46, \ 75, 74, 69, 68, 72, 71, 70, \ MAYBE_R2_AVAILABLE \ 9, 10, 8, 7, 6, 5, 4, \ 3, EARLY_R12 11, 0, \ 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \ 18, 17, 16, 15, 14, 13, LATE_R12 \ 64, 66, 65, \ 73, 1, MAYBE_R2_FIXED 67, 76, \ /* AltiVec registers. */ \ 77, 78, \ 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \ 79, \ 96, 95, 94, 93, 92, 91, \ 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \ 109, 110, \ 111, 112, 113 \ } /* True if register is floating-point. */ #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63) /* True if register is a condition register. */ #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO) /* True if register is a condition register, but not cr0. */ #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO) /* True if register is an integer register. */ #define INT_REGNO_P(N) \ ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM) /* SPE SIMD registers are just the GPRs. */ #define SPE_SIMD_REGNO_P(N) ((N) <= 31) /* PAIRED SIMD registers are just the FPRs. */ #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63) /* True if register is the CA register. */ #define CA_REGNO_P(N) ((N) == CA_REGNO) /* True if register is an AltiVec register. */ #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO) /* True if register is a VSX register. */ #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N)) /* Alternate name for any vector register supporting floating point, no matter which instruction set(s) are available. */ #define VFLOAT_REGNO_P(N) \ (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N))) /* Alternate name for any vector register supporting integer, no matter which instruction set(s) are available. */ #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N) /* Alternate name for any vector register supporting logical operations, no matter which instruction set(s) are available. */ #define VLOGICAL_REGNO_P(N) VFLOAT_REGNO_P (N) /* Return number of consecutive hard regs needed starting at reg REGNO to hold something of mode MODE. */ #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)] /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate enough space to account for vectors in FP regs. */ #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ (TARGET_VSX \ && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \ && FP_REGNO_P (REGNO) \ ? V2DFmode \ : choose_hard_reg_mode ((REGNO), (NREGS), false)) #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \ (((TARGET_32BIT && TARGET_POWERPC64 \ && (GET_MODE_SIZE (MODE) > 4) \ && INT_REGNO_P (REGNO)) ? 1 : 0) \ || (TARGET_VSX && FP_REGNO_P (REGNO) \ && GET_MODE_SIZE (MODE) > 8)) #define VSX_VECTOR_MODE(MODE) \ ((MODE) == V4SFmode \ || (MODE) == V2DFmode) \ #define ALTIVEC_VECTOR_MODE(MODE) \ ((MODE) == V16QImode \ || (MODE) == V8HImode \ || (MODE) == V4SFmode \ || (MODE) == V4SImode) #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \ (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \ || (MODE) == V2DImode) #define SPE_VECTOR_MODE(MODE) \ ((MODE) == V4HImode \ || (MODE) == V2SFmode \ || (MODE) == V1DImode \ || (MODE) == V2SImode) #define PAIRED_VECTOR_MODE(MODE) \ ((MODE) == V2SFmode) /* Value is TRUE if hard register REGNO can hold a value of machine-mode MODE. */ #define HARD_REGNO_MODE_OK(REGNO, MODE) \ rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO] /* Value is 1 if it is a good idea to tie two pseudo registers when one has mode MODE1 and one has mode MODE2. If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, for any hard reg, then this must be 0 for correct output. */ #define MODES_TIEABLE_P(MODE1, MODE2) \ (SCALAR_FLOAT_MODE_P (MODE1) \ ? SCALAR_FLOAT_MODE_P (MODE2) \ : SCALAR_FLOAT_MODE_P (MODE2) \ ? SCALAR_FLOAT_MODE_P (MODE1) \ : GET_MODE_CLASS (MODE1) == MODE_CC \ ? GET_MODE_CLASS (MODE2) == MODE_CC \ : GET_MODE_CLASS (MODE2) == MODE_CC \ ? GET_MODE_CLASS (MODE1) == MODE_CC \ : SPE_VECTOR_MODE (MODE1) \ ? SPE_VECTOR_MODE (MODE2) \ : SPE_VECTOR_MODE (MODE2) \ ? SPE_VECTOR_MODE (MODE1) \ : ALTIVEC_VECTOR_MODE (MODE1) \ ? ALTIVEC_VECTOR_MODE (MODE2) \ : ALTIVEC_VECTOR_MODE (MODE2) \ ? ALTIVEC_VECTOR_MODE (MODE1) \ : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \ ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \ : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \ ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \ : 1) /* Post-reload, we can't use any new AltiVec registers, as we already emitted the vrsave mask. */ #define HARD_REGNO_RENAME_OK(SRC, DST) \ (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST)) /* Specify the cost of a branch insn; roughly the number of extra insns that should be added to avoid a branch. Set this to 3 on the RS/6000 since that is roughly the average cost of an unscheduled conditional branch. */ #define BRANCH_COST(speed_p, predictable_p) 3 /* Override BRANCH_COST heuristic which empirically produces worse performance for removing short circuiting from the logical ops. */ #define LOGICAL_OP_NON_SHORT_CIRCUIT 0 /* A fixed register used at epilogue generation to address SPE registers with negative offsets. The 64-bit load/store instructions on the SPE only take positive offsets (and small ones at that), so we need to reserve a register for consing up negative offsets. */ #define FIXED_SCRATCH 0 /* Specify the registers used for certain standard purposes. The values of these macros are register numbers. */ /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */ /* #define PC_REGNUM */ /* Register to use for pushing function arguments. */ #define STACK_POINTER_REGNUM 1 /* Base register for access to local variables of the function. */ #define HARD_FRAME_POINTER_REGNUM 31 /* Base register for access to local variables of the function. */ #define FRAME_POINTER_REGNUM 113 /* Base register for access to arguments of the function. */ #define ARG_POINTER_REGNUM 67 /* Place to put static chain when calling a function that requires it. */ #define STATIC_CHAIN_REGNUM 11 /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. */ /* The RS/6000 has three types of registers, fixed-point, floating-point, and condition registers, plus three special registers, MQ, CTR, and the link register. AltiVec adds a vector register class. VSX registers overlap the FPR registers and the Altivec registers. However, r0 is special in that it cannot be used as a base register. So make a class for registers valid as base registers. Also, cr0 is the only condition code register that can be used in arithmetic insns, so make a separate class for it. */ enum reg_class { NO_REGS, BASE_REGS, GENERAL_REGS, FLOAT_REGS, ALTIVEC_REGS, VSX_REGS, VRSAVE_REGS, VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS, NON_SPECIAL_REGS, MQ_REGS, LINK_REGS, CTR_REGS, LINK_OR_CTR_REGS, SPECIAL_REGS, SPEC_OR_GEN_REGS, CR0_REGS, CR_REGS, NON_FLOAT_REGS, CA_REGS, ALL_REGS, LIM_REG_CLASSES }; #define N_REG_CLASSES (int) LIM_REG_CLASSES /* Give names of register classes as strings for dump file. */ #define REG_CLASS_NAMES \ { \ "NO_REGS", \ "BASE_REGS", \ "GENERAL_REGS", \ "FLOAT_REGS", \ "ALTIVEC_REGS", \ "VSX_REGS", \ "VRSAVE_REGS", \ "VSCR_REGS", \ "SPE_ACC_REGS", \ "SPEFSCR_REGS", \ "NON_SPECIAL_REGS", \ "MQ_REGS", \ "LINK_REGS", \ "CTR_REGS", \ "LINK_OR_CTR_REGS", \ "SPECIAL_REGS", \ "SPEC_OR_GEN_REGS", \ "CR0_REGS", \ "CR_REGS", \ "NON_FLOAT_REGS", \ "CA_REGS", \ "ALL_REGS" \ } /* Define which registers fit in which classes. This is an initializer for a vector of HARD_REG_SET of length N_REG_CLASSES. */ #define REG_CLASS_CONTENTS \ { \ { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \ { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \ { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \ { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \ { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \ { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \ { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \ { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \ { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \ { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \ { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \ { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \ { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \ { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \ { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \ { 0xffffffff, 0x00000000, 0x00000fff, 0x00020000 }, /* NON_FLOAT_REGS */ \ { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \ { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \ } /* The same information, inverted: Return the class number of the smallest class containing reg number REGNO. This could be a conditional expression or could index an array. */ extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER]; #if ENABLE_CHECKING #define REGNO_REG_CLASS(REGNO) \ (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \ rs6000_regno_regclass[(REGNO)]) #else #define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)] #endif /* Register classes for various constraints that are based on the target switches. */ enum r6000_reg_class_enum { RS6000_CONSTRAINT_d, /* fpr registers for double values */ RS6000_CONSTRAINT_f, /* fpr registers for single values */ RS6000_CONSTRAINT_v, /* Altivec registers */ RS6000_CONSTRAINT_wa, /* Any VSX register */ RS6000_CONSTRAINT_wd, /* VSX register for V2DF */ RS6000_CONSTRAINT_wf, /* VSX register for V4SF */ RS6000_CONSTRAINT_ws, /* VSX register for DF */ RS6000_CONSTRAINT_MAX }; extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX]; /* The class value for index registers, and the one for base regs. */ #define INDEX_REG_CLASS GENERAL_REGS #define BASE_REG_CLASS BASE_REGS /* Return whether a given register class can hold VSX objects. */ #define VSX_REG_CLASS_P(CLASS) \ ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS) /* Given an rtx X being reloaded into a reg required to be in class CLASS, return the class of reg to actually use. In general this is just CLASS; but on some machines in some cases it is preferable to use a more restrictive class. On the RS/6000, we have to return NO_REGS when we want to reload a floating-point CONST_DOUBLE to force it to be copied to memory. We also don't want to reload integer values into floating-point registers if we can at all help it. In fact, this can cause reload to die, if it tries to generate a reload of CTR into a FP register and discovers it doesn't have the memory location required. ??? Would it be a good idea to have reload do the converse, that is try to reload floating modes into FP registers if possible? */ #define PREFERRED_RELOAD_CLASS(X,CLASS) \ rs6000_preferred_reload_class_ptr (X, CLASS) /* Return the register class of a scratch register needed to copy IN into or out of a register in CLASS in MODE. If it can be done directly, NO_REGS is returned. */ #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ rs6000_secondary_reload_class_ptr (CLASS, MODE, IN) /* If we are copying between FP or AltiVec registers and anything else, we need a memory location. The exception is when we are targeting ppc64 and the move to/from fpr to gpr instructions are available.*/ #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \ rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE) /* For cpus that cannot load/store SDmode values from the 64-bit FP registers without using a full 64-bit load/store, we need to allocate a full 64-bit stack slot for them. */ #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \ rs6000_secondary_memory_needed_rtx (MODE) /* Return the maximum number of consecutive registers needed to represent mode MODE in a register of class CLASS. On RS/6000, this is the size of MODE in words, except in the FP regs, where a single reg is enough for two words, unless we have VSX, where the FP registers can hold 128 bits. */ #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)] /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */ #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS) /* Stack layout; function entry, exit and calling. */ /* Define this if pushing a word on the stack makes the stack pointer a smaller address. */ #define STACK_GROWS_DOWNWARD /* Offsets recorded in opcodes are a multiple of this alignment factor. */ #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8))) /* Define this to nonzero if the nominal address of the stack frame is at the high-address end of the local variables; that is, each additional local variable allocated goes at a more negative offset in the frame. On the RS/6000, we grow upwards, from the area after the outgoing arguments. */ #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0) /* Size of the outgoing register save area */ #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \ || DEFAULT_ABI == ABI_DARWIN) \ ? (TARGET_64BIT ? 64 : 32) \ : 0) /* Size of the fixed area on the stack */ #define RS6000_SAVE_AREA \ (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \ << (TARGET_64BIT ? 1 : 0)) /* MEM representing address to save the TOC register */ #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \ plus_constant (stack_pointer_rtx, \ (TARGET_32BIT ? 20 : 40))) /* Align an address */ #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1)) /* Offset within stack frame to start allocating local variables at. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the first local allocated. Otherwise, it is the offset to the BEGINNING of the first local allocated. On the RS/6000, the frame pointer is the same as the stack pointer, except for dynamic allocations. So we start after the fixed area and outgoing parameter area. */ #define STARTING_FRAME_OFFSET \ (FRAME_GROWS_DOWNWARD \ ? 0 \ : (RS6000_ALIGN (crtl->outgoing_args_size, \ (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \ + RS6000_SAVE_AREA)) /* Offset from the stack pointer register to an item dynamically allocated on the stack, e.g., by `alloca'. The default value for this macro is `STACK_POINTER_OFFSET' plus the length of the outgoing arguments. The default is correct for most machines. See `function.c' for details. */ #define STACK_DYNAMIC_OFFSET(FUNDECL) \ (RS6000_ALIGN (crtl->outgoing_args_size, \ (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \ + (STACK_POINTER_OFFSET)) /* If we generate an insn to push BYTES bytes, this says how many the stack pointer really advances by. On RS/6000, don't define this because there are no push insns. */ /* #define PUSH_ROUNDING(BYTES) */ /* Offset of first parameter from the argument pointer register value. On the RS/6000, we define the argument pointer to the start of the fixed area. */ #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA /* Offset from the argument pointer register value to the top of stack. This is different from FIRST_PARM_OFFSET because of the register save area. */ #define ARG_POINTER_CFA_OFFSET(FNDECL) 0 /* Define this if stack space is still allocated for a parameter passed in a register. The value is the number of bytes allocated to this area. */ #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE /* Define this if the above stack space is to be considered part of the space allocated by the caller. */ #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 /* This is the difference between the logical top of stack and the actual sp. For the RS/6000, sp points past the fixed area. */ #define STACK_POINTER_OFFSET RS6000_SAVE_AREA /* Define this if the maximum size of all the outgoing args is to be accumulated and pushed during the prologue. The amount can be found in the variable crtl->outgoing_args_size. */ #define ACCUMULATE_OUTGOING_ARGS 1 /* Define how to find the value returned by a library function assuming the value has mode MODE. */ #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE)) /* DRAFT_V4_STRUCT_RET defaults off. */ #define DRAFT_V4_STRUCT_RET 0 /* Let TARGET_RETURN_IN_MEMORY control what happens. */ #define DEFAULT_PCC_STRUCT_RETURN 0 /* Mode of stack savearea. FUNCTION is VOIDmode because calling convention maintains SP. BLOCK needs Pmode for SP. NONLOCAL needs twice Pmode to maintain both backchain and SP. */ #define STACK_SAVEAREA_MODE(LEVEL) \ (LEVEL == SAVE_FUNCTION ? VOIDmode \ : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode) /* Minimum and maximum general purpose registers used to hold arguments. */ #define GP_ARG_MIN_REG 3 #define GP_ARG_MAX_REG 10 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1) /* Minimum and maximum floating point registers used to hold arguments. */ #define FP_ARG_MIN_REG 33 #define FP_ARG_AIX_MAX_REG 45 #define FP_ARG_V4_MAX_REG 40 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \ || DEFAULT_ABI == ABI_DARWIN) \ ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG) #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1) /* Minimum and maximum AltiVec registers used to hold arguments. */ #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2) #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11) #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1) /* Return registers */ #define GP_ARG_RETURN GP_ARG_MIN_REG #define FP_ARG_RETURN FP_ARG_MIN_REG #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2) /* Flags for the call/call_value rtl operations set up by function_arg */ #define CALL_NORMAL 0x00000000 /* no special processing */ /* Bits in 0x00000001 are unused. */ #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */ #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */ #define CALL_LONG 0x00000008 /* always call indirect */ #define CALL_LIBCALL 0x00000010 /* libcall */ /* We don't have prologue and epilogue functions to save/restore everything for most ABIs. */ #define WORLD_SAVE_P(INFO) 0 /* 1 if N is a possible register number for a function value as seen by the caller. On RS/6000, this is r3, fp1, and v2 (for AltiVec). */ #define FUNCTION_VALUE_REGNO_P(N) \ ((N) == GP_ARG_RETURN \ || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \ || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)) /* 1 if N is a possible register number for function argument passing. On RS/6000, these are r3-r10 and fp1-fp13. On AltiVec, v2 - v13 are used for passing vectors. */ #define FUNCTION_ARG_REGNO_P(N) \ ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \ || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \ && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \ || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \ && TARGET_HARD_FLOAT && TARGET_FPRS)) /* Define a data type for recording info about an argument list during the scan of that argument list. This data type should hold all necessary information about the function itself and about the args processed so far, enough to enable macros such as FUNCTION_ARG to determine where the next arg should go. On the RS/6000, this is a structure. The first element is the number of total argument words, the second is used to store the next floating-point register number, and the third says how many more args we have prototype types for. For ABI_V4, we treat these slightly differently -- `sysv_gregno' is the next available GP register, `fregno' is the next available FP register, and `words' is the number of words used on the stack. The varargs/stdarg support requires that this structure's size be a multiple of sizeof(int). */ typedef struct rs6000_args { int words; /* # words used for passing GP registers */ int fregno; /* next available FP register */ int vregno; /* next available AltiVec register */ int nargs_prototype; /* # args left in the current prototype */ int prototype; /* Whether a prototype was defined */ int stdarg; /* Whether function is a stdarg function. */ int call_cookie; /* Do special things for this call */ int sysv_gregno; /* next available GP register */ int intoffset; /* running offset in struct (darwin64) */ int use_stack; /* any part of struct on stack (darwin64) */ int floats_in_gpr; /* count of SFmode floats taking up GPR space (darwin64) */ int named; /* false for varargs params */ int escapes; /* if function visible outside tu */ } CUMULATIVE_ARGS; /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \ N_NAMED_ARGS, FNDECL, VOIDmode) /* Similar, but when scanning the definition of a procedure. We always set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */ #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \ init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \ 1000, current_function_decl, VOIDmode) /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */ #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \ init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \ 0, NULL_TREE, MODE) /* If defined, a C expression which determines whether, and in which direction, to pad out an argument with extra space. The value should be of type `enum direction': either `upward' to pad above the argument, `downward' to pad below, or `none' to inhibit padding. */ #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE) #define PAD_VARARGS_DOWN \ (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward) /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ #define FUNCTION_PROFILER(FILE, LABELNO) \ output_function_profiler ((FILE), (LABELNO)); /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. No definition is equivalent to always zero. On the RS/6000, this is nonzero because we can restore the stack from its backpointer, which we maintain. */ #define EXIT_IGNORE_STACK 1 /* Define this macro as a C expression that is nonzero for registers that are used by the epilogue or the return' pattern. The stack and frame pointer registers are already be assumed to be used as needed. */ #define EPILOGUE_USES(REGNO) \ ((reload_completed && (REGNO) == LR_REGNO) \ || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \ || (crtl->calls_eh_return \ && TARGET_AIX \ && (REGNO) == 2)) /* Length in units of the trampoline for entering a nested function. */ #define TRAMPOLINE_SIZE rs6000_trampoline_size () /* Definitions for __builtin_return_address and __builtin_frame_address. __builtin_return_address (0) should give link register (65), enable this. */ /* This should be uncommented, so that the link register is used, but currently this would result in unmatched insns and spilling fixed registers so we'll leave it for another day. When these problems are taken care of one additional fetch will be necessary in RETURN_ADDR_RTX. (mrs) */ /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */ /* Number of bytes into the frame return addresses can be found. See rs6000_stack_info in rs6000.c for more information on how the different abi's store the return address. */ #define RETURN_ADDRESS_OFFSET \ ((DEFAULT_ABI == ABI_AIX \ || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \ (DEFAULT_ABI == ABI_V4) ? 4 : \ (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0)) /* The current return address is in link register (65). The return address of anything farther back is accessed normally at an offset of 8 from the frame pointer. */ #define RETURN_ADDR_RTX(COUNT, FRAME) \ (rs6000_return_addr (COUNT, FRAME)) /* Definitions for register eliminations. We have two registers that can be eliminated on the RS/6000. First, the frame pointer register can often be eliminated in favor of the stack pointer register. Secondly, the argument pointer register can always be eliminated; it is replaced with either the stack or frame pointer. In addition, we use the elimination mechanism to see if r30 is needed Initially we assume that it isn't. If it is, we spill it. This is done by making it an eliminable register. We replace it with itself so that if it isn't needed, then existing uses won't be modified. */ /* This is an array of structures. Each structure initializes one pair of eliminable registers. The "from" register number is given first, followed by "to". Eliminations of the same "from" register are listed in order of preference. */ #define ELIMINABLE_REGS \ {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } } /* Define the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO)) /* Addressing modes, and classification of registers for them. */ #define HAVE_PRE_DECREMENT 1 #define HAVE_PRE_INCREMENT 1 #define HAVE_PRE_MODIFY_DISP 1 #define HAVE_PRE_MODIFY_REG 1 /* Macros to check register numbers against specific register classes. */ /* These assume that REGNO is a hard or pseudo reg number. They give nonzero only if REGNO is a hard reg of the suitable class or a pseudo reg currently allocated to a suitable hard reg. Since they use reg_renumber, they are safe only once reg_renumber has been allocated, which happens in local-alloc.c. */ #define REGNO_OK_FOR_INDEX_P(REGNO) \ ((REGNO) < FIRST_PSEUDO_REGISTER \ ? (REGNO) <= 31 || (REGNO) == 67 \ || (REGNO) == FRAME_POINTER_REGNUM \ : (reg_renumber[REGNO] >= 0 \ && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \ || reg_renumber[REGNO] == FRAME_POINTER_REGNUM))) #define REGNO_OK_FOR_BASE_P(REGNO) \ ((REGNO) < FIRST_PSEUDO_REGISTER \ ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \ || (REGNO) == FRAME_POINTER_REGNUM \ : (reg_renumber[REGNO] > 0 \ && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \ || reg_renumber[REGNO] == FRAME_POINTER_REGNUM))) /* Nonzero if X is a hard reg that can be used as an index or if it is a pseudo reg in the non-strict case. */ #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \ ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \ || REGNO_OK_FOR_INDEX_P (REGNO (X))) /* Nonzero if X is a hard reg that can be used as a base reg or if it is a pseudo reg in the non-strict case. */ #define INT_REG_OK_FOR_BASE_P(X, STRICT) \ ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \ || REGNO_OK_FOR_BASE_P (REGNO (X))) /* Maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 2 /* Recognize any constant value that is a valid address. */ #define CONSTANT_ADDRESS_P(X) \ (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ || GET_CODE (X) == HIGH) #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15) #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \ && EASY_VECTOR_15((n) >> 1) \ && ((n) & 1) == 0) #define EASY_VECTOR_MSB(n,mode) \ (((unsigned HOST_WIDE_INT)n) == \ ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1)) /* Try a machine-dependent way of reloading an illegitimate address operand. If we find one, push the reload and jump to WIN. This macro is used in only one place: `find_reloads_address' in reload.c. Implemented on rs6000 by rs6000_legitimize_reload_address. Note that (X) is evaluated twice; this is safe in current usage. */ #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \ do { \ int win; \ (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \ (int)(TYPE), (IND_LEVELS), &win); \ if ( win ) \ goto WIN; \ } while (0) #define FIND_BASE_TERM rs6000_find_base_term /* The register number of the register used to address a table of static data addresses in memory. In some cases this register is defined by a processor's "application binary interface" (ABI). When this macro is defined, RTL is generated for this register once, as with the stack pointer and frame pointer registers. If this macro is not defined, it is up to the machine-dependent files to allocate such a register (if necessary). */ #define RS6000_PIC_OFFSET_TABLE_REGNUM 30 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM) #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2) /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */ /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */ /* A C expression that is nonzero if X is a legitimate immediate operand on the target machine when generating position independent code. You can assume that X satisfies `CONSTANT_P', so you need not check this. You can also assume FLAG_PIC is true, so you need not check it either. You need not define this macro if all constants (including `SYMBOL_REF') can be immediate operands when generating position independent code. */ /* #define LEGITIMATE_PIC_OPERAND_P (X) */ /* Define this if some processing needs to be done immediately before emitting code for an insn. */ #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \ rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS) /* Specify the machine mode that this machine uses for the index in the tablejump instruction. */ #define CASE_VECTOR_MODE SImode /* Define as C expression which evaluates to nonzero if the tablejump instruction expects the table to contain offsets from the address of the table. Do not define this if the table should contain absolute addresses. */ #define CASE_VECTOR_PC_RELATIVE 1 /* Define this as 1 if `char' should by default be signed; else as 0. */ #define DEFAULT_SIGNED_CHAR 0 /* This flag, if defined, says the same insns that convert to a signed fixnum also convert validly to an unsigned one. */ /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */ /* An integer expression for the size in bits of the largest integer machine mode that should actually be used. */ /* Allow pairs of registers to be used, which is the intent of the default. */ #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode) /* Max number of bytes we can move from memory to memory in one reasonably fast instruction. */ #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8) #define MAX_MOVE_MAX 8 /* Nonzero if access to memory by bytes is no faster than for words. Also nonzero if doing byte operations (specifically shifts) in registers is undesirable. */ #define SLOW_BYTE_ACCESS 1 /* Define if operations between registers always perform the operation on the full register even if a narrower mode is specified. */ #define WORD_REGISTER_OPERATIONS /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD will either zero-extend or sign-extend. The value of this macro should be the code that says which one of the two operations is implicitly done, UNKNOWN if none. */ #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND /* Define if loading short immediate values into registers sign extends. */ #define SHORT_IMMEDIATES_SIGN_EXTEND /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */ #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */ #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ ((VALUE) = ((MODE) == SImode ? 32 : 64), 1) /* The CTZ patterns return -1 for input of zero. */ #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1) /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ extern unsigned rs6000_pmode; #define Pmode ((enum machine_mode)rs6000_pmode) /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */ #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode) /* Mode of a function address in a call instruction (for indexing purposes). Doesn't matter on RS/6000. */ #define FUNCTION_MODE SImode /* Define this if addresses of constant functions shouldn't be put through pseudo regs where they can be cse'd. Desirable on machines where ordinary constants are expensive but a CALL with constant address is cheap. */ #define NO_FUNCTION_CSE /* Define this to be nonzero if shift instructions ignore all but the low-order few bits. The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED have been dropped from the PowerPC architecture. */ #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0) /* Adjust the length of an INSN. LENGTH is the currently-computed length and should be adjusted to reflect any required changes. This macro is used when there is some systematic length adjustment required that would be difficult to express in the length attribute. */ /* #define ADJUST_INSN_LENGTH(X,LENGTH) */ /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, return the mode to be used for the comparison. For floating-point, CCFPmode should be used. CCUNSmode should be used for unsigned comparisons. CCEQmode should be used when we are doing an inequality comparison on the result of a comparison. CCmode should be used in all other cases. */ #define SELECT_CC_MODE(OP,X,Y) \ (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \ : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \ : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \ ? CCEQmode : CCmode)) /* Can the condition code MODE be safely reversed? This is safe in all cases on this port, because at present it doesn't use the trapping FP comparisons (fcmpo). */ #define REVERSIBLE_CC_MODE(MODE) 1 /* Given a condition code and a mode, return the inverse condition. */ #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE) /* Control the assembler format that we output. */ /* A C string constant describing how to begin a comment in the target assembler language. The compiler assumes that the comment will end at the end of the line. */ #define ASM_COMMENT_START " #" /* Flag to say the TOC is initialized */ extern int toc_initialized; /* Macro to output a special constant pool entry. Go to WIN if we output it. Otherwise, it is written the usual way. On the RS/6000, toc entries are handled this way. */ #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \ { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \ { \ output_toc (FILE, X, LABELNO, MODE); \ goto WIN; \ } \ } #ifdef HAVE_GAS_WEAK #define RS6000_WEAK 1 #else #define RS6000_WEAK 0 #endif #if RS6000_WEAK /* Used in lieu of ASM_WEAKEN_LABEL. */ #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \ do \ { \ fputs ("\t.weak\t", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \ && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ { \ if (TARGET_XCOFF) \ fputs ("[DS]", (FILE)); \ fputs ("\n\t.weak\t.", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ } \ fputc ('\n', (FILE)); \ if (VAL) \ { \ ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \ if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \ && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ { \ fputs ("\t.set\t.", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ fputs (",.", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \ fputc ('\n', (FILE)); \ } \ } \ } \ while (0) #endif #if HAVE_GAS_WEAKREF #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \ do \ { \ fputs ("\t.weakref\t", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ fputs (", ", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \ if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \ && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ { \ fputs ("\n\t.weakref\t.", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ fputs (", .", (FILE)); \ RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \ } \ fputc ('\n', (FILE)); \ } while (0) #endif /* This implements the `alias' attribute. */ #undef ASM_OUTPUT_DEF_FROM_DECLS #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \ do \ { \ const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \ const char *name = IDENTIFIER_POINTER (TARGET); \ if (TREE_CODE (DECL) == FUNCTION_DECL \ && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ { \ if (TREE_PUBLIC (DECL)) \ { \ if (!RS6000_WEAK || !DECL_WEAK (DECL)) \ { \ fputs ("\t.globl\t.", FILE); \ RS6000_OUTPUT_BASENAME (FILE, alias); \ putc ('\n', FILE); \ } \ } \ else if (TARGET_XCOFF) \ { \ fputs ("\t.lglobl\t.", FILE); \ RS6000_OUTPUT_BASENAME (FILE, alias); \ putc ('\n', FILE); \ } \ fputs ("\t.set\t.", FILE); \ RS6000_OUTPUT_BASENAME (FILE, alias); \ fputs (",.", FILE); \ RS6000_OUTPUT_BASENAME (FILE, name); \ fputc ('\n', FILE); \ } \ ASM_OUTPUT_DEF (FILE, alias, name); \ } \ while (0) #define TARGET_ASM_FILE_START rs6000_file_start /* Output to assembler file text saying following lines may contain character constants, extra white space, comments, etc. */ #define ASM_APP_ON "" /* Output to assembler file text saying following lines no longer contain unusual constructs. */ #define ASM_APP_OFF "" /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */ #define REGISTER_NAMES \ { \ &rs6000_reg_names[ 0][0], /* r0 */ \ &rs6000_reg_names[ 1][0], /* r1 */ \ &rs6000_reg_names[ 2][0], /* r2 */ \ &rs6000_reg_names[ 3][0], /* r3 */ \ &rs6000_reg_names[ 4][0], /* r4 */ \ &rs6000_reg_names[ 5][0], /* r5 */ \ &rs6000_reg_names[ 6][0], /* r6 */ \ &rs6000_reg_names[ 7][0], /* r7 */ \ &rs6000_reg_names[ 8][0], /* r8 */ \ &rs6000_reg_names[ 9][0], /* r9 */ \ &rs6000_reg_names[10][0], /* r10 */ \ &rs6000_reg_names[11][0], /* r11 */ \ &rs6000_reg_names[12][0], /* r12 */ \ &rs6000_reg_names[13][0], /* r13 */ \ &rs6000_reg_names[14][0], /* r14 */ \ &rs6000_reg_names[15][0], /* r15 */ \ &rs6000_reg_names[16][0], /* r16 */ \ &rs6000_reg_names[17][0], /* r17 */ \ &rs6000_reg_names[18][0], /* r18 */ \ &rs6000_reg_names[19][0], /* r19 */ \ &rs6000_reg_names[20][0], /* r20 */ \ &rs6000_reg_names[21][0], /* r21 */ \ &rs6000_reg_names[22][0], /* r22 */ \ &rs6000_reg_names[23][0], /* r23 */ \ &rs6000_reg_names[24][0], /* r24 */ \ &rs6000_reg_names[25][0], /* r25 */ \ &rs6000_reg_names[26][0], /* r26 */ \ &rs6000_reg_names[27][0], /* r27 */ \ &rs6000_reg_names[28][0], /* r28 */ \ &rs6000_reg_names[29][0], /* r29 */ \ &rs6000_reg_names[30][0], /* r30 */ \ &rs6000_reg_names[31][0], /* r31 */ \ \ &rs6000_reg_names[32][0], /* fr0 */ \ &rs6000_reg_names[33][0], /* fr1 */ \ &rs6000_reg_names[34][0], /* fr2 */ \ &rs6000_reg_names[35][0], /* fr3 */ \ &rs6000_reg_names[36][0], /* fr4 */ \ &rs6000_reg_names[37][0], /* fr5 */ \ &rs6000_reg_names[38][0], /* fr6 */ \ &rs6000_reg_names[39][0], /* fr7 */ \ &rs6000_reg_names[40][0], /* fr8 */ \ &rs6000_reg_names[41][0], /* fr9 */ \ &rs6000_reg_names[42][0], /* fr10 */ \ &rs6000_reg_names[43][0], /* fr11 */ \ &rs6000_reg_names[44][0], /* fr12 */ \ &rs6000_reg_names[45][0], /* fr13 */ \ &rs6000_reg_names[46][0], /* fr14 */ \ &rs6000_reg_names[47][0], /* fr15 */ \ &rs6000_reg_names[48][0], /* fr16 */ \ &rs6000_reg_names[49][0], /* fr17 */ \ &rs6000_reg_names[50][0], /* fr18 */ \ &rs6000_reg_names[51][0], /* fr19 */ \ &rs6000_reg_names[52][0], /* fr20 */ \ &rs6000_reg_names[53][0], /* fr21 */ \ &rs6000_reg_names[54][0], /* fr22 */ \ &rs6000_reg_names[55][0], /* fr23 */ \ &rs6000_reg_names[56][0], /* fr24 */ \ &rs6000_reg_names[57][0], /* fr25 */ \ &rs6000_reg_names[58][0], /* fr26 */ \ &rs6000_reg_names[59][0], /* fr27 */ \ &rs6000_reg_names[60][0], /* fr28 */ \ &rs6000_reg_names[61][0], /* fr29 */ \ &rs6000_reg_names[62][0], /* fr30 */ \ &rs6000_reg_names[63][0], /* fr31 */ \ \ &rs6000_reg_names[64][0], /* mq */ \ &rs6000_reg_names[65][0], /* lr */ \ &rs6000_reg_names[66][0], /* ctr */ \ &rs6000_reg_names[67][0], /* ap */ \ \ &rs6000_reg_names[68][0], /* cr0 */ \ &rs6000_reg_names[69][0], /* cr1 */ \ &rs6000_reg_names[70][0], /* cr2 */ \ &rs6000_reg_names[71][0], /* cr3 */ \ &rs6000_reg_names[72][0], /* cr4 */ \ &rs6000_reg_names[73][0], /* cr5 */ \ &rs6000_reg_names[74][0], /* cr6 */ \ &rs6000_reg_names[75][0], /* cr7 */ \ \ &rs6000_reg_names[76][0], /* ca */ \ \ &rs6000_reg_names[77][0], /* v0 */ \ &rs6000_reg_names[78][0], /* v1 */ \ &rs6000_reg_names[79][0], /* v2 */ \ &rs6000_reg_names[80][0], /* v3 */ \ &rs6000_reg_names[81][0], /* v4 */ \ &rs6000_reg_names[82][0], /* v5 */ \ &rs6000_reg_names[83][0], /* v6 */ \ &rs6000_reg_names[84][0], /* v7 */ \ &rs6000_reg_names[85][0], /* v8 */ \ &rs6000_reg_names[86][0], /* v9 */ \ &rs6000_reg_names[87][0], /* v10 */ \ &rs6000_reg_names[88][0], /* v11 */ \ &rs6000_reg_names[89][0], /* v12 */ \ &rs6000_reg_names[90][0], /* v13 */ \ &rs6000_reg_names[91][0], /* v14 */ \ &rs6000_reg_names[92][0], /* v15 */ \ &rs6000_reg_names[93][0], /* v16 */ \ &rs6000_reg_names[94][0], /* v17 */ \ &rs6000_reg_names[95][0], /* v18 */ \ &rs6000_reg_names[96][0], /* v19 */ \ &rs6000_reg_names[97][0], /* v20 */ \ &rs6000_reg_names[98][0], /* v21 */ \ &rs6000_reg_names[99][0], /* v22 */ \ &rs6000_reg_names[100][0], /* v23 */ \ &rs6000_reg_names[101][0], /* v24 */ \ &rs6000_reg_names[102][0], /* v25 */ \ &rs6000_reg_names[103][0], /* v26 */ \ &rs6000_reg_names[104][0], /* v27 */ \ &rs6000_reg_names[105][0], /* v28 */ \ &rs6000_reg_names[106][0], /* v29 */ \ &rs6000_reg_names[107][0], /* v30 */ \ &rs6000_reg_names[108][0], /* v31 */ \ &rs6000_reg_names[109][0], /* vrsave */ \ &rs6000_reg_names[110][0], /* vscr */ \ &rs6000_reg_names[111][0], /* spe_acc */ \ &rs6000_reg_names[112][0], /* spefscr */ \ &rs6000_reg_names[113][0], /* sfp */ \ } /* Table of additional register names to use in user input. */ #define ADDITIONAL_REGISTER_NAMES \ {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \ {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \ {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \ {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \ {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \ {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \ {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \ {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \ {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \ {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \ {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \ {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \ {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \ {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \ {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \ {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \ {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \ {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \ {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \ {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \ {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \ {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \ {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \ {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \ {"vrsave", 109}, {"vscr", 110}, \ {"spe_acc", 111}, {"spefscr", 112}, \ /* no additional names for: mq, lr, ctr, ap */ \ {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \ {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \ {"cc", 68}, {"sp", 1}, {"toc", 2}, \ /* CA is only part of XER, but we do not model the other parts (yet). */ \ {"xer", 76}, \ /* VSX registers overlaid on top of FR, Altivec registers */ \ {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \ {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \ {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \ {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \ {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \ {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \ {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \ {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \ {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \ {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \ {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \ {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \ {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \ {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \ {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \ {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} } /* Text to write out after a CALL that may be replaced by glue code by the loader. This depends on the AIX version. */ #define RS6000_CALL_GLUE "cror 31,31,31" /* This is how to output an element of a case-vector that is relative. */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ do { char buf[100]; \ fputs ("\t.long ", FILE); \ ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \ assemble_name (FILE, buf); \ putc ('-', FILE); \ ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \ assemble_name (FILE, buf); \ putc ('\n', FILE); \ } while (0) /* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */ #define ASM_OUTPUT_ALIGN(FILE,LOG) \ if ((LOG) != 0) \ fprintf (FILE, "\t.align %d\n", (LOG)) /* How to align the given loop. */ #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL) /* Pick up the return address upon entry to a procedure. Used for dwarf2 unwind information. This also enables the table driven mechanism. */ #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO) #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO) /* Describe how we implement __builtin_eh_return. */ #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM) #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10) /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) /* Define which CODE values are valid. */ #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ ((CODE) == '.' || (CODE) == '&') /* Print a memory address as an operand to reference that memory location. */ #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) /* uncomment for disabling the corresponding default options */ /* #define MACHINE_no_sched_interblock */ /* #define MACHINE_no_sched_speculative */ /* #define MACHINE_no_sched_speculative_load */ /* General flags. */ extern int frame_pointer_needed; /* Classification of the builtin functions as to which switches enable the builtin, and what attributes it should have. We used to use the target flags macros, but we've run out of bits, so we now map the options into new settings used here. */ /* Builtin attributes. */ #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */ #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */ #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */ #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */ #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */ #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */ #define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */ #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */ #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */ #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */ #define RS6000_BTC_CONST 0x00000100 /* uses no global state. */ #define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */ #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */ #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */ /* Miscellaneous information. */ #define RS6000_BTC_OVERLOADED 0x4000000 /* function is overloaded. */ /* Convenience macros to document the instruction type. */ #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */ #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */ /* Builtin targets. For now, we reuse the masks for those options that are in target flags, and pick two random bits for SPE and paired which aren't in target_flags. */ #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */ #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */ #define RS6000_BTM_SPE MASK_STRING /* E500 */ #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */ #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */ #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */ #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */ #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */ #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */ #define RS6000_BTM_POWERPC MASK_POWERPC /* Target is powerpc. */ #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */ #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \ | RS6000_BTM_VSX \ | RS6000_BTM_FRE \ | RS6000_BTM_FRES \ | RS6000_BTM_FRSQRTE \ | RS6000_BTM_FRSQRTES \ | RS6000_BTM_POPCNTD \ | RS6000_BTM_POWERPC \ | RS6000_BTM_CELL) /* Define builtin enum index. */ #undef RS6000_BUILTIN_1 #undef RS6000_BUILTIN_2 #undef RS6000_BUILTIN_3 #undef RS6000_BUILTIN_A #undef RS6000_BUILTIN_D #undef RS6000_BUILTIN_E #undef RS6000_BUILTIN_P #undef RS6000_BUILTIN_Q #undef RS6000_BUILTIN_S #undef RS6000_BUILTIN_X #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM, #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM, #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM, #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM, #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM, #define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM, #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM, #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM, #define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM, #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM, enum rs6000_builtins { #include "rs6000-builtin.def" RS6000_BUILTIN_COUNT }; #undef RS6000_BUILTIN_1 #undef RS6000_BUILTIN_2 #undef RS6000_BUILTIN_3 #undef RS6000_BUILTIN_A #undef RS6000_BUILTIN_D #undef RS6000_BUILTIN_E #undef RS6000_BUILTIN_P #undef RS6000_BUILTIN_Q #undef RS6000_BUILTIN_S #undef RS6000_BUILTIN_X enum rs6000_builtin_type_index { RS6000_BTI_NOT_OPAQUE, RS6000_BTI_opaque_V2SI, RS6000_BTI_opaque_V2SF, RS6000_BTI_opaque_p_V2SI, RS6000_BTI_opaque_V4SI, RS6000_BTI_V16QI, RS6000_BTI_V2SI, RS6000_BTI_V2SF, RS6000_BTI_V2DI, RS6000_BTI_V2DF, RS6000_BTI_V4HI, RS6000_BTI_V4SI, RS6000_BTI_V4SF, RS6000_BTI_V8HI, RS6000_BTI_unsigned_V16QI, RS6000_BTI_unsigned_V8HI, RS6000_BTI_unsigned_V4SI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_char, /* __bool char */ RS6000_BTI_bool_short, /* __bool short */ RS6000_BTI_bool_int, /* __bool int */ RS6000_BTI_bool_long, /* __bool long */ RS6000_BTI_pixel, /* __pixel */ RS6000_BTI_bool_V16QI, /* __vector __bool char */ RS6000_BTI_bool_V8HI, /* __vector __bool short */ RS6000_BTI_bool_V4SI, /* __vector __bool int */ RS6000_BTI_bool_V2DI, /* __vector __bool long */ RS6000_BTI_pixel_V8HI, /* __vector __pixel */ RS6000_BTI_long, /* long_integer_type_node */ RS6000_BTI_unsigned_long, /* long_unsigned_type_node */ RS6000_BTI_long_long, /* long_long_integer_type_node */ RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */ RS6000_BTI_INTQI, /* intQI_type_node */ RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */ RS6000_BTI_INTHI, /* intHI_type_node */ RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */ RS6000_BTI_INTSI, /* intSI_type_node */ RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */ RS6000_BTI_INTDI, /* intDI_type_node */ RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */ RS6000_BTI_float, /* float_type_node */ RS6000_BTI_double, /* double_type_node */ RS6000_BTI_void, /* void_type_node */ RS6000_BTI_MAX }; #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI]) #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF]) #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI]) #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI]) #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI]) #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI]) #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF]) #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI]) #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF]) #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI]) #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI]) #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF]) #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI]) #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI]) #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI]) #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI]) #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI]) #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char]) #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short]) #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int]) #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long]) #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel]) #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI]) #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI]) #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI]) #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI]) #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI]) #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long]) #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long]) #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long]) #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long]) #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI]) #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI]) #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI]) #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI]) #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI]) #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI]) #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI]) #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI]) #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float]) #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double]) #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void]) extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX]; extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
Go to most recent revision | Compare with Previous | Blame | View Log